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Abstract
Bayes nets are extensively used in practice to ef-
ficiently represent joint probability distributions
over a set of random variables and capture depen-
dency relations. In a seminal paper, Chickering
et al. (JMLR 2004) showed that given a distribu-
tion P, that is defined as the marginal distribution
of a Bayes net, it is NP-hard to decide whether
there is a parameter-bounded Bayes net that rep-
resents P. They called this problem LEARN. In
this work, we extend the NP-hardness result of
LEARN and prove the NP-hardness of a promise
search variant of LEARN, whereby the Bayes net
in question is guaranteed to exist and one is asked
to find such a Bayes net. We complement our
hardness result with a positive result about the
sample complexity that is sufficient to recover a
parameter-bounded Bayes net that is close (in TV
distance) to a given distributionP, represented by
some parameter-bounded Bayes net, thereby gen-
eralizing a degree-bounded sample complexity
result of Brustle et al. (EC 2020).

1. Introduction
Bayesian networks (Pearl, 1988), or simply Bayes nets, are
directed acyclic graphs (DAGs), accompanied by a collec-
tion of conditional probability distributions (that is, one for
each vertex), that are used to represent joint probability dis-
tributions over dependent random variables in an elegant
and succinct manner. As an example, consider a distribution
P over five Boolean variables X = {X1, X2, X3, X4, X5}.
Regardless of the dependencies between the variables,P can
always be represented by a lookup table that has 25−1 = 31
entries, with one entry for each possible Boolean outcome
except one. However, known dependencies between vari-
ables may induce a sparser representation. If X2 depends
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on X1, X3 depends on {X2, X5}, and X4 depends on X3,
then the joint distribution P(x1, . . . , x5) decomposes as

P(x1) ·P(x2 | x1) ·P(x3 | x2, x5) ·P(x4 | x3) ·P(x5).

In fact, one can represent P with a relatively sparse Bayes
net G (see Figure 1) with conditional probability tables
(CPTs) associated with each vertex. Observe that 8 < 31
numbers suffice to describe the CPTs: One for each of the
Bernoulli distributions of X1 and X5, two for the condi-
tional probability distributions of X2 and X4, and four for
that of X3. In the rest of this work, we refer to the numbers
used in defining the CPTs above as parameters.

X1 X2 X3 X4

X5

G

X1 X2 X4

X5

H

Figure 1. Left: A Bayes net G such that the distribution P of our
example is represented by G. Right: A Bayes net H such that the
distribution that arises from the distribution P after marginalizing
out X3 is represented by H.

It is a standard result (Pearl, 1988; Chickering et al., 2004)
that there exists a Bayes net G of p parameters that repre-
sents a probability distribution P if and only if P is Markov
with respect to some Bayes netH of p parameters that has
the same underlying DAG as G. (It could be that G = H, but
this is not necessary.) Here, the property of a distribution
P being Markov with respect to a Bayes net G means that
a certain graphical separation condition in the underlying
DAG of G, known as d-separation, implies conditional inde-
pendence in P (see Section 2.2 for formal definitions). We
shall make use of this equivalence in the sequel.

A series of works studied the problem of learning the under-
lying DAG of a Bayes net from data, by focusing on max-
imizing certain scoring criterion by the underlying DAG,
see, e.g., (Cooper & Herskovits, 1992; Spiegelhalter et al.,
1993; Heckerman et al., 1995). This task was later shown
to be NP-hard by Chickering (1996), which then raised the
following natural fundamental question:
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Given a succinct description of a distribution P (that
is not in terms of a Bayes net), how easy is it to find a
Bayes net G such that P is Markov with respect to G?

Unfortunately, Chickering et al. (2004) showed that deciding
whether a given distribution P is Markov with respect to
some Bayes net of at most p ∈ N parameters or not is
NP-hard.
Remark 1.1. In Chickering et al. (2004), the distribution
P is described as the certain marginal of a Bayes net of
small in-degree, i.e., a succinct Bayes net description over
variables X , along with a subset of variables S ⊆ X to
marginalize out. For example, any distribution P′ that is
Markov with respect to the left Bayes net in Figure 1 is
Markov with respect to the right Bayes net in Figure 1 after
marginalizing out X3. Note that all possible distributions
over X are Markov with respect to some Bayes net over a
clique, but such a Bayes net requires 2|X| − 1 parameters.

Regarding upper bounds, there are well-known algorithms
for learning the underlying DAG of a Bayes net from distri-
butional samples such as the PC (Spirtes et al., 2000) and
GES (Chickering, 2002) algorithms. Recently, Brustle et al.
(2020) also gave finite sample guarantees of learning Bayes
nets (that have n nodes, each taking values over an alphabet
Σ) from samples. When given the promise that the underly-
ing DAG has bounded in-degree of d, Brustle et al. (2020,
Theorem 10) asserts that using

O
(
log 1

δ

ε2

(
n |Σ|d+1

log

(
n|Σ|
ε

)
+ n · d · log n

))
(1)

samples from the underlying distribution P, one can learn
P up to total variation (TV) distance ε with probability at
least 1− δ.

One standard way to measure the complexity of a Bayes net
is by imposing an upper bound on any node’s in-degree. In
this work, we measure the complexity in terms of the num-
ber of parameters p, which is a more fine-grained measure
than that of maximum in-degree d. For instance, a Bayes net
on n Boolean variables with maximum in-degree d could
have as few as O(n + 2d) parameters (e.g., a star graph
where d leaves point towards the center of the start) and as
many as Ω(n · 2d) parameters (e.g., a complete graph).

1.1. Our Contributions

Our two main contributions are that we extend the hardness
result of Chickering et al. (2004) and generalize the finite
sample complexity result of Brustle et al. (2020).

Contribution 1. We extend the hardness result of Chick-
ering et al. (2004) to the setting where we are guaranteed
that the Bayes net in question is promised to have a small
number of parameters. In computational complexity theory,

this is also known as a promise problem, which generalizes
a decision problem in that the input is promised to belong to
a certain subset of possible inputs. Our new hardness result
confirms the common intuition that it is hard to search for a
Bayes net G that is Markov with respect to a given proba-
bility distribution, even if it is known that the distribution
in question is Markov with respect to a Bayes net that has a
small number of parameters.
Definition 1.2 (The REALIZABLE-LEARN problem).
Given as input variables X = (X1, . . . , Xn), a probability
distribution P on X , a parameter bound p ∈ N, and the
promise that there exists a Bayes net G with at most p pa-
rameters such that P is Markov with respect to G, output
a Bayes net G′ with at most p parameters such that P is
Markov with respect to G′.

Theorem 1.3. REALIZABLE-LEARN is NP-hard.

Technically speaking, REALIZABLE-LEARN is a promise
search problem. While NP-hardness results usually revolve
around decision problems, NP-hardness naturally extends
to the more general case of search problems when Turing re-
ductions are considered. (Turing reductions comprise a very
broad class of reductions, whereby an efficient algorithm
for a problem yields an efficient algorithm for another.)

Contribution 2. We generalized the finite sample result
of Brustle et al. (2020) from the degree-bounded setting to
the parameter-bounded setting.
Theorem 1.4 (Approximating parameter-bounded Bayes
nets using samples). Fix any accuracy parameter ε > 0
and confidence parameter δ > 0. Given sample access
to a distribution P over n variables, each defined on the
alphabet Σ, and the promise that P is Markov with respect
to a Bayes net with at most p parameters,

O

 log 1
δ

ε2

p log

(
n |Σ|
ε

)
+ n

log
(

p
n(|Σ|−1)

)
log |Σ|

log n


samples from P suffice to learn the underlying DAG of a
Bayes net G with at most p parameters and define a dis-
tribution Q that is Markov with respect to G such that
dTV(P,Q) ≤ ε with success probability at least 1− δ.

Notice that when all in-degrees are at most d, we have
p ≤ (|Σ| − 1) · n · |Σ|d, so our result generalizes the bound
of Brustle et al. (2020) given in Equation (1).1

Finally, we note that while Theorem 1.4 runs in time poly-
nomial in 1/δ and 1/ε2, and it has exponential dependency
on the number of samples from P, similar to Brustle et al.
(2020).

1One can further generalize Theorem 1.4 to the case where
each node has a different alphabet size, e.g., Xi has alphabet Σi,
but this is a straightforward extension.
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1.2. Paper Outline

After preliminaries in Section 2, we give a high-level
overview of the techniques behind our results in Section 3.
We then formally prove Theorem 1.3 and Theorem 1.4 in
Section 4 and Section 5, respectively. Finally, we conclude
with an open problem in Section 6.

2. Preliminaries
2.1. Notation

We define the set of natural numbers by N and all logarithms
refer to the natural log.

Distributions are written as P,Q and graphs in calligraphic
letters, e.g., G,H,K. For variables/nodes, we use capital
letters, small letters for the values taken by them, and bold-
face versions for a collection of variables, e.g., X = x and
X = x. As shorthands, we write [n] for {1, . . . , n} and
P(x) for P(X = x). We will often represent the same set
of variables of distributions as nodes in a graph.

Problems and algorithms are named in the typewriter font in
full caps and capitalized, respectively, e.g., PROBLEM and
Algorithm.

We will also often use Σ to denote the alphabet set of a
variable and write ∆|Σ| to denote the corresponding (condi-
tional) probability simplex.

2.2. Graph-Theoretical Notions

Let G = (X,E) be a fully directed graph on |X| = n
vertices and |E| edges where adjacencies are denoted with
dashes, e.g., X − Y , and arc directions are denoted with
arrows, e.g., X → Y . For any node X ∈ X , we write
PaG(X) ⊆X to denote its parents and paG(X) to denote
the values they take.

A degree sequence of a graph G on vertex set X =
{X1, . . . , Xn} is a list of degrees d = (d1, . . . , dn) of
all vertices in the graph, i.e., vertex Xi has degree di. A
graph H = (X,E) is said to realize degree sequence
d if the degrees of X in H agree with d. Realizabil-
ity is defined in a similar fashion for in-degree sequences
d− = (d−1 , . . . , d

−
n ).

The graph G is called a directed acyclic graph (DAG) if
it does not contain any directed cycles and is said to be
complete if for every two of its nodes U, V ∈X either there
is an edge V → U or an edge U → V , i.e., the underlying
undirected graph is a clique. A vertex Vi on any simple path
V1 − . . . − Vk is called a collider if the arcs are such that
Vi−1 → Vi ← Vi+1.

A Bayesian network (or Bayes net) G for a set of n vari-
ables X1, . . . , Xn is described by a DAG (X,E) and n

corresponding conditional probability tables (CPTs), e.g.,
the CPT for Xi ∈ X describes P(xi | paG(Xi)) for all
possible values of xi and paG(Xi). The joint distribution
for P factorizes as

P(x) =

n∏
i=1

P(xi | paG(Xi)),

and we say that G represents P.

All independence constraints that hold in the joint distribu-
tion of a Bayes net that has underlying DAG G are exactly
captured by the d-separation criterion (Pearl, 1988, Section
3.3.1). Two nodes X,Y ∈X are said to be d-separated in
a DAG G = (X,E) given a set Z ∈ X \ {X,Y } if and
only if there is no Z-active path in G between X and Y ; a
Z-active path is a simple path Q such that any vertex from
Z on Q occurs as a collider and any vertex from X \ Z
appears as a non-collider. Two nodes are d-connected if they
are not d-separated. It is known that X is d-separated from
its non-descendants given its parents (Pearl, 1988, Section
3.3.1, Corollary 4).

A probability distribution P is said to be Markov with re-
spect to a DAG G if d-separation in G implies conditional
independence in P. Note that any distribution is Markov
with respect to the complete DAG, since there are no d-
separations implied by this kind of DAG. (Moreover, any
Bayes net over a complete DAG requires 2|X| − 1 parame-
ters to describe.) A probability distribution P is said to be
Markov with respect to a Bayes net G if P is Markov with
respect to the underlying DAG of G.

2.3. Some Problems of Interest

Chickering et al. (2004) introduced a decision problem about
learning Bayes nets from data, called LEARN, and proved
that LEARN is NP-hard by showing a reduction from the
NP-hard decision problem degree-bounded feedback arc set
(DBFAS). See Definition 2.1 and Definition 2.2.

Definition 2.1 (The DBFAS decision problem). Given a
directed graph G = (X,E) with maximum vertex degree
of 3, and a positive integer k ≤ |E|, determine whether
there is a subset of edges E′ ⊆ E with of size |E′| ≤ k
such that E′ contains at least one directed edge from every
directed cycle in G.

Definition 2.2 (The LEARN decision problem). Given vari-
ables X = (X1, . . . , Xn), a probability distribution P over
X , and a parameter bound p ∈ N, determine whether there
exists a Bayes net G with at most p parameters such that P
is Markov with respect to G.

In our work, we focus on the particular LEARN instances
(X,P, p) used in Chickering et al. (2004), namely LEARN-
DBFAS.
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Definition 2.3 (The LEARN-DBFAS decision problem). Let
R denote the reduction of Chickering et al. (2004) from
DBFAS to LEARN. We define as LEARN-DBFAS the set of
instances of LEARN that are in the range of R.

That is, for any instance IL of LEARN-DBFAS, there is some
instance ID of DBFAS such that R(ID) = IL.

An independence oracle for a distributionP is an oracle that
can determine, in constant time, whether or not U ⊥⊥ V | Z
for any U, V ∈ X and Z ⊆ X \ {U, V }. We will use the
following result by Chickering et al. (2004).

Theorem 2.4 ((Chickering et al., 2004)). LEARN-DBFAS is
NP-hard even when one is given access to an independence
oracle.

2.4. Selecting a Close Distribution With Finite Samples

The classic method to select an approximate distribution
amongst a set of candidate distributions is via the Scheffé
tournament of Devroye & Lugosi (2001), which provides a
logarithmic dependency on the number of candidates.

In our work, we will use the Scheffé-based algorithm of
Daskalakis & Kamath (2014),2 which given sample access
to an input distribution and explicit access to some candi-
date distributions, outputs with high probability a candidate
distribution that is sufficiently close, in total variation (TV)
distance (dTV), to the input distribution.

Theorem 2.5 ((Daskalakis & Kamath, 2014)). Fix any ac-
curacy parameter ε > 0 and confidence parameter δ > 0.
Suppose there is a distribution P over variables X and
a collection of explicit distributions QQQ = {Q1, . . . ,Qm},
where each distributionQi is defined over the same set X
and there exists some Q∗ ∈ QQQ such that dTV(P,Q) ≤ ε.

Then, there is an algorithm that uses O
(

log 1/δ
ε2 logm

)
samples from P and returns some Q ∈ QQQ such that
dTV(P,Q) ≤ 10ε with success probability at least 1 − δ
and running time poly(m, 1/δ, 1/ε2).

To curate a set of candidates QQQ, we rely on the following
lemma of Brustle et al. (2020) which states that any distri-
butionQ which approximately agrees with P on the local
conditional distribution at each node will be close in TV
distance to P on the entire domain.

Lemma 2.6 ((Brustle et al., 2020)). Suppose P andQ are
Bayes nets on the same DAG G = (X,E) with n nodes. If

dTV

(
P(X | PaG(X) = σ),Q(X | PaG(X)) = σ

)
≤ ε

n

for all nodes X ∈ X and possible parent values σ ∈
2Their result is actually more general than what we stated here.

For instance, they only require sample access to the distributions
in QQQ = {Q1, . . . ,Qm} while our setting is simpler as we have
explicit descriptions of each of these distributions.

Σ|PaG(X)|, then dTV(P,Q) ≤ ε.

Although there are infinitely many possible distributions,
since we are satisfied with an approximately close distribu-
tion, one can discretize the space via an ε-net.

Definition 2.7 (ε-nets; (Vershynin, 2018)). Fix a metric
space (T , d). For any subset K ⊆ T and ε > 0, a subset
N ⊆K is called an ε-net of K if every point in K is within
distance ε to some point in N . That is, ∀x ∈K,∃x0 ∈N
such that d(x, x0) ≤ ε. We say that N ε-covers K.

As we shall see in Section 5, the candidate set QQQ will be cre-
ated by computing an ε

n -net with respect to the TV distance
and then applying Lemma 2.6 suitably.

2.5. Other Related Work

We have already referred to some papers that are relevant to
our work. We resume this discussion here.

Dasgupta (1999) considers the task of learning the
maximum-likelihood polytree from data. The main result
of this paper is that the optimal branching (or Chow-Liu
tree) is a good approximation to the best polytree. This
result is then complemented by the observation that this
learning problem is NP-hard, even to approximately solve
within some constant factor. Teyssier & Koller (2005) pro-
pose a simple heuristic method for addressing the task of
learning Bayes nets. Their approach is based on the fact
that the best network (of bounded in-degree) consistent with
a given node ordering can be found efficiently. Elidan &
Gould (2008) present a method for learning Bayes nets of
bounded treewidth that employs global structure modifica-
tions and that is polynomial both in the size of the graph
and the treewidth bound. At the heart of their method is a
dynamic triangulation, that they update in a way which facil-
itates the addition of chain structures that increase the bound
on the model’s treewidth by at most one. Friedman et al.
(2013) introduce an algorithm that achieves learning by re-
stricting the search space. Their iterative algorithm restricts
the parents of each variable to belong to a small subset of
candidates. They then search for a network that satisfies
these constraints and the learned network is then used for
selecting better candidates for the next iteration. Ganian &
Korchemna (2021) investigate the parameterized complex-
ity of Bayesian Network Structure Learning (BNSL). They
show that parameterizing BNSL by the size of a feedback
edge set yields fixed-parameter tractability. Kuipers et al.
(2022) combine constraint-based methods with greedy or
Markov chain Monte Carlo (MCMC) schemes in a method
which reduces the complexity of MCMC approaches to that
of a constraint-based method.
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3. Technical Overview
Here, we give a brief high-level overview of the techniques
used in our results of Theorem 1.3 and Theorem 1.4.

3.1. NP-Hardness of the Realizable Case

By Theorem 2.4, it would suffice to prove that the existence
of a polynomial time algorithm for REALIZABLE-LEARN
implies that LEARN-DBFAS instances can be solved in poly-
nomial time if one has access to an independence oracle.
The desired result will then follow from the facts that we can
efficiently (a) compute the number of parameters of a Bayes
net and (b) decide whether a given distribution is Markov
with respect to a given Bayes net (when given access to an
independence oracle).

Suppose we have a polynomial time algorithm Learner
for REALIZABLE-LEARN. Note that it is conventional to
assume that such an algorithm always halts within some
polynomial-time bound, and outputs some Bayes net, even
when the respective promise is violated. We define and
analyze the following reduction:

Given an arbitrary instance (X,P, p) of
REALIZABLE-LEARN, run Learner to obtain
a Bayes net G. Then check whether G has at most p
parameters and (while using an independence oracle)
check whether or not P is Markov with respect to G.
If both of these checks are positive, then output YES.
Otherwise, output NO. See Section 4 for the formal
proof of Theorem 1.3.

3.2. Approximately Learning Parameter-Bounded
Bayes Networks

The main idea is to construct an ε-net over all possible DAGs
that satisfy the parameter upper bound p, and then apply a
well-known bound from the density estimation literature.

For this purpose, we need to count all possible Bayes nets
that satisfy the parameter upper bound p. By a counting
argument, we see that there are not many possible DAGs
that give rise to some Bayes net of at most p parameters.
Then, by a counting argument again, we see that there are
only a few conditional distributions that are Markov with
respect to a Bayes net G over a DAG that realizes a given in-
degree sequence. Thus we are able to bound the number of
distributions that cover all possible conditional distributions
which are Markov with respect to G. See Section 5 for the
formal proof of Theorem 1.4.

4. REALIZABLE-LEARN is NP-hard
To show that REALIZABLE-LEARN is hard, we re-
duce LEARN-DBFAS to REALIZABLE-LEARN by mak-

ing polynomially-many calls to an independence oracle.
Given any polynomial time algorithm Learner that
solves REALIZABLE-LEARN, we will forward the LEARN-
DBFAS instance to Learner and examine the produced
Bayes net G. We will describe a polynomial time procedure
Reduction that uses an independence oracle to determine
whether we should correctly output YES or NO for the
given LEARN-DBFAS instance. See Figure 2 for a pictorial
illustration of our reduction strategy.

DBFAS
instance

LEARN-DBFAS
instance

REALIZABLE-LEARN
instance Learner

Reduction

X,P, p YES or NO

X,P, p
Additional

promise
X,P, p

Promise

Bayes
net G

YES or NO

Figure 2. Gavril (1977) showed that DBFAS is NP-hard and
Chickering et al. (2004) showed that LEARN-DBFAS is NP-
hard, even when given access to an independence oracle for P.
REALIZABLE-LEARN is a variant of LEARN-DBFAS with the
additional promise that there exists a Bayes net G with at most
p parameters such that P is Markov with respect to G. In this
work, we show that if one can learn such a Bayes net G (via
some blackbox polynomial time algorithm Learner), then there
is a polynomial time algorithm Reduction that correctly an-
swers LEARN-DBFAS. Therefore, REALIZABLE-LEARN is also
NP-hard.

We begin by observing that one can easily check the number
of parameters of Bayes net given its full description.

Lemma 4.1. Given a Bayes net over G = (X,E), one can
compute the number of its parameters in polynomial time.

Proof. Let ΣX denote the alphabet set of X ∈ X . Then,
the number of parameters of G is

∑
X∈X

(|ΣX | − 1)
∏

U∈PaG(X)

|ΣU |

 ,

which can be computed in polynomial time.

The following notion of important edges will come handy
in the sequel.

Definition 4.2 (Important edges). Let G = (V ,E) be a
DAG and P be a distribution over V . Then, an edge e ∈ E
is called (G,P)-important if P is Markov with respect to G
but is not Markov with respect to G′ = (V ,E \ {e}).
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To check whether P is Markov with respect to G, one could
verify that any d-separation in G implies conditional inde-
pendence in P. However, this computation seems to be
intractable. In contrast, Corollary 4.5 gives a polynomial
time algorithm that checks this while using an independence
oracle.

The correctness of Corollary 4.5 follows from Lemma 4.3
and Lemma 4.4.

Lemma 4.3. Suppose P on variables X is Markov with
respect to G = (X,E). Then, an edge A→ B in E is not
(G,P)-important if A ⊥⊥ B | PaG(B) \ {A}.

Proof. Consider an arbitrary edge A → B in E such that
A ⊥⊥ B | PaG(B) \ {A}. Say, A = Xj and B = Xk.
Letting G′ = (V ,E \ (A,B)) be a subgraph of G that does
not contain the edge A→ B, we see that

P(x)

=

n∏
i=1

P(xi | paG(Xi)) (∗)

= P(xk | paG(Xk)) ·
∏

i∈[n]\k

P(xi | paG(Xi))

= P(xk | paG(Xk) \ xj) ·
∏

i∈[n]\k

P(xi | paG(Xi)) (†)

= P(xk | paG′(Xk)) ·
∏

i∈[n]\k

P(xi | paG′(Xi)) (‡)

=

n∏
i=1

P(xi | paG′(Xi)),

where (∗) is due toP being Markov with respect to G, (†) is
due to Xj ⊥⊥ Xk | PaG(Xk) \ {Xj}, and (†) is due to the
definition of G′. Since P(x) =

∏n
i=1P(xi | paG′(Xi)),

we see that P is also Markov with respect to G′, and so the
edge A→ B is not (G,P)-important.

Lemma 4.4. Suppose a distribution P on variables X is
Markov with respect to a DAG G = (X,E). Let G′ =
(X,E′) be an edge-induced DAG of G with E′ ⊆ E. Then,
P is Markov with respect to G′ if and only if A ⊥⊥ B |
PaG(B) \ {A} for all edges A→ B in E \E′.

Proof. We prove each direction separately.

(⇐) Suppose that P is Markov with respect to G′. Con-
sider an arbitrary edge A → B ∈ E \ E′. Since A is
an ancestor of B in G′, we have that A remains a non-
descendant of B in G′ after removing the edge A→ B. So,
A and B are d-separated in G′ given PaG′(B) \ {A}, and
so A ⊥⊥ B | PaG′(B) by the Markov property. That is,
A ⊥⊥ B | PaG(B) \ {A}.

(⇒) Suppose that A ⊥⊥ B | PaG(B) \ {A} for all edges
A → B in E \ E′. Order the edges in E \ E′ in an arbi-
trary sequence, say e1, . . . , e|E\E′|. Let us remove these
edges sequentially, resulting in a sequence of edge-induced
DAGs G = G0,G1, . . . ,G|E\E′| = G′, where Gi is the edge-
induced DAG obtained from removing edges {e1, . . . , ei}
from G. Observe that non-descendant relationships are pre-
served as we remove edges, i.e., if A is a non-descendant
of B in G, then it is also a non-descendant of B in Gi for
any i ∈ {1, . . . , |E \ E′|}. So, we can apply Lemma 4.3
repeatedly: For any i ∈ {1, . . . , |E \ E′|}, the edge ei is
not (Gi−1,P)-important, so P is Markov with respect to Gi.
That is, P is Markov with respect to G′.

Corollary 4.5. Suppose P is a distribution over X and G
is a Bayes net over the same set of variables X . Then, there
is a polynomial time algorithm that uses an independence
oracle for P to decide whether or not P is Markov with
respect to G.

Proof. Consider the following algorithm Checker:

Given Bayes net G over a DAG (X,E′), consider a
DAG K = (X,E), with E′ ⊆ E, that is a complete
supergraph of (X,E′). If every edge A → B ∈ E \
E′ satisfies A ⊥⊥ B | PaG(B) \ {A}, output YES.
Otherwise, output NO.

Note that since any distribution is Markov with respect to
the complete DAG (see Section 2.2), P is Markov with
respect to K.

The correctness of Checker follows from Lemma 4.4.
Checker runs in polynomial time as K can be created
in polynomial time with respect to the size of X , and the
number of edges in E ⊆ E′ to check is polynomial in the
size of X .

We are now ready to formally prove our first main result.

Theorem 1.3. REALIZABLE-LEARN is NP-hard.

Proof. It suffices to show the existence of a polynomial time
algorithm for REALIZABLE-LEARN implies that LEARN-
DBFAS instances can be answered in polynomial time with
access to an independence oracle; see Figure 2.

Suppose we have a polynomial time algorithm Learner
for REALIZABLE-LEARN. Let us define a reduction algo-
rithm Reduction as follows:

Given an instance (X,P, p) of LEARN-DBFAS, run
Learner to obtain a Bayes net G (see Section 3.1; this
is a natural assumption for algorithms solving a search
promise problem). Compute the number of parameters
of G. Run algorithm Checker of Corollary 4.5 on G
to check whether or not P is Markov with respect to

6
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G. Output YES if G has at most p parameters and P is
Markov with respect to G; else, output NO.

The correctness of Reduction follows from the assump-
tion that Learner produces a Bayes net G with at most p
parameters such that P is Markov with respect to G (if the
underlying promise is satisfied; otherwise, the output is an
arbitrary Bayes net), and the correctness of Checker. By
assumption, Learner is a polynomial time algorithm. By
Lemma 4.1, we can compute the number of parameters of G
in polynomial time. By Corollary 4.5, Checker is also a
polynomial time algorithm. Therefore, the overall running
time for Reduction is polynomial.

5. Approximating Bayes Nets
Our strategy for proving our finite sample complexity result
(Theorem 1.4) follows that of Brustle et al. (2020, Theorem
10), but we specialize the analysis to the setting where we
are given a parameter bound instead of a degree bound. As
discussed in Section 1, our result is a generalization of their
result since an upper bound on the in-degrees implies a
(possibly loose) parameter upper bound.

5.1. Some Graph Counting Arguments

To prove Theorem 1.4, we require an upper bound on the
number of possible Bayes nets on n nodes that have at
most p parameters (Lemma 5.2). To obtain such a result,
we first relate the number of parameters p with a specific
given in-degree sequence (d−1 , . . . , d

−
n ) of a Bayes net, then

we upper bound the total number of Bayes nets that has at
most p parameters by summing over all suitable in-degree
sequences d− = (d−1 , . . . , d

−
n ).

Consider an arbitrary Bayes net G with in-degree sequence
(d−1 , . . . , d

−
n ) and each node taking on |Σ| values. Since

the conditional distribution for vertex Xi is fully described
when we knowP(xi | paG(Xi)) for |Σ|−1 possible values

of xi, with respect to |Σ|d
−
i possible values of paG(Xi).

Therefore, we see that the Bayes net has

n∑
i=1

(
(|Σ| − 1) |Σ|d

−
i

)
= (|Σ| − 1)

(
n∑

i=1

|Σ|d
−
i

)
parameters. Note that this is the exact same reasoning as in
Lemma 4.1. So, if the Bayes net has at most p parameters,
then

n∑
i=1

|Σ|d
−
i = |Σ|d

−
1 + . . .+ |Σ|d

−
n ≤ p

|Σ| − 1
. (2)

By the AM-GM inequality, we have that

n∑
i=1

|Σ|d
−
i ≥ n

(
n∏

i=1

|Σ|d
−
i

) 1
n

= n|Σ| 1n
∑n

i=1 d−
i . (3)

Combining Equations (2) and (3) together gives us

d−1 + . . .+ d−n ≤ n
log
(

p
n(|Σ|−1)

)
log |Σ|

. (4)

The following lemma is a combinatorial fact upper bounding
on the number of graphs that realize a given degree sequence,
which may be of independent interest beyond being used to
prove Lemma 5.2.
Lemma 5.1. Given an in-degree sequence d− =
(d−1 , . . . , d

−
n ) with non-negative integers d−1 , . . . , d

−
n , there

are at most
∏n

i=1

(n−1
d−
i

)
DAGs that realize d−.

Proof. Fix an arbitrary labelling of vertices from X1 to
Xn and consider the sequential process of adding edges
into X1, . . . , Xn. For X1, there are

(n−1
d−
1

)
ways to add d−1

incoming edges that end at X1. For X2, there are
(n−1

d−
2

)
possibilities. For X3, there are at most

(n−1
d−
3

)
possibilities.

Note that some of these choices would be incompatible with
earlier edge choices as the newly added edges may cause
directed cycles to be formed. We repeat this edge adding
process until all vertices have added their incoming edges
to the graph. So, the upper bound is

∏n
i=1

(n−1
d−
i

)
.

Lemma 5.2. Suppose that every node takes on at most |Σ|
values. Then, there are at most

(n− 1)
n log( p

n(|Σ|−1) )
log|Σ| en

 log
(

p
n(|Σ|−1)

)
log |Σ|

+ 1

n

possible DAGs over n nodes that may be used to define some
Bayes net that has at most p parameters.

Proof. By Lemma 5.1, there are
∏n

i=1

(n−1
d−
i

)
possible

DAGs realizing any fixed in-degree sequence d− =
(d−1 , . . . , d

−
n ). Let (∗) denote the condition that an in-degree

sequence d− yields a graph that has at most p parameters.
Then, ∑

d− satisfies (∗)

n∏
i=1

(
n− 1

d−i

)
≤

∑
d− satisfies (∗)

(n− 1)
d−
1 +...+d−

n

≤ (n− 1)
n

log( p
n(|Σ|−1) )
log |Σ|

∑
d− satisfies (∗)

1

≤ (n− 1)n
log( p

n(|Σ|−1) )
log |Σ|

(
n

log( p
n(|Σ|−1) )
log |Σ| + n

n

)

≤ (n− 1)
n

log( p
n(|Σ|−1) )
log |Σ|

e

 log
(

p
n(|Σ|−1)

)
log |Σ|

+ 1

n
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where the first and last inequalities is because
(
n
k

)
≤(

en
k

)k ≤ nk, the second inequality is due to Equation (4),
and the third inequality is obtained via standard “stars and
bars” counting. That is, we introduce an auxiliary variable
d−0 and count the number of non-negative integer solutions
of

d−0 + d−1 + . . .+ d−n = n
log
(

p
n(|Σ|−1)

)
log |Σ|

.

5.2. Proof of Theorem 1.4

We are now ready to prove Theorem 1.4. Since Lemma 2.6
tells us that it suffices to approximate each local conditional
distribution at each node well. So, we will consider an ε

n -net
over all such distributions and then apply a tournament style
argument (Theorem 2.5) to pick a good candidate amongst
the joint distribution obtained by a combination of such
candidate local distributions.
Theorem 1.4 (Approximating parameter-bounded Bayes
nets using samples). Fix any accuracy parameter ε > 0
and confidence parameter δ > 0. Given sample access
to a distribution P over n variables, each defined on the
alphabet Σ, and the promise that P is Markov with respect
to a Bayes net with at most p parameters,

O

 log 1
δ

ε2

p log

(
n |Σ|
ε

)
+ n

log
(

p
n(|Σ|−1)

)
log |Σ|

log n


samples from P suffice to learn the underlying DAG of a
Bayes net G with at most p parameters and define a dis-
tribution Q that is Markov with respect to G such that
dTV(P,Q) ≤ ε with success probability at least 1− δ.

Proof. Fix a DAG G satisfying an arbitrary in-degree se-
quence d− =

(
d−1 , . . . , d

−
n

)
. Then, there are |Σ|d

−
1 + . . .+

|Σ|d−
n local conditional distributions for any Bayes net over

G. From Equation (2) above, we know that
n∑

i=1

|Σ|d
−
i = |Σ|d

−
1 + . . .+ |Σ|d

−
n ≤ p

|Σ| − 1
.

Now, consider an arbitrary local distribution over k = |Σ|
values and let us upper bound the number of points in
an ε

n -net for this metric space. Observe that each possi-
ble distribution is essentially an element of the probability
simplex ∆k. To get an ε

n -net of ∆k, we discretize vec-
tors by rounding them to their nearest multiple of ε

n|Σ| .
If π is a probability vector, and rπ is its rounding, then
∥π − rπ∥1 ≤

ε
n|Σ| |Σ| =

ε
n . Therefore the number of dis-

cretized vectors is at most O
(
(n |Σ|/ε)|Σ|

)
.

Therefore, for any fixed DAG G, there is a set of

m1 ∈ O
(
(n |Σ|/ε)

p|Σ|
|Σ|−1

)
(5)

distributions that ε
n -cover any possible joint distributions

that can be Markov with respect to a Bayes net over G.
Meanwhile, by Lemma 5.2, there are at most

(n− 1)
n log( p

n(|Σ|−1) )
log|Σ| en

 log
(

p
n(|Σ|−1)

)
log |Σ|

+ 1

n

(6)

possible DAGs that may be used to define a Bayes net on
n nodes that has at most p parameters. Let m2 denote this
number (of Equation (6)).

We can now define a set of distributions QQQ over n variables
such that there exists Q∗ ∈ QQQ such that dTV(P,Q) ≤ ε.
Let us denote m = |QQQ|. Putting together the above bounds,
we see that there are at most m = m1 · m2 candidates
suffice, where m1 and m2 are from Equations (5) and (6).
Therefore, with

O
(
log 1

δ

ε2
logm

)

⊆ O

log 1
δ

ε2

p log(n |Σ|
ε

)
+

n log
(

p
n(|Σ|−1)

)
log |Σ|

log n


samples from P, Theorem 2.5 chooses a distribution Q
amongst the m candidates such that dTV(P,Q) ≤ ε with
success probability at least 1− δ.

6. Conclusion
In this work, we showed the hardness result of finding a
parameter-bounded Bayes net that represents some distribu-
tion P, given sample access to P, even under the promise
that such a Bayes net exists. On a positive note, we gave
a finite sample complexity bound sufficient to produce a
Bayes net representing a probability distributionQ that is
close in TV distance to P. Our results generalize earlier
known results of Chickering et al. (2004) and Brustle et al.
(2020) respectively.

An intriguing open question is as follows:

Suppose we are given sample access to a distribution
P and are promised that there exists a Bayes net on G
with at most p parameters such that P is Markov with
respect to G. Is it hard to find a Bayes net G′ that has
α · p parameters such that P is Markov with respect to
G′ (where G′ may not be G), for some constant α > 1?

Note that the hardness construction of Chickering et al.
(2004) only displayed an additive gap in the parameter
bound. We conjecture that it is also hard to obtain such
a multiplicative gap in the parameter bound, even in the
promise setting.
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