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ABSTRACT

Offline reinforcement learning (RL) has achieved notable progress in recent years.
It enables learning optimized policy from fixed offline datasets and, therefore is
particularly suitable for decision-making tasks that lack reliable simulators or have
environment interaction restrictions. However, existing offline RL methods typi-
cally need a large amount of training data to achieve reasonable performance, and
offer limited generalizability in out-of-distribution (OOD) regions due to conserva-
tive data-related regularizations. This seriously hinders the usability of offline RL
in solving many real-world applications, where the available data are often limited.
In this study, we introduce a highly sample-efficient offline RL algorithm that learns
optimized policy by enabling state-stitching in a compact latent space regulated
by the fundamental symmetry in dynamical systems. Specifically, we introduce a
time-reversal symmetry (T-symmetry) enforced inverse dynamics model (TS-IDM)
to derive well-regulated latent state representations that greatly ease the difficulty of
OOD generalization. Within the learned latent space, we can learn a guide-policy
to output the latent next state that maximizes the reward, bypassing the conservative
action-level behavior constraints as used in typical offline RL algorithms. The
final optimized action can then be easily extracted by using the guide-policy’s
output as the goal state in the learned TS-IDM. We call our method Offline RL
via T-symmetry Enforced Latent State-Stitching (TELS). Our approach achieves
amazing sample efficiency and OOD generalizability, significantly outperforming
existing offline RL methods in a wide range of challenging small-sample tasks,
even using as few as 1% of the original data in D4RL tasks.

1 INTRODUCTION

Offline reinforcement learning (RL) has seen rapid progress in recent years. It bypasses the reliance
on environment interactions as in online RL methods, directly utilizing pre-collected offline data for
policy learning, thus being ideal for many real-world tasks that lack high-fidelity simulators or have
environment interaction restrictions (Levine et al., 2020; Fujimoto et al., 2018; Zhan et al., 2022).
However, offline RL is also known to be prone to value overestimation, caused by extrapolation error
when evaluating out-of-distribution (OOD) samples and amplified through the interactive dynamic
programming procedure in RL (Kumar et al., 2019; Fujimoto et al., 2019). In the past few years,
quite a few offline RL methods have been proposed, which commonly adopt the pessimism principle
using strategies such as adding explicit or implicit policy constraints to prevent the selection of
OQOD actions (Kumar et al., 2019; Fujimoto et al., 2019; Wu et al., 2019; Fujimoto and Gu, 2021),
penalizing value function on unseen samples (Kumar et al., 2020; Xu et al., 2022b; Bai et al., 2021;
Lyu et al., 2022), or adopting in-sample learning to implicit regularize policy optimization (Kostrikoy
etal., 2021b; Xu et al.; Mao et al., 2024). What’s in common with these methods is the use of some
kind of action-level constraints to avoid OOD exploitation. Although this could stabilize offline
value and policy learning, it inevitably leads to over-conservatism and crippled OOD generalization
performance (Li et al., 2022; Cheng et al., 2023). Most of the existing offline RL methods only
perform well when trained in sufficiently large amounts of offline data with reasonable state-action
space coverage (e.g., 1 million samples for simple D4RL tasks (Fu et al., 2020)). This forms a stark
contrast to the reality of most real-world scenarios, where the historical data are often limited and
scaling up data collection can be rather costly (Zhan et al., 2022; Cheng et al., 2023). Hence although
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offline RL is initially proposed to solve a wide range of real-world tasks, we still haven’t seen too
many practical deployments to date.

Enhancing the sample efficiency and OOD generalization capability is essential to making offline RL
widely applicable to real-world applications. This is particularly important for small dataset settings,
as most of the state-action space will become OOD regions. Several recent attempts have been made to
improve the generalization performance of offline RL, which mainly follows three directions. The first
direction builds upon the empirical observation that deep value functions interpolate well but struggle
to extrapolate, thus allowing exploitation on interpolated OOD actions to promote generalization (Li
et al., 2022). However, this method has a smoothness assumption on the offline dataset geometry and
only applies to continuous action space. The second class of methods avoids the conservative action-
level constraint and instead performs reward maximization on the state-space (Xu et al., 2022a; Park
et al., 2024), which allows exploitation of OOD actions as long as the corresponding state transitions
are reachable (also referred to as "state-stitching" (Xu et al., 2022a)). Although these methods enable
promising state generalization capability, they still require the state-action space to have reasonable
dataset coverage to enable valid state-stitching. The last and also the most explored direction is to
learn compact and robust latent representations that facilitate generalization (Laskin et al., 2020;
Agarwal et al., 2021; Yang and Nachum, 2021; Uehara et al., 2021; Weissenbacher et al., 2022;
Cheng et al., 2023). Most of the existing representation learning studies only focus on extracting
statistical-level information from the data, using techniques such as contrastive learning (Laskin
et al.,, 2020; Agarwal et al., 2021; Yang and Nachum, 2021; Uehara et al., 2021). Although useful
for improving sample efficiency, these methods lack in-depth modeling of the underlying dynamics
patterns inside the sequential data, thus struggling to provide generalizable information beyond
data distribution. Some recent methods (Weissenbacher et al., 2022; Cheng et al., 2023) propose to
extract fundamental symmetries of dynamics to facilitate policy learning, such as the time-reversal
symmetry (T-symmetry) in Cheng et al. (2023) (i.e., the underlying physical laws should not change
under the time-reversal transformation: ¢ — —t). If we can find and leverage such universally held
symmetries in the dataset, then it is possible to maximally promote OOD generalization without
being restrained by data distribution-related information. Although promising, these methods are
built upon existing action-level constraint offline RL backbone algorithms like CQL (Kumar et al.,
2020) or TD3+BC (Fujimoto and Gu, 202 1), which still suffer from the over-conservatism issue.

In this paper, we find that enabling state-stitching in a coherent, fundamental symmetry-enforced
latent space can actually lead to a surprisingly strong sample-efficient offline RL algorithm. We refer
to our method as Offline RL via T-symmetry Enforced Latent State-Stitching (TELS). Specifically, we
introduce a T-symmetry enforced inverse dynamics model (TS-IDM) to not only learn well-behaved
T-symmetry consistency representations that greatly alleviate the difficulty of OOD generalization,
but can also facilitate effective action inference. Within the learned latent state space, we can optimize
a T-symmetry regularized guide-policy to output the next state that maximizes the reward, bypassing
the conservative action-level behavioral constraints as used in typical offline RL algorithms. Lastly,
the optimized action can be easily extracted by plugging the output of the guide-policy as the goal
state in the learned TS-IDM. The resulting algorithm achieves amazing sample efficiency and OOD
generalization capability, significantly outperforming existing offline RL algorithms in a wide range
of challenging reduced-size D4RL benchmark datasets, even using as few as 1% of the original
samples. Our method greatly pushes the performance limit of offline RL under low data regimes,
offering a new opportunity to tackle many previously unsolvable real-world tasks.

2 PRELIMINARIES

Offline reinforcement learning. We consider the standard Markov decision process (MDP) set-
ting (Sutton and Barto, 2018), which is represented as a tuple M = {S, A, r, P, p,~}, and a dataset
D, which consists of trajectories 7 = (sg, ag, $1, a1, ..., 7). Here S and A denote the state and
action spaces, 7(s, a) is a scalar reward function, P(s’|s, a) and p denote the transition dynamics and
initial state distribution respectively, and v € (0, 1) is a discount factor. Our goal is to learn a policy
m(als) based on dataset D by maximizing the expected return in the MDP: E[>",7 7' - 7(s¢, at)].

Offline policy optimization in the state space. Instead of adopting conservative action-level
constraints for offline policy learning, the recent Policy-guided Offline RL (POR) (Xu et al., 2022a)
method proposes an alternative scheme, which decomposes the conventional reward-maximizing
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policy into a guide-policy and an execute policy. The guide-policy only works in the state space to
find the optimal next state that maximizes the state-value function, and the execute-policy is learned
as an inverse dynamics model (Xu et al., 2022a) or a goal-conditioned imitative policy (Park et al.,
2024). Such methods only need to learn a state-only value function V' using the IQL-style expectile
regression (Kostrikov et al., 2021b) or the sparse value learning objective as discussed in Xu et al.
(2021). We present the former as follows:

V= argénin E(sr,s)~D [LE (7’(3) +V () -V (3))] e

where V denotes the target value network and L3 (z) = |7 — 1(x < 0)|2? denotes the asymmetric
expectile regression loss as in IQL (Kostrikov et al., 2021a). Based on the learned state-value function,
we can learn a guide-policy 74 (s’|s) to serve as a prophet by telling which state the agent should (high
reward) and can (logical generalization) go to, without being constrained to state-action transitions
seen in the dataset. This can be achieved by leverage advantage weighted regression (AWR) type
of objective (Neumann and Peters, 2008; Peng et al., 2019) to maximize the value while implicitly
constraining 7, to s — s’ transitions observed in the dataset (i.e., state-stitching):

7y = argmax E, , o)p | exp(a - A(s, s")) log mg (s | s)} 2)

Tg
where the advantage A(s, s’) = r + vV (s") — V(s) serves as the behavior cloning weight, and « is
the inverse temperature parameter to prioritize value maximization over state-wise imitation learning.

For the execute-policy 7., POR employs a supervised learning framework and trains 7, by maximiz-
ing the likelihood of the actions given the states and next states: max,, E, 4 )~pllogm. (a | s,5)].
During evaluation phase, given the current state s, we can sample the optimized next state s’ from
m4(s’|s), and can get final action simply as @ = argmax, (7. (a | s,74(s|s))].

Time-reversal symmetry for generalizable offline RL. To extract well-behaved representations in
small-sample settings, TSRL (Cheng et al., 2023) proposes to leverage the fundamental T-symmetry
discovered in classical and quantum mechanics (Lamb and Roberts, 1998; Huh et al., 2020) to
enhance the generalization of offline policy learning. Specifically, if we model the system dynamics
with measurements x as a set of non-linear first-order differential equations (ODEs) expressed as
‘fi—’t‘ = F'(x), a dynamical system is said to exhibit time-reversal symmetry if there is an invertible
transformation I that reverses the direction of time: dI'(x)/dt = —F(T'(x)). TSRL introduces an
extended definition of T-symmetry for discrete-time MDP setting, by learning a pair of ODE forward

F(s,a) — $ and reverse dynamics G(s’, a) — —$, and require them to satisfy F'(s,a) = —G(s',a),
where the time-derivative of state s = % is approximated as s’ — s.

Based on this intuition, TSRL constructed a T-symmetry enforced dynamics model (TDM) with an
encoder-decoder architecture, to learn a pair of T-symmetry consistent ODE latent forward and reverse
dynamics for representation learning. Although TSRL achieves impressive performance under small-
sample settings, it still has limitations. First, TSRL only uses the learned encoder ¢(s,a) = (25, 24)
from TDM to derive the latent representations, without fully exploiting the rich dynamics-related
information in the model for downstream policy learning. Second, it needs simultaneous access
to both state and action to derive latent representations, making Q-function maximization the only
option for policy optimization, which inevitably requires adding conservative action-level constraints
(like the behavior cloning term in TD3+BC (Fujimoto and Gu, 2021)) to stabilize training. Moreover,
involving action as an input for representation learning is also prone to capturing the biased behaviors
in the data-generating policy (e.g., data generated from expert policy will have special action patterns),
which could impede learning fundamental, distribution-agnostic dynamics patterns in data.

3 OFFLINE RL VIA T-SYMMETRY ENFORCED LATENT STATE-STITCHING

We now present our proposed method, TELS, which comprises a T-symmetry enforced inverse
dynamics model (TS-IDM) integrated with an effective offline policy optimization procedure operated
in the latent state space. Inspired by previous work TSRL (Cheng et al., 2023), we design the TS-IDM
to extract the fundamental, T-symmetry preserving representations from the limited data, which
not only facilitates OOD generalization for policy learning, but can also be seamlessly used as a
execute-policy for optimal action extraction. An overall illustration of our proposed framework is
presented in Figure 1.
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Figure 1: Overview of our proposed TELS framework.

3.1 T-SYMMETRY ENFORCED INVERSE DYNAMIC MODEL

If we look at the input and output of our proposed TS-IDM, it functions similarly to a typical inverse
dynamics model that takes current and next state (s, s’) as input and outputs the action a. However,
TS-IDM’s architecture is distinct in several aspects. In its interior, it comprises a state encoder
¢s(s) = zs, a latent inverse dynamics model h;p, (25, 257) = 24, a pair of T-symmetry enforced
latent ODE forward and reverse dynamics models h fwd(z57 2q) = Zs and hyys(2s, 24) = —Zs, an
action decoder v, (z,) = @, and an extra state decoder ¥5(z5) = §. In the following, we describe
their detailed design logic and learning objectives.

State encoding and decoding. As we have discussed before, constructing an informative and well-
behaved latent space is crucial for effective offline policy optimization in the small-sample setting.
Therefore, we introduce a state encoder ¢5(s) = z; to embed the current and next states (s, ) into
latent space (zs, 25/ ), together with an extra state decoder 5 (z5) = s to map the latent representations
back to the original state space, which ensures that the learned latent state representations do not
become overly distorted. This implies the following state reconstruction loss:

lyrec(s) = |[¥s(9s(s)) — 5”; 3

Latent inverse dynamics model. Inside the TS-IDM, we construct a latent inverse dynamics model
Ninw(2s, 2s7) = zq, Where z; and zy serve as inputs to infer the latent action z,. We employ an
action decoder v, (z,) = @ to map the latent actions back to the original action space, ensuring that
the action representations are meaningful and interpretable. The loss term is as follows:

Zinv(sa a, S/) = H'(/Ja(hinv(zsa Zs’)) - a”% (4)

Latent ODE forward and reverse dynamic models. Drawing inspiration from previous research
that integrates physics-informed insights into dynamical systems modeling (Mezi¢, 2005; Brunton
et al., 2016; Champion et al., 2019; Cheng et al., 2023), we embed a pair of latent ODE forward and
reverse dynamics hfyd(2s, 2a) = Zs and hypys(247, 24) = — 2, to separately capture the forward and
reverse time evolution on states. We are interested in modeling ODE systems because it encourages
learning parsimonious models helpful to uncover fundamental properties from the data (Brunton
et al., 2016; Champion et al., 2019), that can maximally promote generalization. Note that based on

the chain rule, we can derive the supervision signal for the latent dynamics models with 2, = 92 =

dt
dj;‘ . % = V25§ = Vsos(s) - § to enforce the ODE property. Therefore, we can use the following
training losses for h g and Ny s:
Crwa(s,s") = |(Vs2s)5 — ZSHS = [|[Vs¢s(5)8 — hpwalzs, Za)”% &)
Cros(s,8") = [[(Vsrzs)(—8) — (_ZS)H% = Vo ds(s)(=3) — hrvS(ZS’vza)Hg (6)

where the latent action z,, is obtained from the latent inverse dynamics model h;p, (25, 2s/)-

Note that in the above loss terms, we actually implicitly enforced the ODE property on the state

encoder ¢, the same should also apply to the state decoder 15 to ensure compatibility with the

T-symmetry formalism, i.e. the time-derivative of the state encoder %t(s) and decoder dwzi(fs)
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should behave in the same way as Z, and $. Similar to the previous treatment on the state encoder, as

5= dw‘;’li“) = dwjz(f‘“) . % = V,.¢(%s) - %5, hence we can use the following objective to enforce

the ODE property for the state decoder 1):
lode(5,5") = Vo, (20) - Bpud(2s, 2a) = 8ll3 + Vo, 0(20) - (“hros (2, 70)) = 3l (D)

In the above learning objective, we use the output Z, obtained from A #,,¢ and —h,,s in our calculation
to further regularize the output of the ODE forward and reverse dynamics. Again, the latent action
24 1s obtained from the A, (25, 25 ). With the above coupled design among the state encoder, state
decoder, and the latent forward and reverse dynamics, we obtain a strongly consistent ODE system to
capture the fundamental dynamics properties in the offline dataset.

T-symmetry enforcement. To further regularize the learned latent representations, we incorporate
the extended version of T-symmetry (Cheng et al., 2023) by requiring h fyq(2s, 2a) = —hrvs(2s7, 2a)-
We adopt a similar T-symmetry consistency loss as in TSRL (Cheng et al., 2023):

gT—sym(zs» Za) = ||hfwd(zsy za) + hrvs(zs + hfwd(Z37 Za)7 Za)”i (8)
where we use the fact that zy = 25 + 25 = 25 + hpwd(%s, 2a) and hpys(2s + hpwa(2s, Za)s 2a) =
—2s = —hfwa(zs, 24 to further couple the learning process of h fwd and h.,s. Moreover, given a

latent state-action pair (zs, 2, ), the above T-symmetry consistency loss can also serve as an evaluation
metric to assess their agreement with the learned TS-IDM. A large T-symmetry loss indicates that the
latent state-action representation (zs, z,) induced by some (s, s') may not satisfy the fundamental
dynamics pattern, therefore more likely to be a problematic or non-generalizable sample.

Overall learning objective. Finally, the complete training loss function of TS-IDM is as follows:

ET.S’fIDM = Z |:€s—'rec + Zinv + B . (ffwd + érvs + Zs—ode + eT*SyM):| (9)
(s,a,s’)€ED

Where [ is a hyperparameter that balance between capturing fundamental dynamic properties and
ensuring interpretability of the learned representation. By enforcing both the ODE property and
T-symmetry consistency in the inverse dynamics modeling, not only produces well-regularized and
informative latent state representations but also reliable action prediction. In the next section, we will
describe how different components in the learned TS-IDM can be seamlessly integrated to form an
extremely sample-efficient offline policy optimization framework.

3.2 SAMPLE-EFFICIENT OFFLINE POLICY OPTIMIZATION WITHIN LATENT SPACE

Once we have a learned TS-IDM, we can extract three highly useful components from it to facilitate
sample-efficient downstream offline policy optimization, including 1) a robust state encoder ¢(s) that
provides a compact and generalizable latent space ideal for state-stitching; 2) T-symmetry consistency
as an additional regularizer to prevent erroneous generalization when learning a guide-policy in the
latent state space; and 3) the TS-IDM itself can serve as an execute-policy as in POR (Xu et al.,
2022a) to extract optimized action given the learned guide-policy.

Latent state-value functions learning. Based on the state encoder ¢,(s) from the pre-trained
TS-IDM, we can convert the entire offline policy optimization process into the latent state space,
which enjoys both the stable learning process and generalizability due to more compact and well-
behaved representations. Specifically, we can use a similar IQL-style expectile regression loss to
learn a state-value function V'(z) as in Eq. (1), but in the latent state space:

V= arg‘;nin E(S,T,S’)ND L;(T + '7‘7 (¢8(s/)) -V (¢8(5))) (10)

T-symmetry regularized guide-policy optimization. A major benefit of learning within the T-
symmetry preserving latent space is that, as T-symmetry captures what is essential and invariant
about the dynamical system, thus it can generalize and provide information even for OOD samples
beyond the offline dataset. This naturally favors learning a reward-maximizing guide-policy 7, in the
latent space, which can enjoy more effective state-stitching. Moreover, by leveraging the T-symmetry
consistency term in Eq. (8) as an additional regularizer, we can prevent 7, from outputting problematic
and non-generalizable latent next state, thereby further enhancing logical OOD generalization.
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Algorithm 1 Offline RL via T-symmetry Enforced Latent State-Stitching (TELS).

Require: Offline dataset D.
1: //TS-IDM learning
: Learning the state encoder ¢, state decoder 15, action decoder v, latent inverse dynamics h;n., latent
forward and reverse dynamics h .4 and A, s using the TS-IDM learning objective Eq. (9).
3: Initialize Vi, Vy/, 7o
4: // Policy training
5: fort=1,---, M training steps do
6 Sample transitions (s, 7, s') ~ D and compute their representations (2, zs/ ) using the state encoder ¢s.
7 Use (zs, T, 25 ) to update the latent state-value function V' using Eq.(10)
8:  Use (zs, 2¢) to update the latent guide-policy 74 using Eq.(11) or (12).
9: end for
10: // Evaluation
11
12
13
14
15

[\

: Get initial state s from environment

: while not done do
Get optimized next state 27, using guide-policy 7g.
Extract action a using Eq. (13)

: end while

In this work, we provide two instantiations for deterministic and stochastic latent guide-policy
learning, respectively. For deterministic guide-policy m4(2s) — 27, we adopt the following policy
optimization objective:

g = arg max By a AV (g (20)) + 1105 (g (25)) = 5" + Cr-sym (0, ivs (0,79 (25))

Tg

(1)
where z; = ¢;(s). The above can be perceived as a TD3+BC style policy optimization objective (Fu-
jimoto and Gu, 2021), but completely conducted in the latent state space. The first term maximizes
the latent state-value function V', weighted by a normalization term A\, = o/[>_, [V (#5(si))|/N]
computed based on hyperparameter « and /N samples in the training batch. The second term regular-
izes the next state decoded from the guide-policy using state decoder 15 should not deviate too much
from the ground truth next state s’ in the dataset. The last term regularizes guide-policy induced latent
state-action pair (i.e., (2s, 2a) = (2s, Pinv(2s, Tg(25)))) to comply with the T-symmetry consistency
specified in the learned TS-IDM.

For stochastic guide-policy 7, (2 |25), we borrow the similar AWR-style policy optimization objec-
tive as in Eq. (2), but incorporating the T-symmetry consistent regularization:

Ty = argmax (s s)p {exp(a - A(zs, 25)) log mg (25 | 25) + lr-sym(Zs, Rivs (s, wg(-\zs))}

g (12)
where z; = ¢5(5), zs = ¢s(s'), and A(zs, 25) =1 + 7V (2sr) — V (25).

In our experiments, we find that the deterministic version objective Eq. (11) works well for the
MuJoCo locomotion tasks, while the stochastic version Eq. (12) works better for more complex D4RL
Antmaze tasks (Fu et al., 2020), potentially due to more stochastic nature of the task environment.

Action inference. After learning the guide-policy 7, we can further use it to generate the optimized
action for control. To do this, we can simply use the latent next state 2, outputted from the 7, (z5) or
m4(+|2s) as the goal state, and plug it into the learned latent inverse dynamics model hip, (25, 257) in
TS-IDM to replace zs . The final action can be extracted by decoding the resulting latent action from
hine using the state decoder 1, :

a* = Ya (hinv (Zsa Tg (Zs))) (13)
Note that there is no training process needed for this stage. We fully utilize the learned TS-IDM to
serve our purpose. We summarize the complete training and inference procedure of our framework in
Algorithm 1.

4 EXPERIMENTS

In this section, we present the empirical evaluation results of TELS on the D4ARL MuJoCo-v2 and
Antmaze-v1 datasets (Fu et al., 2020) against with behavior cloning (BC), and SOTA offline RL
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Table 1: Average normalized score on D4ARL MuJoCo and Antmaze tasks in reduced-size datasets. We report
some of the small-sample evaluation results from the TSRL paper (Cheng et al., 2023). The evaluation results
under the full dataset are listed in Appendix B.

Task \ Size (ratio) \ BC TD3+BC CQL QL DOGE POR TSRL TELS
Hopper-m \ 10k (1%) \ 29.7+11.7 40.1+18.6 43.1424.6 46.74+6.5 442 +10.2 464+ 1.7 62.0+3.7 77.3 +£10.7
Hopper-mr \ 10k (2.5%) \ 12.1+£5.3 7.3£6.1 2.3+1.9 13.443.1 179+ 45 174+ 6.2 21.8+8.2 43.2 + 3.5
Hopper-me \ 10k (0.5%) \ 27.8+£10.7 17.8+7.9 29.9+4.5 34.3+8.7 50.5 +252 379 £ 6.1 50.9+8.6 100.9 + 6.8
Halfcheetah-m \ 10k (1%) \ 26.4+7.3 16.4£10.2 35.8+3.8 29.940.12 36.2+34 33.3+£3.2 38.4+3.1 40.8 £+ 0.6
Halfcheetah-mr \ 10k (5%) \ 14.3+£7.8 17.949.5 8.1+9.4 22.7+6.4 234 +36 27.5£3.6 28.1£3.5 332+1.0
Halfcheetah-me \ 10k (0.5%) \ 19.1+£9.4 15.4+10.7 26.5+10.8 10.5+8.8 26.7 £ 6.6 34.7£2.6 39.9+21.1 40.7 £ 1.2
Walker2d-m \ 10k (1%) \ 15.8+14.1 7.4+13.1 18.8+£18.8 22.543.8 45.1 £10.2 22.2+3.6 49.7+10.6 624 +53
Walker2d-mr \ 10k (3.3%) \ 1.44+1.9 57458 8.54+2.19 10.7+11.9 135+ 84 14.8+4.2 26.0£11.3 54.8 + 6.0
Walker2d-me \ 10k (0.5%) \ 21.748.2 7.949.1 19.1+14.4 26.5+8.6 353+ 11.6 20.1+8.6 46.4+17.4 87.4 +13.3
Antmaze-u \ 10k (1%) \ 447 +42.1 07+12 0.1 £0.0 65.1 +£194 563 +244 6.1 +73 76.1 +15.6 88.7 + 7.7
Antmaze-u-d \ 10k (1%) \ 24.1+222 1627+ 164 0.54+0.1 346+ 185 41.7+189 421+142 5224221 60.9 +16.9
Antmaze-m-d \ 0.1M (10%) \ 0.0 0.0 0.0 48+59 0.0 0.0 0.0 472 +17.3
Antmaze-m-p \ 0.1M (10%) \ 0.0 0.0 0.0 125+54 0.0 0.0 0.0 629 +17.8
Antmaze-1-d \ 0.1M (10%) \ 0.0 0.0 0.0 3.6+4.1 0.0 0.0 0.0 39.8 + 14.1
Antmaze-1-p \ 0.1M (10%) \ 0.0 0.0 0.0 35+4.1 0.0 0.0 0.0 473 +£13.1
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Figure 2: Performance of TELS against baselines under different data sizes.

methods TD3+BC (Fujimoto and Gu, 2021), CQL (Kumar et al., 2020), IQL (Kostrikov et al.,
2021a), DOGE (Li et al., 2022), POR (Xu et al., 2022a), and TSRL (Cheng et al., 2023), which
is the current SOTA method in small-sample settings. We then conduct several ablation studies to
evaluate the functionality of each component of TS-IDM in section 4.2. Additionally, we demonstrate
that the learned representation model significantly improves the performance of other baselines in
small-sample settings. The implementation details, experimental setup, and additional results can be
found in Appendex A and B.

4.1 PERFORMANCE COMPARISON ON SMALL-SAMPLE SETTING

We evaluate the performance of TELS against baseline methods on reduced-sized D4RL datasets
ranging from 5k to 0.1M samples. We employ a similar approach utilized in TSRL (Cheng et al.,
2023), by randomly sub-sample trajectories from the full datasets. The evaluation results reveal that
most baseline methods fail to derive reliable policies under extremely small datasets due to insufficient
samples to support action constraints or to effectively learn the value function. By leveraging the
advantages of a T-symmetry enforced dynamics model, TELS extracts fundamental symmetries of
the dynamics to facilitate policy learning, demonstrating effective performance even with limited data.
However, as previously discussed, TSRL incorporates actions into its representation inputs, making it
susceptible to capturing biased behaviors. Furthermore, it employs an action-level constraint structure,
resulting in over-conservatism issues. These drawbacks become more pronounced, especially with
low-quality datasets like the "medium-replay" dataset, whose data is mostly collected by random and
low-performing behavior policies.

In contrast, TELS significantly outperforms all baselines in both MuJoCo locomotion and AntMaze
tasks, demonstrating strong generalizability and superior sample efficiency under small-sample
settings. It is notable that it can still retrieve performative policies from the “medium-replay” dataset.
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This suggests that TS-IDM is able to extract reliable fundamental features from states without
necessarily requiring high-quality data. Moreover, as data quality improves, TELS’s performance
dramatically surpasses that of the baselines, particularly in the "hopper-medium-expert" dataset,
which reveals that the learned TS-IDM can provide a stronger representative latent space as the
data quality increases. By incorporating a generative guide policy to sample valuable states for
the inverse dynamics model, all these components together result in an extremely sample-efficient
RL algorithm. We also conduct experiments on various data scales using the Walker2d-medium
and Walker2d-medium-expert datasets separately to examine the impact of training data size on the
algorithm’s performance. From the results in Figure 2, we observe that TELS exhibits more stable
performance and, even with only 5k samples, still surpasses other baseline approaches.

To further verify the generalizability of TELS, we conducted experiments on the AntMaze tasks
within a small-sample setting, which presents additional challenges for learning reliable policies.
Specifically, for the larger maps in the AntMaze-medium and AntMaze-large scenarios, the limited
sampled datasets could contain a higher proportion of unsuccessful trajectories, thus requiring the
policy to generalize to OOD regions to reach the goal state. For the small-sample conduct for the
navigation task, as providing only 10k samples will lead to an overly sparse state space, we choose
to sample about 0.1M dataset and evaluate the performance of the policy. It can be seen as an
extremely difficult setting in which all baselines, including TSRL, fail to derive effective policies.
In contrast, TELS is still able to produce well-performing policies. Additionally, we conducted a
more challenging scenario by gradually removing portions of critical data points from the AntMaze-
medium-diverse dataset, and We found that even after removing 90% of the data, TELS was still able
to achieve the goal state, demonstrating its remarkable generalizability. We present more details in
Appendix B.3.

4.2 INVESTIGATION ON TS-IDM

In this section, we evaluate the functionality of the main components of TS-IDM to determine which
contributes most significantly to deriving an effective policy. We start with a basic autoencoder
framework and incrementally add components until we develop TS-IDM. Throughout this process,
we assess the performance at each stage to gain a clear understanding of how each component
contributes to forming a well-behaved representation.

We perform the ablation studies on the “medium-expert” dataset using 10k data samples across three
tasks. Here, we also demonstrate the procedure for constructing the TS-IDM from a basic autoencoder
(AE) framework. We begin by encoding the states into a latent space using the autoencoder and
generating actions through an inverse dynamics model, denoted as “AE +h;,,.” We then learn
the value functions and guide policy within the latent space to evaluate its performance. Next, we
incorporate the forward and reverse dynamic models, hswg and hyys, into the representation learning to
capture more information about the dynamical systems. In this step, we employ conventional methods
to train these dynamic models instead of using ¢;_,4. for modeling the ODE systems. Subsequently,
we enforce the ODE properties on the forward and reverse dynamics using ¢4 to capture the
fundamental dynamical properties of the system. Finally, we involve {7_sy,, to couple the learning
processes of hgyg and Ay, thereby enforcing the T-symmetry property on the latent representations.
We present the implementation details in Appendix A.

Table 2: Ablations on the components of TS-IDM.

| Hopper-m-¢ ~ Halfcheetah-m-e ~ Walker2d-m-e

AE + hjpy 172 £7.0 29.7+£3.6 245 £ 10.1
+ hpwds hros | 355 £7.3 313+ 1.1 33.6+9.2
+ lsode 48.7+£5.0 342+1.2 68.5 +£9.1

+ lr_sym 1009 £+ 6.8 407+ 1.2 87.4 £13.3

The results indicate that with limited datasets, a basic autoencoder framework fails to provide infor-
mative representations for downstream policy learning. Incorporating the dynamics model introduces
some dynamic information about the system but remains insufficient to capture these features ef-
fectively within the small available dataset. As expected, by modeling with the ODE properties,
the forward and reverse dynamics models can extract fundamental patterns from the limited data,
enhancing the reliability of the learned representations. This improvement is particularly significant
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in the "Hopper-medium-expert" and "Walker2d-medium-expert" datasets, where performance im-
proves substantially. This demonstrates that learning system dynamics through ODEs yields more
informative representations. Lastly, enforcing T-symmetry consistency results in the most informative
representation space and provides a reliable regularizer for the downstream RL method to derive a
performative policy.

4.3 INTEGRATING WITH OTHER BASELINE METHODS

In order to verify the usability of the learned TS-IDM, we utilize the learned TS-IDM to construct
latent states for the two baseline methods, IQL (Kostrikov et al., 2021a) and DOGE (Li et al., 2022).
Specifically, we train both baselines incorporating the pre-trained state encoder of TS-IDM, ¢,(s), to
encode the original states into their corresponding latent representations.

Table 3: The performance of IQL and DOGE with or without the representation from TS-IDM.

Hopper-medium Walker2d-medium
IQL DOGE IQL DOGE
w/o TS-IDM repre 46.7 + 6.5 4424102 22.5+3.8 45.1 £10.2
TS-IDM repre 541+ 78 (116%) 57.3 £5.8(130%) 41.3+9.3(183%) 48.7£14.5 (18%)

The results in Table 3 demonstrate notable performance improvements when IQL and DOGE are
trained using the latent representations derived from TS-IDM. In both the Hopper-medium and
Walker2d-medium datasets, the applications of TS-IDM yielded significant performance improvement
compared to the algorithms trained without this representation. For the Hopper-medium task, IQL
and DOGE achieved relative performance improvements of 16% and 30%, respectively. Similarly, in
the Walker2d-medium task, we observe even more pronounced improvements, with IQL showing an
83% increase in performance and DOGE demonstrating an 8% enhancement.

These results underscore the utility of the TS-IDM in facilitating more efficient learning by con-
structing a latent space that is both compact and structured. The learned representations not only
improve the generalization capability of the policy but also mitigate challenges related to distri-
butional shift problems, especially under limited data coverage. The consistency of performance
improvements across both IQL and DOGE, despite their differing approaches to offline learning,
further implies that TS-IDM is capable of providing generalizable and informative representation
space under small-sample settings.

5 RELATED WORK

To mitigate the issue of the distributional shift in offline RL, several existing methods adopt the
principle of pessimism by imposing explicit behavior regularization to explicitly penalize the action
divergence (Wu et al., 2019; Kumar et al., 2019; Xu et al., 2021; Fujimoto and Gu, 2021), or implicit
constraints the policy that prevents the agent from selecting OOD actions (Kumar et al., 2020; Xu
etal.,, 2022b; Bai et al., 2021; Lyu et al., 2022). Alternatively, employ an in-sample learning approach
to implicitly regularize policy optimization, which updates the critic functions without querying
the generated actions to stabilize the learning process of the value function (Brandfonbrener et al.,
2021; Kostrikov et al., 2021b; Xu et al.; Mao et al., 2024). There are also works incorporating the
pessimistic constraints on the policy based on the uncertainty measurement (Wu et al., 2021; An
et al., 2021; Bai et al., 2021).

Most methods tend to perform well when provided with a sufficiently large dataset and under the
assumption of adequate state-action space coverage, which is often crucial for analyzing theoretical
performance guarantees (Kumar et al., 2019; Chen and Jiang, 2019). However, in real-world scenarios,
particularly when training data is limited, encountering a significant number of OOD regions is
inevitable. Applying strict data-dependent regularizations in such cases can lead to substantial
performance degradation and poor generalization.

In order to improve the generalizability of the policy under the OOD regions. One approach leverages
the geometry with deep function approximators over the dataset, enables exploitation in generalizable
OOD areas. Another strategy moves away from conservative action-level constraints, focusing on
reward maximization within the state space. This "state-stitching" approach permits the exploitation
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of OOD actions as long as their corresponding state transitions are feasible (Xu et al., 2022a; Park
et al., 2024). While these methods demonstrate their generalizability over OOD states, they still
require sufficient dataset coverage across the state-action space to support deriving a well-behaved
policy. Additionally, much research has focused on learning compact latent representations to improve
generalization (Laskin et al., 2020; Agarwal et al., 2021; Yang and Nachum, 2021; Uehara et al., 2021).
Whereas these approaches demonstrate their ability to improve the sample efficiency, these methods
lack in-depth modeling of the underlying dynamics patterns inside the sequential data, thus struggling
to provide generalizable representations for the OOD data. In order to retrieve the more fundamental
features of the dynamics, recent methods (Weissenbacher et al., 2022; Cheng et al., 2023) propose
to extract fundamental symmetries of dynamics through an infinite-dimensional linear operator or
revealing the time-reversal symmetry (T-symmetry) in TSRL Cheng et al. (2023). However, these
methods are built on the downstream RL algorithm based on the action-level constraint and can still
suffer from the over-conservatism problem that results in performance degeneration in small data
settings. By contrast, TELS incorporates a T-symmetry regularized guide-policy to output the next
valuable state in the learned latent space, which bypasses the conservative action-level behavioral
constraint approaches.

6 DISCUSSION AND CONCLUSION

In this paper, we propose a highly sample-efficient offline RL algorithm that learns optimized
policy within the compact informative latent space regulated by the T-symmetry in the dynamical
systems. Specifically, we develop a T-symmetry enforced inverse dynamics model (TS-IDM) to
construct a representative and generalizable latent space, effectively mitigating the challenges of OOD
generalization. By integrating a T-symmetry-regularized guide-policy within this latent space, we can
derive the valuable and reasonable next state for the learned latent inverse dynamics model to generate
the optimized action for control, which leads to an impressively strong performance. Moreover,
TS-IDM can simply function as a representation model to provide informative representations
and improve the performance of other methods under the small-sample setting. From extensive
experiments, we demonstrated that TELS essentially achieves the SOTA performance under the
small-sample D4RL dataset. One limitation of TELS is that in complex, high-dimensional scenarios
with limited datasets, extracting fundamental features becomes increasingly difficult. As part of
future work, we aim to explore more expressive models to better capture these fundamental patterns.
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A IMPLEMENTATION DETAILS

Implementation details TS-IDM. We now present the implementation details of TS-IDM. We
list the hyperparameters details of TS-IDM in Table 4, including the details of the structure we have
implemented as well as the hyperparameters we used for training the TS-IDM.

We follow the same approach of TSRL (Cheng et al., 2023) that calculates the ODEs over the state for
the forward h ¢,,q and reverse h,.,;. Specifically, we calculate the time-derivative of the state encoder
dgs(s) dips (

dt

Tz") by computing their the jacobian matrix through vmap () function in

and decoder ;

Functorch.'

We have provided the learning curves of TS-IDM in Appendix C. Notably, our proposed TS-IDM
proves to be easier to train compared to the T-symmetry enforced dynamics model (TDM) introduced
in TSRL Cheng et al. (2023). In TSRL, one has to pretrain the encoder and decoders for several
epochs before jointly training the model components to alleviate the learning instability. In contrast,
TS-IDM does not require any pertaining to stabilize the training process. All components of TS-IDM
can be jointly trained in a single stage, due to the strong consistency among its internal components.

Table 4: Hyperparameters of TS-IDM.

| Hyperparameters | Value
State encoder hidden units 512 x 256
State encoder activation function ReLU
Latent forward model hidden units 256 X 256
Latent forward model activation function ReLU
Latent reverse model hidden units 256 X 256
Latent reverse model activation function ReLU
TS-IDM latent inverse model hidden units 1024 x 1024 x 1024

Architecture Latent inverse model activation function ReLU
Latent inverse model dropout True
Latent inverse model dropout rate 0.1
State decoder hidden units 256 x 512
State decoder activation function ReLU
Action decoder hidden units 512 x 512
Action decoder activation function ReLU
Optimizer type Adam

1 (locomotion tasks); 0.1 (antmaze tasks)
Weight of £5_ ec 1
Learning rate 3e-4
Hyperparameters Batch size 256

Training epoch 1000
State normalize True
Weight decay 0 (locomotion tasks); le-5 (antmaze tasks and full dataset setting)

Implementation details for T-symmetry regularized guide-policy optimization. We present the

structure details of the value functions and guide

-policy in the following Table 5, we also list the

training hyperparameter usage of all the small-sample experiments in Table 6.

Table 5: Structure and training parameters of guide-policy optimization

| Hyperparameters | Value
Value network hidden units 1024 x 1024
Guide-policy | Value network activation function ReLU
structure Policy network hidden units 1024 x 1024
Policy network hidden units ReLU
Optimizer type Adam
Training Target Value network moving average | 0.05
Perparameters | Batch size 256
Training steps 100000
State normalize True

"https://pytorch.org/functorch/stable/functorch.html
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Table 6: Hyperparameters of guide-policy optimization used in experiments.

Task | Guide-policy learning objective | 7 | « | n | dropout | Policy&Value learning rate
hopper-medium-v2 (11) 0.7 0.1 10 False le-4
halfcheetah-medium-v2 (11) 0.5 0.01 5 True le-4
walker2d-medium-v2 (11) 0.5 0.01 5 True le-4
hopper-medium-replay-v2 (11) 0.5 0.01 5 False le-5
halfcheetah-medium-replay-v2 (11) 0.5 0.01 5 True le-4
walker2d-medium-replay-v2 (11) 0.5 0.01 5 True le-4
hopper-medium-expert-v2 (11) 0.7 0.1 10 False le-4
halfcheetah-medium-expert-v2 (11) 0.5 0.01 5 True le-4
walker2d-medium-expert-v2 (11) 0.5 0.01 5 True le-4
all antmaze tasks | (12) [ 09 | 10 | / | Tre | le-3

Table 7: Average normalized scores on full D4RL datasets of MuJoCo and Antmaze tasks.

Task | BC  TD3+BC cQL IQL DOGE POR TSRL | TELS (ours)
Hopperrm | 529 593 585 66.3 98.6+21 786+72 867487 | 943+28
Hopper-mr | 18.1 60.9 95.0 94.7 762+17.7  989+2.1  787£28.1 | 995423
Hopper-me | 525 98.0 105.4 91.5 1027452 9004 121  959+184 | 1054 +85

Halfcheetah-m | 42.6 483 44.0 474 453206 488405 482407 | 443404
Halfcheetah-mr | 55.2 44.6 455 442 428+£06  43.5£09 422435 | 4L1%0.1
Halfcheetah-me | 55.2 90.7 91.6 86.7 78.74£8.4 947422 920+£1.6 | 871429
Walker2d-m | 753 83.7 72.5 78.3 86808 81.1+23  775+45 | 81351
Walker2d-mr | 26.0 81.8 772 73.9 873+23  766+69  66.1+120 | 86.0+33
Walker2d-me | 107.5 110.1 108.8 109.6 1104£15  109.1£0.7  109.8+3.12 | 1107 £ 14
Antmaze-u | 65.0 78.6 84.8 85.5 970 £18  906+7.01 8144192 | 945+103
Antmaze-u-d | 45.6 714 434 66.7 635+£93 713£121  765+297 | 7974153
Antmaze-m-d | 0.0 0.0 540+11.7  746+32  77.6%6.1 79.243.1 0.0 | 824+45
Antmaze-m-p | 0.0 0.0 652448  704+53  80.646.5  84.6%5.6 0.0 | 867457
Antmaze-l-d | 0.0 0.0 316495 456476  364£9.1 734485 0.0 | 417+ 142
Antmaze-l-p | 0.0 0.0 188+153 435445 482481 580+ 124 0.0 | 60.7 +13.3

Reduced-size dataset generation. To create reasonable reduced-size D4RL datasets for a fair
comparison, we borrow a similar approach from the TSRL paper (Cheng et al., 2023) by randomly
sub-sampling trajectories to construct the small dataset for training.

B ADDITIONAL RESULTS

B.1 EVALUATION ON THE FULL DATASETS

We also evaluate the performance of TELS on the original full datasets of D4RL tasks, the results are
presented in Table 7. Our proposed method achieves comparable or better performance as compared
to existing offline RL methods. Moreover, we notice that with larger data size and broader state-action
space coverage, the strong T-symmetry regularization in the TS-IDM can be properly relaxed, as
sufficient data samples can be used to learn the model reasonably well. Therefore, we can trade off
some regularization to promote model expressiveness (i.e., lower model learning loss). Specifically,
for Antmaze tasks with the full dataset, we set the regularization hyperparameter 5 = 0.01 to train
the TS-IDM. We also provide additional ablation experiments on the influence of the hyperparameter
£ in the following section.
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Figure 3: The learning curves for training TS-IDM on 10k dataset with different 8 hyperparameter.

Table 8: Performance of TELS on 10k D4RL MuJoCo datasets when using TS-IDM with different 3 hyperpa-
rameters.

| B=10 B=1 B=0.1
Hopper-m \ 773 +£54 77.3 +10.7 61.4+5.6
Hopper-mr \ 153 £ 6.6 432 + 3.5 19.7 £3.4
Hopper-me \ 37.6 £17.9 100.9 + 6.8 64.7 £33
\

Halfcheetah-m 329+23 40.8 £ 0.6 412+ 1.1
Halfcheetah-mr | 8.6 + 1.8 332+ 1.0 34.0 £ 2.2
Halfcheetah-me ‘ 75+£22 40.7 +1.2 395 £2.1
Walker2d-m | 372+79 62.4+53 54.6 £ 8.2
Walker2d-mr | 17.1£2.9 54.8 + 6.0 392+ 8.6

| 204+104 874+133 447498

Walker2d-me

B.2 ADDITIONAL ABLATION EXPERIMENTS

Impact of T-symmetry regularization on TS-IDM. To investigate the impact of T-symmetry
regularization strength controlled by the hyperparameter 3 in Eq. (9), we conduct additional ablation
experiments by varying the value of [ to assess how T-symmetry regularization influences the
representation learning quality and downstream policy’s performance. Specifically, we train TS-
IDM on reduced-size 10k D4RL MuJoCo datasets with 5 = {0.1, 1, 10}, representing different T-
symmetry regularization strengths. The learning curves of TS-IDM’s overall learning loss Lrs—rpas
in Eq. (9) are presented in Figure 3, and the final policy learning performances with different TS-IDM
models are presented in Table 8.

From Figure 3, we can observe that choosing a proper 3 value impacts the learning quality of TS-IDM.
A large 3 (e.g., 8 = 10) could impose overly strong regularization and hurt model expressiveness,
which is reflected in the high learning loss at convergence. However, when the regularization strength
is lowered, maintaining a proper scale of 3 is important to ensure both the quality and generalizability
of the learned representations. As we can see in Figure 3, in the Hopper and Walker2d tasks, choosing
[ = 1 provides the lowest L7s_;pas loss; whereas in the Halfcheetah task, L7s_rpas is the lowest
when choosing 5 = 0.1. If we check the final policy’s performance under different TS-IDMs in
Table 8, we can see a clear correlation with what we have observed in Figure 3. TELS achieves the
highest score on Hopper and Walker2d tasks when 3 = 1, but the scores are higher for Halfcheetah
tasks when 8 = 0.1. This matches exactly with the learning performance of TS-IDM under different
[ values. The strong correlation between TS-IDM’s learning performance and the final policy’s
performance of TELS shows that we can select the best 3 hyperparameter values by simply looking
at TS-IDM’s training loss, and using the one that provides the lowest training loss. This avoids the
need to perform potentially unsafe online policy evaluations or unstable offline policy evaluations,
which is favorable in real-world deployments.

Additional ablations on the quality of learned representations. To evaluate the quality of
the representations learned by TS-IDM, we conduct comparison experiments by integrating the
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Figure 4: The performance of TELS with different representation models on 10k datasets, error bars indicate
min and max normalized scores over 5 random seeds.
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Figure 5: The performance of TELS with various weight 7, error bars indicate min and max normalized scores
over 5 random seeds.

downstream policy optimization process of TELS with various representation models, includ-
ing an autoencoder(“AE-rep”), a variational autoencoder(‘““VAE-rep”), a contrastive representation
model(“Contras-rep”), and our proposed TS-IDM. The results demonstrate that with only 10k avali-
able samples, the TS-IDM representation achieves the best performance than other models. Notablely,
“VAE-rep” derives the lowest performance, as it struggles to learn meaningful latent representations
while simultaneously satisfying the prior distribution constraint in the extremely small dataset. While
the “AE-rep” and “Contras-rep” models can achieve some performance, they fail to construct a
generalizable and reliable latent space. In contrast, TS-IDM effectively provides reasonable and
generalizable latent space, significantly enhancing performance in the reduced dataset setting.

Ablations on hyperparameter 7 on guide-policy optimization. We also evaluated the performance
of TELS with various n = {1,5,10} under 10k dataset setting to examine its sensitivity on the
state-level BC constraint in Eq. (11). This term regularizes the next state output by the guide-policy
to align with the ground truth next state s’. We present the comparison results in Figure 5. The
results show that TELS is generally robust with different 7 values, but one needs to choose a proper
scale of 7 to ensure the best possible performance. When 1 = 1, the guide-policy 7, may produce
unrealistic next latent states, resulting in potential performance degradation. Conversely, a large 7
ensures the output state remains close to the dataset, but this can be over-conservative, limiting the
generalizability of the learned guide-policy.

Ablations on the impact of T-symmetry consistency regularization on guide-policy optimization.
We also conduct ablation experiments in Table 9 to validate the effectiveness of the T-symmetry con-
sistency regularizer term £p_gym, (25, Rino (25, T4(25))) in Eq. (11) and (12). Specifically, we conduct
ablation experiments on the reduced datasets of “Hopper-medium-v2”, “Hopper-medium-expert-v2”,
“Walker2d-medium-v2”, and “Walker2d-medium-expert-v2” tasks, each with 10k samples. The
results demonstrate that incorporating the T-symmetry inconsistency term significantly enhances
performance while reducing variance, indicating the importance and effectiveness of T-symmetry
consistency regularization in small-sample offline policy learning.

B.3 GENERALIZABILITY EVALUATION

To further investigate the generalizability of TELS, we construct a more challenging scenario by
removing a portion of the critical data points from the “Antmaze-medium-diverse-v2” dataset, as
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Table 9: Ablation experiments on the impact of ¢7-syn, in TELS.

Hopper-m Hopper-m-e Walker2d-m Walker2d-m-e

W/0 r_sym 62.1 £15.1 73.4 +£23.7 54.6 £8.2 68.7 +18.8
with lp_gyrm, 773 £10.7 (124%) 1009 = 6.8 (151%) 62.4 =53 (115%) 87.4 = 13.3 (126%)

illustrated in the Figure 6 (a). Specifically, we remove a proportion of data points in several critical
regions along the paths from the start point to the goal-state location within the 0.1M dataset. We
then train IQL, DOGE, POR and TELS on the remaining datasets to evaluate their performance under
this extremely challenging scenario. We present the evaluation details in Figure 6.

The results demonstrate that all other baseline methods fail badly from 70% of data samples being
deleted; only our method can still maintain reasonable performance. Moreover, in the 100% deletion
ratio case, we can observe that only very sparse data samples are distributed in the boundaries of these
critical regions, but with completely no information in the interior. However, our proposed TELS
can still achieve reasonable performance even in this extremely challenging setting, by fully utilizing
the limited information from the sparse data samples located in the boundaries of the data removal
regions. These further demonstrate the strong generalization capability of our proposed method.

C LEARNING CURVES

The following are the learning curves of TS-IDM and the T-symmetry regularized guide-policy
optimization in TELS on the reduced-size D4RL MuJoCo and Antmaze datasets. We evaluate the
policy with 10 episodes over 5 random seeds.
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Figure 7: Learning curves of the overall and each individual loss terms in TS-IDM for Hopper tasks.
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Figure 8: Learning curves of the overall and each individual loss terms in TS-IDM for Halfcheetah tasks.
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Figure 9: Learning curves of the overall and each individual loss terms in TS-IDM for Walker2d tasks.
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Figure 10: Learning curves of policy optimization in TELS for D4ARL MuJoCo and Antmaze tasks with reduced-
size datasets. We evaluate the policy within 10 episodes over 5 random seeds.
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