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ABSTRACT

Transformers have significantly advanced deep learning across multiple domains, yet the theoretical
foundations with respect to their structure remain an open area of research. In this paper, we introduce
a novel perspective by interpreting Transformers through the framework of dual Banach spaces.
Specifically, we prove that the exponentiated query-key kernel in the attention mechanism can be
interpreted as a bilinear form on Banach spaces. Building on this, we provide a theoretical proof
demonstrating that the attention mechanism in Transformers can be viewed as a dual space operator,
while feed-forward networks function as a correction mechanism between dual solution and primal
solution. To demonstrate the benefits of the dual Banach space perspective, we show how this
framework introduces a novel form of regularization for Transformer. These findings offer new
insights into understanding and potentially improving Transformer architectures using principled
mathematical frameworks.

1 INTRODUCTION

Transformers (Vaswani et al.,2017) have revolutionized deep learning across various domains, achieving state-of-the-art
performance in natural language processing, computer vision, speech recognition, and multimodal learning (Devlin
et al., 2019} |[Dosovitskiy et al.; [Kim et al.l 2024). At the core of the Transformer architecture lies the attention
mechanism, followed by a feed-forward network, which facilitates efficient representation learning and contextual
understanding. Additionally, Transformers are compatible with existing regularization techniques, such as weight
regularization, enhancing their generalization capabilities.

Despite their empirical success, a comprehensive theoretical understanding of their functioning and optimization remains
an open research question. Prior works have explored the theoretical foundations and properties of Transformers
(Tsai et al.,|2019; [Edelman et al.,2022)), offering valuable insights into their operations as interacting particle systems
(Geshkovski et al.| 2023)) and their algorithmic reasoning capabilities (Sanford et al.,|2024). However, the theoretical
foundations of Transformer architectures remain an open area of research, such as optimization dynamics and the
functional roles of their components in complex tasks (Elhage et al., 2021)).

In this paper, we introduce a novel perspective by interpreting Transformers through the framework of dual Banach
spaces. Unlike conventional analyses that rely on Euclidean spaces, this Banach space perspective offers a mathemati-
cally rigorous functional view that provides deeper insights into Transformer architectures. We establish that attention
in Transformers can be interpreted as solving an optimization problem in a Banach space. Specifically, attention is a
dual space operator on Banach spaces, and feed-forward networks is a correction mechanism between dual solution and
primal solution.

This theoretical framework based on the dual Banach space perspective allows us to develop functional regularization
techniques that leverage the structural properties of Transformers, resulting in improved generalization and smoother
decision boundaries. We conduct experiments across vision and language tasks, demonstrating that dual Banach
regularization can enhance performance of Transformer models. These findings offer new insights into understanding
and potentially improving Transformer architectures using principled mathematical frameworks.

Our main contributions are as follows:

* We prove that the exponentiated query-key kernel in the attention mechanism can be interpreted as a bilinear
form on a Banach space.



* We interpret the attention operation as an operator in a dual Banach space and the feed-forward network as a
correction mechanism between dual solution and primal solution.

* We propose a new functional regularization based on the dual Banach space framework, which improves
generalization with smooth decision boundaries across vision and language tasks.

2 PRELIMINARIES

2.1 REGULAR BANACH SPACE

Let (Q, F, i) be a complete o-finite measure space and let £°(Q2, F, i1) be the space of all equivalence classes of
p-measurable real-valued functions endowed with the topology of convergence in measure relative to each set of finite
measure. A normed vector space B3 is called a Banach space if its norm induces a complete metric, or more precisely,
every Cauchy sequence of 13 is convergent.

A bilinear form between two Banach spaces By, Bs is a function (-, -)g, x5, from By x Bs to R that is linear about
both arguments. It is said to be continuous if there exists a positive constant C' such that for all f € B1,g € B2

[(f:9)B.x8,| < Clfls, 1915

Note that for notational convenience, we write (v1, v2)v; xv, = (U2, V1)v,xV;» » but this does not imply symmetry,
which requires (v1, v2)v, xv, = (U2, V1) vy xVa-

A Banach space B is called a regular Banach space (RBS) on 2 if for each f € B (a function on 2), its norm
|| fllz = 0if and only if f = 0 everywhere on ) and every point evaluation functional é,,, x € € on B is continuous,
that is, there exists a C, > O forall f € B

10 ()] = [f (@) < Cell flls
When B is an RBS on €2, and f, f,, € B, then || f,, — f||g implies f,,(z) — f(z), as n — oo, for each x € Q. Moreover,
the point-evaluation functionals . (f) € B* for all z € 2 by the definition of RBS.

2.2 DUAL BANACH SPACE

In functional analysis, a dual space 3* refers to the space of all continuous (bounded) linear functionals on a Banach
space 3 and becomes a Banach space when it is endowed with the norm, say

lv||p := sup v(f)

, YveB*
res.f#o0 1 flls

The dual bilinear form (-, -) 5 is defined on the Banach space 3 and its dual space B* as

(f.v)g = (f,v)Bxs- =v(f), [ € B,v € B*.

A specific example of an element (operator) in the dual space B* is the partial derivative operator evaluated at a point
x € R4, denoted by v, := % |w This operator satisfies
z;

<fa Vi>3><6* = Tf(w)v f € Bv’/i € B,
Lj

where the pairing (-, -)gx g+ evaluates the partial derivative of f at x.

In the Reproducing Kernel Hilbert Spaces (RKHS) framework, a Hilbert space is isometrically isomorphic to its dual
space, which results in a unique reproducing kernel for the RKHS. An RBS is, however, not isometrically isomorphic to
its dual space, and the continuity of point-evaluation functionals does not guarantee the existence of a kernel.

We call G(f) := 9] - ||g(f) Gateaux derivative of || - ||g at f € B (by defining G(f) = 0 if f = 0) if for all
f € B\ {0}, g € B, there exists a continuous linear functional, denoted by G(f) € B*, such that

(9,G(/))5 = lim If + Agllf — £l

ey



exists (and uniformly converge). It follows from (1)) that |{g, G(f))5| < ||gllz and {(f,G(f)})s = ||f||8, which leads to
1G(f)lls- = 1. Also,

v . : /
a| - fandonly if —— € |- |5 2
e © |- 1l5(f) ifand only i s © |- 1l5(v) )

We call an RBS B reflexive if (B3*)* = B, that is, any continuous linear functional 7" on V* must be of the form:
T(v*) = (u,v*)y, 0" € V*

for some u € V.

3  FUNCTIONAL ANALYSIS OF TRANSFORMER IN DUAL BANACH SPACES

In this section, we establish the theoretical connection between Transformer architectures and dual Banach spaces. We
first prove how the exponentiated query-key kernel in the attention mechanism can be interpreted as a bilinear form on
Banach spaces (Section [3.1). We then demonstrate that the attention operation can be formally represented as dual
space operators (Section[3.2). Finally, we analyze the feed-forward network as a correction mechanism that address the
discrepancy between dual representations and desired primal solutions (Section [3.3).

3.1 EXPONENTIATED QUERY-KEY KERNEL AS A BILINEAR FORM ON BANACH SPACES

According to (Megginson, [2012), we define the annihilators of a set A € V; in V5 and a set B € V5 in V; with respect
to <'7 '>V1 xVa by

(AJ‘)le\/Q = {b cVy: <a,b>v1><v2 =0, Ya € span(A)} c Vs

(LB)VIX‘/2 ={a€eVi:{(a,b)v,xv, =0, Vb€ span(B)} C V;

Theorem 3.1. (A pair of feature maps) Let H1,H2 be two distinct Hilbert spaces of the same cardinality with a
continuous bilinear form (-, )3, x31,- Suppose that there exists ®1 : Q1 — Hq, and P2 : Qo — Ho such that the
following null conditions are satisfied:

(@1(0) ) axme = {0} and (T @2(Q2)), x4, = {0} ©)

Let us define B, and By by

B = {fw 0 >R | fw(x) = <‘b1(-),’w>7.[1><';.[2, w € Ho, T € Ql}

By :={go: Q2 = R | gu(y) = (v, P2(y)) 7y x> v € Hu, y € 2}
with norm || fu||s, = |[wlla, and ||gv|[5, = [[v]l3,-
Then, By and Bs are regular Banach spaces (RBS). Also the bilinear form on By x By defined by

<fwvg’u>31><32 - <v7w>?-[1><7'[23 Vv € Hlavw S H2

is a continuous bilinear form.

Proof. From the null condition (EI) fw and g, are both unique and well-defined. Following the derivations in (Lin et al.|
2022), we have for all f,, € By,

[fw(@)] = [(@1(2), W), xm, | < ClP1(2) [ [[wll30, = ClP1(2) 30| fulls, - Vo € D

and similarly for all g, € Bs. Hence, point evaluation functionals are continuous on both B; and Bs and therefore B;
and B are RBS. Also from

[{fuws 90)Br x5 | = [{0, W), x| < Cllollags lwlia, = Clfull, g0l

(-,YB, xB, 18 a continuous bilinear form.
Now for all z € Q4, f,, € By,

fw(x) = <(I)1($)7w>7'11><7{2 = <fwag<1>1(:r)>l’j’1><62
and similarly for all y € €5, g, € Bo,

9o (y) = (v, L2(Y)) 1 x 1o = (foa(y) Jv) B xBs



It is necessary for the Hilbert spaces H; and Hs to have the same cardinality, as the null conditions may otherwise
fail to hold. In this theorem, we refer to the mappings ®; : 2; — H1, and @5 : Q25 — H as a pair of feature maps
and #; and H; as a pair of feature spaces. This construction preserves the desirable properties of the Reproducing
Kernel Banach Spaces (RKBS) framework while relaxing its structural assumptions, thereby offering greater modeling
flexibility.

For instance, consider Hilbert spaces #; = R™ and H, = R", endowed with a weighted dot product defined as

(V, W), x4, = VIGW, vER™, weR"
where G € R™*" is an arbitrary (possibly indefinite) matrix.
In standard Transformers, attention is computed through the inner product of linearly projected representations,
expressed as (Wqﬁzé, W;.2'). However, since the layer immediately preceding the attention mechanism typically ends
with a shared non-linear feed-forward network (FFN), applying different linear projections afterward is effectively
equivalent to applying two distinct non-linear transformations. Consequently, attention operates on non-linear feature

representations, which can be interpreted as (@1, ®5). This observation motivates the use of a pair of feature maps in
our formulation.

Lemma 1. (Exponentiated query-key kernel as a bilinear form on Banach spaces) Let us denote the exponentiated
query-key kernel used in the (scaled) dot-product attention mechanism,

exp(a k;/\/d), (4)

where q; = Wyx; + b, € R k;, = Wiy + by € Rd,Wq € R¥%ds g, € R, b, € R4, W), € Réxdr, Y; € R,
and by, € R, Given Theorem can be represented as an inner product (®1(x;), ®a(x;)) 1, x 1, for suitable
feature maps ®1 and ®4 into appropriately chosen Hilbert spaces.

Proof. See Appendix [B.1] O

3.2 ATTENTION AS DUAL SPACE OPERATOR

Given a fixed finite set of distinct points x; € RP with y™ = (y;-)j:L___’n e R*, forj=1,...,nand7 € T =
{1, ..., D}, the regularization problem is given by

inf{L(y,V(f-)) + Xe(llf-|ls) : fr € B} ©)
where an operator V : B — R" is defined by V(f-) = ((f-,v;)B)j=1,..,» forall f; € B with (linearly independent)
dual space operators v; € B*, e.g., (fr,v;) = fr(x;). Note that v; = 0,, when B is a Hilbert space. L(y”,") :
R — RT, o : RT — RT is a strictly increasing smooth regularizer and ) is a positive regularization parameter.
To guarantee the existence of well-defined dual solutions in this generalized setting, we assume that I3 is a Banach space
whose dual B* is smooth, and that the set of dual space operators v; € B* for j = 1,..., N is linearly independent.

Then, in accordance with our definitions, the Representer theorems (Wang & Xul, [2021)) for regularized learning in
Banach spaces can be formalized as follows:

Theorem 3.2. (Representer theorem in Banach spaces (Wang & Xul 2021)) Let fT € B be a primal solution of the
regularization problem ({3), then the following holds for T € T :
The dual solution f: € B* is a linear functional given by

n

fr() = ZC;Vj eB*, I eR,j=1,..,n (6)

j=1

The primal solution f can be reconstructed as

fr =G (f7) where (fr, 25 = |F:lsl /5 ©)

In contrast, the dual representation fj in Theorem operates on functions rather than on individual points. As a
result, it cannot be directly interpreted as a function mapping points to values. This motivates the representation of



attention as a dual operator, highlighting a key distinction from traditional asymmetric kernel representations in the
RKBS framework.

The central challenge is recovering the primal solution from its dual representation. As shown in the next theorem, this
dual formulation exhibits a strong resemblance to the attention mechanism used in Transformer models. We proceed to
demonstrate how attention in Transformers can be formally interpreted through the framework of dual Banach space
operators.

Theorem 3.3. (Attention as a dual space operator) The dual solution f;‘ can be expressed in the following form:

n

Fr() =3 ci(@a(@)), ()5, x5, ®

=1

where ®1 and ®4 are suitably chosen feature maps into Hilbert spaces Hy and Hs, respectively. Notably, the operator
®,(x) operates on functions—specifically on ®1(x;), which itself is a function—rather than directly on individual
points. Specifically, the output of the attention block takes the form:

_ n W,k - (Wia!)
*(xl) = W,W,ah) x softmax [ ————""2° ©)
/7 () ;( ~ 7) NG

’ (1 (1), 22 (21) 5, x5,

Proof. See Appendix [B.2] O

This theorem highlights the functional similarity between the dual representation in Banach spaces and the attention
mechanism in Transformer models. Specifically, the learned query-key interactions correspond to a bilinear pairing
between non-linear feature maps, while the value projection yields the linearly adapted coefficients ¢7. This structure

naturally aligns with the attention mechanism, which can be viewed as a realization fj_‘ of the dual solutlon fT* in the
primal space.

It is important to note that the attention mechanism arises from a specific choice of the feature map pair (®1, D5).
Alternative choices of such mappings can lead to entirely different mechanisms, thereby offering greater flexibility in
the design of novel algorithms within the dual Banach space framework. Although these alternative duality mappings
may increase the complexity of reconstructing the primal function f from its dual representation f*, demonstrating new
directions for algorithmic design beyond the standard attention mechanism. In addition, this can be easily extended to
multi-head attention, which is presented in Appendix.

3.3 FEED-FORWARD NETWORK AS A CORRECTION MECHANISM

Our framework interprets the Transformer architecture through the lens of dual Banach spaces. From the perspective
of duality, recovering the primal solution f € B from its dual representation f* € B* is a nontrivial problem. This is
fundamentally different from the Reproducing Kernel Hilbert Space (RKHS) framework, where a space is isometrically
isomorphic to its dual, simplifying the relationship between primal and dual forms. In the more general Banach space
context, this relationship is governed by a highly non-linear duality map.

As defined in our preliminaries, the Gateaux derivative of the norm, G : B — B*, serves as this duality map. It links
an element f in the primal space to a corresponding functional G(f) in the dual space. Consequently, the task of

reconstructing the primal solution fT from a dual solution f * (approx1mated by the attention mechanism) is equivalent
to computing the inverse of the duality map, i.e., f, o< G~1(f¥).

Computing this inverse map, G, is generally intractable as it lacks a closed-form expression in non-Hilbert Banach
spaces. This necessitates the use of iterative numerical methods to find a solution. Fixed-point proximity algorithms
(L1 et al.l 2019) are a class of such methods designed for complex, non-differentiable optimization problems. These
algorithms repeatedly apply certain operators (e.g., projections or soft-thresholding) to a variable until it converges to a
fixed point, which corresponds to the desired primal solution. However, applying this theoretical machinery directly to
Transformers is infeasible. The underlying function spaces are extremely high-dimensional, and the specific forms of



the proximity operators, which may be defined through partial differential equations, are unknown and incomputable
for functions represented by deep neural networks.

To bridge this theoretical gap, we hypothesize that the feed-forward network (FFN) sublayer learns to approximate
a single iteration of such a fixed-point recovery algorithm. FFN acts as a data-driven operator that learns a local
approximation of the inverse duality map, correcting the dual representation from the attention layer to better align with
the desired primal solution. This interpretation provides a concrete mechanism for the structure of Transformer block,
where attention approximates the dual solution and the FFN performs a corrective step towards the primal solution:

fr(x) ~ f*(x) + FFN(LayerNorm(f*(z))) where FFN(z) = Wyo(W;z). (10)

This formulation can be viewed as one step of a learned fixed-point iteration, vi1 =~ vi + Ag, where the initial state
vy, is the attention output f*(x) and the update Ay, which approximates the action of G~1, is provided by the FFN.

We have empirically validated this hypothesis in a controlled experiment, demonstrating that a network analogous to a
FFN can successfully learn a theoretically grounded fixed-point proximity step. This provides strong evidence that
the FFN functions as an effective, learnable corrector. The full details and results of this experiment are provided in

Appendix

Our dual Banach space perspective yields a principled explanation for the interaction between attention and feed-forward
layers. Specifically, the architecture can be viewed as a two-step operator: first approximating a dual representation,
then applying a learned proximity correction to recover the primal solution. This interpretation provides a mathematical
link between its components and fundamental operator-theoretic constructs.

4 DUAL BANACH SPACE PERSPECTIVE ON REGULARIZING TRANSFORMER

In this section, we provide an example of the benefits offered by the dual Banach space perspective: a novel form of
regularization for Transformers. We begin by revisiting Equation (I0). The mathematical analysis in (I0) shows that
the approximated dual space representation, f, can be transformed into a more accurate solution in the primal space,

fT. Since both terms are in the same Banach space, 5, we can reformulate the Banach space norm as follows:

1flls = |If7 + FEN(LayerNorm(f;)) || (11)

Given the £2 norm in the embedding space (Shawe-Taylor & Cristianini, [2004), the following proposition holds under
the commonly satisfied relaxed conditions.

Proposition 4.1. (Norm Bound for Single Layer Transformer) Let f;" be the approximated dual solution computed
by the attention mechanism as defined in (@) and @ Also, fr = f¥ 4+ FFN(LayerNorm(f*)) be the corresponding
primal space solution of . Then, given an input x, the norm of f. is bounded by:

I frlls < a (1+|W2|| W (P () 1FE ()|, (12)

where o« > 0 and 7 is a scale parameter in LayerNorm.
Proof. See Appendix [B.3] O

4.1 DUAL BANACH REGULARIZATION WITH THE PRACTICAL NORM BOUND

Based on Proposition .| we derive an empirical training framework for Transformers. By selecting the strictly
increasing regularizer p(r) = 22 as in Equation we extend Propositionto multi-layer Transformers with L layers.
The resulting framework is expressed as follows:

2
7 S max || ;
L(f*(x), A- 1+ [[WE - W ————— | | (2|2, 13
(fi(z),y) + ;( + Wl - [[WAll (2 (@) 1£7 (@)% (13)

|
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Figure 1: Effect of dual Banach regularization. Visualization of decision boundaries and train/test accuracies of
Transformers trained without (top row) and with (bottom row) dual Banach regularization across three synthetic datasets.
Without regularization, the models exhibit highly distorted decision boundaries and lower test accuracy. In contrast,
dual Banach regularization results in smoother and more stable decision boundaries, improving generalization ability.

where ) is a hyperparameter that controls the balance between the task loss £( f: (z),y) and norm bound loss. This
framework can be easily extended to Transformers with multi-head attention, which can be found in Appendix. We
refer to this regularization framework as Dual Banach (DB) Regularization.

With the proposed dual Banach regularization, we conduct an experiment on three two-dimensional synthetic datasets
with added noise to test generalization. Detailed experimental settings are provided in Appendix [F1] As illustrated in
Figure[T} the Transformer model trained without regularization tends to overfit, resulting in highly distorted decision
boundaries and lower test accuracies. In contrast, the model trained with DB regularization exhibits smoother decision
boundaries that better capture the underlying data structure, leading to significantly higher test accuracies. These results
demonstrate that DB regularization acts as an effective inductive bias, enabling the model to avoid overfitting and learn
more meaningful patterns from noisy inputs.

4.2 EMPIRICAL VERIFICATION OF DUAL BANACH REGULARIZATION

In this subsection, we empirically evaluate the dual Banach regularization approach across multiple domains to validate
its practical utility. Our experiments are specifically designed to address scenarios where large Transformer models are
applied to small datasets, which typically leads to overfitting.

Image Classification To evaluate the effectiveness of dual Banach regularization in image classification tasks, we
conducted experiments on the CIFAR-10/100 datasets and their corrupted counterparts, CIFAR-10-C/100-C
& Dietterich, 2019). Following the experimental setup of (2023)), we used Vision Transformer (ViT) models
(Dosovitskiy et al.,[2020). As summarized in Table[T] applying Lpg consistently improves performance and robustness
across all settings. For instance, on the ViT-S model, our method boosts the average accuracy on CIFAR-10-C by 3.08 %




Table 1: Image classification accuracy (%) on CIFAR-10 and CIFAR-100, and their corrupted versions, CIFAR-10-C
and CIFAR-100-C. We also provide individual results for three noises: Guassian noise, shot noise, and pixelate. Avg.
indicates the overall accuracy on CIFAR-x-C. Results are presented as mean =+ confidence interval, with bold numbers
indicating the best performance. Blue indicates the gap between Baseline.

CIFAR-10 and CIFAR-10-C

Method No Corruption Gaussian Noise Shot Noise Pixelate Avg.
ViT-S 95.044-0.85 79.8142.22 83.68+1.68 86.56+1.97 88.474+1.32

+ Lpg | 96.80+0.20 (+1.76) | 85.38+0.37 (+5.57) 88.51+0.34 (+4.83) 90.88+0.65 (+4.32) | 91.55+0.18 (+3.08)
ViT-T 94.0140.24 77.84+3.86 81.754+2.38 86.144+1.30 87.154+0.25

+ Lpg | 95.74+0.18 (+1.73) | 81.76+0.67 (+3.92) 85.31+0.50 (+3.56) 88.27+1.14 (+2.13) | 89.53+0.13 (+2.38)
CIFAR-100 and CIFAR-100-C
Method No Corruption Gaussian Noise Shot Noise Pixelate Avg.
VIiT-S 74.03+1.52 49.42+3.10 54.79+2.81 63.76+3.20 62.49+1.79

+ Lpp | 78.85+0.43 (+4.82) | 57.79+1.11 (+8.37) 62.92+1.19 (+8.13) 71.18+0.73 (+7.42) | 68.43+0.43 (+5.94)
ViT-T 72.9340.41 49.04+0.52 54.3940.72 61.964-0.17 61.684-0.29

+ Lpp | 77.01+1.12 (+4.08) | 53.7542.92 (+4.71) 58.76+2.06 (+4.37) 68.15+2.17 (+6.19) | 65.89+1.28 (+4.21)

and on CIFAR-100-C by 5.94% . Furthermore, the regularization enhances training stability, evidenced by significantly
narrower confidence intervals. Notably, the regularized ViT-T achieves performance comparable to the larger ViT-S
baseline, highlighting the effectiveness of our approach in promoting parameter-efficient learning.

To further evaluate our approach, we conducted experiments on  Tuple 2: Effectiveness of Dual Banach regulariza-
the CUB-200-2011 fine-grained classification dataset (Wah et al.| tion on CUB-200-2011.
2011). We extracted features using a pre-trained CLIP ViT-B/32

(Radford et al.;[2021)) and then trained a simple Transformer clas- Method Accuracy (%) | IM ()
sifier with 2 tokens, 1 layer, and 512 embedding dimensions. To Baseline 71.99 29.84
quantify decision boundary smoothness, we employed the widely- + Lpp(A=0.1) 74.39 21.27
used inverse-margin (IM) (Pitas et al, 2017; Jiang et al)), where ~ + Lpp(A =0.5) 75.51 17.43
a lower IM value corresponds to a smoother decision boundary. As + Lpp(A = 1.0) 75.46 14.22

the strength of the Dual Banach regularization increases, as shown
in Table[2] we observe a consistent improvement in test accuracy. Moreover, the IM value steadily decreases, which
empirically demonstrates that our regularization method leads to a smoother decision boundary and better generalization.

Natural Language Processing We extend our evaluation to natural language processing using decoder-only trans-
former architectures with causal attention. This experiment is particularly important as it verifies that our theoretical
framework applies not only to bidirectional attention mechanisms but also to causal attention settings commonly
used in generative language models. We use GPT-2 (Radford et al., 2019) on the WikiText-103 benchmark dataset
(Merity et al.,|2017)), which consists of over 100 million tokens extracted from high-quality Wikipedia articles. For
our experiments, we train models with and without dual Banach regularization to assess the impact on language
modeling performance. We use the AdamW-schedulefree optimizer (Defazio et al.,2024])), which recently achieved the
state-of-the-art performance on optimization by alleviating the difficulty of learning rate scheduling.

The experimental results on language modeling are summarized in Table 3] which presents the performance of GPT-2
under different dual Banach regularization strengths. Our results demonstrate that increasing the regularization strength
(M) consistently improves model performance, with the highest regularization value (A = 5.0) achieving the best results
in both evaluation loss (3.02 + 0.01) and perplexity (20.49 + 0.10). While low regularization (A = 0.5) showed
some improvements in consistency as evidenced by its narrower confidence intervals, the differences in performance
compared to higher regularization strengths were notable. The results suggest that stronger dual Banach regularization
values may provide more substantial benefits for language modeling tasks.

As shown in Fig. 2] models with our regularization exhibit different training dynamics. The perplexity curves show that
the model with higher regularization (especially, A = 5.0) maintains a lower perplexity than that of the baseline (A = 0)
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Table 4: Performance comparison of varying weight decay strengths with and without Dual Banach regularization
(Lpp). For ViT-S, we report average accuracy (%) on CIFAR-10 / CIFAR-10-C. For GPT-2, we report perplexity ()
on WikiText-103. The results demonstrate that £ provides consistent improvements across all settings.

ViT-S (CIFAR-10/10-C Acc. 1) GPT-2 (Perplexity |)
Weight Decay No Reg +Lpp Improvement | A=0.0 A=05 A=10 AX=50
0.00 94.22/87.21 96.49/90.88 +2.27/+3.67 21.82 21.55 21.36 21.16
0.05 95.04/88.47 96.80/91.55 +1.76/+3.08 21.09 20.83 20.74 20.49
0.10 95.79/89.59 96.88/91.77 +1.09/+2.18 20.43 20.15 20.08 20.01

throughout training. As training epoch increases after epoch 10, the gap between perplexity increases. This tells us that
our dual Banach regularization effectively improves the generalization ability of language models.

4.3 COMPLEMENTARITY WITH EXISTING REGULARIZATION TECHNIQUES

Our regularizer is complementary to, rather than a replacement for, existing regularization techniques. We conduct
additional experiments to evaluate its interaction with two widely-used methods: weight decay and word dropout.
We first explored the complementary effects between £pp and weight decay of AdamW. As shown in Table ] our
regularizer provides consistent performance gains when combined with various weight decay strengths. For ViT-S, Lpp
improves accuracy on CIFAR-10-C across all tested weight decay values. Correspondingly, for GPT-2 on WikiText-103,
our method consistently lowers perplexity. Notably, the best results are often achieved through the joint application of
both techniques, which suggests that £pp addresses model complexity in a manner distinct from simple parameter
norm penalties.

We further investigate the integration of our method with word  Table 5: Effectiveness of £Lpp with word dropout
dropout, an input-level regularization technique. We trained (p = 0.1) on WikiText-103 (Perplexity |).
GPT-2 on WikiText-103 with a word dropout probability of 0.1.

The results in Table[5]demonstrate that our regularizer improves _Method A=00 A=05 A=10 A=50
perplexity beyond word dropout. This supports our hypothesis ~ Baseline 2109 2083 2074 2049
that the functional regularization from our framework is orthog- -+ vord Dropout | 19.66 1941  19.26  19.12

onal to input-level stochasticity, enabling enhanced generalization when applied jointly. These experiments validate that
our regularizer can be seamlessly integrated into existing training pipelines as a complementary component to further
increase model performance and robustness.

5 CONCLUSION

In this paper, we introduce a theoretical framework analyzing Transformer architectures via dual Banach spaces. By
modeling attention as solutions to a regularization problem and feed-forward networks as corrections between dual
solutions and attention, our approach enables the development of functional regularization techniques to improve
generalization. We hope this insight inspire new Transformer designs with stronger theoretical guarantees in future
work.
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A LIMITATION AND DISCUSSION

Our proposed dual Banach space framework provides theoretical insights and introduces effective regularization for
Transformers. However, its applicability to large-scale models, such as recent large language models, remains an open
research question due to our computational constraints. Additionally, our approach primarily targets regularization of
the entire Transformer during full training, which limits its direct use in fine-tuning scenarios where only a subset of
parameters is updated. In future work, we will explore adaptive regularization strategies that dynamically adjust during
training and develop computationally efficient variants suitable for fine-tuning.

B PROOFS

B.1 PROOF OF LEMMA[I]

Proof. First, the inner product g} k; is itself a valid kernel. It is also well known that if p(x) is a polynomial with
positive coefficients and k(z, y) is a kernel, then p(k(z,y)) is also a kernel (Shawe-Taylor & Cristianini, 2004)). The
exponential function can be uniformly approximated by such polynomials (i.e., its Taylor series expansion). Therefore,
the exponential of a kernel can be viewed as a pointwise limit of kernels.

Because the property of finite positive semi-definiteness is preserved under pointwise limits, it follows that

exp(q; kj/\/di)
is itself a valid kernel. See (Wright & Gonzalez} 2021) for another specific example of such feature map representations.
O
B.2 PROOF OF THEOREM[3.3]
Proof. Tt follows directly from Theorem that the dual solution fjf admits the following representation:
n
Fr() = (®1(%), @a () aa s (14)
j=1

where ®; and &, are appropriately defined feature maps into Hilbert spaces 7; and Hs, respectively. Importantly, the
mapping ®o(x) acts on functions—specifically on ®q (), which itself is a function—rather than directly on individual
points.

Given a linear differential operator D, there exists a uniquely determined adjoint operator, denoted by D, such that
for any sufficiently differentiable functions u(x) and v(x) satisfying appropriate boundary conditions, the following
identity holds:

(u, Dv) = (Du, v)
as established in (Lanczosl 1996).

Now, define the feature map ¢1(x;) by

0105)0) = exp (= 5o - 3,17

?

which corresponds to a Gaussian radial basis function centered at x;.

Let L denote a linear differential operator. Its associated self-adjoint operator, along with the operator D and its adjoint
D, are given respectively by:

D - 0.27L

L = DD= —1)" . Qn7 o 2

r;)( ) oV @ nlan
877,

D = 0[31/2—)7
a‘“H’Z;*k:n ax(faxg ce 61’2

~ o

D = -1 nal/Q—
a+b+;k:n( )"y 0x40xh - - 5$§
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where V2" is the iterated Laplacian operator given by
0? 0? 0?
=4+ -+ —=
0r? = Ox3 ox?
Here, D is a generalized differential operator expressed as a sum over all multi-index partial derivatives of total
order n, with D defined as its formal adjoint under integration by parts, assuming appropriate boundary conditions.

The self-adjoint operator L is then constructed as the composition DD, resulting in an infinite series of even-order
Laplacian-type operators weighted by a,.

v2n

Then, under appropriate conditions, we have (Poggio & Girosi, |1990)

(#1(x5), L) o, x 2, = Ox;
Now define the dual space operator ¢a(-) by ¢2(x;) = (¢1(x;), L)3, x7, - Then the following holds:

1
(01069). 620 x5, = 61 x5) ) = ex (o3 s~ 1)
7
Observe that the Gaussian kernel can also be expressed as a normalized inner product in exponential form:
() o0 Lz i)
exp 5 = 2
o
D e (< ) e (—lle)

By normalizing the feature maps as ¢, = ¢1/||¢1||7, and ¢o = ¢2/||d2||7,. we obtain:

(01(x5), P2(x)) = exp <<XJ’2XZ>>

= (P1(x5), d1(Xi)) 21 x 3,

0;

A similar result can also be obtained by defining the feature map
~ X iy
bt = o (152)

and setting ¢, (x;) = (¢ (xi), L)H; x H;. With these definitions, we again recover the inner product form

0;

(61(x)), da (1)) = exp <<Xa;<>>

These constructions naturally lead to a generalization of the attention mechanism in Transformer architectures. Specifi-
cally, the inner product between suitably chosen feature maps ®; and ®, can be expressed as

Wil - (Wyih)
Vg
This formulation reinforces the interpretation of the attention score as a bilinear pairing between distinct feature

representations in dual Banach spaces. It is worth noting that ¢’ typically represents a nonlinear transformation of zfcé-;
however, in our approach, the attention mechanism employs a finearly adapted variant, ¢7. U

(@1(:&5), ®y(!)) 5, x5, = softmax (

B.3 PROOF OF PROPOSITION [4.1]

Proof. By the representation theorem stated in Lemma the solution fT lies in a finite-dimensional subspace of 5.
Therefore, by the norm equivalence theorem for finite-dimensional normed spaces, there exist constants C, Cy > 0
such that: . . .

Cillfrllez < lf7lls < Callfrlle (15)

By the definition of f -, we have: ) )
fr = f7 + FEN(LN(f)) (16)
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Applying the triangle inequality for the #2 norm:

frle < 177Nl + IIFEN(LN(f7) 2 (17)

For the FFN component, which takes the form FFN(z) = W0 (W, 2), we can apply the submultiplicative property of
the norm:
[FEN(LN(F))llez < [[Wall - [|W]l - [LN(F)le2 (18)

Let x € R? with mean p(x) = 4 Z?:l z; and variance o(x)? = 1||x — pu(x)1[|3, where 1 = (1,...,1)T € R For
simplicity, we only consider a multiplication parameter . Then, the LayerNorm operation can be formalized as:
x — p(x)1

LN@x) =70 o(x)?2+¢

e R?, (19)

where v € R4, ® denotes elementwise multiplication, and € > 0 is a small constant.

The mean-centering operation can be expressed as x — u(x)1 = Px, where P = I; — 511T is an orthogonal projector
with || P||2 = 1. Then, LN in matrix form for norm analysis:

1
LN(x) = diag(?) - ————— - Px (20)
(x) g(7) TR
Since ||diag(y)||2 = maxi<;<q || and || P||2 = 1, we have:
1
LN| ;2 < max |y - ———— Q1)
LN € max ]~

Under practical conditions where /o (x)2 4 ¢ & std( ~:) remains bounded away from zero, we obtain the approxima-
tion:
- max ||

LN(f: ~ (22)
ILNCfE) ez () AN fz e
By combining these inequalities, we have
2 o maXIV\
[ frllez <117 ez + (W[ - [[WA]| - N fi e (23)
td(f7)
max |y =
= (1 1wl H)HLM (24
std(
Therefore,
P A max |y s
Frlls < Cal il < Ca- (1 el Al - 20 7 (5)
std(fy)

For the case with 3, which is a shifting parameter in Layernorm, the term ||Ws||-||W41||-|| || is added to the upper bound,
which is a general weight regularization term.

This demonstrates that controlling the £2 norm of fjf effectively bounds the Banach space norm of fT in the regularization
problem [5 O

C MULTI-HEAD ATTENTION AS DUAL SPACE OPERATOR

Multi-head attention extends the single-head mechanism by dividing the embedding dimension D into H heads, each
of width d;, & D/H. The standard implementation applies separate projections for each head and subsequently
concatenates the results before applying a final output projection.

For each head h = 1, ..., H, projection matrices are defined as:

Won, Win, Won : RP — R, (26)
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Similar to the single-head case, the output projection matrix W, 5 : R% — RP for each head h benefits from the
linearity property. This allows us to apply W, ;, to each transformed value vector W, hﬁ:é individually before weighting
by attention scores. Therefore, the multi-head attention block can be expressed as:

W) <Wk,h:i-é»>> @)

vV,

<¢1(Wk,hi§v)-,q>2(mf;)>51 x By

H n
fr(xl) = Z Z (WO)th,hié) x softmax <(
\—,_/

h=1j=1

Cjh
Thus, multi-head attention can be interpreted as a dual-space operator characterized by multiple bilinear forms.

D EMPIRICAL VALIDATION OF THE FFN AS A CORRECTION MECHANISM

To empirically validate our hypothesis that the Feed-forward Network (FFN) acts as a learned proximity corrector, we
conducted a controlled experiment on a problem where a theoretically-grounded oracle algorithm exists. The goal was
to test whether a simple MLP, analogous to an FFN, could learn to approximate a single, corrective step of a fixed-point
proximity algorithm.

D.1 EXPERIMENTAL SETUP

We follow the setup of (Li et al.,[2019)) for a regularized ¢1-SVM problem. The task is to find a solution that minimizes a
combination of a data fidelity term (hinge loss) and a regularization term (¢1-norm). This non-differentiable optimization
problem can be solved effectively using a two-step fixed-point proximity algorithm.

Problem Formulation The state variable for the algorithm is a concatenated vector v = [w; 3], where w contains the
model weights and y is an auxiliary variable. The algorithm seeks a fixed point of an operator 7', such that v = T'(E(v)),
where I/ and 7' characterize the problem’s structure. The deviation from this condition is measured by the fixed-point
residual, defined as 7(v) = v — T'(E(v)).

Oracle Algorithm The two-step proximity algorithm from (Li et al.,[2019)) serves as our oracle. For the ¢;-SVM
problem, the iterative update steps are given by:

C
W41 = ProX1 4 (wk - TBBT(% - ykl)) (28)
Yk+1 = (I — prox%ﬁw) (yk + Bw;H_l) (29)

where v, = [wg; yk.]T is the state at iteration k. The matrix B is constructed from the training data (X, Yjapels)
as B = diag(Yiveis)[X, 1]. The operators prox, and prox,, are the proximity operators corresponding to the £;-
regularizer and the hinge loss, respectively. For a function g, its proximity operator is defined as proxg(z) =

argmin,, (g(u) + %|ju — z||?). For our specific problem, they have the following closed-form solutions:
* /1-norm (Soft-thresholding): (prox%(ﬁ(z))j = max{|z;| — 1,0} - sgn(z;).

* Hinge Loss: (prox%ﬂw(z))j is the solution to argmin,, {%(xj -2+ %ﬁ(l - ;vj)+}.

Learned Corrector The oracle’s update from vy, to vy4; defines a reference correction step A;ff £ Vg1 — V. Our
experiment tests if a neural network can learn this correction. We train a 3-layer MLP (ReLU, width 1024) to predict

the correction based on the previous two states: A x = FFN(vg, vi—1). The network’s performance is then evaluated by
applying its predicted correction, v = vi + Ay

Data and Parameters We generate a synthetic dataset of n = 64 samples in d = 10 dimensions from a standard
Gaussian distribution X ~ N(0, I), with labels yiabers = sign(X. o). The algorithm’s hyperparameters are set to C' = 1,
S =1,and A = 1.
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D.2 RESULTS AND DISCUSSION

We evaluated the learned FFN corrector against the oracle two-step proximity algorithm across several metrics. The
results, summarized in Table [6} demonstrate that the FEN successfully learns the underlying mathematical structure of
the correction step.

Table 6: Performance comparison between the learned FFN corrector and the oracle Two-Step Proximity Algorithm.
The FFN closely mimics the behavior and effectiveness of the theoretically derived oracle.

Metric Definition FFN Corrector Two-Step Prox. Algorithm (Oracle)
Median Residual Ratio I (o) /|7 (o) || 0.266 0.210

Objective-Gap Reduction  L(vg) — L(vg41) 0.021 0.015

Alignment with Oracle (Ag, AFT) /]| A2 0.996 -

Iterations to Converge Num. Iterations to tolerance 741 756

The most remarkable result is the Alignment, which measures the cosine similarity between the direction of the predicted
correction of FFN (Ak) and true correction of the oracle (A‘,’ff). An alignment of 0.996 indicates that the FFN learns a
correction step that is almost perfectly aligned with the theoretically optimal direction. Furthermore, the FFN effectively
reduces the fixed-point residual and the objective-function gap, and even converges slightly faster than the oracle on
average.

These results provide strong empirical support for central claim of our paper : the FFN in a Transformer is not merely a
generic function approximator but serves the specific role of a data-driven residual corrector, learning to perform
a step of a fixed-point algorithm to map an approximated dual representation back towards its corresponding primal
solution.

E COMPUTATIONAL EFFICIENCY OF DUAL BANACH REGULARIZATION

E.1 EXPERIMENTAL ANALYSIS

Our dual Banach regularization is designed to be computationally efficient and highly scalable, making it practical for
use with large-scale Transformer models. The regularization term introduces only a modest overhead in terms of both
Floating Point Operations (FLOPs) and memory usage during training.

As summarized in Table[/| the computational overhead is minimal and, notably, its relative impact decreases as the
model size increases. For instance, the FLOPs overhead for the ViT-S model is 6.2%, while for the larger GPT-2 model,
it drops to just 2.0%. This demonstrates the favorable scaling properties of our approach.

Table 7: Computational overhead of dual Banach regularization. The overhead is modest and scales favorably, with the
relative cost decreasing for larger models like GPT-2.

Model FLOPs (G) Memory (MiB)

ode Baseline + Lpg Overhead (%) Baseline + Lpg Overhead (%)
ViT-T/16 1.25 1.38 10.4% 4691 5600 19.4%
ViT-S/16 4.60 4.89 6.2% 9125 10948 20.0%
GPT-2 9.53 9.72 2.0% 13542 14698 8.5%

The primary reason for this efficiency is the computational complexity of the regularizer. While the standard self-
attention mechanism has a computational cost that scales quadratically with the sequence length T (i.e., O(T?)), the
cost of our dual Banach regularizer scales only linearly with the sequence length (i.e., O(T")). This linear scaling ensures
that for modern Transformers with very long contexts, the relative cost of our regularization becomes increasingly
negligible compared to the dominant cost of the attention computation. This makes Lpp a practical and scalable solution
for improving the performance and robustness of large foundation models without incurring significant computational
penalties.

16



E.2 DETAILED ANALYSIS OF COMPUTATIONAL COST

We provide a detailed breakdown of the computational cost for a standard Transformer block and our proposed dual
Banach regularization term, Lpg. To ensure consistency with the original analysis, the following calculations are
presented on a per-instance basis (i.e., batch size B = 1) and use the 1 FLOP/MAC (multiply-add) convention.

Notation Let T be the sequence length, C' be the embedding dimension, H be the number of attention heads,
D = C/H be the dimension per head, and r be the MLP expansion ratio.

Baseline Transformer FLOPs The FLOPs for a standard Transformer block are the sum of the self-attention and
FFN costs. The total cost per layer is approximately:

FLOPstou ~ 27°C  + 4TC? +2rTC?.

Attention Matmuls  Projections FFN

Dual Banach Regularizer FLOPs The additional cost from Lpg is substantially lower and scales more favorably. It
arises from two main terms, with costs identical to our original analysis:

« Attention Output Norm (|| f(-) [[7,): The first term computes the squared £>-norm of the attention output.
The total FLOPs for this term per layer are:

FLOPSterm 1 &~ HD?*C + THD? + THD + TC.

* FFN and LayerNorm Term: The second term involves norms of the FFN weight matrices and LayerNorm
statistics. The cost is:

3 3
FLOPS 1 2 & 5Tc +3rC? + 5(r +2)C.

The total computational cost of our regularizer is dominated by terms that scale as O(T'). In contrast, the baseline self-
attention mechanism contains terms that scale quadratically as O(7?). Therefore, as sequence length T increases—a
key trend in modern LLMs—the relative overhead of our O(T) regularizer becomes insignificant compared to the
O(T?) cost of the attention block, confirming its efficiency and scalability.

F EXPERIMENTAL SETUP AND ADDITIONAL RESULTS

F.1 EXPERIMENTAL SETUP OF TOY EXPERIMENT

The experiments were conducted on widely used two-dimensional synthetic datasets, including (i) interleaving half-
moon structures, (ii) concentric circular decision boundaries, and (iii) normally distributed point clusters that are linearly
separablem To evaluate generalization performance, we artificially added noise to the input features. The data were
split into training and test sets with a 6:4 ratio using a fixed random seed of 42. We constructed a simple Transformer
model with an input dimension of 2, a single encoder layer, 4 attention heads, and hidden dimensions of 16 for both the
attention and feed-forward networks. We applied layer normalization and trained the models to classify samples into
two classes using the Adam optimizer with a learning rate of 0.01 for 500 epochs.

F.2 MAIN EXPERIMENTAL SETTINGS AND ADDITIONAL RESULTS

To validate our approach across different domains, we conducted experiments on standard image classification and
language modeling benchmarks. For image classification, we utilized CIFAR-10 and CIFAR-100, along with their
corrupted variants CIFAR-10-C and CIFAR-100-C. These datasets provide a robust testbed for assessing model
performance under various types of corruption, including noise, blur, weather effects, and digital transformations. The
corruption types include Gaussian noise, shot noise, impulse noise, defocus blur, glass blur, motion blur, zoom blur,
snow, frost, fog, brightness, contrast, elastic transformations, pixelation, and JPEG compression, representing a diverse
set of real-world image degradations.

"https://scikit-learn.org/dev/auto_examples/neural_networks/plot_mlp_alpha.html
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For language modeling experiments, we employed the WikiText-103 dataset, which contains over 100 million tokens
extracted from high-quality Wikipedia articles. This dataset presents a challenging benchmark for evaluating the
generalization capabilities of language models, with a diverse vocabulary and complex linguistic structures representative
of real-world text.

All experiments were repeated three times with different random seeds (0, 1, and 2) to ensure the reliability of our
findings. Our experimental infrastructure consisted of 2 Intel(R) Xeon(R) Gold 6226R CPUs @ 2.90GHz and 4
NVIDIA RTX 4090 24GB GPUs .

Table 8: Model Configurations

Configuration ViT-T (Tiny) ViT-S (Small) GPT-2
Number of layers 12 12 12
Embedding dimension 192 384 768
Number of heads 3 6 12
MLP dimension 768 1536 3072
Patch size 16 16 -
Block size - - 1024
Number of parameters 5.5M 21.7M 124M

We implemented two Vision Transformer variants (ViT-T and ViT-S) for image classification tasks and a smaller
modified version of GPT-2 (nanoGPT) for natural language processing tasks. Table [§| summarizes the architectural
configurations of these models.

Table [0 summarizes the training hyperparameters used across our experiments. For Vision Transformers, we employed
the AdamW optimizer with a base learning rate of 0.00025 and a cosine decay schedule over 200 epochs. We utilized
a batch size of 256 and applied standard data augmentation techniques (Hendrycks et al [2021; Mao et al., [2022]),
including MixUp (Zhang et al.| 2018) and CutMix (Yun et al.| 2019) to improve generalization. For GPT-2 (Radford
et al.,[2019), we used the AdamW Schedulefree optimizer (Defazio et al.,|2024) with a constant learning rate of 0.001
for 20 epochs and a smaller batch size of 8 due to memory constraints.

Table 9: Training Configurations

Hyperparameter Vision Transformers GPT-2
Batch size 256 8
Optimizer AdamW AdamWSchedulefree (Defazio et al., [2024)
Base learning rate 0.00025 0.001
Learning rate schedule Cosine decay -
Training epochs 200 20
Weight decay 0.05 0.05
Dropout rate 0.1 0.0
MixUp a, prob. 0.8,0.5 -
CutMix «, prob. 1.0, 0.5 -

Aof Lpp 0.01 {0.5, 1.0, 5.0}

The dual Banach regularization strength (\) was set to 0.01 for Vision Transformer experiments, while for GPT-2, we
explored a range of values (0.5, 1.0, and 5.0) to assess the impact of different regularization intensities on language
modeling performance. All models were trained with a weight decay of 0.05 to prevent overfitting, with dropout applied
only to the Vision Transformers.

Table [10]is the full experimental version of Table[l| £pp consistently improves model performance under various
corruption settings. Specifically, for CIFAR-10, the average accuracy across all corruptions increases from 87.15%
to 89.53% (+2.38%) for ViT-T. Similarly, ViT-S exhibits an average accuracy improvement from 88.47% to 91.55%
(+3.08%) with the inclusion of £pp. For noise corruptions such as Gaussian Noise and Shot Noise, it shows high
robustness to severe input perturbations. These results demonstrate that £p g effectively regularizes model training to
better generalize under distributional shifts. We can observe similar results for CIFAR-100.
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Table 10: Full experimental results with ViT-T and ViT-S on the CIFAR datasets.

CIFAR-10 and CIFAR-10-C.

Models VIiT-T ViT-T+Lpp ViT-S ViT-S+Lpp
Seeds 0 1 2 0 1 2 0 1 2 0 1 2
No Corruption | 94.05 94.08 939 | 95.78 95.66 95.79 | 94.69 95.05 9537 | 96.74 96.76 96.89
Gaussian Noise | 78.88 76.05 78.58 | 82.00 81.81 81.47 | 79.70 78.98 80.76 | 85.30 85.55 85.29
Shot Noise 8240 80.65 8220 | 8534 8550 85.1 | 83.53 83.09 8442 | 8845 88.67 88.42
Impulse Noise | 86.80 86.35 86.36 | 88.33 88.98 88.85 | 87.75 87.96 89.06 | 91.77 91.08 91.56
Defocus Blur 91.07 91.27 91.20 | 93.02 9271 9294 | 91.79 92.02 92.61 | 9424 94.11 94.32

Glass Blur 79.48 79.58 78.56 | 81.02 8130 81.24 | 79.43 80.03 80.40 | 84.10 83.31 83.92
Motion Blur 88.24 88.58 88.76 | 90.80 90.56 90.88 | 89.01 89.83 90.32 | 91.95 92.00 9251
Zoom Blur 90.95 91.28 91.32 | 9298 9296 92.84 | 91.71 9234 92.82 | 93.98 9439 94.64
Snow 89.77 89.71 89.61 | 92.05 92.14 9196 | 90.80 90.86 91.15 | 93.95 93.83 93.82
Frost 90.29 90.22 9048 | 92.74 92,57 9255 | 91.33 91.68 92.04 | 9437 9440 94.36
Fog 87.54 88.01 87.62 | 91.33 91.18 91.37 | 89.43 8990 90.77 | 9297 9291 93.16
Brightness 9320 93.14 92.89 | 9485 95.08 95.08 | 93.95 93.96 94.53 | 96.14 96.20 96.29
Contrast 89.40 9031 89.41 | 92.13 92.19 9253 | 90.57 91.24 92.22 | 94.02 93.57 94.33
Elastic 89.87 90.19 90.19 | 91.72 9193 91.99 | 90.59 91.00 91.70 | 93.02 93.13 93.25
Pixelate 8559 86.23 86.63 | 87.74 88.47 88.59 | 86.06 86.14 87.47 | 90.73 91.18 90.72
JPEG 84.81 84.01 84.21 | 8598 86.06 8598 | 85.74 8551 85.64 | 88.11 8799 87.87
Avg. 87.22 87.04 87.20 | 89.47 89.56 89.56 | 88.09 88.30 89.06 | 91.54 91.49 91.63
CIFAR-100 and CIFAR-100-C.

Models ViT-T ViT-T+Lpg ViT-S ViT-S+Lpp
Seeds 0 1 2 0 1 2 0 1 2 0 1 2

No Corruption | 72.88 73.12 728 | 77.14 7737 76,5 | 7433 7333 7444 | 79.05 78.78 78.73
Gaussian Noise | 49.24 4882 49.05 | 55.09 53.30 52.87 | 49.25 4826 50.74 | 5743 5829 57.64
Shot Noise 5471 5430 54.15 | 59.66 58.61 58.02 | 5479 53.66 5592 | 62.6 63.47 62.68
Impulse Noise | 63.87 63.48 63.98 | 68.35 67.99 67.05 | 6454 6458 6595 | 68.72 69.68 69.41
Defocus Blur 6791 68.16 68.19 | 71.85 72.14 71.21 | 68.92 68.09 68.83 | 73.54 73.51 73.58

Glass Blur 47.58 4544 4649 | 4898 4892 49.6 | 47.01 47.00 48.03 | 50.77 5127 49.22
Motion Blur 64.01 6392 6442 | 68.14 68.24 6735 | 65.07 64.07 6521 | 70.19 6999 699
Zoom Blur 67.52 67.86 68.14 | 71.44 71.73 71.03 | 68.43 6732 68.27 | 73.24 73.51 73.15
Snow 64.57 64.46 64.02 | 68.75 69.50 68.01 | 65.77 6453 6593 | 71.22 71.72 71.74
Frost 65.38 65.53 6571 | 70.26 70.14 69.14 | 67.36 65.67 66.81 | 72.90 72778 72.92
Fog 63.20 62.59 6256 | 67.78 68.09 66.65 | 6539 63.14 64.77 | 70.25 70.45 70.34
Brightness 7046 70.75 7044 | 7499 7523 7427 | 72.03 70.78 72.00 | 77.04 76.96 77.30
Contrast 63.97 64.07 64.17 | 70.01 69.87 68.99 | 66.50 65.16 66.47 | 73.37 73.63 73.01
Elastic 65.82 6621 6620 | 69.82 70.10 69.19 | 66.66 6586 66.81 | 71.18 7131 71.20
Pixelate 61.88 6199 62.00 | 68.18 69.01 6726 | 64.46 6227 64.54 | 71.30 71.39 70.84
JPEG 56.72 55.87 56.02 | 60.06 59.55 5893 | 5693 5542 5693 | 6136 6156 61.89
Avg. 61.79 6156 61.70 | 66.22 66.16 65.30 | 62.87 61.72 63.15 | 6834 68.63 68.32

G USE OF LARGE LANGUAGE MODELS

In the preparation of this paper, a Large Language Model (LLM) was utilized as a general-purpose writing-assistance
tool. The role of the LLM was limited to improving the quality of the prose, including enhancing clarity, correcting
grammatical errors, and refining sentence structure to ensure the manuscript was articulate and readable.
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