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ABSTRACT

We introduce a novel, drop-in modification to Monte Carlo Tree Search’s (MCTS)
decision policy that we call AUPO. Comparisons based on a range of IPPC bench-
mark problems show that AUPO clearly outperforms MCTS. AUPO is an auto-
matic action abstraction algorithm that solely relies on reward distribution statis-
tics acquired during the MCTS. Thus, unlike other automatic abstraction algo-
rithms, AUPO requires neither access to transition probabilities nor does AUPO
require a directed acyclic search graph to build its abstraction, allowing AUPO
to detect symmetric actions that state-of-the-art frameworks like ASAP struggle
with when the resulting symmetric states are far apart in state space. Furthermore,
as AUPO only affects the decision policy, it is not mutually exclusive with other
abstraction techniques that only affect the tree search.

1 INTRODUCTION

A plethora of important problems can be viewed as sequential decision-making tasks such as
autonomous driving (Liu et al., 2021), energy grid optimization (Sogabe et al., 2018), financial
portfolio management (Birge, 2007), or playing video games (Silver et al., 2016). Though
arguably state-of-the-art on such decision-making tasks is achieved using machine learning (ML) as
demonstrated by DeepMind with their AlphaGo agent for Go (Silver et al., 2016) or OpenAI Five
for Dota 2 (Berner et al., 2019), there is still a demand for general domain-knowledge independent,
on-the-go-applicable planning methods, properties which ML-based approaches usually lack but
which are satisfied by Monte Carlo Tree Search (Browne et al., 2012) (MCTS), the method of
interest for this paper. For example, Game Studios rarely implement ML agents as they have to
be costly retrained whenever the game and its rules and updated. Though not within the scope of
this paper, improvements to MCTS might also potentially translate to ML-based methods that use
MCTS as their underlying search.

One family of approaches to improve the performance of MCTS is using abstractions that
usually group similarly behaving nodes or actions of the search tree. State-of-the-art abstraction tree
searches such as OGA-UCT (Anand et al., 2016) all rely on the reward function being deterministic,
having full access to the transition probability of any sampled state-action pair, and on the search
graph being a directed acyclic graph. While these methods could in principle still be applied if
the first two conditions aren’t met (i.e. by, approximating the reward and transition probabilities),
they fundamentally rely on doing search on a DAG, which requires being able to check state
equalities which is not always guaranteed (e.g., in memory-constrained settings where states may
only be represented as action, stochastic-outcome sequences, in partially observable domains, in
continuous-state settings, or in blackbox simulation settings). Until now, no domain-independent,
non-learning-based MCTS abstraction algorithms for discrete, fully-observable settings exist that
have no additional constraints than MCTS, exist. This is a gap that this paper closes.
Concretely, we introduce Abstracted Until Proven Otherwise (AUPO), the first MCTS-based
abstraction algorithm that can significantly outperform MCTS in a discrete, fully-observable,
non-learning-based setting whilst requiring neither access to transition probabilities nor a directed
acyclic search graph, nor a deterministic reward setting. AUPO only affects the decision policy and
can thus even be combined and enhanced with other abstraction algorithms during the tree policy.
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Furthermore, in practice, AUPO can detect symmetric actions that the ASAP (Anand et al., 2015)
framework cannot when the resulting symmetric states are far apart in state space, as ASAP needs
the search graph to converge. As only the decision policy is affected, AUPO’s runtime overhead
vanishes with an increase in the iteration count (see Tab. 3).

The key idea of AUPO is to consider all actions at the root node initially as equivalent, only
separating them if the layerwise reward distributions, which were tracked during the MCTS search
phase, differ significantly. To our knowledge, AUPO is the first abstraction algorithm to build
abstractions based solely on reward distribution statistics.

The paper is structured as follows. First, in Section 2, we give an overview of domain
knowledge independent abstraction tree searches. Next, in Section 3 we formalize our problem
setting, and lay the theoretical groundwork for understanding AUPO. This is followed by Section
4 where we formalize AUPO and Section 5 where we experimentally verify AUPO and discuss the
experimental results. Lastly, in Section 6 we summarise our findings and show avenues for future
work.

2 RELATED WORK

The literature on abstraction-using planners is vast and ranges from abstractions for strategy games
(Moraes & Lelis, 2018; Xu et al., 2023), card games such as Poker (Billings et al., 2003) to board
games such as Go (Childs et al., 2008) or even hospital scheduling planners (Friha et al., 1997).
Aside from such domain-specific abstractions, general abstraction methods are developed for con-
tinuous and/or partially observable domains (Hoerger et al., 2024) or learning-based abstractions
such as learning and planning on abstract models (Ozair et al., 2021; Kwak et al., 2024; Chitnis
et al., 2020), or building abstractions that rely on learned functions (e.g. a value function) (Fu et al.,
2023). There are, however, only a handful of abstraction algorithms that are going to present next,
that have the same scope as AUPO, which are non-learning-based, domain-independent action or
state abstraction methods, for a discrete, fully-observable setting.

State abstractions: Jiang et al. (2014) were the first to propose a technique to automatically detect
state abstractions in parallel to running a tree search. In regular intervals, they pause MCTS and
group states within a layer when each action is pairwise approximately equivalent in the sense that
their immediate rewards are similar and their transition probabilities to the node groups of the previ-
ous layer also lie within a threshold. To be able to detect any abstractions at all, they optimistically
group all partially explored nodes within a layer and use a directed acyclic graph (DAG), allowing
different state-action pairs to have the same successors, which is the basis for the abstraction buildup.
Though the authors did not name this technique themselves, others refer to it as AS-UCT (Anand
et al., 2015). The computed abstraction is only used in the tree policy by improving the UCB value
where instead of an action’s true visits and values, one instead inserts the sum of visits and values
of all corresponding actions of nodes in the same abstract node.

AS-UCT can be improved by using different grouping conditions that allow for the detection of more
symmetries, for example, by defining two states to be equivalent if their actions can be mapped to
each other. This condition was first formulated by Ravindran & Barto (2004) and experimentally
tested by Anand et al. (2015), who called this technique ASAM-UCT.

State and action space abstractions: One could detect even more symmetries by grouping states
if, for each action in a node, there is at least one equivalent action in the other node and vice versa.
Furthermore, one can abstract nodes and actions independently. Though they are primarily state
abstractions, one can also implicitly view AS- and ASAM-UCT as action abstractions, however,
two actions can only ever be abstracted if their parents are in the same abstract node. These ideas
are combined in ASAP-UCT, which was also proposed by Anand et al. (2015). The successor of
ASAP-UCT is called OGA-UCT (Anand et al., 2016) which improves the runtime and accuracy
of ASAP-UCT by recomputing the abstraction only for frequently visited nodes thus ensuring the
information contained in the abstraction does not lack behind the current search tree.

While AS-UCT builds the abstractions on an empirical model, ASAP-, ASAM-, and OGA-
UCT rely on full knowledge of the problem’s transition function which is not required by AUPO.
While these methods apply the abstraction throughout the entire tree, AUPO only affects the root
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node’s actions during the decision policy. Hence, the usage of AUPO does not exclude the usage
of OGA-UCT for example. Since both ASAM-UCT and AS-UCT are state abstractions they can
only ever detect the equivalence of two sibling actions, a weakness that AUPO does not have.
Additionally, all of the above-mentioned abstraction techniques require a DAG for search which
could be impossible for a setting where either saving states or comparing them is infeasible or
simply not possible. AUPO does not have this requirement.

Refining abstractions: All of the above-mentioned techniques can be thought of as pessimistic in
that they only abstract actions or states when precise conditions are met. However, in environments
where equivalences are the norm and not the exception, optimistic approaches can thrive. For ex-
ample, PARSS by Hostetler et al. (2015) initially groups all successors of each state-action pair.
As the search progresses, this coarse abstraction is refined by repeatedly splitting abstract nodes in
half. Like PARSS, AUPO can also be viewed as a refining and optimistic abstraction algorithm, but
whereas PARSS randomly refines its abstractions when it does not have access to additional state
information, AUPO does so using statistical evidence. The method of fully abandoning an abstrac-
tion mid-search can also be seen as refining and has been coined Elastic MCTS by Xu et al. (2023).
Though not fully domain-independent, another refining approach is given by Sokota et al. (2021),
who group states based on a domain-specific distance function, and the maximal grouping distance
shrinks as the search progresses.

3 FOUNDATIONS

We use finite Markov Decision Processes (MDP) (Sutton & Barto, 2018) as the model for sequential,
perfect-information decision-making tasks. We use ∆(X) to denote the probability simplex of a
finite, non-empty set X .

Definition: An MDP is a 6-tuple (S, µ0,A,P, R, T ) where the components are as follows:

• S ̸= ∅ is the finite set of states, T ⊆ S is the (possibly empty) set of terminal states, and
µ0 ∈ ∆(S) is the probability distribution for the initial state.

• A : S 7→ A maps each state s to the available actions ∅ ≠ A(s) ⊆ A at state s where
|A| < ∞.

• P : S × A 7→ ∆(S) is the stochastic transition function where we use P(s′| s, a) to denote
the probability of transitioning from s ∈ S to s′ ∈ S after taking action a ∈ A(s) in s.

• R : S×A 7→ R is the reward function that maps to the set of real-valued random variables.

Starting in s0 ∼ µ0, an MDP progresses from state st to st+1 by first sampling an action at ∼ π(st)
and then sampling st+1 ∼ P(·|st, at) where π is any agent for M . An agent π : S 7→ ∆(A) for
an MDP M is a mapping from states to action distributions with π(s)(a) = 0 for any a ̸∈ A(s).
Crucially, an agent’s output depends only on a single state. At each transition M samples the reward
rt ∼ R(st, at).

In this paper, we consider only the finite horizon setting where the game ends after at most h ∈ N
steps or earlier when a terminal state is reached. We call h the horizon and any state-action-reward
sequence (s0, a0, r0), . . . , (sn, an, rn), sn+1 that can be reached a trajectory. If additionally
n+ 1 = h or sn+1 ∈ T we call this trajectory an episode.

The goal of any agent is to maximize its expected return. The return of an episode
τ = (s0, a0, r0), . . . , (sn, an, rn), sn+1 is defined as the (possibly discounted) sum of re-
wards, i.e. R(τ) :=

∑n
i=0 ri · γi where 0 < γ ≤ 1 is the discount factor. For any given state s,

action a ∈ A(s), and maximum remaining steps k ≤ h we call Q∗(s, a, k) the Q-value of (s, a, k)
and V ∗(s, k) the state value of s (given k remaining steps) which are defined as

Q∗(s, a, k) := max
π

Eτ∼τ(π,s,a,k)[R(τ)], (1)

V ∗(s, k) := max
a∈A(s)

Q∗(s, a, k) (2)

where τ(π, s, a, k) denotes the trajectory distribution of an agent π induced by starting at state s,
directly applying a and then playing according to π for at most k − 1 steps or until a terminal state
is reached. We write Q∗(s, a) := Q∗(s, a, h) and V ∗(s) := V ∗(s, h) and V ∗ := Es0∼µ0 [V

∗(s0)].
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Our AUPO method will heavily rely on and be compared to MCTS (for a detailed description, see
Section A.9). The MCTS version we employ here, uses a greedy decision policy as well as the UCB
tree policy.

4 METHOD

The benefit of finding abstractions to the decision policy: One component of MCTS is its decision
policy which decides which action to take given the previously obtained search tree statistics. A
common decision policy and the one we employ here is the greedy strategy where one picks the root
node action with the highest Q-value (sum of all returns divided by visits).

The Q-value of each (root node) action-visits pair can be viewed as a real-valued random variable.
Furthermore, these random variables are independent iff their corresponding actions are different.
Let us assume that there are n ∈ N root actions in total. We denote the respective Q-value random
variables by Q1, . . . , Qn. For simplicity, let us assume that each root action has the same number of
visits and that the optimal action is the same as arg max

1≤a≤n
E[Qa].

Furthermore, let us assume that E[Q1] = · · · = E[Qk], k < n. Though consequently the ac-
tions a1, . . . , ak are value-equivalent they suffer from an overestimation bias in the decision pol-
icy that worsens exponentially with increasing k. The decision policy is invariant under replacing
Q1, . . . , Qk by the random variable Qm := max(Q1, . . . , Qk). Trivially, E[Qm] ≥ E[Q1] and more
concretely, it holds that for any constant c ∈ R

P(Qm ≥ c) = 1− P(Qm < c) = 1−
k∏

i=1

P(Qi < c). (3)

If we managed to detect that E[Q1] = · · · = E[Qk] and abstract them into a single random variable
Q̄ := Q1+···+Qk

k , then not only can the previously mentioned overestimation bias be fully mitigated
but we can even decrease the variance since

Var(Q̄) =
1

k2

k∑
i=1

Var(Qi). (4)

Finding abstractions by distribution comparisons: The main idea of AUPO is to find and utilize
action abstractions at the root node during the decision policy by comparing the reward distributions
at depths 1, . . . , D of the game tree. Initially, AUPO assumes all actions to be equivalent, however, if
the reward distributions of two actions differ significantly at any depth, the two actions are separated.

Building the abstraction Let us assume we are in a state s ∈ S with actions
a1, . . . , an. After running standard MCTS for m iterations, we have sampled m
trajectories where we denote the trajectories that started with action aj by τi,j =
(aw1

, r1, s1), (aw2
, r2, s2), . . . , (awDi,j

, rDi,j
, (sDi,j

)), aw1
= aj , 1 ≤ i ≤ mj ,m1 + · · ·+mn =

m. Consider the reward sequence Rd,j obtained at depth d after playing action aj at the root node
i.e.

((Rd,j)i)1≤i≤mj
:= rd with (awd

, rd, sd) = (τi,j)d (5)
where we define rd := 0 in case Di,j < d < D.

Though this is a heuristic assumption, we assume that all Rd,j are samples from a stationary distri-
bution Rd,i (this assumption would only hold if we performed a pure Monte Carlo search). Next, we
compute the empirical mean and standard deviation for all Rd,j , d ≤ D along with their confidence
intervals for a fixed confidence level q ∈ [0, 1]. Any pair of actions aj , ak has 2 · D reward distri-
butions associated with them which are R1,j , . . . ,RD,j for aj and R1,k, . . . ,RD,k for ak. AUPO
then groups aj , ak if and only if all confidence intervals (both the mean and std intervals) up to
depth d ≤ D of the pairs (Rd,j ,Rd,i) overlap. If any confidence interval pair does not overlap,
then aj , ak are separated. Note that this induces a soft-abstraction where it is possible that for three
actions (a, b, c), a is grouped with b, b is grouped with c but a is not grouped with c.

Optionally, to ensure that in the limit, AUPO does not group non-value-equivalent actions, we may
additionally separate two actions, if the distribution of their returns differs significantly (in the
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sense that their mean and standard deviation confidence intervals do not overlap). The return of a
trajectory is the (possibly discounted) sum of all its rewards. We call this option the return filter
RF ∈ {0, 1}.

In theory, it would also be possible to do this distribution separation using either distance
measures for probability distributions, such as the Wasserstein distance, or use statistical tests for
determining whether two means or two standard deviations differ significantly. However, we found
the mean and standard deviation to be sufficient descriptors for the underlying distributions whose
computation only requires keeping track of the total number of samples, the sample sum, and the
sum of squares, instead of saving every single reward at every depth. Furthermore, the confidence
intervals only have to be computed once whereas we would have to compute test statistics and
distribution distances for every single action pair, which can become a significant runtime overhead
for large action spaces.

Using the abstraction: We use the abstractions during the decision policy only. AUPO
transforms the decision policy into a two-step process. In the first step, we assign each action
aj its abstract Q-value which is the sum of the returns divided by the sum of the visits of all
actions aj is grouped with. We select the action a∗ that maximizes the abstract Q-value. Ties are
broken randomly. In the second step, we select the action inside the abstraction of a∗ with the
highest unabstracted/ground Q-value. This decision policy makes AUPO a generalization of the
greedy decision policy as for both q ∈ {0, 1} AUPO’s decision policy degenerates to the greedy
policy. While for q = 0 step two becomes redundant, for q = 1 step one becomes redundant. We
summarize AUPO in the Appendix in Alg. 1.

Theoretical guarantees: The key innovation that makes AUPO work in practice (this will be shown
empirically later) is that one does not only compare a single pair of distributions to differentiate a
single action pair but rather one compares a number of distributions induced by that action pair.
Using some simplifying assumptions, one can show that with an increase in D, the order of the
number of samples required to differentiate two non-equivalent actions changes. More precisely,
assume that AUPO is run on an MDP with 2D + 1 states. The root state s0 has two deterministic
actions adown and aup that transition to sdown

1 and sup
1 respectively which themselves have only a

single deterministic action that transitions to sdown
i+1 or sup

i+1 when sdown
i or sup

i was the previous state.
The rewards obtained at the two chains are Gaussian with means µdown = (µdown

1 , . . . , µdown
D ) and

µup = (µup
1 , . . . , µup

D) and standard deviations σdown = (σdown
1 , . . . , σdown

D ) and σup = (σup
1 , . . . , σup

D ).
Furthermore, it is assumed that AUPO has access to the standard deviations when building the
confidence intervals (which otherwise would be estimated by the empirical standard deviation).
Now assume that both chains have been played n times. The following statement (which is proven
in the appendix Section A.1) can be made about AUPO’s abstraction probability when neither the
return-, nor std filter is used, the distribution tracking depth is equal to D, and confidence level
q ∈ (0, 1) is chosen:

∀ε > 0 : P[AUPO abstracts adown and aup] ∈ O(f(n)), f(n) = e
−n·(ε+

D∑
k=1

wi)
(6)

where for 1 ≤ i ≤ D: wi =

{
(µdown

i −µup
i )2

2(σdown
i +σup

i )2
, |µdown

i − µup
i | ≥ z∗

√
n
(σdown

i + σup
i )

1, otherwise
, and z∗ is the

critical value of the standard normal distribution for q (e.g. z∗ ≈ 1.96 for q = 0.95).

AUPO example: Next, we illustrate on an instance of the IPPC problem SysAdmin how
AUPO detects abstractions. A detailed explanation of this problem is given in the experiment
Appendix A.7. Assume we are in a state where all computers, except one outer computer, are
online. This is visualized in Fig. 1a. This state features exactly four value-equivalent action types.
Idling, rebooting the offline computer (machine 3), rebooting (even though it is still online) the hub
computer (machine 0), or rebooting any outer running computer (machines 1-2,5-9). Given enough
trajectory samples, AUPO separates and subsequently detects these equivalences as follows.

Idle action: All actions except idling have the same immediate reward, the reboot cost. Therefore,
the idle action is easily separated by considering only the mean of the 1-step reward distribution.
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Rebooting the offline computer: This action can be separated from the others by the 2-step reward
distribution, as it takes one step for the computer to be rebooted and then another step to receive the
reward from the additional running computer. Though a little noisy, the 2-step reward will be on
average 1 higher than that of the other actions. We quantitatively verified this in the Appendix in
Tab. 2.

Rebooting the hub computer: This action can be separated from rebooting any of the outer running
computers by the standard deviation of the 3-step reward. If we reboot the hub computer, we safe-
guard it from randomly crashing in the next step, which prevents the catastrophe where numerous
other computers fail in the next step as they are connected to the then-broken hub computer. This
scenario happens only rarely but when it does happen it is catastrophic, thus causing the 3-step re-
ward of not rebooting the hub to have a relatively high variance compared to rebooting and thus
protecting it. We quantitatively verified this in the Appendix in Tab. 1.

Rebooting an outer running computer: Since they are symmetric and thus have identical reward
distributions at all downstream steps, AUPO optimistically assumes that are equivalent and thus
abstract into a single action.

Relation to other abstraction frameworks In practice, AUPO is able to detect abstractions
that ASAP could not because the latter requires the state graph to converge on states from which
the abstraction building can be bootstrapped. Hence it is practically impossible for ASAP to detect
equivalences that arise due to symmetry. For example, while it would be no problem for AUPO to
detect that saving any of the four corner cells is equivalent in the Game of Life state visualized in
Fig. 1b, ASAP would not be able to detect this with feasible computational resources. Game of Life
is defined in the Appendix A.7.

0 1

2
34

5

6

7 8
9

3

(a) Visualization of a SysAdmin state
where machine 3 has gone offline but
all other machines are running.

(b) A 5×5 Game of Life configuration with only
the four corner cells alive.

Figure 1: Visualization of two environments considered in this paper.

Furthermore, ASAP struggles with a high stochastic branching factor. While AUPO is able to detect
that rebooting any of the outer machines from the SysAdmin example in Section 4 is equivalent,
ASAP is not able to detect these equivalences if two equivalent actions have not sampled the exact
same set of successor from which there are 33554432 = 225.

5 EXPERIMENTS

In this section, we will present the setup and results for the comparison of AUPO with MCTS
showing that AUPO is the first and currently only tree-search abstraction algorithm that does
neither require access to the transition probabilities, nor the model having determinstic rewards, nor
requires a directed acyclic search graph but can outperform MCTS.

Problem models: The problem models that we tested AUPO on are either problems from
the International Conference on Probabilistic Planning (IPPC) (Grzes et al., 2014) or appear
throughout the literature. For the readers not familiar with these problem models, we give a
high-level overview as well as a brief description of the environments’ trivial value equivalences
(which does not mean there aren’t any other additional approximate equivalences) in the appendix
in Section A.7. For details and the concrete instances, i.e. model parameter choices, we refer to
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our publicly available implementation (Authors, 2025), which is the translation into C++ of the
Relational Dynamic Influence Diagram (RDDL) (Sanner, 2011) descriptions of these environments
found at the RDDL repository of Taitler et al. (2022). These environments were deliberately chosen
as they appear throughout the abstraction literature (Anand et al., 2015; 2016; Hostetler et al.,
2015; Yoon et al., 2008; Jiang et al., 2014) or have been used for planning competitions (Grzes
et al., 2014), feature value-equivalent sibling actions, dense rewards, two theoretically necessary
requirements for AUPO to yield any performance increase in the first place.

Experiment setup and reproducibility: For every experiment, we used a horizon of 50
episode steps. Since we are in the finite-horizon setting, we used a discount of γ = 1. We ran every
experiment for at least 2000 episodes, and whenever we denote the mean return of this experiment
we additionally provide a 99% confidence interval. We denote the confidence interval of any
quantity by its mean and the half of the interval size, e.g. we would denote a return confidence
interval (1, 3) by 2 ± 1. For both MCTS and AUPO, we performed random playouts until the
episode terminates. Additionally, as the problem models vary in their reward scale, we used a
dynamic exploration factor that is given by C · σ where σ is the empirical standard deviation of all
Q values of the current search tree and C ∈ R+ is a parameter. For reproducibility, we released our
implementation (Authors, 2025). Our code was compiled with g++ version 13.1.0 using the -O3
flag (i.e. aggressive optimization).

Parameter-optimized performances: First, we tested whether and in which environments AUPO
can increase the parameter-optimized performance over MCTS. To do this, we considered the best
AUPO performance when varying the parameters exploration constant C ∈ {0.5, 1, 2, 4, 8, 16},
distribution tracking depth D ∈ {1, 2, 3, 4}, using the return filter SF ∈ {0, 1}, using the return
filter RF ∈ {0, 1}, and varying the confidence level q ∈ {0.8, 0.9, 0.95, 0.99}. Furthermore, since
the standard UCB tree policy results in non-uniformly distributed visits, we also considered AUPO’s
performance when using a uniform root policy (denoted as U-AUPO) which has two main effects.
Firstly, each action, even those that UCB would not exploit, receive visits, thus shrinking their
confidence intervals, making them easier to separate from other actions. And secondly, we reduce
the risk of separating reward distribution equivalent actions because in MCTS the distributions shift
with an increasing visit count as MCTS starts to exploit.

We compare AUPO and U-AUPO to the performance of MCTS and MCTS with a uniform root pol-
icy U-MCTS, as well as RANDOM-ABS that is the same as AUPO except that for each action pair
they are randomly abstracted at the decision policy with the probability prandom ∈ {0.1, 0.2, . . . , 0.9}.
Hence, RANDOM-ABS is equivalent to MCTS in the cases prandom ∈ {0, 1}. RANDOM-ABS ver-
ifies that the abstractions found by AUPO outperform randomly formed abstractions. Do reduce the
amount of visuals; any RANDOM-ABS data points are simply the maximum of both RANDOM-
ABS with a uniform root policy and standard root policy. The parameter-optimized performances in
dependence of the iteration number are visualized in Fig. 2. The following key observations can be
made:

1) AUPO can gain a clear performance advantage over MCTS (and RANDOM-ABS) in 11 out of
the 14 here-considered environments, in at least one iteration budget. In the environments, Aca-
demic Advising, Game of Life, Multi-armed bandit, Push Your Luck, Cooperative Recon, SysAd-
min, and Traffic, AUPO maintains a clear performance edge for the majority of iteration budgets.

2) Expectedly, U-MCTS mostly performs worse than MCTS, however, the performance improve-
ments between U-MCTS and U-AUPO is mostly significantly greater than the gap between MCTS
and AUPO, showing the AUPO as suggested benefits from uniformly distributed visits. Notably,
there is an environment, namely Cooperative Recon in which MCTS and U-MCTS perform evenly,
where however, U-AUPO clearly outperforms AUPO. Also, in Saving both U-MCTS and U-AUPO
outperform their non-uniform counterparts. Hence, using a uniform root policy can be a tool to
improve the peak performance.
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(a) Academic Advising (b) Earth Observation (c) Game of Life

(d) Multi-armed bandit (e) Manufacturer (f) Push Your Luck

(g) Cooperative Recon (h) SysAdmin (i) Saving

(j) Skill Teaching (k) Sailing Wind (l) Tamarisk

(m) Traffic (n) Wildfire

Figure 2: The performance graphs of in dependence of the MCTS iteration count of the parame-
ter optimized versions of AUPO, MCTS, and RANDOM-ABS. The prefix U- denotes AUPO and
MCTS using a uniform root policy.

Generalization capabilities: Next, we test AUPO’s generalization capabilities. For this, we com-
puted the pairings and relative improvement scores for all AUPO, U-AUPO, MCTS, U-MCTS,
and RANDOM-ABS parameter combinations. These scores are Borda-like rankings of individ-
ual parameter-combinations and both lie in the interval [−1, 1] (1 is the best value and -1 the worst)
and they are formalized in the Appendix Section A.10. The results for all iteration budgets and
environments combined are visualized in Fig. 3 and show that the best performances with respect to
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both scores with large margins, are reached with AUPO. These results are qualitatively identical for
each iteration budget which is presented in the Appendix Section A.11.

(a) Pairings score (b) Relative improvement score

Figure 3: The pairings and relative improvement scores across all environments and iteration budgets
for different AUPO, U-AUPO (parameter format (C, q,D,RF,SF)), MCTS, U-MCTS (parameter
format (C)), and RANDOM-ABS (parameter format (C, prandom)) agents. The bar charts show the
top score reached by each agent type as well as the parameter combination to reach that score. In
the case of RANDOM-ABS the score was reached with the standard root policy.

Ablations: Lastly, we are going to study the impact of the individual parameters. Instead of display-
ing the best-performing parameter set, we fix the parameter in question and max over the remaining
parameters. With only a few exception such as Multi-armed bandit, the confidence level does only
have a significant impact for low iteration counts if it has any impact all. In the low iteration count
regime, lower confidences generally outperform higher confidence levels. Depending on the envi-
ronment, the impact of the distribution tracking depth can be significant to non-existent. In cases
where it does matter, high depths are always preferred with the only exception being Push Your
Luck. Filters can be extremely beneficial to some environments, such as Multi-armed Bandit or
Wildfire Whilst not causing any harm to the environment where it has little impact. We visualize
the concrete performance values for this ablation in the Appendix Fig. 5 which shows the results
when varying the confidence level, in Fig. 4, which shows the results when varying the distribution
tracking depth, and in Fig. 6 that shows the results when varying either the std filter or the return
filter.

6 LIMITATIONS AND FUTURE WORK

In this paper, we introduced a novel action abstraction algorithm that we call AUPO which only
affects the decision policy of MCTS. We could experimentally show that AUPO outperforms MCTS
in a wide range of environments that contain states with value-equivalent sibling actions. Though
AUPO introduces four new parameters, their choice mostly has only a minor impact on performance.

First and foremost, for AUPO to achieve any performance gain, the environment must con-
tain state-action pairs with the same parent that have similar Q∗ values, i.e. there need to be
abstractions to be detected in the first place. Another key limitation of AUPO is that it is reliant
on dense-rewards. For example, in binary-outcome zero-sum two-player games AUPO would have
a hard time distinguishing actions, as only the return distribution can be used for differentiation.
How this limitation can be overcome, is left as future work. Another weakness of AUPO is that
it requires many visits for the distributions to be distinguishable; hence it cannot be used in low
iteration settings and therefore not during the tree policy. Therefore, another area for future work
is how to make AUPO much more sensitive to be able to deal with low iterations. Furthermore,
for future work, as mentioned in the introduction, it could also be of interest to combine AUPO
with other abstraction algorithms. For example, one may use state-of-the-art such as OGA-UCT
(Anand et al., 2016) during the search phase, replacing only the decision policy with AUPO. In its
current form, AUPO uses the same confidence level for each layer. However, it might be worth
investigating if additional performance can be achieved by making this parameter layer-dependent.
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7 REPRODUCIBILITY STATEMENT

In our experiment setup, we have a subsection called Reproducibility in which we provide a down-
load link to the full codebase used for this project as well as compilation details. The codebase
contains an elaborate README detailing the steps to reproduce the experiments.
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A APPENDIX

A.1 PROOF OF ABSTRACTION PROBABILITY THEOREM

In this section, Equation 6 from Section 4 is proven. Firstly, we will derive a general upper bound for
the probability of confidence intervals overlapping and then use this result in the context of AUPO’s
abstraction mechanism.

1) Let n ∈ N and X1, . . . , Xn, Y1, . . . , Yn be i.i.d. Gaussian random variables with respective means
and stds of µX ≥ µY and σX , σY . For any confidence level q ∈ [0, 1], the confidence interval for
µX (analogously µY ) is of the form

[X ± z∗√
n
] (7)

where z∗ ∈ R is the z-score for the given confidence level q and X = 1
n

n∑
k=1

Xi (Y is defined

analogously). The probability that the confidence intervals for µX and µY overlap is thus given by

P[|X − Y︸ ︷︷ ︸
Z:=

| ≤ z∗√
n
(σX + σY )︸ ︷︷ ︸

T :=

]. (8)

Since Z is Gaussian and the mean of Z is µZ := µX − µY and the std is σZ := σX+σY√
n

, and since
P[|Z| ≤ T ] = P[Z ≤ T ]− P[Z ≤ −T ] one obtains

P[|Z| ≤ T ] =
1

2

[
erf
(
T + µZ√

2σZ

)
+ erf

(
T − µZ√

2σZ

)]
(9)

using the identity Φ(x−µ
σ ) = 1

2 (1 + erf(x−µ

σ
√
2
)) that holds for any Gaussian with mean µ and std σ

where Φ is the CDF for the standard Gaussian distribution and erf is the Gauss error function. Next,
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using that erf is an odd function with range (−1, 1), yields

P[|Z| ≤ T =
1

2

[
−erfc

(
µZ + T√

2σZ

)
+ erfc

(
µZ − T√

2σZ

)]
≤ 1

2
erfc

(
µZ − T√

2σZ

)
with erfc := 1−erf.

(10)
Next, two cases are differentiated. If µZ − T < 0, we simply bound P[|Z| ≤ T ] by 1. In the other
case, µZ −T ≥ 0, one can use an upper bound derived by Giuseppe Abreu (Abreu, 2012) to further
estimate this expression in terms of the exponential function. Concretely this yields,

1

2
erfc

(
µZ − T√

2σZ

)
≤ 1

50
e−x2

+
1

2(x+ 1)
e−x2/2 ≤ e−x2/2, x =

µZ − T

σZ
, (11)

which is a function of the form

e−λ̃1+λ̃2
√
n−w·n, with w =

(µX − µY )
2

2(σX + σY )2
; λ̃1, λ̃2 ∈ R+. (12)

2) By definition, AUPO using no return or std filter with a distribution tracking depth D only ab-
stracts adown and aup iff their mean confidence intervals up to depth D all overlap. Since in this
two-chain MDP, all reward distributions are independent, the probability of all confidence intervals
overlapping, is given as the product of the individual ones overlapping, we can use the previously
obtained results about a single pair of confidence intervals to obtain the following for every ε > 0

P[AUPO abstracts adown and aup] ≤ e
−λ1+

√
n·λ2−n·

D∑
k=1

wi

∈ O(f(n)), λ1, λ2 ∈ R+, (13)

where f(n) = e
−n·(ε+

D∑
k=1

wi)
and for 1 ≤ i ≤ D:

wi =

{
(µdown

i −µup
i )2

2(σdown
i +σup

i )2
, |µdown

i − µup
i | ≥ z∗

√
n
(σdown

i + σup
i )

1, otherwise
(14)

.

This proves the original statement.
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A.2 AUPO PSEUDOCODE

Algorithm 1: AUPO
Parameters: q , D, filter std, filter return, mcts args
Input: state
// Run MCTS and collect reward distribution data

1 n = num actions(state) , R[d, j] = [] ∀d, j
2 for i = 1 . . . mcts iterations do
3 sample MCTS trajectory with rewards r1, . . . , rD∗ and first action aj
4 for d = 1 . . . D do
5 R[d, j].append(rd if d ≤ D∗ else 0)
6 end
7 R∗[j].append

(
r1 + · · ·+ rmin(D,D∗)

)
8 end
// Compute confidence intervals

9 for j = 1 . . . n do
10 for d = 1 . . . D do
11 mean interval[d, j] = mean conf interval(R[d, j], q)
12 std interval[d, j] =std conf interval(R[d, j], q)
13 end
14 return mean interval[j] =mean conf interval(R∗[j], q)
15 return std interval[j] =std conf interval(R∗[j], q)
16 end
// Compute abstractions

17 for i = 1 . . . n do
18 abstract visits = 0, abstract value = 0
19 abstraction[i] = {}
20 for j = 1 . . . n do
21 abstracted = true
22 for d = 1 . . . D do
23 if mean interval[d, j] ∩mean interval[d, i] == ∅ or filter std and

std interval[d, j] ∩ std interval[d, i] == ∅ then
24 abstracted = false
25 end
26 end
27 if filter return and (

return mean interval[d, j] ∩ return mean interval[d, i] == ∅ or filter std and
return std interval[d, j] ∩ return std interval[d, i] == ∅) then

28 abstracted = false
29 end
30 if abstracted then
31 abstract visits+ = action visits(j)
32 abstract value+ = action returns(j)
33 abstraction[i].insert(j)
34 end
35 abstract Q[i] = abstract value

abstract visits
36 end
37 end
// Action selection

38 abs action = arg max
i=1...n

abstract Q[i]

39 ground action = arg max
i∈abstraction[abs action]

Q[i]

40 return ground action;

15
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A.3 ABLATION: DISTRIBUTION TRACKING DEPTH D

(a) Academic Advising (b) Earth Observation (c) Game of Life

(d) Multi-armed bandit (e) Manufacturer (f) Push Your Luck

(g) Cooperative Recon (h) SysAdmin (i) Saving

(j) Skill Teaching (k) Sailing Wind (l) Tamarisk

(m) Traffic (n) Wildfire

Figure 4: The performance graphs of in dependence of the MCTS iteration count of the parameter
optimized versions of AUPO using different fixed values for the distribution tracking depth D.
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A.4 PERFORMANCES IN DEPENDENCE OF THE CONFIDENCE LEVEL q

(a) Academic Advising (b) Earth Observation (c) Game of Life

(d) Multi-armed bandit (e) Manufacturer (f) Push Your Luck

(g) Cooperative Recon (h) SysAdmin (i) Saving

(j) Skill Teaching (k) Sailing Wind (l) Tamarisk

(m) Traffic (n) Wildfire

Figure 5: The performance graphs of in dependence of the MCTS iteration count of the parameter
optimized versions of AUPO using different fixed values for the confidence q.
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A.5 PERFORMANCES WHEN USING DIFFERENT FILTER COMBINATIONS

(a) Academic Advising (b) Earth Observation (c) Game of Life

(d) Multi-armed bandit (e) Manufacturer (f) Push Your Luck

(g) Cooperative Recon (h) SysAdmin (i) Saving

(j) Skill Teaching (k) Sailing Wind (l) Tamarisk

(m) Traffic (n) Wildfire

Figure 6: The performance graphs of in dependence on the MCTS iteration count of the parameter
optimized versions of AUPO using different fixed filter settings. Both the return (RF) and std filter
(SF) are varied.
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A.6 REWARD DISTRIBUTION CONFIDENCE INTERVALS FOR SYSADMIN

Table 1: 3-step standard deviation 95% confidence intervals for the reward distribution after a dif-
ferent number of MCTS iterations on the SysAdmin state of Fig. 1a. Note that with higher iteration
counts, rebooting the hub can be separated from the remaining actions.

Iterations Hub (0) 1 2 3 4 5 6 7 8 9 Idle
1000 (0.94, 1.26) (0.88, 1.18) (1.20, 1.60) (1.15, 1.54) (1.06, 1.43) (0.83, 1.12) (0.87, 1.16) (0.92, 1.24) (0.99, 1.33) (1.14, 1.52) (1.02, 1.37)
2000 (0.85, 1.04) (1.06, 1.31) (1.13, 1.39) (1.01, 1.24) (1.13, 1.39) (1.45, 1.78) (0.94, 1.15) (1.11, 1.37) (1.33, 1.64) (1.20, 1.48) (1.19, 1.47)
3000 (0.85, 1.01) (1.21, 1.43) (1.05, 1.25) (1.15, 1.36) (1.13, 1.33) (1.25, 1.47) (0.99, 1.18) (1.03, 1.22) (1.19, 1.40) (1.20, 1.42) (1.22, 1.44)
4000 (0.85, 0.99) (1.21, 1.40) (1.16, 1.34) (1.07, 1.24) (1.14, 1.32) (1.18, 1.37) (1.07, 1.24) (1.10, 1.28) (1.10, 1.28) (1.17, 1.35) (1.16, 1.35)

Table 2: 2-step mean 95% confidence intervals for the reward distribution after different numbers of
MCTS iterations on the SysAdmin state of Fig. 1a. Note that even with very low iteration counts,
rebooting machine 3 can easily be separated from the other actions.

Iterations Hub (0) 1 2 3 4 5 6 7 8 9 Idle
250 (7.75, 8.20) (7.83, 8.32) (7.86, 8.26) (8.60, 9.30) (7.61, 8.22) (7.36, 8.07) (7.74, 8.30) (7.66, 8.18) (7.25, 8.00) (7.40, 8.22) (7.60, 8.32)
500 (7.88, 8.22) (7.74, 8.15) (7.57, 8.11) (8.69, 9.06) (7.63, 8.01) (7.59, 8.01) (7.62, 8.09) (7.58, 8.05) (7.74, 8.11) (7.77, 8.16) (7.48, 7.92)
750 (7.96, 8.25) (7.70, 8.05) (7.72, 8.07) (8.66, 9.00) (7.61, 7.97) (7.80, 8.12) (7.85, 8.17) (7.73, 8.06) (7.62, 8.03) (7.67, 8.03) (7.61, 8.00)
1000 (7.90, 8.19) (7.82, 8.10) (7.69, 8.01) (8.51, 8.83) (7.74, 8.02) (7.96, 8.22) (7.80, 8.07) (7.83, 8.13) (7.79, 8.08) (7.90, 8.19) (7.84, 8.15)

A.7 PROBLEM MODELS

In the following, we provide a brief description of each domain/environment that was used in this
paper. Some of these environments can be parametrized (e.g., choosing a concrete map size for
Sailing Wind). The concrete parameter settings can be found in the ExperimentConfigs folder in
our publicly available GitHub repository (Authors, 2025). In the following, for the reader’s conve-
nience, we re-introduced the relevant environment descriptions from the survey paper (Schmöcker
& Dockhorn, 2025) as well as added new ones for those not contained in the survey. For a detailed
description of these environments, we refer to our implementation.

Academic Advising: The Academic Advising domain was introduced by Guerin et al. (2012) and
modified for the IPPC 2014 (Grzes et al., 2014) (the version used here). The agent is a student
whose goal is to pass certain academic classes. Formally, the state is an element in {P,NP,NT}n
(representing for each course whether it has been passed, not been passed, or not taken), and the
agent’s action is to choose a course to take. The course outcome depends on the states of the
prerequisite courses. The episode terminates if all courses have been passed. The agent incurs costs
for taking and redoing courses. In the original IPPC version, the agent would also always receive
a negative reward as long as there is one mandatory course that has not been passed. We increased
the reward density, but let this negative reward be dependent on the number of missing mandatory
courses. Furthermore, we also added a reward for every course passed.

Aside from symmetries that arise from the course dependency graph, all actions where one retakes
a course that has already been passed are trivially equivalent.

Cooperative Recon: This domain models a robot tasked with discovering signs of life on a
foreign planet. The robot operates on a two-dimensional grid populated with various objects of
interest and a central base. When the robot reaches an object of interest, it can perform surveys to
detect the presence of water and, subsequently, life. The probability of detecting life increases if wa-
ter is first identified. If life is successfully detected, the robot can then photograph the object - this is
the only action that yields a reward. Each use of a detector carries a risk of failure, which may render
the detector unusable or reduce its reliability. Detectors can be repaired, but only at the base location.

Earth Observation: This problem, proposed by Hertle et al. (2014), models a satellite orbit-
ing Earth while performing photographic observations. Each state corresponds to a position on a
two-dimensional grid, where the satellite’s longitudinal location and the latitude at which its camera
is aimed are represented. Additionally, certain designated cells have associated weather levels
that influence observation quality. Weather conditions change stochastically at each time step,
independent of the agent’s actions. The agent can choose to idle, take a photograph of the current
target cell, or adjust the camera’s focus by incrementing or decrementing the y-position (latitude).
A reward is granted when a designated cell is photographed, with the reward magnitude depending
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on the prevailing weather in that cell.

Game of Life: The original game of life by John Conway (Gardner, 1970) is a cellular automaton
and was modified into a stochastic MDP as a test problem for the International Probabilistic
Planning Competition (IPPC) (Sanner & Yoon, 2011) by introducing noise to the deterministic state
transition, setting the current number of alive cells as the reward, and allowing the agent to choose
one cell per round that will survive to the next round with a high probability. States are elements in
{0, 1}n×n describing whether there is an alive cell at each cell on a grid. In the original problem,
one could not only save cells but revive dead cells, however, this action space would have been too
big to obtain meaningful reward distributions given our iteration numbers.

Besides symmetries, all actions where one would save a cell that would survive due to the
deterministic rules anyway, are trivially equivalent.

Manufacturer: In this domain, the agent is responsible for managing a manufacturing com-
pany with the objective of selling goods to customers. To do so, the agent must first produce the
goods, which may involve constructing factories and procuring the necessary input materials. A
key challenge lies in the stochastic fluctuations of goods’ market prices.

Multi-armed bandit: Multi-armed bandits (MAB) (Kuleshov & Precup, 2014) are 1-step
MDPs. Each action 1 ≤ a ≤ n is called an arm, and its execution yields an immediate random
reward sampled from the probability distribution associated with the a-th arm. We use Gaussians as
the reward distributions.

All actions whose associated arms have the same mean are equivalent. We deliberately chose a
MAB instance with a high number of equivalences.

Push Your Luck: In Push Your Luck the agent has to decide which of n, m-sided, not-
necessarily fair dice or cash-out. If cashed-out, the agent receives a reward dependent on all dice
faces that are marked. Faces are marked if they have been rolled (each face is shared by all n dice).
However, if the agent rolls an already marked face, or rolls two unmarked faces at the same time,
all markings are removed.

Sailing Wind: Originally proposed by Robert Vanderbei (Vanderbei, 1996), the goal of Sail-
ing Wind is to move a ship that starts at (1, 1) on an n × n grid to (n, n) with minimal cost. There
is no consistent use of a transition and reward function throughout the literature. There may just be
two available actions (down, right) (Jiang et al., 2014) or up to seven (each adjacent cell except the
one facing a stochastic wind direction) (Anand et al., 2015). The reward at each step is (−1 +W )
where 0 ≤ W ≤ 4 is dependent on the current wind direction which stochastically changes its
direction at each step independent of the player’s actions.

Saving: Saving is introduced by Hostetler et al. (2015), where the agent aims to maximize
accumulated wealth over time. At each step, the agent can choose one of three actions: Invest,
Borrow, or Save. Borrow provides an immediate reward of 2 but imposes a penalty of -3 after n
time steps. Once this action is taken, it cannot be repeated until the delayed penalty is applied. Save
yields an immediate reward of 1 with no further consequences. Invest offers no immediate reward
but enables the agent to take the Sell action within the next m time steps. The agent cannot invest
again until either the Sell action is executed or m steps have elapsed. If Sell is chosen, then the agent
receives a reward equal to the current price level that changes stochastically and independently of
the agent’s actions.

Skill Teaching In Skill Teaching, the agent takes the role of a tutor that is tasked with in-
creasing the proficiency level of a student at various skills. The student can have one of three
proficiency levels at each skill: Low, medium, and high. The skills from a prerequisite graph,
giving the student higher chances of learning a new skill the higher the prerequisites’ levels of
proficiency. Difficulty arises from the proficiency levels decaying if the corresponding skill wasn’t
practised. This decay is deterministic for skills at medium proficiency and stochastic for those at
high proficiency.

Tamarisk: The Tamarisk domain models the spread of an invasive plant in a river system.
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This problem was also used for the IPPC 2014 (Grzes et al., 2014) and inspired by the work of
Muneepeerakul et al. (2007). The river is split into n reaches, each containing k possible slots for
plants. Each slot can either be empty, occupied by a native plant, by the invasive Tamarisk plant or
by both. Both Tamarisk and native plants can randomly spawn at empty slots, however, Tamarisk
can stochastically spread to neighboring reaches with a higher probability of spreading downstream.
The agent’s actions are to restore native plants, eradicate Tamarisk, or to idle. All non-idling actions
target an entire reach at once where they randomly but independently of each other succeed at each
slot. The goal is to balance minimizing the Tamarisk spread with the high action costs.

Traffic: In this environment, the agent is tasked with simultaneously controlling a number of
traffic lights with the goal of minimizing traffic jams. This traffic is modelled as a directed graph,
however, some edges are only available depending on the state of a traffic light. Each vertex may
either contain a car or not.

SysAdmin: Proposed by Guestrin et al. (2003), a SysAdmin instance is a graph (describing
a network topology) with n ∈ N vertices. The state space is {0, 1}n (describing which machines
are currently operating) and the action space is {1, . . . , n} ∪ {IDLE} (describing which machine to
reboot or whether to idle). At each step, an agent receives a reward equal to the number of working
machines as well as a punishment if a machine has been rebooted. A reboot deterministically
ensures that the rebooted machine is working again in the next step, however, this action has
no effects beyond this step. Machines can randomly fail at each step; however, this probability
increases with the number of failed neighbors.

Action equivalences depend on the topology that is being used. For the one displayed in Fig. 1a
which we also use for the experiments, rebooting any of the outer computers with the same state is
equivalent.

Wildfire: Also used for the IPPC 2014 (Grzes et al., 2014) and based of the work by Karafylldis
and Thanailakis (Karafyllidis & Thanailakis, 1997), Wildfire models the spread of a fire on a grid.
Each grid cell is either untouched, burning, or out-of-fuel meaning that no new fire can ignite at this
cell. If a cell is untouched it can at each time step randomly ignite with the probability increasing
exponentially in the number of neighboring burning cells. The neighborhood is defined on an
instance level with most instances choosing the 8-neighborhood and manually cutting a handful of
neighborhood connections between individual cells. The agent is punished for each burning cell
and additionally punished for predefined target cells that are burning. The agent’s actions are to
idle, to cut out the fuel of a cell, or to put out a fire at any cell. These actions always succeed, with
putting out a fire incurring the highest costs.

Trivial equivalences here are to cut out fuel where fuel has already been cut out or to put out a fire
where there is no fire.

A.8 RUNTIME MEASUREMENTS

We validate the claim that AUPO adds only a minor runtime overhead over vanilla MCTS for high
iteration budgets, the following table, Tab. 3 lists the average decision-making times for each en-
vironment of AUPO compared to MCTS for 100 and 2000 iterations on states sampled from a
distribution induced by random walks. This shows that while AUPO adds a significant overhead
for low iteration budgets, the impact of the decision policy and therefore AUPO’s runtime overhead
vanishes. Note, though, that this runtime is both heavily implementation and hardware-dependent,
and more efficient implementations might reduce this overhead. In particular, we are using highly
optimized environment implementations that could be the runtime bottleneck in more complex en-
vironments.
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Table 3: Average decision-making times of AUPO and MCTS in milliseconds for 100 and 2000
iterations. For AUPO the most computational heavy version has been used, which uses p = 0.8, D =
4, the return- and std filter. This data was obtained using an Intel(R) Core(TM) i5-9600K CPU @
3.70GHz. The data shows a median runtime overhead of ≈8% for 100 iterations and ≈4% for 2000
iterations.

Domain AUPO-100 MCTS-100 AUPO-2000 MCTS-2000
Academic Advising 1.15 1.59 23.71 25.36
Cooperative Recon 2.41 2.57 52.25 54.21
Earth Observation 7.03 6.95 130.57 136.73
Game of Life 3.93 4.31 65.72 65.18
Manufacturer 10.31 9.82 185.76 186.81
Sailing Wind 1.90 2.01 34.34 35.15
Saving 0.82 0.87 17.41 18.24
Skills Teaching 2.42 2.61 52.20 53.91
SysAdmin 1.20 1.58 22.97 24.29
Tamarisk 2.78 2.88 47.84 48.95
Traffic 3.05 3.85 61.23 63.74
Triangle Tireworld 1.25 1.32 25.43 27.22
Push Your Luck 2.26 2.47 43.21 45.38
Multi-armed bandit 0.16 1.16 3.13 4.33
Wildfire 1.48 2.20 34.22 35.73

A.9 MONTE CARLO TREE SEARCH

AUPO heavily relies on Monte Carlo Tree Search (MCTS) which we are going to describe now.
Let M be a finite horizon MDP. On a high level, MCTS repeatedly samples trajectories starting at
some state s0 ∈ S where a decision has to be made until a stopping criterion is met. The final
decision is then chosen as the action at s0 with the highest average return. In contrast to a pure
Monte Carlo search, MCTS improves subsequent trajectories by building a tree from a subset of the
states encountered in the last iterations which is then exploited. In contrast to pure Monte Carlo
search, MCTS is guaranteed to converge to the optimal action.

An MCTS search tree is made of two components. Firstly, the state nodes, that represent states and
Q nodes that represent state action pairs. Each state node, saves only its children which are a set of
Q nodes. Q nodes save both its children which are state nodes and the number of and the sum of the
returns of all trajectories that were sampled starting at the Q node.

Initially, the MCTS search tree consists only of a single state node representing s0. Until some
stopping criterion is met, the following steps are repeated.

1. Selection phase: Starting at the root node, MCTS first selects a Q node according to the
so-called tree policy, which may use the nodes’ statistics, and then samples one of the
Q node’s successor states. If either a terminal state node, a state node with at least one
non-visited action (partially expanded), or a new Q node successor state is sampled, the
selection phase ends.
A commonly used tree policy (and the one we used) that is synonymously used with
MCTS is Upper Confidence Trees (UCT) (Kocsis & Szepesvári, 2006) which selects an
action that maximizes the Upper Confidence Bound (UCB) value. Let s ∈ S and Va, Na

with a ∈ N be the return sum and visits and of the Q nodes of the node representing s. The
UCB value of any action a is then given by

UCB(a) =
Va

Na︸︷︷︸
Q term

+λ

√√√√√√ log

( ∑
a′∈A(s)

Na′

)
Na︸ ︷︷ ︸

Exploration term

. (15)

The exploration term quantifies how much the Q term could be improved if this Q node was
fully exploited and is controlled by the exploration constant λ ∈ R ∪ {∞}. If one chose
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λ = 0, the UCT selection policy becomes the greedy policy and for λ = ∞, the selection
policy becomes a uniform policy over the visits. In case of equality, some tiebreak rule has
to be selected, which is typically a random tiebreak. From here, will use MCTS and UCT
(MCTS with UCB selection formula) synonymously.

2. Expansion: Unless the selection phases ended in a terminal state node, the search tree is
expanded by a single node. In case the selection phase ended in a partially expanded state
node, then one unexpanded action is selected (e.g. randomly, or according to some rule),
the corresponding Q node is created and added as a child and one successor state of that
Q node is sampled and added as a child to the new Q node. If the selection phase ended
because a new successor of a Q node was sampled, then a state node representing this new
state is added as a child to that Q node.

3. Rollout/Simulation phase: Starting at the state srollout of the newly added state node
of the expansion phase (or at a terminal state node reached by the selection phase), actions
according to the rollout policy are repeatedly selected and applied to srollout until a terminal
state is reached. All states encountered during this phase are not added to the search tree.

4. Backpropagation: In this phase, the statistics of all Q nodes that were part of the last
sampled trajectory that corresponds to a path in the search tree are updated by incrementing
their visit count and adding the trajectory’s return (of the trajectory starting at the respective
Q node) to their return sum statistic.

Once the MCTS search tree has been built (by reaching an iteration limit in our case) and statistics
have been gathered, the final decision is made by the decision policy that in our MCTS version
simply chooses the action with the highest final Q value.

A.10 DEFINITION OF RELATIVE IMPROVEMENT AND PAIRINGS SCORE

In the main experimental section, we evaluated AUPO with respect to the relative improvement and
pairings score, which are formalized here. While the pairings score is calculated by summing over
the number of tasks where some agent performed better than another, the relative improvement score
also takes the percentage of the improvement into account; however, it is prone to outliers. Hence,
we considered both scores to paint the full picture.

Concretely, let {π1, . . . , πn} be n agents (e.g., concrete parameter settings for possibly different
base algorithms such as AUPO or MCTS) where each agent was evaluated on m tasks (in this paper,
a task will always be a given MCTS iteration budget and an environment) where pi,k ∈ R denotes
the performance of agent πi on the k-th task.

Definition: The pairings score matrix M ∈ Rn×n is defined as

Mi,j =
1

m− 1

∑
1≤k≤m

sgn(pi,k − pj,k) (16)

where sgn is the signum function. The pairings score si ≤ i ≤ n is given by

si =
1

n− 1

∑
1≤l≤n,l ̸=i

Mi,l. (17)

Definition The relative improvement matrix M ∈ Rn×n is defined as

Mi,j =
1

m− 1

∑
1≤k≤m

pi,k − pj,k
max(|pi,j |, |pj,k|)

(18)

and the relative improvement score si ≤ i ≤ n is given by

si =
1

n− 1

∑
1≤l≤n,l ̸=i

Mi,l. (19)
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A.11 PAIRINGS AND RELATIVE IMPROVEMENT SCORES

Table 4: The pairings and relative improvement scores for the 100, 200, and 500 iterations setting
for the parameters combination of AUPO, U-AUPO, RANDOM-ABS, MCTS, and U-MCTS with
the highest respective scores as well as the concrete parameters used to reach that score. The pa-
rameters and environments used to obtain these scores are the same as the experiments of Section 5.
The parameter format for AUPO and U-AUPO is (C, q,D,RF, SF ), the format RANDOM-ABS
is (C, prandom), and for both MCTS and U-MCTS is (C). For RANDOM-ABS the best scores are
obtained using the standard root policy.

100 iterations relative improvement score.

Parameters Score

AUPO(2,0.8,4,No,No) 0.120
U-AUPO(16,0.8,4,No,No) 0.068
RANDOM-ABS(2,0.9) 0.055
MCTS(2) 0.049
U-MCTS(4) −0.006

100 iterations pairings score.

Parameters Score

AUPO(2,0.8,3,No,Yes) 0.742
RANDOM-ABS(2,0.7) 0.360
U-AUPO(1,0.8,4,Yes,No) 0.319
MCTS(2) 0.301
U-MCTS(0.5) −0.099

200 iterations relative improvement score.

Parameters Score

AUPO(2,0.8,3,No,Yes) 0.137
RANDOM-ABS(1,0.8) 0.073
U-AUPO(0.5,0.9,4,Yes,No) 0.068
MCTS(2) 0.062
U-MCTS(1) −0.005

200 iterations pairings score.

Parameters Score

AUPO(2,0.8,3,Yes,Yes) 0.826
RANDOM-ABS(2,0.9) 0.438
MCTS(2) 0.368
U-AUPO(0.5,0.8,4,Yes,No) 0.330
U-MCTS(0.5) −0.020

500 iterations relative improvement score.

Parameters Score

AUPO(2,0.9,4,Yes,No) 0.139
RANDOM-ABS(2,0.4) 0.109
U-AUPO(0.5,0.9,3,Yes,No) 0.107
MCTS(2) 0.105
U-MCTS(0.5) 0.069

500 iterations pairings score.

Parameters Score

AUPO(2,0.9,4,Yes,Yes) 0.793
U-AUPO(2,0.9,4,Yes,Yes) 0.459
MCTS(2) 0.431
RANDOM-ABS(1,0.7) 0.417
U-MCTS(0.5) −0.007
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Table 5: The pairings and relative improvement score for the 1000, 1500, and 2000 iterations
setting for the parameters combination of AUPO, U-AUPO, RANDOM-ABS, MCTS, and U-MCTS
with the highest respective score as well as the concrete parameters used to reach that score. The
parameters and environments used to obtain these scores are the same as the experiments of Section
5. The parameter format for AUPO and U-AUPO is (C, q,D,RF, SF ), the format RANDOM-ABS
is (C, prandom), and for both MCTS and U-MCTS is (C). For RANDOM-ABS the best scores are
obtained using the standard root policy.

1000 iterations relative improvement score.

Parameters Score

AUPO(2,0.9,2,Yes,Yes) 0.108
RANDOM-ABS(2,0.9) 0.089
U-AUPO(1,0.9,4,Yes,Yes) 0.089
MCTS(2) 0.084
U-MCTS(1) 0.057

1000 iterations pairings score.

Parameters Score

AUPO(2,0.9,4,Yes,Yes) 0.770
U-AUPO(1,0.9,4,Yes,Yes) 0.499
RANDOM-ABS(2,0.9) 0.447
MCTS(2) 0.417
U-MCTS(1) 0.036

1500 iterations relative improvement score.

Parameters Score

AUPO(2,0.99,2,Yes,Yes) 0.099
MCTS(2) 0.084
RANDOM-ABS(2,0.8) 0.083
U-AUPO(1,0.8,4,Yes,Yes) 0.083
U-MCTS(1) 0.061

1500 iterations pairings score.

Parameters Score

AUPO(2,0.9,4,Yes,Yes) 0.763
U-AUPO(2,0.9,4,Yes,Yes) 0.532
MCTS(2) 0.438
RANDOM-ABS(2,0.7) 0.418
U-MCTS(1) 0.026

2000 iterations relative improvement score.

Parameters Score

AUPO(2,0.95,4,Yes,Yes) 0.098
RANDOM-ABS(2,0.7) 0.087
MCTS(2) 0.086
U-AUPO(1,0.99,4,Yes,Yes) 0.086
U-MCTS(1) 0.059

2000 iterations pairings score.

Parameters Score

AUPO(2,0.95,4,Yes,Yes) 0.753
U-AUPO(2,0.95,4,Yes,Yes) 0.538
RANDOM-ABS(2,0.8) 0.532
MCTS(2) 0.487
U-MCTS(1) 0.028
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