
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FINISH FIRST, PERFECT LATER:
TEST-TIME TOKEN-LEVEL CROSS-VALIDATION FOR
DIFFUSION LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion large language models (dLLMs) have recently emerged as a promising
alternative to autoregressive LLMs, offering accelerated parallel decoding and im-
proved global context modeling through bidirectional attention. However, vanilla
decoding strategies in dLLMs suffer from a critical limitation: once a token is
accepted, it can no longer be revised in subsequent steps. As a result, early
mistakes persist across iterations, harming both intermediate predictions and fi-
nal output quality. To address this issue, we propose TOLERATOR (Token-Level
Cross-Validation Refinement), a training-free decoding strategy that leverages
cross-validation among predicted tokens. Unlike existing methods that follow a
single progressive unmasking procedure, TOLERATOR introduces a two-stage pro-
cess: (i) sequence fill-up and (ii) iterative refinement by remasking and decoding
a subset of tokens, while treating the remaining ones as context. This design en-
ables previously accepted tokens to be reconsidered and corrected when necessary,
leading to more reliable diffusion decoding outputs. We evaluate TOLERATOR on
five standard benchmarks covering language understanding, code generation, and
mathematics. Empirically, our method achieves consistent improvements over
the baselines under the same computational budget. These findings suggest that
decoding algorithms are crucial to realizing the full potential of diffusion large
language models 1.

1 INTRODUCTION

Large language models (LLMs) (Chowdhery et al., 2022; Hurst et al., 2024; Comanici et al.,
2025) have driven remarkable progress across diverse NLP domains (Zhao et al., 2023; Minaee
et al., 2024). The dominant architecture behind these advances is the autoregressive (AR) trans-
former (Vaswani et al., 2017). While highly effective, AR decoding is inherently sequential, creating
a fundamental bottleneck that limits generation parallelism (Fu et al., 2024; Xia et al., 2024).

To address this, diffusion language models (Austin et al., 2021a; Li et al., 2022) have emerged as
a powerful alternative, generating sequences through iterative denoising with bidirectional attention
and parallel token predictions. This paradigm offers distinct advantages over AR models (Li et al.,
2025b), including accelerated inference, stronger global coherence, and controllable quality–speed
trade-offs. Recent progress (Labs et al., 2025; Nie et al., 2025; Ye et al., 2025b) has further demon-
strated the practicality and competitiveness of scaled diffusion large language models (dLLMs).
Commercial dLLMs such as Mercury Coder (Labs et al., 2025) and Gemini Diffusion (Google
DeepMind, 2025) claim to match autoregressive LLMs (Hurst et al., 2024; Team et al., 2024) in
performance while achieving up to 10× faster inference speed on tasks, like code generation (Chen
et al., 2021; Austin et al., 2021b).

Despite recent advances, current dLLM decoding strategies (Israel et al., 2025; Yu et al., 2025; Wu
et al., 2025) suffer from a critical limitation: once a token is predicted and accepted, it is typically
fixed and cannot be modified in later steps (Wang et al., 2025; von Rütte et al., 2025). For instance,
in two widely adopted open-source dLLMs, LLaDA (Nie et al., 2025) and Dream (Ye et al., 2025b),

1Code and data are anonymously available.

1

https://anonymous.4open.science/r/Tolerator-85C5

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Success the

Success failure the fatal

Success is failure is the fatal

Success is not final failure is the fatal

Vanilla Prompt: “What did Churchill say about success and failure?”
Input Seq

Forward 1

Forward 2

Forward 3

Forward 4

Masked

New

W Correct

W Incorrect

Validated

↩Ours Prompt: “What did Churchill say about success and failure?”
Input Seq

Forward 1

Forward 2

Forward 3

Forward 4

Success was failure the

Success was not final failure is the fatal

Success was not final failure is not fatal

Success is not final failure is not fatal

fill up

refine

↩ ↩↩↩
↩ ↩ ↩

Figure 1: Overview of TOLERATOR. Compared to the vanilla decoding strategy, we first fill the
masked tokens with high parallelism and then iteratively refine the draft through token-level cross-
validation. Here, cross-validation means tokens alternately act as the target and the context of predic-
tion. This process allows previously accepted tokens to be revisited and corrected when necessary.

a token is considered accepted if, at a specific iteration, it is unmasked and no longer remasked, as
illustrated in Figure 1. Once accepted, it will serve as fixed context for all future predictions. This
causes early mistakes to persist and propagate throughout the generation process (Wang et al., 2025;
von Rütte et al., 2025).

There have been some early explorations on this issue. ReMDM (Wang et al., 2025) introduces a
sampler that applies a stochastic backward remasking process for predicted tokens. RCR (He et al.,
2025) tracks each token’s running max confidence and remasks persistently low-confidence tokens.
GIDD (von Rütte et al., 2025) trains diffusion models with a mixing schedule that interpolates
between data and noise distributions to enable the remasking of predicted tokens. While these works
demonstrate the significance of dLLM decoding strategy, their improvements have not achieved ideal
performance on general tasks, so the challenge remains an open problem.

To further bridge this gap, we propose TOLERATOR (Token-Level Cross-Validation Refinement),
a test-time dLLM decoding method that explicitly separates generation into two stages: fill-up and
refinement. In the first stage, we fill up the masked tokens following vanilla dLLM decoding strategy.
In the second stage, we iteratively refine this draft by remasking and decoding subsets of tokens
while using the remaining ones as context, so that predictions are revised by cross-validating against
one another. This two-stage process allows previously accepted tokens to be revisited multiple
times and corrected when necessary. Our approach differs from existing strategies which perform
refinement within the ongoing generation process. By explicitly decoupling fill-up and refinement
into two separate phases, TOLERATOR enables a more thorough form of token-level error correction
than prior methods.

We evaluate TOLERATOR on five standard benchmarks across language understanding (Trivi-
aQA (Joshi et al., 2017), GPQA (Rein et al., 2024)), code generation (MBPP (Austin et al., 2021b),
HumanEval (Chen et al., 2021)), and mathematics (GSM8K (Cobbe et al., 2021)). We use vanilla
decoding, ReMDM (Wang et al., 2025), and RCR (He et al., 2025) as baselines. Experimental results
show that, under the same computational cost measured by the number of forward steps, TOLERA-
TOR achieves noticeable and consistent improvements over the baselines (relatively improve 17.9%
for Dream (Ye et al., 2025b) and 15.3% on LLaDA (Nie et al., 2025)). We further conduct abla-
tion studies and analyze the characteristics of our method. Qualitative studies further highlight how
cross-validation corrects errors in practice. Overall, these findings confirm that decoding strategy
is not merely an implementation detail, but a crucial factor that substantially influences the perfor-
mance of dLLMs.

2 RELATED WORK

2.1 FROM AUTOREGRESSION TO DIFFUSION

Modern natural language generation (Hendrycks et al., 2020; Suzgun et al., 2023; Rein et al., 2024)
has been dominated by the autoregressive (AR) model architecture like GPT (Brown et al., 2020) and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

LLaMA (Touvron et al., 2023). Despite its empirical success, AR models introduce a fundamental
bottleneck: generation is inherently sequential, limiting decoding parallelism (Li et al., 2023; Zou
et al., 2023). To address this limitation, diffusion language models (Austin et al., 2021a; Li et al.,
2022) have emerged as a promising alternative (Li et al., 2025b). By reversing a noising process
over multiple steps, diffusion language models generate tokens in parallel (Labs et al., 2025) while
leveraging full bidirectional attention (Nie et al., 2025; Ye et al., 2025b).

Existing diffusion language models can be classified into three main categories depending on how
the diffusion process is applied. Early continuous diffusion language models (Li et al., 2022; Strudel
et al., 2022; Karimi Mahabadi et al., 2024; Lovelace et al., 2023; Dieleman et al., 2022) denoised
embeddings before mapping them back to tokens. However, this paradigm struggles with issues like
optimization and has largely been replaced by discrete diffusion language models. Discrete diffusion
language models (Austin et al., 2021a; He et al., 2023) define diffusion directly in token space, and
further scale up model parameter size (Gong et al., 2025), achieving the state-of-the-art with open-
source models like Dream (Ye et al., 2025b) and LLaDA (Nie et al., 2025). A third line integrates
AR philosophy with diffusion, including block-wise or multi-level scheduling (Han et al., 2023;
Wu et al., 2023) and the reintroduction of sequential dependency while retaining diffusion-style
refinement (Arriola et al., 2025; Huang & Tang, 2025).

2.2 TRAINING AND INFERENCE STRATEGIES IN DIFFUSION LANGUAGE MODELS

Beyond architectural explorations, another line of work studies how to effectively train diffusion
LMs. Large-scale instruction tuning (Ye et al., 2025b; Nie et al., 2025), has demonstrated that
diffusion models can achieve general capabilities comparable to autoregressive LLMs. Researchers
explore refinements of the training objective: simplified masked losses (Shi et al., 2024; Sahoo et al.,
2024), likelihood-based formulations (Gulrajani & Hashimoto, 2023), and variants that enhance
generation robustness and reasoning (von Rütte et al., 2025; Ye et al., 2025a). Another direction
focuses on adapting reinforcement learning to diffusion, either to strengthen reasoning (Huang &
Tang, 2025; Ye et al., 2024; Zhao et al., 2025) or for preference optimization (Zhu et al., 2025).

Decoding is another key bottleneck for diffusion language models: parallel generation improves ef-
ficiency but often degrades quality. Adaptive Parallel Decoding (APD) (Israel et al., 2025) mitigates
this trade-off by adjusting the degree of parallelism with an auxiliary autoregressive verifier, while
dilated (Luxembourg et al., 2025) scheduling further accelerate inference. At the same time, KV-
caching (Ma et al., 2025; Wu et al., 2025) and autoregressive-guided unmasking (Hu et al., 2025)
are applied to further accelerate dLLMs. Recent work also addresses flexibility (Li et al., 2025a;
Kim et al., 2025) by extending diffusion to variable-length and token insertion.

2.3 ERROR CORRECTION IN DIFFUSION DECODING

It is often claimed that vanilla diffusion language models possess an inherent ability for error correc-
tion, since each position is repeatedly predicted as the context evolves over iterations (Li et al., 2023;
2025b). However, this view is incomplete: once a token is accepted, it becomes fixed and cannot
be revised. For example, LLaDA (Nie et al., 2025) and Dream (Ye et al., 2025b) decide at every
iteration whether a token should be further remasked; if it is not, the token is considered accepted
and remains unchanged thereafter. As a result, any early mistake will persist and propagate through
subsequent steps, limiting the reliability of diffusion generation.

Several methods have sought to address this limitation. ReMDM (Wang et al., 2025) introduces a
probabilistic remasking process that allows already revealed tokens to be re-predicted. RCR (He
et al., 2025) proposes a simple confidence-based strategy that remasks uncertain tokens during in-
ference. GIDD (von Rütte et al., 2025) modifies the corruption process with hybrid noise at the
training time. While these approaches demonstrate the feasibility of token revision, their empirical
gains remain relatively modest on general tasks or they require additional training, leaving the core
problem unresolved. In contrast, our approach departs from prior work by explicitly decoupling
fill-up and refinement. We first generate a draft following vanilla diffusion decoding, and then apply
a targeted refinement stage that revisits the accepted tokens according to a cross-validation princi-
ple. This separation not only makes error correction conceptually more systematic but also delivers
markedly stronger empirical gains.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHODOLOGY

3.1 PRELIMINARIES

Decoding in dLLMs. We consider the decoding process of discrete diffusion large language
models (Ye et al., 2025b; Nie et al., 2025). Specifically, let x(t)

i ∈ V denote the token at position
i ∈ {1, . . . , L} and time step t ∈ {0, . . . , T}, where V is the vocabulary, L is the sequence length,
and T is the total number of forward steps. At inference time, the sequence is initialized with

x(0) =
(
c1, . . . , cm, [MASK]m+1, . . . , [MASK]L︸ ︷︷ ︸

L−m

)
∈ VL,

where c1 to cm are prompt tokens and the remaining L −m positions are masked tokens. At each
time step, the diffusion large language models output the logits of all masked tokens and decode
them by sampling, where y

(t)
i ∼ pθ(· | x(t), t), and pθ is the conditional distribution parameterized

by the dLLMs. A deterministic rule then decides whether to accept or remask each decoded token.
Specifically, the next sequence is constructed as

x
(t+1)
i =

y
(t)
i , accepted,

[MASK], remasked,
for i /∈ It, x

(t+1)
j = x

(t)
j for j ∈ It.

where It ⊆ {1, . . . , L} is the index set of tokens already accepted at step t. In the vanilla setup,
each step accepts approximately ⌊L/T ⌋ tokens, which are selected based on criteria like model
confidence or entropy. Different dLLMs may adopt alternative decoding strategies; for example,
semi-autoregressive decoding (Nie et al., 2025) only proceeds to the next block once all tokens in
the current block have been accepted. Our study focuses on the vanilla setup, as it is widely adopted
in existing dLLMs.

Limitations of Conventional dLLM Decoding. In this conventional setup, masked positions are
iteratively refined, while accepted tokens become fixed and remain unchanged. Formally, once a
position index i enters the visible set It, we have i ∈ It′ and x

(t′)
i = x

(t)
i for all t′ > t. As a

result, an early error at position j ∈ It is permanently preserved and enters the context for all future
predictions pθ(x

(t′)
i | x(t′−1), t′ − 1), where i /∈ It′−1. Such errors cannot be revised and may

propagate through the decoding process as persistent noise, ultimately degrading the quality of the
generated sequence.

3.2 METHOD OVERVIEW

To overcome this limitation, we propose TOLERATOR (Token-Level Cross-Validation Refinement),
which moves beyond the traditional view of decoding as a single, progressively unmasking trajec-
tory, and instead reframes it as a two-stage process of fill-up and refinement.

Stage I (Sequence Fill-Up). In the fill-up stage, the model produces a coarse draft by filling
masked positions following vanilla dLLM decoding strategy, providing a complete but potentially
imperfect hypothesis of the output.

Stage II (Cross-Validation Refinement). In the refinement stage, our iterative procedure follows
a token-level cross-validation principle, where tokens alternately act as validator and as validation
targets. This alternating role improves overall consistency of generated sequence.

This design offers a training-free, model-agnostic and effective solution to the challenge of irre-
versible early errors and their propagation in the decoding process.

3.3 SEQUENCE FILL-UP

The sequence fill-up stage is largely based on the vanilla dLLM decoding procedure described in
Section 3.1. To facilitate the refinement stage, we introduce a modification: the logit penalty on the
End-of-Text (EoT) token.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

EoT penalty. Since the refinement stage can correct errors, we prefer longer and more informative
drafts rather than overly short completions. To this end, we apply an EoT penalty (Bai et al., 2021;
Laban et al., 2020), which discourages generation of EoT tokens in the fill-up stage. Concretely, we
scale down the logit of the EoT token by a factor λeot > 1 before softmax. While this adjustment
does not directly improve draft quality, it effectively prevents early termination and produces drafts
that are better suited for subsequent refinement. Formally, let zv be the unnormalized logit for token
v at position i and time step t. The penalized distribution is

p̃θ(v | x(t), t) ∝
{
exp(zv)/λeot, if v = [EoT]

exp(zv), otherwise.

Finally, the fill-up stage produces a sequence consisting of the prompt tokens and model predictions
for previously masked positions:

x(ρT) =
(
c1, . . . , cm, x

(ρT)
m+1, . . . , x

(ρT)
L

)
∈ VL,

where x
(ρT)
i ̸= [MASK] for all i > m. Here ρ ∈ (0, 1) controls the split between the two stages.

3.4 CROSS-VALIDATION REFINEMENT

The refinement stage corrects errors in the draft with a token-level cross-validation principle, where
tokens alternately act as validator and as validation targets. In each iteration, a subset of tokens
is sampled, remasked and decoded conditioned on the preserved context, progressively reducing
mistakes and improving coherence.

Iterative Refinement. At each iteration k, we remask a random subset S(k) ⊆ {m+1, . . . , L} of
non-prompt positions, sampled at rate γk so that |S(k)| = ⌊γk(L−m)⌋.

x
(k)
i =

{
[MASK], i ∈ S(k)

x
(k)
i , otherwise.

The sequence for the next iteration is then obtained by predicting the masked tokens:

x
(k+1)
i =

{
y
(k)
i , i ∈ S(k)

x
(k)
i , otherwise,

where y
(k)
i ∼ pθ(· | x(k), k).

In each iteration, a subset of generated tokens is held fixed as context, while the remaining tokens
are remasked and decoded to better align with them. Iterating this process gradually improves the
coherence of the entire sequence.

Annealed Refinement Rate. To improve the stability of refinement steps, we anneal the refine-
ment rate γk over time. Higher refinement rates in early iterations encourage broader corrections of
initial errors, while lower rates in later iterations help stabilize the predictions. We adopt a cosine
annealing schedule with both upper and lower bounds:

γk = γmin + 1
2 (γmax − γmin)

(
1 + cos

(
πk
K

))
,

where k is the current refinement iteration and K is the total number of refinement steps.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Models. Following previous studies (Ma et al., 2025; Israel et al., 2025; Wu et al., 2025; He et al.,
2025), we evaluate our method on two representative open-source dLLMs: Dream-v0-Instruct-
7B (Ye et al., 2025b) and LLaDA-8B-Instruct (Nie et al., 2025). Both of them are state-of-the-art
representatives of open-source discrete diffusion large language models.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Datasets & Metrics. To assess the general effectiveness of our method, we evaluate it on three rep-
resentative tasks with five standard benchmarks: (i) language understanding with TriviaQA (Joshi
et al., 2017) and GPQA (Rein et al., 2024), (ii) code generation with HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021b), and (iii) mathematics with GSM8K (Cobbe et al., 2021).
We report accuracy for TriviaQA, GPQA, GSM8K and pass@1 for HumanEval and MBPP.

Baselines. We compare our method against the vanilla decoding strategy and two training-free
baselines that propose to revise the accepted tokens. (i) Vanilla strategy follows the vanilla dLLM
decoding procedure, where once a token is accepted, it remains fixed throughout the generation
process and cannot be revised. (ii) ReMDM (Wang et al., 2025) introduces a stochastic sampler that
applies a backward remasking process for predicted tokens. (iii) RCR (He et al., 2025) records each
token’s running max confidence and remasks persistently low-confidence tokens.

Configurations. For fairness, all methods are evaluated with the same dLLM backbones with the
same total number of forward passes in the zero-shot setting. We also equalize the computational
cost between baselines and our method by allocating the same total forward-step budget to both.
We use a larger parallel size in the fill-up stage. Specifically, we set the allocation ratio ρ between
sequence fill-up and refinement to 0.5. Importantly, our method itself has no restriction on how steps
are allocated; this constraint is introduced solely to ensure a fair comparison.

For our method, we adopt a cosine annealing scheduler for the refinement rate with γmax = 0.8 and
γmin = 0.4, and increase the EoT penalty λeot from 1.0 to 1.3 as the number of forward steps T
grows. For baselines, we use the recommended hyperparameters for ReMDM (ton = 0.55, toff =
0.05, αon = 0.9) and use the linear remasking scheduling function for RCR, which is reported to be
optimal (He et al., 2025).

We follow the default prompts from the LM-Eval framework (Gao et al., 2024) and fix the generation
length L at 256. The total number of forward steps T varies from 4 to 256 in powers of two,
covering the scenarios from highly parallel to fully sequential decoding. All experiments are run on
8 NVIDIA H200 GPUs, and each data point is experimented with three random seeds for statistical
significance.

4.2 MAIN RESULTS

4 8 16 32 64 128 256
Forward Steps

10

20

30

40

50

Av
er

ag
e

Pe
rfo

rm
an

ce
 (%

)

Dream

4 8 16 32 64 128 256
Forward Steps

10

20

30

LLaDA

2.0

4.0

6.0

8.0

0.5

1.0

1.5

2.0

TP
S

(×
10

³) Vanilla
ReMDM
RCR
Tolerator

Figure 2: Performance-Efficiency Trade-Off for Different Decoding Methods. This figure il-
lustrates the performance of different methods under varying parallel sizes. Gray bars represent
generation throughput (tokens per second, TPS). Colored lines show average performance across
five benchmarks as forward step T varies.

To systematically evaluate the effectiveness of our approach across varying degrees of parallelism
and task diversity, we conduct experiments on five standard benchmarks with forward steps T rang-
ing from 4 to 256. As illustrated in Figure 2, our method consistently improves performance under
different parallel decoding configurations. On both Dream and LLaDA, we observe substantial
gains in a large parallelism range (forward steps T from 4 to 256), with average percentage score
increasing from 29.0 to 34.6 (relatively +17.9%) and from 21.3 to 24.5 (+15.3%) compared to the
strongest baseline in our experiments. These results indicate that our approach does not overfit to
a specific parallel setting, but instead induces a consistent improvement in the quality–efficiency
trade-off curve against all baselines. Moreover, as shown in Figure 3, performance gains generalize

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Triv
iaQ

A
GPQ

A

Hum
an

Ev
al

MBPP
GSM

8K

20

30

40

50

Av
er

ag
e

Pe
rfo

rm
an

ce
 (%

) Dream

Triv
iaQ

A
GPQ

A

Hum
an

Ev
al

MBPP
GSM

8K

10

20

30

40

50
LLaDA

Vanilla
ReMDM
RCR
Tolerator

Figure 3: Performance across different benchmarks for different decoding methods. This
figure presents the performance of various methods under different benchmarks. Colored bars rep-
resent average performance across different forward steps (T).

across tasks compared to the tested baselines: for example, on Dream, the average percentage score
increases from 24.8 to 36.1 (+45.16%) on TriviaQA. While on LLaDA, it rises from 30.46 to 46.28
(+51.91%) on GSM8K. Collectively, these findings highlight the robustness and broad applicability
of our method as a general enhancement for diffusion large language models. Detailed results for
each task and forward steps can be found in Table 1.

4.3 ABLATION STUDIES

To analyze the effect of different components in our decoding strategy, we conduct ablation studies
using GPQA (Rein et al., 2024) and GSM8K (Cobbe et al., 2021). In particular, we study the
effectiveness of (1) token-level cross-validation refinement, (2) EoT Penalty, and (3) the annealing
of refinement rate.

0 4 8 16 32 64 128 256
Refinement Steps (#R)

20

30

40

50

60

70

Pe
rfo

rm
an

ce
 (%

)

Dream

0 4 8 16 32 64 128 256
Refinement Steps (#R)

20

30

40

50

60

70

LLaDA

GPQA (Fill-Up=16)
GPQA (Fill-Up=64)
GSM8K (Fill-Up=16)
GSM8K (Fill-Up=64)

Figure 4: Ablation Studies on Different Steps of Refinement Stage. Red lines represent the results
from GSM8K and blue lines represent GPQA. The solid lines stand for the results of 64 fill-up steps
and the dashed lines for the results of 16 fill-up steps.

Cross-Validation Refinement. To isolate the role of the refinement stage, we focus on settings
where the fill-up part is fixed, and then vary the degree of cross-validation refinement applied. Con-
cretely, we fix the number of generation steps to either 16 or 64, and then allocate different amounts
of refinement ranging from very few steps to nearly converged refinement. Specifically, we experi-
ment with applying 4, 8, 16, 32, 64, 128, and 256 refinement steps.

As shown in Figure 4, in most cases, the performance curve with respect to refinement steps exhibits
an increasing trend. This indicates that increasing the number of refinement steps—especially the
initial steps—consistently improves the generation quality of dLLM. Therefore, the introduction of
refinement can significantly enhance model performance, even with only a few steps.

EoT penalty. To isolate the impact of the EoT penalty, we fix the fill-up and refinement config-
urations and vary only the penalty coefficient λeot. Specifically, we vary λeot from 1.0 to 1.3 while
keeping the number of forward step T fixed at 32 and 128. We find that applying non-trivial λeot
consistently improves generation quality, with notable gains at λeot = 1.1, 1.2, and 1.3 (+23.2%,
+28.4%, +23.9% relatively). This is because the EoT penalty typically encourages longer fill-up se-
quence: although these drafts may not always be fully correct, they tend to contain more information

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

GPQA GSM8K GPQA GSM8K
20

40

60

Pe
rfo

rm
an

ce
 (%

) 32 steps 128 steps

Dream

GPQA GSM8K GPQA GSM8K
20

40

60

32 steps 128 steps

LLaDA

EoT Penalty
=1.0
=1.1
=1.2
=1.3

Figure 5: Ablation Studies of EoT Penalty. We fix the fill-up and refinement configurations while
varying λeot from 1.0 to 1.3, with results shown for 32 and 128 forward step T . Across most tasks,
introducing an appropriate EoT penalty substantially improves generation quality.

overall. During refinement, the useful content can be preserved and amplified while the incorrect
parts are likely to be corrected. Overall, these results demonstrate that explicitly regularizing the
end-of-sequence token is a simple yet highly effective enhancement for our method.

4 8 16 32 64 128 256
Forward Steps (#F)

10

20

30

40

50

60

70

80

Pe
rfo

rm
an

ce
 (%

)

Dream

4 8 16 32 64 128 256
Forward Steps (#F)

20

30

40

50

60

70

LLaDA

GSM8K (w/ Annealing)
GSM8K (w/o Annealing)

Figure 6: Ablation Studies on Annealing Scheduling of Refinement Rate. The solid lines repre-
sent the performance-forward step curve with the annealing strategy and the dashed lines represent
the curves without the mechanism.

Refinement Rate Annealing. To assess the benefit of annealing schedule of refinement rate, we
compare refinement with and without the cosine scheduler. We vary the number of forward steps
from 4 up to 256 while keeping other parameters fixed, and report the resulting performance for both
configurations.

The purpose of annealing is that, as the refinement process progresses, the overall quality of the
generated sequence gradually improves. Consequently, fewer modifications are required to maintain
stability and consistency. As illustrated in the Figure 6, the solid line is above the dashed line in most
cases, demonstrating that the model with annealing outperforms its counterpart without it.

Overall, these ablations demonstrate that all three design choices contribute to the final performance.
Exact numerical results can be found in Appendix B.

5 DISCUSSION

5.1 WHY OUR STRATEGY IS GOOD FOR LARGE PARALLEL SIZES?

We observe that our method achieves greater improvements when the parallel size is larger, i.e.,
when the forward step is smaller than the sequence length and multiple tokens are decoded simulta-
neously.

One key reason may lie in the visibility constraint during parallel decoding: tokens generated within
the same step cannot attend to each other, which often leads to local inconsistencies. This phe-
nomenon is even more noticeable with larger parallel sizes. Our token-level cross-validation pro-
cess helps to mitigate this issue. During cross-validation, tokens filled up in the same step can be
validated such that one serves as context (or validator) while another serves as the validation target.
This mechanism enables tokens that were originally invisible to each other to interact directly—for

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

example, when validating token A, token B (from the same step) can now be used as part of the con-
text. Such interactions promote coherence among simultaneously decoded tokens. By repeating this
process across multiple rounds, inconsistencies introduced by parallel decoding are progressively
reduced, resulting in more coherent sequences overall.

In contrast, when the forward step equals the sequence length (i.e., non-parallel decoding with one
token per step), every token naturally conditions on all previously accepted tokens. Since there is
no within-step invisibility, the inconsistency problem does not arise, and thus the potential benefit
of our method is relatively limited in this scenario.

5.2 LIMITATIONS

Format Stability. While our method achieves consistent improvements across a range of bench-
marks, the gains are relatively smaller on code generation tasks such as HumanEval and MBPP.
These tasks are highly format-sensitive, where even minor deviations in syntax or structure can make
an otherwise correct solution invalid. Since our refinement process operates at the token level with-
out explicit structural constraints, it can occasionally disrupt the formatting of well-formed code.
This suggests a potential limitation when applying our strategy to domains where strict output for-
mat is essential. This limitation is also observed in methods like RCR (He et al., 2025), which need
to do more remasking than vanilla generation, thereby disrupting the formatting of the sequence.

Lack of Natural Convergence. In iterative sequence–refinement methods, a common stopping
rule is natural convergence, which means the sequence remains unchanged after an iteration. How-
ever, with current approaches, even when we allow a large number of refinement steps, the model
keeps making edits, even often unrelated to the final answer. As a result, the process often fails to
naturally converge.

6 CONCLUSION

In this work, we revisited a key limitation of diffusion large language models (dLLMs): once a token
is accepted during decoding, it is typically fixed and cannot be revised, causing early mistakes to
persist and propagate through subsequent iterations. To address this, we proposed TOLERATOR, a
training-free decoding strategy that explicitly decouples decoding into fill-up and refinement stages.
By first generating a coarse draft and then iteratively remasking and decoding tokens with the token-
level cross-validation principle, TOLERATOR enables more systematic and effective error correction
than prior approaches.

Through extensive experiments on five benchmarks spanning natural language understanding, code
generation, and mathematical reasoning, we showed that TOLERATOR consistently improves over
baselines under the same forward step budgets. Beyond empirical gains, our results highlight that
decoding strategy is not merely an implementation choice, but a crucial component that influences
the overall performance of dLLMs.

ETHICS STATEMENT

All datasets used in this work (TriviaQA (Joshi et al., 2017), GPQA (Rein et al., 2024),
GSM8K (Cobbe et al., 2021), HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021b)) are
publicly available academic benchmarks that do not contain personally identifiable or sensitive in-
formation. Our study focuses on improving inference in discrete diffusion language models and does
not involve the collection of new human subject data. We acknowledge that large language mod-
els may generate incorrect or misleading content, and that code generation models can potentially
produce insecure or faulty programs. Our method does not eliminate these risks, and users should
exercise caution when deploying such systems in high-stakes scenarios. The potential societal ben-
efits of our work include improved decoding performance of diffusion large language models. This
research was conducted in accordance with the ICLR Code of Ethics. The authors take full respon-
sibility for all analyses and conclusions presented in this paper.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. Our experiments were con-
ducted on two representative open-source discrete diffusion language models: Dream-v0-Instruct-
7B (Ye et al., 2025b) and LLaDA-8B-Instruct (Nie et al., 2025). We evaluate across five widely
used public benchmarks—TriviaQA (Joshi et al., 2017), GPQA (Rein et al., 2024), GSM8K (Cobbe
et al., 2021), HumanEval (Chen et al., 2021), and MBPP (Austin et al., 2021b). For all methods, we
adopt the same model backbones, zero-shot setting, and equalized computational budgets to guar-
antee fairness. Reported results are averaged over 3 random seeds, and exact numerical results for
both main experiments and ablations are provided in the appendix. We detail hyperparameter con-
figurations in Section 4.1, including scheduler settings, penalty coefficients, and baseline parameters
(ReMDM (Wang et al., 2025) and RCR (He et al., 2025)). Code, configuration files, and data pre-
processing scripts are made anonymously available to facilitate replication. With the provided code
and instructions, our results can be reproduced using 8×H200 GPUs or equivalent hardware.

REFERENCES

Anthropic. Claude code — claude. https://claude.com/product/claude-code, 2025.
Accessed: 2025-09-24.

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autore-
gressive and diffusion language models. arXiv preprint arXiv:2503.09573, 2025.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg.
Structured denoising diffusion models in discrete state-spaces. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 17981–17993. Curran Associates, Inc.,
2021a. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/958c530554f78bcd8e97125b70e6973d-Paper.pdf.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021b.

He Bai, Peng Shi, Jimmy Lin, Luchen Tan, Kun Xiong, Wen Gao, Jie Liu, and Ming Li. Semantics of
the unwritten: The effect of end of paragraph and sequence tokens on text generation with GPT2.
In Jad Kabbara, Haitao Lin, Amandalynne Paullada, and Jannis Vamvas (eds.), Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing: Student Research Workshop, pp. 148–162,
Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-srw.
16. URL https://aclanthology.org/2021.acl-srw.16/.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners, 2020. URL https://arxiv.org/abs/2005.14165.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways, 2022. URL https://arxiv.org/abs/2204.
02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems, 2021. URL https://arxiv.org/abs/2110.14168.

10

https://claude.com/product/claude-code
https://proceedings.neurips.cc/paper_files/paper/2021/file/958c530554f78bcd8e97125b70e6973d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/958c530554f78bcd8e97125b70e6973d-Paper.pdf
https://aclanthology.org/2021.acl-srw.16/
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2110.14168

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. Continuous diffu-
sion for categorical data. arXiv preprint arXiv:2211.15089, 2022.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm infer-
ence using lookahead decoding. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, et al. The language model evaluation harness,
07 2024. URL https://zenodo.org/records/12608602.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
autoregressive models. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=j1tSLYKwg8.

Google DeepMind. Gemini diffusion - google deepmind, 2025. URL https://deepmind.
google/models/gemini-diffusion/. Accessed: 2025-09-19.

Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models. Ad-
vances in Neural Information Processing Systems, 36:16693–16715, 2023.

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. SSD-LM: Semi-autoregressive simplex-based
diffusion language model for text generation and modular control. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 11575–11596, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.647. URL
https://aclanthology.org/2023.acl-long.647/.

Haoyu He, Katrin Renz, Yong Cao, and Andreas Geiger. Mdpo: Overcoming the training-inference
divide of masked diffusion language models, 2025. URL https://arxiv.org/abs/2508.
13148.

Zhengfu He, Tianxiang Sun, Qiong Tang, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Dif-
fusionBERT: Improving generative masked language models with diffusion models. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 4521–4534,
Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
acl-long.248. URL https://aclanthology.org/2023.acl-long.248/.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Zhanqiu Hu, Jian Meng, Yash Akhauri, Mohamed S. Abdelfattah, Jae sun Seo, Zhiru Zhang, and
Udit Gupta. Accelerating diffusion language model inference via efficient kv caching and guided
diffusion, 2025. URL https://arxiv.org/abs/2505.21467.

Chihan Huang and Hao Tang. Ctrldiff: Boosting large diffusion language models with dy-
namic block prediction and controllable generation, 2025. URL https://arxiv.org/abs/
2505.14455.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Daniel Israel, Guy Van den Broeck, and Aditya Grover. Accelerating diffusion llms via adaptive
parallel decoding, 2025. URL https://arxiv.org/abs/2506.00413.

11

https://zenodo.org/records/12608602
https://openreview.net/forum?id=j1tSLYKwg8
https://deepmind.google/models/gemini-diffusion/
https://deepmind.google/models/gemini-diffusion/
https://aclanthology.org/2023.acl-long.647/
https://arxiv.org/abs/2508.13148
https://arxiv.org/abs/2508.13148
https://aclanthology.org/2023.acl-long.248/
https://arxiv.org/abs/2505.21467
https://arxiv.org/abs/2505.14455
https://arxiv.org/abs/2505.14455
https://arxiv.org/abs/2506.00413

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
(eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada, July 2017. Association for Com-
putational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/
P17-1147/.

Rabeeh Karimi Mahabadi, Hamish Ivison, Jaesung Tae, James Henderson, Iz Beltagy, Matthew
Peters, and Arman Cohan. TESS: Text-to-text self-conditioned simplex diffusion. In Yvette
Graham and Matthew Purver (eds.), Proceedings of the 18th Conference of the European Chapter
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2347–2361, St.
Julian’s, Malta, March 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
eacl-long.144. URL https://aclanthology.org/2024.eacl-long.144/.

Jaeyeon Kim, Lee Cheuk-Kit, Carles Domingo-Enrich, Yilun Du, Sham Kakade, Timothy Ngo-
tiaoco, Sitan Chen, and Michael Albergo. Any-order flexible length masked diffusion, 2025.
URL https://arxiv.org/abs/2509.01025.

Philippe Laban, Andrew Hsi, John Canny, and Marti A. Hearst. The summary loop: Learning to
write abstractive summaries without examples. In Dan Jurafsky, Joyce Chai, Natalie Schluter,
and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 5135–5150, Online, July 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.acl-main.460. URL https://aclanthology.org/2020.
acl-main.460/.

Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, et al. Mercury: Ultra-fast language
models based on diffusion, 2025. URL https://arxiv.org/abs/2506.17298.

Jinsong Li, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Jiaqi Wang, and Dahua Lin. Beyond
fixed: Training-free variable-length denoising for diffusion large language models, 2025a. URL
https://arxiv.org/abs/2508.00819.

Tianyi Li, Mingda Chen, Bowei Guo, and Zhiqiang Shen. A survey on diffusion language models,
2025b. URL https://arxiv.org/abs/2508.10875.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B. Hashimoto.
Diffusion-lm improves controllable text generation. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022.
Curran Associates Inc. ISBN 9781713871088.

Yifan Li, Kun Zhou, Wayne Xin Zhao, and Ji-Rong Wen. Diffusion models for non-autoregressive
text generation: a survey. In Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence, IJCAI ’23, 2023. ISBN 978-1-956792-03-4. doi: 10.24963/ijcai.2023/750.
URL https://doi.org/10.24963/ijcai.2023/750.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q Weinberger. Latent dif-
fusion for language generation. Advances in Neural Information Processing Systems, 36:56998–
57025, 2023.

Omer Luxembourg, Haim Permuter, and Eliya Nachmani. Plan for speed: Dilated scheduling for
masked diffusion language models, 2025. URL https://arxiv.org/abs/2506.19037.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models, 2025. URL https://arxiv.org/abs/2505.15781.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. Large language models: A survey. arXiv preprint arXiv:2402.06196,
2024.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025. URL https://
arxiv.org/abs/2502.09992.

12

https://aclanthology.org/P17-1147/
https://aclanthology.org/P17-1147/
https://aclanthology.org/2024.eacl-long.144/
https://arxiv.org/abs/2509.01025
https://aclanthology.org/2020.acl-main.460/
https://aclanthology.org/2020.acl-main.460/
https://arxiv.org/abs/2506.17298
https://arxiv.org/abs/2508.00819
https://arxiv.org/abs/2508.10875
https://doi.org/10.24963/ijcai.2023/750
https://arxiv.org/abs/2506.19037
https://arxiv.org/abs/2505.15781
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2502.09992

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

OpenAI. Introducing gpt-5. https://openai.com/index/introducing-gpt-5/,
2025. Accessed: 2025-09-24.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. Advances in Neural Information Processing Systems, 37:130136–130184, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and general-
ized masked diffusion for discrete data. Advances in neural information processing systems, 37:
103131–103167, 2024.

Robin Strudel, Corentin Tallec, Florent Altché, Yilun Du, Yaroslav Ganin, Arthur Mensch, Will
Grathwohl, Nikolay Savinov, Sander Dieleman, Laurent Sifre, et al. Self-conditioned embedding
diffusion for text generation, 2022. URL https://arxiv.org/abs/2211.04236.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, et al. Challenging BIG-bench tasks
and whether chain-of-thought can solve them. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL 2023, pp. 13003–
13051, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.findings-acl.824. URL https://aclanthology.org/2023.findings-acl.
824/.

Jamba Team, Barak Lenz, Alan Arazi, Amir Bergman, Avshalom Manevich, Barak Peleg, Ben
Aviram, Chen Almagor, Clara Fridman, Dan Padnos, et al. Jamba-1.5: Hybrid transformer-
mamba models at scale, 2024. URL https://arxiv.org/abs/2408.12570.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and ef-
ficient foundation language models, 2023. URL https://arxiv.org/abs/2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Dimitri von Rütte, Janis Fluri, Yuhui Ding, Antonio Orvieto, Bernhard Schölkopf, and Thomas
Hofmann. Generalized interpolating discrete diffusion, 2025. URL https://arxiv.org/
abs/2503.04482.

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking dis-
crete diffusion models with inference-time scaling, 2025. URL https://arxiv.org/abs/
2503.00307.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding, 2025. URL https://arxiv.org/abs/2505.22618.

Tong Wu, Zhihao Fan, Xiao Liu, Hai-Tao Zheng, Yeyun Gong, Jian Jiao, Juntao Li, Jian Guo, Nan
Duan, Weizhu Chen, et al. Ar-diffusion: Auto-regressive diffusion model for text generation.
Advances in Neural Information Processing Systems, 36:39957–39974, 2023.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey
of speculative decoding. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of
the Association for Computational Linguistics: ACL 2024, pp. 7655–7671, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.
456. URL https://aclanthology.org/2024.findings-acl.456/.

13

https://openai.com/index/introducing-gpt-5/
https://arxiv.org/abs/2211.04236
https://aclanthology.org/2023.findings-acl.824/
https://aclanthology.org/2023.findings-acl.824/
https://arxiv.org/abs/2408.12570
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2503.04482
https://arxiv.org/abs/2503.04482
https://arxiv.org/abs/2503.00307
https://arxiv.org/abs/2503.00307
https://arxiv.org/abs/2505.22618
https://aclanthology.org/2024.findings-acl.456/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jiacheng Ye, Shansan Gong, Liheng Chen, Lin Zheng, Jiahui Gao, Han Shi, Chuan
Wu, Xin Jiang, Zhenguo Li, Wei Bi, et al. Diffusion of thought: Chain-of-
thought reasoning in diffusion language models. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural In-
formation Processing Systems, volume 37, pp. 105345–105374. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/be30024e7fa2c29cac7a6dafcbb8571f-Paper-Conference.pdf.

Jiacheng Ye, Jiahui Gao, Shansan Gong, Lin Zheng, Xin Jiang, Zhenguo Li, and Lingpeng Kong.
Beyond autoregression: Discrete diffusion for complex reasoning and planning, 2025a. URL
https://arxiv.org/abs/2410.14157.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b: Diffusion large language models, 2025b. URL https://arxiv.org/
abs/2508.15487.

Runpeng Yu, Xinyin Ma, and Xinchao Wang. Dimple: Discrete diffusion multimodal large language
model with parallel decoding, 2025. URL https://arxiv.org/abs/2505.16990.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 1(2), 2023.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for
large language diffusion models. arXiv preprint arXiv:2505.19223, 2025.

Hao Zou, Zae Myung Kim, and Dongyeop Kang. A survey of diffusion models in natural language
processing, 2023. URL https://arxiv.org/abs/2305.14671.

A USE OF LLMS DISCLOSURE

We disclose the following uses of large language models in the preparation of this work. GPT-
5 (OpenAI, 2025) was employed solely to assist with language polishing and improving the read-
ability of the manuscript. In addition, Claude Code (Anthropic, 2025) was used as a coding assistant
to generate and debug experimental scripts. At no point did LLMs contribute to the core research
ideas, methodology, or interpretation of results. All scientific contributions, analyses, and conclu-
sions remain the responsibility of the authors. Outputs produced by LLMs were carefully reviewed
and revised where necessary to ensure accuracy and integrity.

B EXPERIMENTAL DETAILS

B.1 MAIN EXPERIMENT

In the main text, we present line and bar plots to highlight overall trends and comparisons on differ-
ent tasks and forward step T . For completeness, Appendix B reports the exact numerical results of
our main experiments in tabular form, which allow for more precise inspection and direct compari-
son across different methods and settings.

14

https://proceedings.neurips.cc/paper_files/paper/2024/file/be30024e7fa2c29cac7a6dafcbb8571f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/be30024e7fa2c29cac7a6dafcbb8571f-Paper-Conference.pdf
https://arxiv.org/abs/2410.14157
https://arxiv.org/abs/2508.15487
https://arxiv.org/abs/2508.15487
https://arxiv.org/abs/2505.16990
https://arxiv.org/abs/2305.14671

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 1: Main Experiment Results. Performance of Dream and LLaDA across five standard bench-
marks under different numbers of forward steps. Highest values for specific task and model are bold.

Model Method TriviaQA
#F=4 #F=8 #F=16 #F=32 #F=64 #F=128 #F=256

Dream

Vanilla 23.08±0.01 23.22±0.02 23.16±0.03 23.24±0.02 23.51±0.01 28.08±0.03 29.32±0.03
ReMDM 22.11±1.17 22.94±0.28 22.87±0.10 22.94±0.16 23.27±0.32 27.98±0.41 29.26±0.37
RCR 15.63±0.23 14.53±0.12 15.02±0.13 17.68±0.13 18.92±0.27 26.81±0.34 36.64±0.42
TOLERATOR 27.78±0.29 31.61±0.11 33.76±0.19 35.98±0.16 40.61±0.16 42.46±0.22 40.47±0.16

LLaDA

Vanilla 0.19±0.02 0.65±0.03 2.13±0.01 4.63±0.02 9.36±0.06 16.25±0.02 22.76±0.01
ReMDM 0.25±0.02 0.43±0.01 1.08±0.02 1.82±0.03 3.05±0.06 5.43±0.03 8.24±0.02
RCR 0.09±0.01 0.80±0.01 4.44±0.01 8.62±0.01 16.08±0.02 24.04±0.01 29.30±0.01
TOLERATOR 0.99±0.01 1.86±0.08 3.52±0.09 6.19±0.06 10.94±0.10 16.46±0.09 19.72±0.14

Model Method GPQA
#F=4 #F=8 #F=16 #F=32 #F=64 #F=128 #F=256

Dream

Vanilla 10.27±0.59 17.04±0.34 18.23±0.56 20.91±1.10 22.25±0.93 27.01±0.80 27.98±0.85
ReMDM 7.44±1.05 15.92±1.03 17.93±0.13 19.27±0.90 22.62±1.12 23.36±0.72 28.20±0.68
RCR 1.79±0.21 3.12±0.13 7.81±0.11 14.06±0.28 25.00±0.32 24.78±0.41 19.20±0.43
TOLERATOR 8.11±1.05 17.19±0.97 22.84±0.13 26.71±1.45 26.93±1.10 29.91±1.77 29.32±1.23

LLaDA

Vanilla 10.79±1.58 13.47±1.58 19.87±1.39 23.88±0.67 25.00±1.02 25.37±0.46 26.04±0.13
ReMDM 9.60±0.89 16.67±0.13 23.66±1.18 24.70±1.01 25.74±0.68 25.82±1.01 24.93±0.13
RCR 20.46±0.46 18.45±0.13 19.05±0.13 18.97±0.22 21.80±0.13 26.19±0.13 24.78±0.13
TOLERATOR 20.76±1.46 20.76±1.46 22.47±1.45 25.67±1.18 27.01±1.56 26.41±2.03 26.86±1.49

Model Method HumanEval
#F=4 #F=8 #F=16 #F=32 #F=64 #F=128 #F=256

Dream

Vanilla 8.13±0.35 13.41±0.00 11.79±0.35 12.80±0.61 26.02±0.35 37.80±0.61 50.61±0.00
ReMDM 2.03±0.70 9.35±0.35 12.20±0.00 13.21±0.35 27.03±0.70 38.82±0.70 50.20±0.93
RCR 1.22±0.24 8.54±0.31 8.54±0.31 22.56±0.45 30.49±0.37 26.22±0.28 26.22±0.28
TOLERATOR 4.88±1.06 17.89±1.27 27.03±2.54 30.89±1.37 33.03±2.21 40.24±0.81 47.56±0.61

LLaDA

Vanilla 9.55±0.35 14.23±0.35 15.24±1.22 15.45±1.27 18.29±1.40 23.68±2.54 27.13±0.30
ReMDM 4.88±1.22 6.10±0.00 8.13±1.27 10.37±1.22 18.09±3.07 22.76±0.70 25.61±3.23
RCR 9.96±0.35 5.08±0.93 7.52±0.35 7.93±0.35 11.99±0.35 15.85±0.84 18.29±0.31
TOLERATOR 7.52±1.53 12.40±0.35 20.43±1.40 23.58±0.93 22.05±0.77 24.19±0.77 22.46±5.99

Model Method MBPP
#F=4 #F=8 #F=16 #F=32 #F=64 #F=128 #F=256

Dream

Vanilla 14.40±0.20 14.73±0.12 17.00±0.20 25.00±0.40 31.07±0.12 45.13±0.31 56.93±0.83
ReMDM 8.80±0.53 14.67±0.31 15.93±0.12 26.00±0.20 33.13±0.70 45.27±0.64 56.60±0.35
RCR 4.80±0.84 10.40±0.71 23.60±0.55 29.00±0.29 36.00±0.36 42.60±0.43 41.73±0.12
TOLERATOR 10.53±1.01 25.13±0.64 35.00±0.80 41.07±2.91 44.40±1.20 48.47±1.55 51.53±0.76

LLaDA

Vanilla 9.53±0.81 14.40±0.40 13.40±0.69 17.73±0.12 24.07±0.64 31.27±0.81 37.87±0.61
ReMDM 1.53±0.31 2.33±0.58 4.53±0.42 10.53±0.12 17.27±0.64 23.33±1.72 35.47±0.90
RCR 0.60±0.40 3.47±0.46 10.00±0.20 13.33±0.12 15.93±0.46 22.27±0.31 26.73±0.12
TOLERATOR 5.53±1.03 16.00±0.87 22.73±1.03 25.60±0.69 29.27±0.42 33.87±0.81 38.53±1.50

Model Method GSM8K
#F=4 #F=8 #F=16 #F=32 #F=64 #F=128 #F=256

Dream

Vanilla 9.22±0.46 23.07±0.04 26.79±0.12 35.36±0.09 50.11±0.00 65.38±0.12 73.10±0.06
ReMDM 11.02±0.64 18.12±0.59 27.98±0.00 35.91±0.09 47.81±0.09 61.66±0.16 70.00±0.44
RCR 3.79±0.25 6.90±0.27 21.46±0.33 42.00±0.41 48.90±0.38 46.55±0.29 36.47±0.35
TOLERATOR 14.40±0.59 24.92±1.22 35.96±1.45 47.66±0.18 62.80±0.90 68.99±0.92 72.61±0.46

LLaDA

Vanilla 3.23±0.18 7.58±0.35 22.87±0.70 37.55±0.42 40.99±0.61 49.46±0.74 50.75±0.57
ReMDM 7.46±0.16 8.24±1.10 16.83±0.40 34.77±0.61 43.85±0.24 50.77±0.24 51.33±0.81
RCR 4.93±0.32 9.29±0.70 20.81±0.27 35.03±0.54 41.09±0.64 46.17±0.32 50.34±0.96
TOLERATOR 17.49±0.43 22.24±0.90 32.58±1.20 51.88±1.14 63.66±0.23 67.20±0.64 68.89±1.05

B.2 ABLATION STUDIES

Similarly, we present the exact numerical results our further analysis on different components in
tabular form above.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 2: Performance under different refinement steps (#R) with fixed fill-up stage steps (16 or
64). Results are reported for both Dream-Instruct and LLaDA on GPQA and GSM8K.

Fill-Up Steps Model Task #R=0 #R=4 #R=8 #R=16 #R=32 #R=64 #R=128 #R=256

16

Dream GPQA 18.23 26.56 26.95 27.73 29.30 26.95 27.34 26.95
Dream GSM8K 26.79 41.41 42.19 47.66 58.20 64.45 65.23 66.80
LLaDA GPQA 19.87 25.39 22.66 25.39 21.09 23.83 24.22 24.61
LLaDA GSM8K 22.87 48.44 52.73 51.95 54.69 58.59 56.64 58.98

64

Dream GPQA 22.25 28.12 31.64 31.64 31.64 35.16 35.55 30.08
Dream GSM8K 50.11 53.91 60.16 60.94 66.80 69.92 73.05 71.48
LLaDA GPQA 25.00 23.83 25.39 19.53 25.78 26.95 22.66 25.39
LLaDA GSM8K 40.99 59.38 64.06 66.02 67.97 65.23 71.09 69.14

Table 3: Performance with different values of the EoT penalty coefficient λeot (1.0–1.3) un-
der fixed fill-up and refinement configurations. Evaluated on GPQA and GSM8K with Dream-
Instruct and LLaDA. Reported as mean (± variance) over 3 seeds.

Forward Steps Model Task λeot = 1.0 1.1 1.2 1.3

32

Dream GPQA 19.27 ±0.90 23.74 ±0.52 25.67 ±1.18 24.33 ±2.95
Dream GSM8K 41.80 ±1.23 51.68 ±0.57 51.88 ±1.14 49.56 ±1.25
LLaDA GPQA 19.27 ±1.52 23.74 ±1.44 26.71 ±1.45 22.77 ±1.24
LLaDA GSM8K 40.21 ±0.64 47.66 ±0.18 47.49 ±1.01 46.17 ±0.55

128

Dream GPQA 26.79 ±0.00 25.15 ±0.72 26.41 ±2.03 26.34 ±0.80
Dream GSM8K 54.61 ±0.56 67.93 ±0.53 67.20 ±0.64 67.63 ±0.13
LLaDA GPQA 19.94 ±0.93 26.12 ±0.80 29.91 ±1.77 28.20 ±1.23
LLaDA GSM8K 46.25 ±0.08 64.22 ±0.79 68.99 ±0.92 67.27 ±1.03

Table 4: Performance of LLaDA and Dream models on GSM8K across different forward num-
bers (#F). We compare refinement with and without annealing.

Model Task Setting #F=4 #F=8 #F=16 #F=32 #F=64 #F=128 #F=256

LLaDA GSM8K With Annealing 20.31 24.22 35.55 52.73 65.49 70.18 70.31
Without Annealing 19.92 22.66 33.98 52.73 60.55 65.23 68.75

Dream GSM8K With Annealing 12.37 25.26 36.20 50.00 62.76 69.53 74.09
Without Annealing 14.06 23.05 33.98 47.27 64.84 67.97 70.31

C QUALITATIVE EXAMPLES

In addition to quantitative results, we provide qualitative examples to illustrate how token-level
cross-validation can effectively correct errors in accepted tokens. In this example, we set fill-up step
and refinement step both to 16.

As shown in Figure 7 through Figure 10, the initial filled sequences often contain both grammati-
cal inconsistencies (e.g., redundant phrases such as “the number the number”) and semantic errors
(e.g., producing an incorrect result such as 88,000000). Through iterative refinement, inconsistent
tokens are either modified or removed, while more appropriate tokens are introduced. This process
progressively reduces grammatical and semantic errors, ultimately yielding the correct answer (e.g.,
8000 copies).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

To determine how many copies Harald sold we can set

up an equation the given information . \ (

represent the number the number of copies Har

sold . 88 , 0000 00 copies .

,

Let

sold

Q: Marilyn's first record sold 10 times as many copies as Harald's. If they sold

88,000 copies combined, how many copies did Harald sell?

Generated Early (Step 1) Generated Late (Step 16)

Figure 7: Output of Fill-Up Stage.We use colors fading from blue to red to demonstrate the order
of decoding.Using fill-up and refinement steps =16, the special special tokens like [EoT] are not
shown.

To determine how many copies Harald sold we can set

up an equation the given information . H

represent the number of copies Harald

. 88 , 000

copies .

,

Let

sold

Q: Marilyn's first record sold 10 times as many copies as Harald's. If they sold

88,000 copies combined, how many copies did Harald sell?

Har Harald sold 8000

Figure 8: Sequence after 1 Iteration of Refinement. Red dashed boxes represent deleted tokens
while green boxes represent added tokens in current iteration.

Q: Marilyn's first record sold 10 times as many copies as Harald's. If they sold

88,000 copies combined, how many copies did Harald sell?

To determine how many copies Harald sold we can set

up an equation the giveninformation .

H be the number of copies Harald

sold 10 H

copies 0

,

Let

sold

Harald sold 8000

based on

. Then ,

Marilyn copies . H = 8000

Figure 9: Sequence after 8 Iteration of Refinement. Red dashed boxes represent deleted tokens
while green boxes represent added tokens in the current iteration.

Q: Marilyn's first record sold 10 times as many copies as Harald's. If they sold

88,000 copies combined, how many copies did Harald sell?

To determine how many copies Harald sold we can set

up an equation the giveninformation .

H represent the number of copies Harald

sold 10 H

copies .

,

Let

sold

Harald sold 8000

based on

.

Therefore , Marilyn copies .

H = 88000

11

Therefore ,

Figure 10: Sequence after 16 Iteration of Refinement. Red dashed boxes represent deleted tokens
while green boxes represent added tokens in the current iteration.

17

	Introduction
	Related Work
	From Autoregression to Diffusion
	Training and Inference Strategies in Diffusion Language Models
	Error Correction in Diffusion Decoding

	Methodology
	Preliminaries
	Method Overview
	Sequence Fill-Up
	Cross-Validation Refinement

	Experiment
	Experimental Setup
	Main Results
	Ablation Studies

	Discussion
	Why our strategy is good for large parallel sizes?
	Limitations

	Conclusion
	Use of LLMs Disclosure
	Experimental Details
	Main Experiment
	Ablation Studies

	Qualitative Examples

