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ABSTRACT

Diffusion large language models (dLLMs) have recently emerged as a promising
alternative to autoregressive LLMs, offering accelerated parallel decoding and im-
proved global context modeling through bidirectional attention. However, vanilla
decoding strategies in dLLMs suffer from a critical limitation: once a token is
accepted, it can no longer be revised in subsequent steps. As a result, early
mistakes persist across iterations, harming both intermediate predictions and fi-
nal output quality. To address this issue, we propose TOLERATOR (Token-Level
Cross-Validation Refinement), a training-free decoding strategy that leverages
cross-validation among predicted tokens. Unlike existing methods that follow a
single progressive unmasking procedure, TOLERATOR introduces a two-stage pro-
cess: (i) sequence fill-up and (ii) iterative refinement by remasking and decoding
a subset of tokens, while treating the remaining ones as context. This design en-
ables previously accepted tokens to be reconsidered and corrected when necessary,
leading to more reliable diffusion decoding outputs. We evaluate TOLERATOR on
five standard benchmarks covering language understanding, code generation, and
mathematics. Empirically, our method achieves consistent improvements over
the baselines under the same computational budget. These findings suggest that
decoding algorithms are crucial to realizing the full potential of diffusion large
language models 1.

1 INTRODUCTION

Large language models (LLMs) (Chowdhery et al., 2022; Hurst et al., 2024; Comanici et al.,
2025) have driven remarkable progress across diverse NLP domains (Zhao et al., 2023; Minaee
et al., 2024). The dominant architecture behind these advances is the autoregressive (AR) trans-
former (Vaswani et al., 2017). While highly effective, AR decoding is inherently sequential, creating
a fundamental bottleneck that limits generation parallelism (Fu et al., 2024; Xia et al., 2024).

To address this, diffusion language models (Austin et al., 2021a; Li et al., 2022) have emerged as
a powerful alternative, generating sequences through iterative denoising with bidirectional attention
and parallel token predictions. This paradigm offers distinct advantages over AR models (Li et al.,
2025b), including accelerated inference, stronger global coherence, and controllable quality–speed
trade-offs. Recent progress (Labs et al., 2025; Nie et al., 2025; Ye et al., 2025b) has further demon-
strated the practicality and competitiveness of scaled diffusion large language models (dLLMs).
Commercial dLLMs such as Mercury Coder (Labs et al., 2025) and Gemini Diffusion (Google
DeepMind, 2025) claim to match autoregressive LLMs (Hurst et al., 2024; Team et al., 2024) in
performance while achieving up to 10× faster inference speed on tasks, like code generation (Chen
et al., 2021; Austin et al., 2021b).

Despite recent advances, current dLLM decoding strategies (Israel et al., 2025; Yu et al., 2025; Wu
et al., 2025) suffer from a critical limitation: once a token is predicted and accepted, it is typically
fixed and cannot be modified in later steps (Wang et al., 2025; von Rütte et al., 2025). For instance,
in two widely adopted open-source dLLMs, LLaDA (Nie et al., 2025) and Dream (Ye et al., 2025b),

1Code and data are anonymously available.
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Figure 1: Overview of TOLERATOR. Compared to the vanilla decoding strategy, we first fill the
masked tokens with high parallelism and then iteratively refine the draft through token-level cross-
validation. Here, cross-validation means tokens alternately act as the target and the context of predic-
tion. This process allows previously accepted tokens to be revisited and corrected when necessary.

a token is considered accepted if, at a specific iteration, it is unmasked and no longer remasked, as
illustrated in Figure 1. Once accepted, it will serve as fixed context for all future predictions. This
causes early mistakes to persist and propagate throughout the generation process (Wang et al., 2025;
von Rütte et al., 2025).

There have been some early explorations on this issue. ReMDM (Wang et al., 2025) introduces a
sampler that applies a stochastic backward remasking process for predicted tokens. RCR (He et al.,
2025) tracks each token’s running max confidence and remasks persistently low-confidence tokens.
GIDD (von Rütte et al., 2025) trains diffusion models with a mixing schedule that interpolates
between data and noise distributions to enable the remasking of predicted tokens. While these works
demonstrate the significance of dLLM decoding strategy, their improvements have not achieved ideal
performance on general tasks, so the challenge remains an open problem.

To further bridge this gap, we propose TOLERATOR (Token-Level Cross-Validation Refinement),
a test-time dLLM decoding method that explicitly separates generation into two stages: fill-up and
refinement. In the first stage, we fill up the masked tokens following vanilla dLLM decoding strategy.
In the second stage, we iteratively refine this draft by remasking and decoding subsets of tokens
while using the remaining ones as context, so that predictions are revised by cross-validating against
one another. This two-stage process allows previously accepted tokens to be revisited multiple
times and corrected when necessary. Our approach differs from existing strategies which perform
refinement within the ongoing generation process. By explicitly decoupling fill-up and refinement
into two separate phases, TOLERATOR enables a more thorough form of token-level error correction
than prior methods.

We evaluate TOLERATOR on five standard benchmarks across language understanding (Trivi-
aQA (Joshi et al., 2017), GPQA (Rein et al., 2024)), code generation (MBPP (Austin et al., 2021b),
HumanEval (Chen et al., 2021)), and mathematics (GSM8K (Cobbe et al., 2021)). We use vanilla
decoding, ReMDM (Wang et al., 2025), and RCR (He et al., 2025) as baselines. Experimental results
show that, under the same computational cost measured by the number of forward steps, TOLERA-
TOR achieves noticeable and consistent improvements over the baselines (relatively improve 17.9%
for Dream (Ye et al., 2025b) and 15.3% on LLaDA (Nie et al., 2025)). We further conduct abla-
tion studies and analyze the characteristics of our method. Qualitative studies further highlight how
cross-validation corrects errors in practice. Overall, these findings confirm that decoding strategy
is not merely an implementation detail, but a crucial factor that substantially influences the perfor-
mance of dLLMs.

2 RELATED WORK

2.1 FROM AUTOREGRESSION TO DIFFUSION

Modern natural language generation (Hendrycks et al., 2020; Suzgun et al., 2023; Rein et al., 2024)
has been dominated by the autoregressive (AR) model architecture like GPT (Brown et al., 2020) and
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LLaMA (Touvron et al., 2023). Despite its empirical success, AR models introduce a fundamental
bottleneck: generation is inherently sequential, limiting decoding parallelism (Li et al., 2023; Zou
et al., 2023). To address this limitation, diffusion language models (Austin et al., 2021a; Li et al.,
2022) have emerged as a promising alternative (Li et al., 2025b). By reversing a noising process
over multiple steps, diffusion language models generate tokens in parallel (Labs et al., 2025) while
leveraging full bidirectional attention (Nie et al., 2025; Ye et al., 2025b).

Existing diffusion language models can be classified into three main categories depending on how
the diffusion process is applied. Early continuous diffusion language models (Li et al., 2022; Strudel
et al., 2022; Karimi Mahabadi et al., 2024; Lovelace et al., 2023; Dieleman et al., 2022) denoised
embeddings before mapping them back to tokens. However, this paradigm struggles with issues like
optimization and has largely been replaced by discrete diffusion language models. Discrete diffusion
language models (Austin et al., 2021a; He et al., 2023) define diffusion directly in token space, and
further scale up model parameter size (Gong et al., 2025), achieving the state-of-the-art with open-
source models like Dream (Ye et al., 2025b) and LLaDA (Nie et al., 2025). A third line integrates
AR philosophy with diffusion, including block-wise or multi-level scheduling (Han et al., 2023;
Wu et al., 2023) and the reintroduction of sequential dependency while retaining diffusion-style
refinement (Arriola et al., 2025; Huang & Tang, 2025).

2.2 TRAINING AND INFERENCE STRATEGIES IN DIFFUSION LANGUAGE MODELS

Beyond architectural explorations, another line of work studies how to effectively train diffusion
LMs. Large-scale instruction tuning (Ye et al., 2025b; Nie et al., 2025), has demonstrated that
diffusion models can achieve general capabilities comparable to autoregressive LLMs. Researchers
explore refinements of the training objective: simplified masked losses (Shi et al., 2024; Sahoo et al.,
2024), likelihood-based formulations (Gulrajani & Hashimoto, 2023), and variants that enhance
generation robustness and reasoning (von Rütte et al., 2025; Ye et al., 2025a). Another direction
focuses on adapting reinforcement learning to diffusion, either to strengthen reasoning (Huang &
Tang, 2025; Ye et al., 2024; Zhao et al., 2025) or for preference optimization (Zhu et al., 2025).

Decoding is another key bottleneck for diffusion language models: parallel generation improves ef-
ficiency but often degrades quality. Adaptive Parallel Decoding (APD) (Israel et al., 2025) mitigates
this trade-off by adjusting the degree of parallelism with an auxiliary autoregressive verifier, while
dilated (Luxembourg et al., 2025) scheduling further accelerate inference. At the same time, KV-
caching (Ma et al., 2025; Wu et al., 2025) and autoregressive-guided unmasking (Hu et al., 2025)
are applied to further accelerate dLLMs. Recent work also addresses flexibility (Li et al., 2025a;
Kim et al., 2025) by extending diffusion to variable-length and token insertion.

2.3 ERROR CORRECTION IN DIFFUSION DECODING

It is often claimed that vanilla diffusion language models possess an inherent ability for error correc-
tion, since each position is repeatedly predicted as the context evolves over iterations (Li et al., 2023;
2025b). However, this view is incomplete: once a token is accepted, it becomes fixed and cannot
be revised. For example, LLaDA (Nie et al., 2025) and Dream (Ye et al., 2025b) decide at every
iteration whether a token should be further remasked; if it is not, the token is considered accepted
and remains unchanged thereafter. As a result, any early mistake will persist and propagate through
subsequent steps, limiting the reliability of diffusion generation.

Several methods have sought to address this limitation. ReMDM (Wang et al., 2025) introduces a
probabilistic remasking process that allows already revealed tokens to be re-predicted. RCR (He
et al., 2025) proposes a simple confidence-based strategy that remasks uncertain tokens during in-
ference. GIDD (von Rütte et al., 2025) modifies the corruption process with hybrid noise at the
training time. While these approaches demonstrate the feasibility of token revision, their empirical
gains remain relatively modest on general tasks or they require additional training, leaving the core
problem unresolved. In contrast, our approach departs from prior work by explicitly decoupling
fill-up and refinement. We first generate a draft following vanilla diffusion decoding, and then apply
a targeted refinement stage that revisits the accepted tokens according to a cross-validation princi-
ple. This separation not only makes error correction conceptually more systematic but also delivers
markedly stronger empirical gains.
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3 METHODOLOGY

3.1 PRELIMINARIES

Decoding in dLLMs. We consider the decoding process of discrete diffusion large language
models (Ye et al., 2025b; Nie et al., 2025). Specifically, let x(t)

i ∈ V denote the token at position
i ∈ {1, . . . , L} and time step t ∈ {0, . . . , T}, where V is the vocabulary, L is the sequence length,
and T is the total number of forward steps. At inference time, the sequence is initialized with

x(0) =
(
c1, . . . , cm, [MASK]m+1, . . . , [MASK]L︸ ︷︷ ︸

L−m

)
∈ VL,

where c1 to cm are prompt tokens and the remaining L −m positions are masked tokens. At each
time step, the diffusion large language models output the logits of all masked tokens and decode
them by sampling, where y

(t)
i ∼ pθ(· | x(t), t), and pθ is the conditional distribution parameterized

by the dLLMs. A deterministic rule then decides whether to accept or remask each decoded token.
Specifically, the next sequence is constructed as

x
(t+1)
i =

y
(t)
i , accepted,

[MASK], remasked,
for i /∈ It, x

(t+1)
j = x

(t)
j for j ∈ It.

where It ⊆ {1, . . . , L} is the index set of tokens already accepted at step t. In the vanilla setup,
each step accepts approximately ⌊L/T ⌋ tokens, which are selected based on criteria like model
confidence or entropy. Different dLLMs may adopt alternative decoding strategies; for example,
semi-autoregressive decoding (Nie et al., 2025) only proceeds to the next block once all tokens in
the current block have been accepted. Our study focuses on the vanilla setup, as it is widely adopted
in existing dLLMs.

Limitations of Conventional dLLM Decoding. In this conventional setup, masked positions are
iteratively refined, while accepted tokens become fixed and remain unchanged. Formally, once a
position index i enters the visible set It, we have i ∈ It′ and x

(t′)
i = x

(t)
i for all t′ > t. As a

result, an early error at position j ∈ It is permanently preserved and enters the context for all future
predictions pθ(x

(t′)
i | x(t′−1), t′ − 1), where i /∈ It′−1. Such errors cannot be revised and may

propagate through the decoding process as persistent noise, ultimately degrading the quality of the
generated sequence.

3.2 METHOD OVERVIEW

To overcome this limitation, we propose TOLERATOR (Token-Level Cross-Validation Refinement),
which moves beyond the traditional view of decoding as a single, progressively unmasking trajec-
tory, and instead reframes it as a two-stage process of fill-up and refinement.

Stage I (Sequence Fill-Up). In the fill-up stage, the model produces a coarse draft by filling
masked positions following vanilla dLLM decoding strategy, providing a complete but potentially
imperfect hypothesis of the output.

Stage II (Cross-Validation Refinement). In the refinement stage, our iterative procedure follows
a token-level cross-validation principle, where tokens alternately act as validator and as validation
targets. This alternating role improves overall consistency of generated sequence.

This design offers a training-free, model-agnostic and effective solution to the challenge of irre-
versible early errors and their propagation in the decoding process.

3.3 SEQUENCE FILL-UP

The sequence fill-up stage is largely based on the vanilla dLLM decoding procedure described in
Section 3.1. To facilitate the refinement stage, we introduce a modification: the logit penalty on the
End-of-Text (EoT) token.

4
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EoT penalty. Since the refinement stage can correct errors, we prefer longer and more informative
drafts rather than overly short completions. To this end, we apply an EoT penalty (Bai et al., 2021;
Laban et al., 2020), which discourages generation of EoT tokens in the fill-up stage. Concretely, we
scale down the logit of the EoT token by a factor λeot > 1 before softmax. While this adjustment
does not directly improve draft quality, it effectively prevents early termination and produces drafts
that are better suited for subsequent refinement. Formally, let zv be the unnormalized logit for token
v at position i and time step t. The penalized distribution is

p̃θ(v | x(t), t) ∝
{
exp(zv)/λeot, if v = [EoT]

exp(zv), otherwise.

Finally, the fill-up stage produces a sequence consisting of the prompt tokens and model predictions
for previously masked positions:

x(ρT ) =
(
c1, . . . , cm, x

(ρT )
m+1, . . . , x

(ρT )
L

)
∈ VL,

where x
(ρT )
i ̸= [MASK] for all i > m. Here ρ ∈ (0, 1) controls the split between the two stages.

3.4 CROSS-VALIDATION REFINEMENT

The refinement stage corrects errors in the draft with a token-level cross-validation principle, where
tokens alternately act as validator and as validation targets. In each iteration, a subset of tokens
is sampled, remasked and decoded conditioned on the preserved context, progressively reducing
mistakes and improving coherence.

Iterative Refinement. At each iteration k, we remask a random subset S(k) ⊆ {m+1, . . . , L} of
non-prompt positions, sampled at rate γk so that |S(k)| = ⌊γk(L−m)⌋.

x
(k)
i =

{
[MASK], i ∈ S(k)

x
(k)
i , otherwise.

The sequence for the next iteration is then obtained by predicting the masked tokens:

x
(k+1)
i =

{
y
(k)
i , i ∈ S(k)

x
(k)
i , otherwise,

where y
(k)
i ∼ pθ(· | x(k), k).

In each iteration, a subset of generated tokens is held fixed as context, while the remaining tokens
are remasked and decoded to better align with them. Iterating this process gradually improves the
coherence of the entire sequence.

Annealed Refinement Rate. To improve the stability of refinement steps, we anneal the refine-
ment rate γk over time. Higher refinement rates in early iterations encourage broader corrections of
initial errors, while lower rates in later iterations help stabilize the predictions. We adopt a cosine
annealing schedule with both upper and lower bounds:

γk = γmin + 1
2 (γmax − γmin)

(
1 + cos

(
πk
K

))
,

where k is the current refinement iteration and K is the total number of refinement steps.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Models. Following previous studies (Ma et al., 2025; Israel et al., 2025; Wu et al., 2025; He et al.,
2025), we evaluate our method on two representative open-source dLLMs: Dream-v0-Instruct-
7B (Ye et al., 2025b) and LLaDA-8B-Instruct (Nie et al., 2025). Both of them are state-of-the-art
representatives of open-source discrete diffusion large language models.
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Datasets & Metrics. To assess the general effectiveness of our method, we evaluate it on three rep-
resentative tasks with five standard benchmarks: (i) language understanding with TriviaQA (Joshi
et al., 2017) and GPQA (Rein et al., 2024), (ii) code generation with HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021b), and (iii) mathematics with GSM8K (Cobbe et al., 2021).
We report accuracy for TriviaQA, GPQA, GSM8K and pass@1 for HumanEval and MBPP.

Baselines. We compare our method against the vanilla decoding strategy and two training-free
baselines that propose to revise the accepted tokens. (i) Vanilla strategy follows the vanilla dLLM
decoding procedure, where once a token is accepted, it remains fixed throughout the generation
process and cannot be revised. (ii) ReMDM (Wang et al., 2025) introduces a stochastic sampler that
applies a backward remasking process for predicted tokens. (iii) RCR (He et al., 2025) records each
token’s running max confidence and remasks persistently low-confidence tokens.

Configurations. For fairness, all methods are evaluated with the same dLLM backbones with the
same total number of forward passes in the zero-shot setting. We also equalize the computational
cost between baselines and our method by allocating the same total forward-step budget to both.
We use a larger parallel size in the fill-up stage. Specifically, we set the allocation ratio ρ between
sequence fill-up and refinement to 0.5. Importantly, our method itself has no restriction on how steps
are allocated; this constraint is introduced solely to ensure a fair comparison.

For our method, we adopt a cosine annealing scheduler for the refinement rate with γmax = 0.8 and
γmin = 0.4, and increase the EoT penalty λeot from 1.0 to 1.3 as the number of forward steps T
grows. For baselines, we use the recommended hyperparameters for ReMDM (ton = 0.55, toff =
0.05, αon = 0.9) and use the linear remasking scheduling function for RCR, which is reported to be
optimal (He et al., 2025).

We follow the default prompts from the LM-Eval framework (Gao et al., 2024) and fix the generation
length L at 256. The total number of forward steps T varies from 4 to 256 in powers of two,
covering the scenarios from highly parallel to fully sequential decoding. All experiments are run on
8 NVIDIA H200 GPUs, and each data point is experimented with three random seeds for statistical
significance.

4.2 MAIN RESULTS
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Figure 2: Performance-Efficiency Trade-Off for Different Decoding Methods. This figure il-
lustrates the performance of different methods under varying parallel sizes. Gray bars represent
generation throughput (tokens per second, TPS). Colored lines show average performance across
five benchmarks as forward step T varies.

To systematically evaluate the effectiveness of our approach across varying degrees of parallelism
and task diversity, we conduct experiments on five standard benchmarks with forward steps T rang-
ing from 4 to 256. As illustrated in Figure 2, our method consistently improves performance under
different parallel decoding configurations. On both Dream and LLaDA, we observe substantial
gains in a large parallelism range (forward steps T from 4 to 256), with average percentage score
increasing from 29.0 to 34.6 (relatively +17.9%) and from 21.3 to 24.5 (+15.3%) compared to the
strongest baseline in our experiments. These results indicate that our approach does not overfit to
a specific parallel setting, but instead induces a consistent improvement in the quality–efficiency
trade-off curve against all baselines. Moreover, as shown in Figure 3, performance gains generalize
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Figure 3: Performance across different benchmarks for different decoding methods. This
figure presents the performance of various methods under different benchmarks. Colored bars rep-
resent average performance across different forward steps (T ).

across tasks compared to the tested baselines: for example, on Dream, the average percentage score
increases from 24.8 to 36.1 (+45.16%) on TriviaQA. While on LLaDA, it rises from 30.46 to 46.28
(+51.91%) on GSM8K. Collectively, these findings highlight the robustness and broad applicability
of our method as a general enhancement for diffusion large language models. Detailed results for
each task and forward steps can be found in Table 1.

4.3 ABLATION STUDIES

To analyze the effect of different components in our decoding strategy, we conduct ablation studies
using GPQA (Rein et al., 2024) and GSM8K (Cobbe et al., 2021). In particular, we study the
effectiveness of (1) token-level cross-validation refinement, (2) EoT Penalty, and (3) the annealing
of refinement rate.
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Figure 4: Ablation Studies on Different Steps of Refinement Stage. Red lines represent the results
from GSM8K and blue lines represent GPQA. The solid lines stand for the results of 64 fill-up steps
and the dashed lines for the results of 16 fill-up steps.

Cross-Validation Refinement. To isolate the role of the refinement stage, we focus on settings
where the fill-up part is fixed, and then vary the degree of cross-validation refinement applied. Con-
cretely, we fix the number of generation steps to either 16 or 64, and then allocate different amounts
of refinement ranging from very few steps to nearly converged refinement. Specifically, we experi-
ment with applying 4, 8, 16, 32, 64, 128, and 256 refinement steps.

As shown in Figure 4, in most cases, the performance curve with respect to refinement steps exhibits
an increasing trend. This indicates that increasing the number of refinement steps—especially the
initial steps—consistently improves the generation quality of dLLM. Therefore, the introduction of
refinement can significantly enhance model performance, even with only a few steps.

EoT penalty. To isolate the impact of the EoT penalty, we fix the fill-up and refinement config-
urations and vary only the penalty coefficient λeot. Specifically, we vary λeot from 1.0 to 1.3 while
keeping the number of forward step T fixed at 32 and 128. We find that applying non-trivial λeot
consistently improves generation quality, with notable gains at λeot = 1.1, 1.2, and 1.3 (+23.2%,
+28.4%, +23.9% relatively). This is because the EoT penalty typically encourages longer fill-up se-
quence: although these drafts may not always be fully correct, they tend to contain more information
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Figure 5: Ablation Studies of EoT Penalty. We fix the fill-up and refinement configurations while
varying λeot from 1.0 to 1.3, with results shown for 32 and 128 forward step T . Across most tasks,
introducing an appropriate EoT penalty substantially improves generation quality.

overall. During refinement, the useful content can be preserved and amplified while the incorrect
parts are likely to be corrected. Overall, these results demonstrate that explicitly regularizing the
end-of-sequence token is a simple yet highly effective enhancement for our method.
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Figure 6: Ablation Studies on Annealing Scheduling of Refinement Rate. The solid lines repre-
sent the performance-forward step curve with the annealing strategy and the dashed lines represent
the curves without the mechanism.

Refinement Rate Annealing. To assess the benefit of annealing schedule of refinement rate, we
compare refinement with and without the cosine scheduler. We vary the number of forward steps
from 4 up to 256 while keeping other parameters fixed, and report the resulting performance for both
configurations.

The purpose of annealing is that, as the refinement process progresses, the overall quality of the
generated sequence gradually improves. Consequently, fewer modifications are required to maintain
stability and consistency. As illustrated in the Figure 6, the solid line is above the dashed line in most
cases, demonstrating that the model with annealing outperforms its counterpart without it.

Overall, these ablations demonstrate that all three design choices contribute to the final performance.
Exact numerical results can be found in Appendix B.

5 DISCUSSION

5.1 WHY OUR STRATEGY IS GOOD FOR LARGE PARALLEL SIZES?

We observe that our method achieves greater improvements when the parallel size is larger, i.e.,
when the forward step is smaller than the sequence length and multiple tokens are decoded simulta-
neously.

One key reason may lie in the visibility constraint during parallel decoding: tokens generated within
the same step cannot attend to each other, which often leads to local inconsistencies. This phe-
nomenon is even more noticeable with larger parallel sizes. Our token-level cross-validation pro-
cess helps to mitigate this issue. During cross-validation, tokens filled up in the same step can be
validated such that one serves as context (or validator) while another serves as the validation target.
This mechanism enables tokens that were originally invisible to each other to interact directly—for
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example, when validating token A, token B (from the same step) can now be used as part of the con-
text. Such interactions promote coherence among simultaneously decoded tokens. By repeating this
process across multiple rounds, inconsistencies introduced by parallel decoding are progressively
reduced, resulting in more coherent sequences overall.

In contrast, when the forward step equals the sequence length (i.e., non-parallel decoding with one
token per step), every token naturally conditions on all previously accepted tokens. Since there is
no within-step invisibility, the inconsistency problem does not arise, and thus the potential benefit
of our method is relatively limited in this scenario.

5.2 LIMITATIONS

Format Stability. While our method achieves consistent improvements across a range of bench-
marks, the gains are relatively smaller on code generation tasks such as HumanEval and MBPP.
These tasks are highly format-sensitive, where even minor deviations in syntax or structure can make
an otherwise correct solution invalid. Since our refinement process operates at the token level with-
out explicit structural constraints, it can occasionally disrupt the formatting of well-formed code.
This suggests a potential limitation when applying our strategy to domains where strict output for-
mat is essential. This limitation is also observed in methods like RCR (He et al., 2025), which need
to do more remasking than vanilla generation, thereby disrupting the formatting of the sequence.

Lack of Natural Convergence. In iterative sequence–refinement methods, a common stopping
rule is natural convergence, which means the sequence remains unchanged after an iteration. How-
ever, with current approaches, even when we allow a large number of refinement steps, the model
keeps making edits, even often unrelated to the final answer. As a result, the process often fails to
naturally converge.

6 CONCLUSION

In this work, we revisited a key limitation of diffusion large language models (dLLMs): once a token
is accepted during decoding, it is typically fixed and cannot be revised, causing early mistakes to
persist and propagate through subsequent iterations. To address this, we proposed TOLERATOR, a
training-free decoding strategy that explicitly decouples decoding into fill-up and refinement stages.
By first generating a coarse draft and then iteratively remasking and decoding tokens with the token-
level cross-validation principle, TOLERATOR enables more systematic and effective error correction
than prior approaches.

Through extensive experiments on five benchmarks spanning natural language understanding, code
generation, and mathematical reasoning, we showed that TOLERATOR consistently improves over
baselines under the same forward step budgets. Beyond empirical gains, our results highlight that
decoding strategy is not merely an implementation choice, but a crucial component that influences
the overall performance of dLLMs.

ETHICS STATEMENT

All datasets used in this work (TriviaQA (Joshi et al., 2017), GPQA (Rein et al., 2024),
GSM8K (Cobbe et al., 2021), HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021b)) are
publicly available academic benchmarks that do not contain personally identifiable or sensitive in-
formation. Our study focuses on improving inference in discrete diffusion language models and does
not involve the collection of new human subject data. We acknowledge that large language mod-
els may generate incorrect or misleading content, and that code generation models can potentially
produce insecure or faulty programs. Our method does not eliminate these risks, and users should
exercise caution when deploying such systems in high-stakes scenarios. The potential societal ben-
efits of our work include improved decoding performance of diffusion large language models. This
research was conducted in accordance with the ICLR Code of Ethics. The authors take full respon-
sibility for all analyses and conclusions presented in this paper.
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REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. Our experiments were con-
ducted on two representative open-source discrete diffusion language models: Dream-v0-Instruct-
7B (Ye et al., 2025b) and LLaDA-8B-Instruct (Nie et al., 2025). We evaluate across five widely
used public benchmarks—TriviaQA (Joshi et al., 2017), GPQA (Rein et al., 2024), GSM8K (Cobbe
et al., 2021), HumanEval (Chen et al., 2021), and MBPP (Austin et al., 2021b). For all methods, we
adopt the same model backbones, zero-shot setting, and equalized computational budgets to guar-
antee fairness. Reported results are averaged over 3 random seeds, and exact numerical results for
both main experiments and ablations are provided in the appendix. We detail hyperparameter con-
figurations in Section 4.1, including scheduler settings, penalty coefficients, and baseline parameters
(ReMDM (Wang et al., 2025) and RCR (He et al., 2025)). Code, configuration files, and data pre-
processing scripts are made anonymously available to facilitate replication. With the provided code
and instructions, our results can be reproduced using 8×H200 GPUs or equivalent hardware.
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B EXPERIMENTAL DETAILS

B.1 MAIN EXPERIMENT

In the main text, we present line and bar plots to highlight overall trends and comparisons on differ-
ent tasks and forward step T . For completeness, Appendix B reports the exact numerical results of
our main experiments in tabular form, which allow for more precise inspection and direct compari-
son across different methods and settings.
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Table 1: Main Experiment Results. Performance of Dream and LLaDA across five standard bench-
marks under different numbers of forward steps. Highest values for specific task and model are bold.

Model Method TriviaQA
#F=4 #F=8 #F=16 #F=32 #F=64 #F=128 #F=256

Dream

Vanilla 23.08±0.01 23.22±0.02 23.16±0.03 23.24±0.02 23.51±0.01 28.08±0.03 29.32±0.03
ReMDM 22.11±1.17 22.94±0.28 22.87±0.10 22.94±0.16 23.27±0.32 27.98±0.41 29.26±0.37
RCR 15.63±0.23 14.53±0.12 15.02±0.13 17.68±0.13 18.92±0.27 26.81±0.34 36.64±0.42
TOLERATOR 27.78±0.29 31.61±0.11 33.76±0.19 35.98±0.16 40.61±0.16 42.46±0.22 40.47±0.16

LLaDA

Vanilla 0.19±0.02 0.65±0.03 2.13±0.01 4.63±0.02 9.36±0.06 16.25±0.02 22.76±0.01
ReMDM 0.25±0.02 0.43±0.01 1.08±0.02 1.82±0.03 3.05±0.06 5.43±0.03 8.24±0.02
RCR 0.09±0.01 0.80±0.01 4.44±0.01 8.62±0.01 16.08±0.02 24.04±0.01 29.30±0.01
TOLERATOR 0.99±0.01 1.86±0.08 3.52±0.09 6.19±0.06 10.94±0.10 16.46±0.09 19.72±0.14

Model Method GPQA
#F=4 #F=8 #F=16 #F=32 #F=64 #F=128 #F=256

Dream

Vanilla 10.27±0.59 17.04±0.34 18.23±0.56 20.91±1.10 22.25±0.93 27.01±0.80 27.98±0.85
ReMDM 7.44±1.05 15.92±1.03 17.93±0.13 19.27±0.90 22.62±1.12 23.36±0.72 28.20±0.68
RCR 1.79±0.21 3.12±0.13 7.81±0.11 14.06±0.28 25.00±0.32 24.78±0.41 19.20±0.43
TOLERATOR 8.11±1.05 17.19±0.97 22.84±0.13 26.71±1.45 26.93±1.10 29.91±1.77 29.32±1.23

LLaDA

Vanilla 10.79±1.58 13.47±1.58 19.87±1.39 23.88±0.67 25.00±1.02 25.37±0.46 26.04±0.13
ReMDM 9.60±0.89 16.67±0.13 23.66±1.18 24.70±1.01 25.74±0.68 25.82±1.01 24.93±0.13
RCR 20.46±0.46 18.45±0.13 19.05±0.13 18.97±0.22 21.80±0.13 26.19±0.13 24.78±0.13
TOLERATOR 20.76±1.46 20.76±1.46 22.47±1.45 25.67±1.18 27.01±1.56 26.41±2.03 26.86±1.49

Model Method HumanEval
#F=4 #F=8 #F=16 #F=32 #F=64 #F=128 #F=256

Dream

Vanilla 8.13±0.35 13.41±0.00 11.79±0.35 12.80±0.61 26.02±0.35 37.80±0.61 50.61±0.00
ReMDM 2.03±0.70 9.35±0.35 12.20±0.00 13.21±0.35 27.03±0.70 38.82±0.70 50.20±0.93
RCR 1.22±0.24 8.54±0.31 8.54±0.31 22.56±0.45 30.49±0.37 26.22±0.28 26.22±0.28
TOLERATOR 4.88±1.06 17.89±1.27 27.03±2.54 30.89±1.37 33.03±2.21 40.24±0.81 47.56±0.61

LLaDA

Vanilla 9.55±0.35 14.23±0.35 15.24±1.22 15.45±1.27 18.29±1.40 23.68±2.54 27.13±0.30
ReMDM 4.88±1.22 6.10±0.00 8.13±1.27 10.37±1.22 18.09±3.07 22.76±0.70 25.61±3.23
RCR 9.96±0.35 5.08±0.93 7.52±0.35 7.93±0.35 11.99±0.35 15.85±0.84 18.29±0.31
TOLERATOR 7.52±1.53 12.40±0.35 20.43±1.40 23.58±0.93 22.05±0.77 24.19±0.77 22.46±5.99

Model Method MBPP
#F=4 #F=8 #F=16 #F=32 #F=64 #F=128 #F=256

Dream

Vanilla 14.40±0.20 14.73±0.12 17.00±0.20 25.00±0.40 31.07±0.12 45.13±0.31 56.93±0.83
ReMDM 8.80±0.53 14.67±0.31 15.93±0.12 26.00±0.20 33.13±0.70 45.27±0.64 56.60±0.35
RCR 4.80±0.84 10.40±0.71 23.60±0.55 29.00±0.29 36.00±0.36 42.60±0.43 41.73±0.12
TOLERATOR 10.53±1.01 25.13±0.64 35.00±0.80 41.07±2.91 44.40±1.20 48.47±1.55 51.53±0.76

LLaDA

Vanilla 9.53±0.81 14.40±0.40 13.40±0.69 17.73±0.12 24.07±0.64 31.27±0.81 37.87±0.61
ReMDM 1.53±0.31 2.33±0.58 4.53±0.42 10.53±0.12 17.27±0.64 23.33±1.72 35.47±0.90
RCR 0.60±0.40 3.47±0.46 10.00±0.20 13.33±0.12 15.93±0.46 22.27±0.31 26.73±0.12
TOLERATOR 5.53±1.03 16.00±0.87 22.73±1.03 25.60±0.69 29.27±0.42 33.87±0.81 38.53±1.50

Model Method GSM8K
#F=4 #F=8 #F=16 #F=32 #F=64 #F=128 #F=256

Dream

Vanilla 9.22±0.46 23.07±0.04 26.79±0.12 35.36±0.09 50.11±0.00 65.38±0.12 73.10±0.06
ReMDM 11.02±0.64 18.12±0.59 27.98±0.00 35.91±0.09 47.81±0.09 61.66±0.16 70.00±0.44
RCR 3.79±0.25 6.90±0.27 21.46±0.33 42.00±0.41 48.90±0.38 46.55±0.29 36.47±0.35
TOLERATOR 14.40±0.59 24.92±1.22 35.96±1.45 47.66±0.18 62.80±0.90 68.99±0.92 72.61±0.46

LLaDA

Vanilla 3.23±0.18 7.58±0.35 22.87±0.70 37.55±0.42 40.99±0.61 49.46±0.74 50.75±0.57
ReMDM 7.46±0.16 8.24±1.10 16.83±0.40 34.77±0.61 43.85±0.24 50.77±0.24 51.33±0.81
RCR 4.93±0.32 9.29±0.70 20.81±0.27 35.03±0.54 41.09±0.64 46.17±0.32 50.34±0.96
TOLERATOR 17.49±0.43 22.24±0.90 32.58±1.20 51.88±1.14 63.66±0.23 67.20±0.64 68.89±1.05

B.2 ABLATION STUDIES

Similarly, we present the exact numerical results our further analysis on different components in
tabular form above.
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Table 2: Performance under different refinement steps (#R) with fixed fill-up stage steps (16 or
64). Results are reported for both Dream-Instruct and LLaDA on GPQA and GSM8K.

Fill-Up Steps Model Task #R=0 #R=4 #R=8 #R=16 #R=32 #R=64 #R=128 #R=256

16

Dream GPQA 18.23 26.56 26.95 27.73 29.30 26.95 27.34 26.95
Dream GSM8K 26.79 41.41 42.19 47.66 58.20 64.45 65.23 66.80
LLaDA GPQA 19.87 25.39 22.66 25.39 21.09 23.83 24.22 24.61
LLaDA GSM8K 22.87 48.44 52.73 51.95 54.69 58.59 56.64 58.98

64

Dream GPQA 22.25 28.12 31.64 31.64 31.64 35.16 35.55 30.08
Dream GSM8K 50.11 53.91 60.16 60.94 66.80 69.92 73.05 71.48
LLaDA GPQA 25.00 23.83 25.39 19.53 25.78 26.95 22.66 25.39
LLaDA GSM8K 40.99 59.38 64.06 66.02 67.97 65.23 71.09 69.14

Table 3: Performance with different values of the EoT penalty coefficient λeot (1.0–1.3) un-
der fixed fill-up and refinement configurations. Evaluated on GPQA and GSM8K with Dream-
Instruct and LLaDA. Reported as mean (± variance) over 3 seeds.

Forward Steps Model Task λeot = 1.0 1.1 1.2 1.3

32

Dream GPQA 19.27 ±0.90 23.74 ±0.52 25.67 ±1.18 24.33 ±2.95
Dream GSM8K 41.80 ±1.23 51.68 ±0.57 51.88 ±1.14 49.56 ±1.25
LLaDA GPQA 19.27 ±1.52 23.74 ±1.44 26.71 ±1.45 22.77 ±1.24
LLaDA GSM8K 40.21 ±0.64 47.66 ±0.18 47.49 ±1.01 46.17 ±0.55

128

Dream GPQA 26.79 ±0.00 25.15 ±0.72 26.41 ±2.03 26.34 ±0.80
Dream GSM8K 54.61 ±0.56 67.93 ±0.53 67.20 ±0.64 67.63 ±0.13
LLaDA GPQA 19.94 ±0.93 26.12 ±0.80 29.91 ±1.77 28.20 ±1.23
LLaDA GSM8K 46.25 ±0.08 64.22 ±0.79 68.99 ±0.92 67.27 ±1.03

Table 4: Performance of LLaDA and Dream models on GSM8K across different forward num-
bers (#F). We compare refinement with and without annealing.

Model Task Setting #F=4 #F=8 #F=16 #F=32 #F=64 #F=128 #F=256

LLaDA GSM8K With Annealing 20.31 24.22 35.55 52.73 65.49 70.18 70.31
Without Annealing 19.92 22.66 33.98 52.73 60.55 65.23 68.75

Dream GSM8K With Annealing 12.37 25.26 36.20 50.00 62.76 69.53 74.09
Without Annealing 14.06 23.05 33.98 47.27 64.84 67.97 70.31

C QUALITATIVE EXAMPLES

In addition to quantitative results, we provide qualitative examples to illustrate how token-level
cross-validation can effectively correct errors in accepted tokens. In this example, we set fill-up step
and refinement step both to 16.

As shown in Figure 7 through Figure 10, the initial filled sequences often contain both grammati-
cal inconsistencies (e.g., redundant phrases such as “the number the number”) and semantic errors
(e.g., producing an incorrect result such as 88,000000). Through iterative refinement, inconsistent
tokens are either modified or removed, while more appropriate tokens are introduced. This process
progressively reduces grammatical and semantic errors, ultimately yielding the correct answer (e.g.,
8000 copies).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

To determine how many copies Harald sold we can set

up an equation the given information . \ (

represent the number the number of copies Har

sold . 88 , 0000 00 copies .

,

Let

sold

Q: Marilyn's first record sold 10 times as many copies as Harald's. If they sold 

88,000 copies combined, how many copies did Harald sell?

Generated Early (Step 1) Generated Late (Step 16)

Figure 7: Output of Fill-Up Stage.We use colors fading from blue to red to demonstrate the order
of decoding.Using fill-up and refinement steps =16, the special special tokens like [EoT] are not
shown.

To determine how many copies Harald sold we can set

up an equation the given information . H

represent the number of copies Harald

. 88 , 000

copies .

,

Let

sold

Q: Marilyn's first record sold 10 times as many copies as Harald's. If they sold 

88,000 copies combined, how many copies did Harald sell?

Har Harald sold 8000

Figure 8: Sequence after 1 Iteration of Refinement. Red dashed boxes represent deleted tokens
while green boxes represent added tokens in current iteration.

Q: Marilyn's first record sold 10 times as many copies as Harald's. If they sold 

88,000 copies combined, how many copies did Harald sell?

To determine how many copies Harald sold we can set

up an equation the giveninformation .

H be the number of copies Harald

sold 10 H

copies 0

,

Let

sold

Harald sold 8000

based on

. Then ,

Marilyn copies . H = 8000

Figure 9: Sequence after 8 Iteration of Refinement. Red dashed boxes represent deleted tokens
while green boxes represent added tokens in the current iteration.

Q: Marilyn's first record sold 10 times as many copies as Harald's. If they sold 

88,000 copies combined, how many copies did Harald sell?

To determine how many copies Harald sold we can set

up an equation the giveninformation .

H represent the number of copies Harald

sold 10 H

copies .

,

Let

sold

Harald sold 8000

based on

.

Therefore , Marilyn copies .

H = 88000

11

Therefore ,

Figure 10: Sequence after 16 Iteration of Refinement. Red dashed boxes represent deleted tokens
while green boxes represent added tokens in the current iteration.
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