
One-Shot Transfer Learning for Nonlinear ODEs

Anonymous Author(s)
Affiliation
Address
email

Abstract

We introduce a generalizable approach that combines perturbation method and1

one-shot transfer learning to solve nonlinear ODEs with a single polynomial term,2

using Physics-Informed Neural Networks (PINNs). Our method transforms non-3

linear ODEs into linear ODE systems, trains a PINN across varied conditions, and4

offers a closed-form solution for new instances within the same non-linear ODE5

class. We demonstrate the effectiveness of this approach on the Duffing equation6

and suggest its applicability to similarly structured PDEs and ODE systems.7

1 Introduction8

Differential equations are crucial in scientific modeling, traditionally solved by methods such as9

Runge-Kutta and finite element analysis. Recently, Physics-Informed Neural Networks (PINNs)10

have shown promise in solving ODEs and PDEs by leveraging neural network capabilities (see11

(6), (8), (10), (15)and reference within). However, computational cost remains a barrier, as PINNs12

cannot be generalized across different instances of similar equation types (9), (3), a workaround is13

to train for multiple instances of same equation (4). To address this, we propose a novel hybrid14

approach that combines the perturbation method with one-shot transfer learning on PINNs (17) to15

efficiently and accurately solve non-linear ODEs of same type.16

Related Work Introduced in 1998, neural networks for solving differential equations paved the way17

for today’s Physics-Informed Neural Networks (PINNs) (10), NeuroDiffEq and DeepXDE (13; 2)18

are two popular software programs that employ PINNs. PINNs have gained popularity and find19

applications in many domains today, a review of current state-of-the-art applications of PINNs can20

be found in (6), (11) and (8). PINNs have shown tremendous success in solving complex problems21

whose analytical solutions don’t exist (1), however they perform poorly with generalizing solu-22

tions. Work related to adding physical constraints in NN structure (14), bounding errors on PINNs23

(12), characterizing and mitigating failure modes (9) and improving uncertainty quantification on24

Bayesian PINNs (5) has been important in increasing reliability of PINNs. PINNs handle interpola-25

tion problems very well, however face trouble with extrapolation. Transfer learning (TL) methods26

may be a potential solution, a study of effectiveness of TL can be found in this work (3) and an27

application can be found here (16). In (16; 18), a multi-headed neural network was used to learn28

the “latent space” of a class of differential equations. Researchers have developed a transfer learn-29

ing approach to solve linear differential equations in “one-shot” (17). Extending this to non-linear30

equations is not possible without modifications since non-linear equations have a non-quadratic loss31

function which cannot be optimized analytically in one-shot. The head weights have to be learned32

through an iterative process, such as gradient descent. Our study fills this gap in the literature by33

extending one-shot transfer learning to non-linear ODEs using perturbation method.34

Submitted to the DLDE-III Workshop in the 37th Conference on Neural Information Processing Systems
(NeurIPS 2023). Do not distribute.

2 Methodology35

We are interested in solving non-linear ODEs with a single polynomial non-linear term of the fol-36

lowing form:37

Dx+ ϵxq = f(t) (1)

where D is a differential operator of the form D =
∑m

j=0 gj
dj

dtj and the RHS is a time-dependent38

forcing function. Note that we define g0
d0

dt0x = g0x. The equation is also subject to a boundary39

conditions: x(t = 0) = x∗ and dj

dtj x(t = 0) = x(j)∗ for j = 1, 2, ...,m − 1. Our framework40

employs perturbation and one-shot transfer learning to solve a specific class of non-linear ODEs.41

We plan to extend this to handle systems of ODEs and PDEs.42

Perturbation Method43

As mentioned above, non-linear ordinary differential equations (ODEs) do not possess analytical44

solutions to their loss functions with respect to the weights of the linear output layer, which is45

necessary for one-shot transfer learning.46

In order to remove the non-linearity in the equation, we approximate the non-linear term ϵxq as a47

composition of functions (7). Assume x =
∑∞

i=0 ϵ
ixi, where xi are unknown functions of t. We48

approximate x with only p terms as: x ≈
∑p

i=0 ϵ
ixi. It is important to note that this truncated49

expansion of x is only meaningful when the magnitude of ϵ is less than 1. Furthermore, the p-term50

approximation is more precise when the magnitude of ϵ is smaller. Fortunately, in most cases, we51

can adjust the equation by scaling to reduce the magnitude of ϵ. When we substitute the p-term52

approximation into 1 and expand using multinomial theorem , we obtain:53

p∑
i=0

ϵiDxi + ϵ

 ∑
k0+k1+...+kp=q

q!

k1!k2!...kp!
ϵ
∑p

i=0 iki

p∏
i=0

xki
i

 = f (2)

The LHS of equation (3) is a polynomial of ϵ. Since it holds for all values of ϵ, the 0th order term54

of LHS should be equal to the RHS and the coefficients of all higher-order terms of ϵ should all be55

0. Therefore, for the 0th order, we obtain: Dx0 = f , and more generally for the jth order, where56

1 ≤ j ≤ p, we have:57

Dxj = −
∑

k0+k1+...+kp=q∑p
i=0 iki=j−1

q!

k1!k2!...kp!

p∏
i=0

xki
i := fj (3)

where fj is the forcing function for jth ODE. The first few terms for this expansion look like:58

Dx0 = f Dx1 = −x2
0 Dx2 = −2x0x1 ... (4)

The forcing function fj depends only on previously solved xi’s. Therefore, (1) is reduced to a series59

of p+1 linear ODEs of the same form: Dxj = fj that can be solved iteratively. There are a variety60

of ways to ensure that the initial boundary conditions are met. The main concept is to fix all p + 161

boundary conditions to be the same, so that the total solution’s, x, boundary condition is satisfied;62

that is, for all k = 0, 1, ...p, xk(t = 0) = x∗/
∑p

i=0 ϵ
i and dj

dtj xk(t = 0) = x(j)∗/
∑p

i=0 ϵ
i.63

Multi-head Fully Connected Neural Network64

As established earlier, solving the non-linear ODE is equivalent to solving a sequence of linear65

ODEs in the form Dx = f . To minimize computational complexity, we transform higher-order66

differential equations into first-order equations by introducing m− 1 additional dependent variables67

for an mth order differential equation. Let u = [x, x(1), x(2), . . . , x(m−1)]T be a function mapping68

from R to Rm, where x(1) = ẋ and x(i) = ẋ(i−1) for i = 2, . . . ,m − 1. The equation Dx = f is69

then reduced to a first-order linear ODE system (see Appendix C for details).70

ẋ− x(1) = 0

ẋ(i−1) − x(i) = 0, i = 2, 3, 4, ...,m− 1

g0x+
∑m−1

i=1 gix
(i) + gmẋ(m−1) = f

(5)

2

Equation 5 is equivalent to: Bu̇+Au = Fj with boundary conditions u(t = 0) = u∗ ∈ Rm, where71

u̇ = [ẋ, ẋ(1), ẋ(2), ..., ẋ(m−1)]T and Fj = [0, 0, ..., fj]
T . A detailed description of the matrices A72

and B can be found in Appendix A.73

We create a fully connected neural network with K heads in two parts to approximate the K func-74

tions {uk}Kk=1. The first part connects a 1D input to hidden layers, with the last layer having75

dimension mh. The activations of the last hidden layer are reshaped into a matrix H ∈ Rm×h,76

which reflects the hidden state of the ODE class and is then passed to the second part of the network.77

H connects to K heads, each associated with a linear ODE system. The output of each head is78

ûk = HWk ∈ Rm. A diagram of the general structure of the network can be found in Appendix B.79

The loss function for the kth head in the network is defined over a sampled data set T as :80

Lk =
1

mN

∑
t∈T

||Bk
˙̂uk(t) +Akûk(t)− Fk(t)||22 +

1

m
||ûk(0)− u∗

k||22 (6)

where u∗
k is the boundary condition of the kth ODE. The total loss of the network is defined as:81

Ltotal = 1
K

∑K
k=1 Lk The purpose of training this neural network is to learn the latent space for82

one class of linear ODEs. Ideally, the larger K is, the better the learning of latent space and hence a83

generalization to a wider range of parameters.84

One-Shot Transfer Learning85

After training, we freeze the weights in the hidden layers. When encountering a new ODE of the86

same class, we only use one head, and the weights in this head can be calculated analytically in87

one shot. Suppose W is the time-independent network parameter in the last layer. The network88

now becomes: û(t) = H(t)W . We get the loss for this single-head neural network by substituting89

ûk = û(t) = H(t)W into Eq. 6:90

L =
1

mN

n∑
t∈T

||BḢtW +AHtW − F (t)||22 +
1

m
||H0W − u∗||22 (7)

where Ht is the hidden state of the network evaluated at t and H0 is the hidden state at the boundary.91

Differentiating L from W and setting dL
dW = 0, we obtain (details omitted):92

W = M−1

(
HT

0 u
∗ +

1

N

∑
t∈T

BḢtF (t) +
1

N

∑
t∈T

HT
t A

TF (t)

)
(8)

M =
1

N

∑
t∈T

(ḢT
t B

TBḢt + ḢT
t B

TAHt +HT
t A

TBḢt +HT
t A

TAHt) +HT
0 H0 (9)

For a fixed Duffing equation, the matrices A and B are fixed for all its p+ 1 reduced ODE systems.93

Thus, M only needs to be computed and inverted once. We only need to update the forcing function94

F in 8 which iteratively depends on previous solutions. By reusing the first part of the neural network95

and using only one head, we optimally and iteratively compute the head parameters for each ODE96

system to solve them.97

3 Result98

We applied our proposed methodology to the 1D Duffing equation. The Duffing equation we are in-99

terested in 10 is a second order non-linear ODE with five parameters: δ, α, β, γ, ω and one boundary100

condition x(0) = x∗. All higher-order boudnary conditions are set to 0.101

d2x

dt2
+ δ

dx

dt
+ αx+ βx3 = γcos(ωt) (10)

Using our framework, we first utilized the perturbation method and introduced new variables to102

reduce the Duffing equation to a series of p + 1 first-order linear ODE systems of the form: u̇i +103

3

Aui = Fi. We then built a network described in Section 2.2 with 10 heads. Each head represents a104

unique parameter setting. The specific details of the network structure can be found in Appendix B.105

The 10 parameter sets are uniformly randomly generated in the following range:106

γ ∈ (0.5, 3), ω ∈ (0.5, 3), α ∈ (0.5, 4.5), δ ∈ (0.5, 4.5),u∗
1 ∈ (−3, 3) (11)

and u∗
2 = 0. After training (details in Appendix B), the network can accurately solve the 10 systems,107

and it acquires a significant understanding of the latent space of the not-linear ODE. We then test108

our method on an unseen Duffing equation. We measure the performance of the TL solution by109

computing the ODE loss of the Duffing equation. We used 14 different values of p to solve and110

approximate the solution. As shown in Figure 1(a), as the p value increases, the Duffing ODE loss111

decreases to around 10−3.75. The elbow shape can be used to figure out how many terms should be112

included in the perturbation expansion p.113

0 2 4 6 8 10 12

p values

−3.75

−3.50

−3.25

−3.00

−2.75

−2.50

−2.25

−2.00

L
o
g
L
o
s
s
(b
a
s
e
1
0
)

Log Duffing Equation Loss

(a) Log Duffing Equation Loss vs. p Values

0 1 2 3 4 5

Time t

−3

−2

−1

0

1

2

3 Transfer Learning Solution

Numerical Solution

(b) Numerical and TL Solutions of 20 Randon In-
distribution Duffing Equation

Figure 1

We also test our method by comparing the transfer learning solutions with numerical solutions (ex-114

plicit Runge-Kutta method of order 8) on 20 randomly generated Duffing equations in the same115

parameter range 11 (we fix β = 0.5 and p = 12). Each Duffing equation can be solved in seconds.116

(Details in Appendix B) As shown in Figure 2(b), the 20 transfer learning solutions align almost per-117

fectly with the numerical solutions, indicating that our methodology is very effective on equations118

in the same parameter range 11.119

4 Conclusion120

We introduced a framework using perturbation and one-shot transfer learning on PINNs to efficiently121

solve non-linear ODEs. We reduced non-linear ODEs to linear ODEs, trained a neural network with122

k heads to handle them, and derived a formula for network weights. This approach allows us to123

solve various non-linear ODEs of the same form with a single trained network. Future work aims to124

extend this methodology to various non-linear ODE and PDE systems.125

Our work should be considered as a starting point for this methodology. Future work is needed to126

extend the framework to non-linear ODE and PDE systems with various non-linearity forms.127

4

References128

[1] CHANTADA, A. T., LANDAU, S. J., PROTOPAPAS, P., SCÓCCOLA, C. G., AND GARRAFFO,129

C. Cosmology-informed neural networks to solve the background dynamics of the universe.130

Phys. Rev. D 107 (Mar 2023), 063523.131

[2] CHEN, FEIYU, E. A. Neurodiffeq: A python package for solving differential equations with132

neural networks. Journal of Open Source Software (2020).133

[3] FESSER, L., QIU, R., AND D’AMICO-WONG, L. Understanding and mitigating extrapolation134

failures in physics-informed neural networks, 2023.135

[4] FLAMANT, C., PROTOPAPAS, P., AND SONDAK, D. Solving differential equations using136

neural network solution bundles, 2020.137

[5] GRAF, O., FLORES, P., PROTOPAPAS, P., AND PICHARA, K. Error-aware b-pinns: Improving138

uncertainty quantification in bayesian physics-informed neural networks, 2022.139

[6] HAO, Z., LIU, S., ZHANG, Y., YING, C., FENG, Y., SU, H., AND ZHU, J. Physics-informed140

machine learning: A survey on problems, methods and applications, 2023.141

[7] J. KEVORKIAN, J. D. C. Perturbation Methods in Applied Mathematics. Springer New York,142

NY, 2010.143

[8] KARNIADAKIS, G. E., KEVREKIDIS, I. G., LU, L., PERDIKARIS, P., WANG, S., AND144

YANG, L. Physics-informed machine learning. Nature Reviews Physics (2021).145

[9] KRISHNAPRIYAN, A., GHOLAMI, A., ZHE, S., KIRBY, R., AND MAHONEY, M. W. Char-146

acterizing possible failure modes in physics-informed neural networks. In Advances in Neural147

Information Processing Systems (2021), M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang,148

and J. W. Vaughan, Eds., vol. 34, Curran Associates, Inc., pp. 26548–26560.149

[10] LAGARIS, I., LIKAS, A., AND FOTIADIS, D. Artificial neural networks for solving ordinary150

and partial differential equations. IEEE Transactions on Neural Networks 9, 5 (1998), 987–151

1000.152

[11] LAWAL, Z. K., YASSIN, H., LAI, D. T. C., AND CHE IDRIS, A. Physics-informed neural153

network (pinn) evolution and beyond: A systematic literature review and bibliometric analysis.154

Big Data and Cognitive Computing 6, 4 (2022).155

[12] LIU, S., HUANG, X., AND PROTOPAPAS, P. Residual-based error bound for physics-informed156

neural networks, 2023.157

[13] LU, LU, E. A. Deepxde: A deep learning library for solving differential equations. CoRR158

(2019). https://arxiv.org/abs/1907.04502.159

[14] MATTHEAKIS, M., PROTOPAPAS, P., SONDAK, D., GIOVANNI, M. D., AND KAXIRAS, E.160

Physical symmetries embedded in neural networks, 2020.161

[15] NASCIMENTO, R. G., FRICKE, K., AND VIANA, F. A. A tutorial on solving ordinary dif-162

ferential equations using python and hybrid physics-informed neural network. Engineering163

Applications of Artificial Intelligence 96 (2020), 103996.164

[16] PELLEGRIN, R., BULLWINKEL, B., MATTHEAKIS, M., AND PROTOPAPAS, P. Transfer165

learning with physics-informed neural networks for efficient simulation of branched flows.166

arXiv preprint arXiv:2211.00214 (2022).167

[17] PROTOPAPAS, P., E. A. One-shot transfer learning of physics-informed neural networks. CoRR168

(2021). https://arxiv.org/abs/2110.11286.169

[18] ZOU, Z., AND KARNIADAKIS, G. E. L-hydra: Multi-head physics-informed neural networks,170

2023.171

5

https://arxiv.org/abs/1907.04502
https://arxiv.org/abs/2110.11286

Supplementary Material172

Appendix A173

The matrix B 12 is an m by m diagonal matrix in which the first m-1 diagonals are all 1 and the last174

diagonal is gm. Matrix A 12 is an m by m matrix whose second upper diagonal entries are all -1 and175

last row is [g0, g1, ..., gm−1].176

B =

[
Im−1×m−1 0⃗

0⃗T gm

]
, A =

0 −1 0 · · · · · · 0
0 0 −1 · · · · · · 0

0 0 0 −1 · · ·
...

...
...

... 0
. . . 0

0 0 0 · · · 0 −1
g0 g1 g2 · · · · · · gm−1

(12)

Appendix B177

Here we show the diagram of the general multi-head PINN structure. In our real implementation178

to solve Duffing Equation, the network has 4 layers of hidden layers with width 256, 256, 256, 512179

respectively. Hidden layers are all connected by tanh activation functions. The activations of the180

last hidden layer is reshaped into a matrix H ∈ R2×256. The matrix H is connected to 10 heads of181

dimension 2 by a linear transform.182

Figure 2: General Multihead PINN structure

To train the network, we used Adam optimizer for 5000 iterations with an initial learning rate of183

2 × 10−4. Note that we applied an exponential decay to the learning rate: the learning rate is184

multiplied by a factor of 0.96 each 100 iterations. 200 random data points are uniformly generated185

in the domain (0, 5) in each iteration as a sample set to compute the ODE loss. After 5000 iterations,186

the total loss (the sum of ODE loss and boundary loss) is reduced below 10−4.187

We ran our code on google colab using an Intel Xeon CPU with 2 vCPUs (virtual CPUs) and 51GB188

of RAM. Solving an unseen Duffing equations generally takes 0.5p+ 1 seconds, where p+ 1 is the189

number of linear ODE systems we reduce to using perturbation method and the additional 1 s is the190

time to compute and invert the matrix M .191

Appendix C192

To reduce the ODE Dx = f to first order, we introduce m−1 time-dependent variables: {x(i)}m−1
i=1193

to form a function u : R → Rm. u = [x, x(1), x(2), ..., x(m−1)]T . Dx = f is equivalent to:194

6

g0x+

m∑
i=1

gi
di

dti
x = f (13)

The introduced variables are defined as: x(1) = ẋ and x(i) = ẋ(i−1) for i = 2, 3, ...,m− 1. Expand195

these relations iteratively, we obtain di

dtix = x(i) for i = 1, 2, ...,m− 1, plug into 13, we obtain:196

g0x+

m−1∑
i=1

gix
(i) + gmẋ(m−1) = f (14)

The definitions of these m− 1 variables introduces another m− 1 constraints, together with 14, we197

recover the linear ODE system in 5.198

7

	Introduction
	Methodology
	Result
	Conclusion

