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ABSTRACT

A machine learning model, under the influence of observed or unobserved con-
founders in the training data, can learn spurious correlations and fail to gener-
alize when deployed. For image classifiers, augmenting a training dataset using
counterfactual examples has been empirically shown to break spurious correla-
tions. However, the counterfactual generation task itself becomes more difficult
as the level of confounding increases. Existing methods for counterfactual gen-
eration under confounding consider a fixed set of interventions (e.g., texture, ro-
tation) and are not flexible enough to capture diverse data-generating processes.
Given a causal generative process, we formally characterize the adverse effects
of confounding on any downstream tasks and show that the correlation between
generative factors (attributes) can be used to quantitatively measure confounding
between generative factors. To minimize such correlation, we propose a counter-
factual generation method that learns to modify the value of any attribute in an
image and generate new images given a set of observed attributes, even when the
dataset is highly confounded. These counterfactual images are then used to regu-
larize the downstream classifier such that the learned representations are the same
across various generative factors conditioned on the class label. Our method is
computationally efficient, simple to implement, and works well for any number
of generative factors and confounding variables. Our experimental results on both
synthetic (MNIST variants) and real-world (CelebA) datasets show the usefulness
of our approach.

1 INTRODUCTION

A confounder is a variable that causally influences two or more variables that are not necessarily
directly causally dependent (Pearl, 2001). Often, the presence of confounders in a data-generating
process is the reason for spurious correlations among variables in the observational data. The bias
caused by such confounders is inevitable in observational data, making it challenging to identify
invariant features representative of a target variable (Rothenhäusler et al., 2021; Meinshausen &
Bühlmann, 2015; Wang et al., 2022). For example, the demographic area an individual resides in
often confounds the race and perhaps the level of education that individual receives. Using such
observational data, if the goal is to predict an individual’s salary, a machine learning model may
exploit the spurious correlation between education and race even though those two variables should
ideally be treated as independent variables. Removing the effects of confounding in trained machine
learning models has shown to be helpful in various applications such as zero or few-shot learning,
disentanglement, domain generalization, counterfactual generation, algorithmic fairness, healthcare,
etc. (Suter et al., 2019; Kilbertus et al., 2020; Atzmon et al., 2020; Zhao et al., 2020; Yue et al., 2021;
Sauer & Geiger, 2021; Goel et al., 2021; Dash et al., 2022; Reddy et al., 2022; Dinga et al., 2020).

In observational data, confounding may be observed or unobserved and can pose various challenges
in learning models depending on the task. For example, disentangling spuriously correlated features
using generative modeling when there are confounders is challenging (Sauer & Geiger, 2021; Reddy
et al., 2022; Funke et al., 2022). As stated earlier, a classifier may rely on non-causal features to
make predictions in the presence of confounders (Schölkopf et al., 2021). Recent years have seen
a few efforts to handle the spurious correlations caused by confounding effects in observational
data (Träuble et al., 2021; Sauer & Geiger, 2021; Goel et al., 2021; Reddy et al., 2022). However,
these methods either make strong assumptions on the underlying causal generative process or require
strong supervision. In this paper, we study the adversarial effect of confounding in observational data
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on a classifier’s performance and propose a mechanism to marginalize such effects when performing
data augmentation using counterfactual data. Counterfactual data generation provides a mechanism
to address such issues arising from confounding and building robust learning models without the
additional task of building complex generative models.

The causal generative processes considered throughout this paper are shown in Figure 1(a). We
assume that a set of generative factors (attributes) Z1, Z2, . . . , Zn (e.g., background, shape, texture)
and a label Y (e.g., cow) cause a real-world observation X (e.g., an image of a cow in a particular
background) through an unknown causal mechanism g (Peters et al., 2017b). To study the effects
of confounding, we consider Y,Z1, Z2, . . . , Zn to be confounded by a set of confounding variables
C1, . . . , Cm (e.g., certain breeds of cows appear only in certain shapes or colors and appear only in
certain countries). Such causal generative processes have been considered earlier for other kinds of
tasks such as disentanglement Suter et al. (2019); Von Kügelgen et al. (2021); Reddy et al. (2022).
The presence of confounding variables results in spurious correlations among generative factors in
the observed data, whose effect we aim to remove using counterfactual data augmentation.

Figure 1: (a) causal data generating process con-
sidered in this paper (CONIC = Ours); (b) causal
data generating process considered in CGN (Sauer
& Geiger, 2021).

A related recent effort by (Sauer & Geiger,
2021) proposes Counterfactual Generative Net-
works (CGN) to address this problem using
a data augmentation approach. This work as-
sumes each image to be composed of three
Independent Causal Mechanisms (ICMs) (Pe-
ters et al., 2017a) responsible for three fixed
factors of variations: shape, texture, and back-
ground (as represented by Z1, Z2, and Z3 in
Figure 1(b). This work then trains a generative
model that learns three ICMs for shape, texture,
and background separately, and combines them
in a deterministic fashion to generate observa-
tions. Once the ICMs are learned, sampling im-
ages by making interventions to these mecha-
nisms give counterfactual data that can be used along with training data to improve classification
results. However, fixing the architecture to specific number and types of mechanisms (shape, tex-
ture, background) is not generalizable, and may not directly be applicable to settings where the
number of underlying generative factors is unknown. It is also computationally expensive to train
different generative models for each aspect of an image such as texture, shape or background.

In this work, we begin with quantifying confounding in observational data that is generated by an
underlying causal graph (more general than considered by CGN) of the form shown in Figure 1(a).
We then provide a counterfactual data augmentation methodology called CONIC (COunterfactual
geNeratIon under Confounding). We hypothesize that the counterfactual images generated using the
proposed CONIC method provide a mechanism to marginalize the causal mechanisms responsible
for spurious correlations (i.e., causal arrows from Ci to Zj for some i, j). We take a generative mod-
eling approach and propose a neural network architecture based on conditional CycleGAN (Zhu
et al., 2017) to generate counterfactual images. The proposed architecture improves CycleGAN’s
ability to generate quality counterfactual images under confounded data by adding additional con-
trastive losses to distinguish between fixed and modified features, while learning the cross domain
translations. To demonstrate the usefulness of such counterfactual images, we consider classification
as a downstream task and study the performance of various models on unconfounded test set. Our
key contributions include:
• We formally quantify confounding in causal generative processes of the form in Fig 1(a), and

study the relationship between correlation and confounding between any pair of generative factors.
• We present a counterfactual data augmentation methodology to generate counterfactual instances

of observed data, that can work even under highly confounded data (∼ 95% confounding) and
provides a mechanism to marginalize the causal mechanisms responsible for confounding.

• We modify conditional CycleGAN to improve the quality of generated counterfactuals. Our
method is computationally efficient and easy to implement.

• Following previous work, we perform extensive experiments on well-known benchmarks – three
MNIST variants and CelebA datasets – to showcase the usefulness of our proposed methodology
in improving the accuracy of a downstream classifier.
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2 RELATED WORK

Counterfactual Inference: (Pearl, 2009), in his seminal text on causality, provided a three-step pro-
cedure for generation of a counterfactual data instance, given an observed instance: (i) Abduction:
abduct/recover the values of exogenous noise variables; (ii) Action: perform the required interven-
tion; and (iii) Prediction: generate the counterfactual instance. One however needs access to the
underlying structural causal model (SCM) to perform the above steps for counterfactual genera-
tion. Since real-world data do not come with an underlying SCM, many recent efforts have focused
on modeling the underlying causal mechanisms generating data under various assumptions. These
methods then perform the required intervention on specific variables in the learned model to generate
counterfactual instances that can be used for various downstream tasks such as classification, fair-
ness, explanations etc. (Kusner et al., 2017; Joo & Kärkkäinen, 2020; Denton et al., 2019; Zmigrod
et al., 2019; Pitis et al., 2020; Yoon et al., 2018; Bica et al., 2020; Pawlowski et al., 2020).

Generating Counterfactuals by Learning ICMs: In a more recent effort, assuming any real-world
image is generated with three independent causal mechanisms for shape, texture, background, and
a composition mechanism of the first three, (Sauer & Geiger, 2021) developed Counterfactual Gen-
erative Networks (CGN) that generate counterfactual images of a given image. CGN trains three
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014b) to learn shape, texture, back-
ground mechanisms and combine these three mechanisms using a composition mechanism g as
g(shape, texture, background) = shape⊙ texture+(1− shape)⊙ background where ⊙ is the
Hadamard product. Each of these independent mechanisms is given an input of noise vector u and
a label y specific to that independent mechanism while training. Once the independent mechanisms
are trained, counterfactual images are generated by sampling a label and a noise vector correspond-
ing to each mechanism and then feeding the input to CGN. Finally, a classifier is trained with both
original and counterfactual images to achieve better test time accuracy, showing the usefulness of
CGN. However, such deterministic nature of the architecture is not generalizable to the case where
the number of underlying generative factors are unknown and it is computationally infeasible to train
generative models for specific aspect of an image such as texture/background.

Disentanglement and Data Augmentation: The spurious correlations among generative factors
have been considered in disentanglement (Funke et al., 2022; von Kügelgen et al., 2021). The gen-
eral idea in these efforts is to separate the causal predictive features from non-causal/spurious pre-
dictive features to predict an outcome. Our goal is different from disentanglement, and we focus on
the performance of a downstream classifier instead of separating the sources of generative factors.
Traditional data augmentation methods such as rotation, scaling, corruption, etc. (Hendrycks et al.,
2020; Devries & Taylor, 2017; Zhang et al., 2018; Yun et al., 2019) do not consider the causal gen-
erative process and hence they can not remove the confounding in the images via data augmentation
(e.g., color and shape of an object can not be separated using simple augmentations). We hence
focus on counterfactual data augmentations that is focused on marginalizing the confounding effect
caused by confounders.

A similar effort to our paper is by (Goel et al., 2021) who use CycleGAN to generate counterfactual
data points. However, they focus on the performance of a subgroup (a subset of data with specific
properties) which is different from our goal of controlling confounding in the entire dataset. Another
recent work by (Wang et al., 2022) considers spurious correlations among generative factors and
uses CycleGAN to generate counterfactual images. Compared to these efforts, rather than using
CycleGAN directly, we propose a CycleGAN-based architecture that is optimized for controlled
generation using contrastive losses.

Applications of Counterfactuals: Augmenting the training data with appropriate counterfactual
data has shown to be helpful in many applications ranging from vision to natural language tasks (Joo
& Kärkkäinen, 2020; Lample et al., 2017; Kusner et al., 2017; Kaushik et al., 2019; Dash et al.,
2022). (Joo & Kärkkäinen, 2020) identified existing biases in computer vision APIs deployed in
the real world by Amazon, Google, IBM, and Clarifai by looking at the differences made by those
APIs on counterfactual images that differ by protected/sensitive attributes (e.g., race and gender).
Using locally independent causal mechanisms, (Pitis et al., 2020) augmented training data with
counterfactual data points in a model-free reinforcement learning setting. Here, the idea is to use
any two factual trajectories of an episode and combine the two trajectories at a particular point
in time to generate the counterfactual data point, which will then be added to the replay buffer.
Independently factored samples are essential to get plausible and realistic counterfactual instances.
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3 INFORMATION THEORETIC MEASURE OF CONFOUNDING

Background and Problem Formulation: Let {Z1, Z2, . . . , Zn} be a set of random variables denot-
ing the generative factors of an observed data point X , and Y be the label of the observation X . Each
generative factor Zi (e.g., color) can take on a value form a discrete set of values {z1i , . . . , zdi } (e.g.,
red, green etc.). Let the set S = {Y,Z1, . . . , Zn} generates N real-world observations {Xi}Ni=1
through an unknown causal mechanism g. Each Xi can be thought of as an observation generated
using the causal mechanism g with certain intervention on the variables in the set S. Variables in S
may potentially be confounded by a set of confounders C = {C1, . . . , Cm} that denote real-world
confounding such as selection bias. Let D be the dataset of real-world observations along with cor-
responding values taken by {Y,Z1, . . . , Zn}. Causal graph in Figure 1(a) shows the general form
of this setting. From a causal effect perspective, each variable in S has a direct causal influence on
the observation X (e.g., the causal edge Zi → X) and also has non-causal influence on X via the
confounding variables C1, . . . , Cm (e.g., Zi ← Cj → Zk → X for some Cj and Zk). These paths
via the confounding variables, in which there is an incoming arrow to the variables in S, are also
referred to as backdoor paths (Pearl, 2001). Due to the presence of backdoor paths, we may observe
spurious correlations among the variables in S in the observational data D.

In any downstream application whereD is used to train a model (e.g., classification, disentanglement
etc.), it is desirable to minimize or remove the effect of confounding variable to ensure that a model
is not exploiting the spurious correlations in the data to arrive at a decision. In this paper, we present
a method to remove the effect of such confounding variables using counterfactual data augmenta-
tion. We start by studying the relationship between the amount of confounding and the correlation
between any pair of generative factors in causal processes of the form shown in Figure 1(a).
Definition 3.1. No Confounding (Pearl, 2009). In a causal directed acyclic graph (DAG) G =
(V, E), where V denotes the set of variables and E denotes the set of directed edges denoting the
direction of causal influence among the variables in V , an ordered pair (Zi, Zj);Zi, Zj ∈ V is
unconfounded if and only if p(Zi = zi|do(Zj = zj)) = p(Zi = zi|Zj = zj),∀zi, zj . Where
do(Zi = zi) denotes an intervention to the variable Zi with the value zi. This definition can also be
extended to disjoint sets of random variables.

Definition 3.1 provides the notion of no confounding, however, to quantify the notion of confound-
ing between a pair of variables, we consider the following definition that relates the interventional
distribution p(Zi|do(Zj)) and the conditional distribution p(Zi|Zj).
Definition 3.2. (Directed Information (Raginsky, 2011; Wieczorek & Roth, 2019)). In a causal
directed acyclic graph (DAG) G = (V, E), where V denotes the set of variables and E denotes the
set of directed edges denoting the direction of causal influence among the variables in V , the directed
information from a variable Zi ∈ V to another variable Zj ∈ V is denoted by I(Zi → Zj). It is
defined as follows.

I(Zi → Zj) := DKL(p(Zi|Zj)||p(Zi|do(Zj))|p(Zj)) := Ep(Zi,Zj) log
p(Zi|Zj)

p(Zi|do(Zj))
(1)

Using Definitions 3.1 and 3.2, it is easy to see that the variables Zi and Zj are unconfounded if
and only if I(Zj → Zi) = 0. Non zero directed information I(Zj → Zi) entails that, p(Zi|Zj) ̸=
p(Zi|do(Zj)) and hence the presence of confounding (if there is no confounder, p(Zi|Zj) should be
equal to p(Zi|do(Zj))). Also, it is important to note that the directed information is not symmetric
(i.e., I(Zi → Zj) ̸= I(Zj → Zi)) (Jiao et al., 2013). We use this fact in defining the measure
of confounding below. Since we need to quantify the notion of confounding (as opposed to no
confounding), we use directed information to quantify confounding as defined below.
Definition 3.3. (An Information Theoretic Measure of Confounding.) In a causal directed acyclic
graph (DAG) G = (V, E), where V denotes the set of variables and E denotes the set of directed
edges denoting the direction of causal influence among the variables in V , the amount of confound-
ing between a pair of variables Zi ∈ V and Zj ∈ V is equal to I(Zi → Zj) + I(Zj → Zi).

Since directed information is not symmetric, we define the measure of confounding to include the
directed information from one variable to the other for a given pair of variables Zi, Zj . We now
relate the quantity I(Zi → Zj) + I(Zj → Zi) with the correlation between generative factors so
that it is easy to quantify the amount of confounding in observational data. Before that, we present
the following proposition which will be used in the proof of the subsequent proposition.
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Proposition 3.1. In causal processes of the form 1(a), the interventional distribution p(Zi|do(Zj))
is same as the marginal distribution p(Zi).

Proof. In causal processes of the form 1(a), let C ′ denote the set of all confounding variables that
are part of some backdoor path from Zi to Zj . That is C ′ = {C|Zi ← C → Zj} for some i, j. Then
we can evaluate the quantity p(Zi|do(Zj)) as

p(Zi|do(Zj)) =
∑
C′

p(Zi|Zj , C
′)p(C ′) =

∑
C′

p(Zi|C ′)p(C ′) =
∑
C′

p(Zi, C
′) = p(Zi)

Where the first equality is because of the adjustment formula (Pearl, 2001) and the second equality
is because of the fact that Y is a collider in causal graph 1(a) and hence conditioned on C ′, Zi is
independent of Zj .

Proposition 3.2. For causal generative processes of the form 1(a), the correlation between a pair
of generative factors (Zi, Zj) is proportional to the amount of confounding between Zi and Zj .

Proof. Expanding the quantity I(Zi → Zj) + I(Zj → Zi), we get the following,

I(Zi → Zj) + I(Zj → Zi) = EZi,Zj

[
log(

p(Zi|Zj)

p(Zi|do(Zj))
)

]
+ EZi,Zj

[
log(

p(Zj |Zi)

p(Zj |do(Zi))
)

]
= EZi,Zj

[
log(

p(Zi|Zj)p(Zj |Zi)

p(Zi|do(Zj))p(Zj |do(Zi))
)

]
= EZi,Zj

[
log(

p(Zi|Zj)p(Zj |Zi)

p(Zi)p(Zj)
)

]
= EZi,Zj

[
log(

p(Zi|Zj)p(Zj)p(Zj |Zi)p(Zi)

p(Zi)p(Zj)p(Zi)p(Zj)
)

]
= EZi,Zj

[
log(

p(Zi, Zj)p(Zj , Zi)

p(Zi)2p(Zj)2
)

]
= 2× EZi,Zj

[
log(

p(Zi, Zj)

p(Zi)p(Zj)
)

]
= 2× I(Zi;Zj)

(2)

Where I(Zi;Zj) is the mutual information between Zi and Zj . The third equality is due to Propo-
sition 3.1. Since non-zero mutual information implies positive correlation, we see that the amount
of confounding between Zi and Zj is directly proportional to the correlation between Zi and Zj .
Hence, we use the correlation as a measure of confounding between generative factors in the causal
processes of the form 1(a).

Using the connection between the confounding and correlation in causal graph 1(a), our objective
is to generate counterfactual data such that the resultant dataset after augmentation looks similar to
the data obtained from a causal process where there is no confounding between generative factors
(i.e., no paths of the from Zi ← Cj → Zk;∀i, j, k). Equivalently, our counterfactual data generation
algorithm removes the spurious correlations between generative factors by marginalizing the causal
arrows Ci → Zj for some i, j. To understand how counterfactual instances break the correlations,
consider the following definition.
Definition 3.4. (Counterfactual (Pearl, 2009)). Given an observed instance X whose generative
factors Z1, . . . , Zi, . . . , Zn take on the values z1, . . . , zi, . . . , zn, the counterfactual instance X ′

of X (generated using the 3-step counterfactual inference procedure) differed from X w.r.t. the
generative factor Zi, is an instance whose generative factors Z1, . . . , Zi, . . . , Zn take on the val-
ues z1, . . . , z

′
i, . . . , zn. Here Zi’s value is changed from zi to z′i through an external intervention

do(Zi = z′i).

If we observe spurious correlation between two generative factors Zi, Zj when they take on the
values zi and zj respectively, generating counterfactual instances w.r.t. Zj with the intervention
do(Zj = z′j) and adding the counterfactual instances to original data breaks the correlation be-
tween Zi, Zj . With this idea, we now present our algorithm to generate counterfactual images in a
systematic manner remove confounding from observational data.

4 CONIC: METHODOLOGY
Our goal is to remove the effect of confounding in the observational data on a downstream task such
as classification. To this end, we propose a way to systematically generate counterfactual data that
can marginalize the effect of any confounding edge Ci → Zj in Fig. 1 (a) as explained below.
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Removing The Confounding Effect of Ci → Zj: In the causal graphs of the form 1(a), for paths
of the form Zj ← Ci → Zl, we call the edges Ci → Zj and Ci → Zl as confounding edges
since together, their existence is the reason for confounding in the data. Also, let (zpj , z

q
l ) is one

pair of attribute values taken by the variable pair (Zj , Zl) under extreme confounding (e.g., in the
training set of colored MNIST dataset, correlation coefficient of 0.99 between color and digit is
observed such that whenever color is red, digit is 7 etc.). To remove the effect of the confounding
edge Ci → Zj w.r.t. the another confounding edge Ci → Zl (recall that confounding between Zj , Zl

is present if and only if there exists a pair of causal arrows Ci → Zj and Ci → Zl for some i; due
to this reason we consider the confounding effect of the confounding edge Ci → Zj w.r.t. another
confounding edge Ci → Zl), we consider two subsets T1, T2 of the observational data D which
are constructed as follows. T1 consists of the set of instances for which Zj ̸= zpj and Zl = zql , T2

consists of the set of instances for which Zj = zpj and Zl = zql . The size of T1 is usually much
smaller than the size of T2 because of high correlation between Zj and Zl (e.g., there are more red
7’s than non-red 7’s).

Now, we learn a mappingM from the set T1 to the set T2 that changes the attribute Zj while fixing
the value of Zl at zql . That is, for any given instance X ∈ T1, for which Zj ̸= zpj ,M maps X to a
different instance X ′ in which the value of the generative factor Zj is changed to zpj (e.g.,M takes
red 9 as input and returns red 7 as output). This mappingM can be thought of as a function per-
forming the 3-step counterfactual inference: learning the underlying generative factors, performing
the intervention do(Zj = zpj ) and then generating the counterfactual instance X ′. Now, given an
instance X for which Zj ̸= zpj and Zl ̸= zql , usingM, we can generate counterfactual instance X ′

in which Zj = zpj and Zl ̸= zql . These counterfactual instances, when augmented with the original
observed dataset D, removes the effect of the confounding edge Ci → Zj w.r.t. the edge Ci → Zl.
That is, the counterfactual instances, when augmented with original data, breaks the correlation be-
tween Zj and Zl. This process can now be repeated systematically for each confounding edge to
generate counterfactual instances that remove the spurious correlations. Such augmented data points
which differ from original data points w.r.t. only one feature (e.g., if original image is a male with
blond hair color, augmented image is same male with black hair color) are referred as coupled sets
by (Goel et al., 2021), images generated by causal essential transformations by (Wang et al., 2022).
The overall procedure to generate counterfactual instances is summarized in Algorithm 1.

Figure 2: Architecture of the proposed modified conditional
CycleGAN to generate counterfactual images. Pre-trained
modules are shown in green color and target attribute is
shown in blue color. Note that, for simplicity, we only show
one pass of conditional CycleGAN (translation from T1 to
T2) in this figure.

Earlier works use CycleGAN to gen-
erate counterfactual images that dif-
fer from original image by a single
attribute/feature (Wang et al., 2022;
Goel et al., 2021). Given two do-
mains/sets of images that differ w.r.t.
only one generative factor Zj , a Cy-
cleGAN can learn to translate be-
tween the two domains by chang-
ing the attribute value of Zj . In this
case, one can think of CycleGAN as
a function performing the required in-
tervention Zj and generating coun-
terfactual instance without modeling
the underlying causal process. Con-
cretely, CycleGAN is an architecture
used to perform unsupervised domain
translation using unpaired images. In
a CycleGAN, a generator G1 first
transforms a given image X from a
domain/set T1 into X ′ so that X ′ appears to come from another domain/set T2 such that certain
features from input X are preserved in the output X ′. A discriminator DT2

then classifies whether
the translated image X ′ is original (i.e., sampled from T2) or fake (i.e., generated by G1). A second
generator G2 transforms the image X ′ back to original image X to ensure that G1 is using the con-
tents of X to generate X ′. The same procedure is repeated to translate images from domain T2 into
domain T1. The loss function of CycleGAN can be written as follows.

LCycleGAN = LGAN (G1, DT2 , X,X ′) + LGAN (G2, DT1 , X
′, X) + Lcycle(G1, G2) (3)
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Algorithm 1: Counterfactual Generation to Remove the Effect of Confounding Edge Ci → Zj

Result: Counterfactual images that remove the confounding effect caused by the edge Ci → Zj

Input: D = {Xi}Ni=1, Nodes = {Zl|Ci → Zj&Ci → Zl}
Initialize: cf images = []
for each Zl ∈ Nodes do
T1 = {X ∈ D|Zj ̸= zpj&Zl = zql } \* divide data into two domains using attribute values * \
T2 = {X ∈ D|Zj = zpj&Zl = zql }
M = conditional CycleGAN(T1, T2) \* LearnM to translate T1 to T2 * \
Factual Imgs = {X ∈ D|Zj ̸= zpj&Zl ̸= zql } \* Pick factual images from train set * \
CFs =M(Factual Imgs) \* Generate counterfactuals usingM * \
Append CFs to cf images

end for
return cf images

Where LGAN is simple Generative Adversarial Network (GAN) (Goodfellow et al., 2014a) loss
and Lcycle is cycle consistency loss measuring how well the output of G2 is matching with the
original input X . For example, Lcycle(G1, G2) = EX∼D[||G2(G1(X)) − X||1] can ensure that
G2(G1(X)) = X . In this work, to learn the mapping function M, we use conditional variant of
CycleGAN to leverage the supervision in terms of attribute values. For each generator, along with
input, we also feed a desired target attribute as shown in the Figure 2.

To improve the quality of counterfactual images generated by conditional CycleGAN under extreme
confounding, we propose a modification to conditional CycleGAN as detailed below. As discussed
earlier, X ′, the output of G1, can be thought of as a counterfactual image of X . When changing
the feature Zj of X , we keep the feature Zl fixed. That is, the representation for Zj in both X
and X ′ should be different and the representation for Zl in both X and X ′ should be same. To
ensure this, as shown in Figure 2, along with two generators G1, G2 and a discriminator DT2 that
are part of conditional CycleGAN, we add two pre-trained discriminators L1, L2 (shown in green
color in Fig. 2). L1 takes two images X,X ′ as input and returns high penalty if the representation
of Zj is similar in X,X ′ and small penalty otherwise. L2 takes two images X,X ′ as input and
returns high penalty if the representation of Zl is different and small penalty otherwise. Thus, our
overall objective to generate good quality counterfactual images is to train the modified conditional
CycleGAN by minimizing the following objective.

Lconic = LCycleGAN + α(−Lcontrastive(L1(X), L1(G1(X))) + Lcontrastive(L2(X), L2(G1(X)))

− Lcontrastive(L1(X
′), L1(G2(X

′))) + Lcontrastive(L2(X
′), L2(G2(X

′))))
(4)

Where α is a hyperparameter and Lcontrastive is the contrastive loss (Hadsell et al., 2006). For a
pair of images (X,X ′), Lcontrastive defined as follows.

Lcontrastive(X,X ′) = AD2 + (1−A)max(ϵ−D, 0)2 (5)

Where A = 1 if X,X ′ belong to same class (or have same attribute values), A = 0 if X,X ′ belong
to different classes (or have different attribute values). D is the distance between the representations
of X,X ′ (e.g., Euclidean distance). ϵ is the margin of error allowed between two representations
of the images of different classes. L1 and L2 are pre-trained models and the parameters of L1 and
L2 are fixed. That is, the loss values returned by Lcontrastive are only used to update the trainable
parameters of conditional CycleGAN.

A Downstream Task - Image Classification: To measure the goodness of counterfactual generation
under confounding using Algorithm 1, we consider the classification task on the unconfounded test
set as a downstream task. LetDaug = {(Xi, Yi)}Mi=1 be the dataset consisting of original data points
fromD and corresponding counterfactual data points. Usual empirical risk minimizer minimizes the
following loss over D.

Lerm := E(X,y)∼D[l(fθ(X), y)] (6)

Where l is cross entropy loss. Using Daug , we minimize the following loss Laug:

Laug := E(X,y)∼Daug [l(fθ(X), y)] (7)
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Model CM-MNIST DCM-MNIST WLM-MNIST CelebA
ERM 46.41± 0.81% 43.31 ± 2.30% 28.28 ± 0.70% 70.64 ± 6.93%
CGAN 41.86 ± 1.79% 30.66 ± 3.86% 17.50 ± 0.85% 70.99 ± 2.35%
CVAE 49.58 ± 1.50% 41.99 ± 1.10% 34.19 ± 1.58% 71.50 ± 1.82%
C-β-VAE 51.22 ± 1.00% 51.58 ± 2.36% 33.90 ± 1.87% 74.29 ± 0.65%
AugMix 47.36 ± 0.01% 44.85 ± 0.02% 26.30 ± 1.30% 71.93 ± 4.64%
CutMix 20.44 ± 1.22% 23.10 ± 2.98% 12.08 ± 1.59% 73.66 ± 0.76%
IRM 55.25 ± 0.89% 49.71 ± 0.71% 50.26 ± 0.48% 72.30 ± 2.71%
CGN 42.15 ± 3.89% 47.50 ± 2.18% 43.84 ± 0.25% 69.25 ± 0.29%

CONIC 65.57 ± 0.34% 92.41 ± 0.26% 77.72± 1.00% 79.56 ± 1.28%

Table 1: Test set accuracy results on MNIST variants and CelebA

To further improve the performance of a classifier using Daug , for each pair of images Xi, Xj we
minimize the contrastive loss Lcontrastive(Xi, Xj) on the logits in the final layer. Now, the final
objective to optimize for classification task is to minimize the following loss.

L = Laug + λE(Xi,Xj)∼(Daug×Daug)[Lcontrastive(Xi, Xj)] (8)

Where λ > 0 is a regularization hyperparameter.

5 EXPERIMENTS AND RESULTS

In this section, we present the experimental results on both synthetic (MNIST variants) and real
world (CelebA) datasets. Having access to the ground truth generative factors (i.e., Z1, . . . , Zn) of
images,we artificially create confounding in the training data and we leave test data to be uncon-
founded (i.e., no correlation among generative factors). We compare CONIC with various baselines
including traditional Empirical Risk Minimizer (ERM), Conditional GAN (CGAN) (Goodfellow
et al., 2014a), Conditional VAE (CVAE) (Kingma & Welling, 2013), Conditional-β-VAE (C-β-
VAE) (Higgins et al., 2017), AugMix (Hendrycks et al., 2020), CutMix (Yun et al., 2019), In-
variant Risk Minimization (IRM) (Arjovsky et al., 2019), and Counterfactual Generative Networks
(CGN) (Sauer & Geiger, 2021). To check the goodness of each of these methods, we check how
well the performance of the downstream classifier on the test set is improved using the augmented
images.

MNIST Variants: We construct the following three synthetic datasets based on MNIST
dataset (Lecun et al., 1998) and its colored, texture, and morpho (where the digit
thickness is controlled; Fig. 3) variants (Arjovsky et al., 2019; Castro et al., 2019;
Sauer & Geiger, 2021): (i) colored morpho MNIST (CM-MNIST), (ii) double col-
ored morpho MNIST (DCM-MNIST), and (iii) wildlife morpho MNIST (WLM-
MNIST). We consider extreme confounding among generative factors as explained below.

Figure 3: Left: sample thin morpho MNIST images and
corresponding labels. Right: Sample thick morpho MNIST
images and corresponding labels.

For the experimental results shown in
Table 1, in the training set of CM-
MNIST dataset, the correlation coeffi-
cient between digit label and digit color
r(label, color) is 0.95 and the digits from
0 to 4 are thin and digits from 5 to
9 are thick (see Figure 3). That is,
r(label, thin) = 1 if the digit is in
[0,1,2,3,4] else r(label, thick) = 1. In
the training set of DCM-MNIST dataset,
digit label, digit color, and background
color jointly take a fixed set of values 95%
of the time. That is, r(label, color) =
r(color, background) = r(label, background) = 0.95 and the digits from 0 to 4 are thin and
digits from 5 to 9 are thick. In the training set of WLM-MNIST dataset digit shape, digit texture,
and background texture jointly take a fixed set of attribute values 95% of the time and the digits
from 0 to 4 are thin and digits from 5 to 9 are thick.

8
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In all of these MNIST variants, test set images are unconfounded (e.g., in the test set of DCM-
MNIST, any digit can be thin or think, can be in any background color, can be in any foreground
color). In these experiments, under extreme confounding, our goal is to generate counterfactual im-
ages that break the confounding among generative factors. We evaluate models on this grounds by
training a classifier using the augmented data and testing it on the unconfounded test data. Table 1
shows the results in which CONIC outperforms all the baselines. See Appendix for comparison
of augmented images by various baselines. Coninc uses only 10000, 15000, 15000 counterfactual
images in CM-MNIST, DCM-MNIST, and WLM-MNIST experiments as augmented images re-
spectively to get improved performance. The regularization hyperparameter λ in Equation 8 set to
0.5 for all MNIST experiments.

CelebA: Unlike MNIST variants, CelebA (Liu et al., 2015) dataset implicitly contains confounding
(e.g., the percentage of males with blond hair is different from the percentage of females with blond
hair, in addition to the difference in the total number of males and females in the dataset). In this
experiment, we consider the performance of a classifier trained on the augmented data that predicts
hair color given an image. Our test set is the set of males with blond hair.

Figure 4: Top: CelebA original images of males with non-
blond hair color. Bottom: Counterfactual images of males
with blond hair generated using Algorithm 1

We train models on the train set
and test the performance on the set
of males with blond hair. Since the
number of males with blond hair
is very low in the dataset (approxi-
mately 4% of males have blond hair),
we show that the augmenting the train
set with only 10000 images of males
with blond hair improves the perfor-
mance over baselines (see Table 1)
whereas other baselines require more
than 50000 augmented images to get minor improvement over ERM. Given a male image with non-
blond hair, CONIC generates the counterfactual image with blond hair without changing the male
attribute (see Figure 4 for sample counterfactual images). We also note that the deterministic models
such as CGN fail when they are applied to a different task where the number and type of generative
factors are not fixed and are difficult to separate (e.g., CelebA). CGN results in table 1 are obtained
with only 1000 counterfactual images as augmented data points. When we increase the number of
counterfactual instances, performance of CGN reduces further.

Time Complexity Analysis: Apart from its simple methodology, CONIC brings

Dataset CONIC CGN

CM-MNIST 2.76 ± 0.19 103 ± 1.50
DCM-MNIST 2.22 ± 0.01 103 ± 2.04
WLM-MNIST 1.22 ± 0.01 111 ± 2.50

Table 2: Run time (in minutes) of CONIC
compared to CGN on MNIST variants

additional advantages in terms of computing time re-
quired to train the model that generates counterfac-
tual images. As shown in Table 2, the time required
to run our method to generate counterfactual images
w.r.t. a generative factor Zj is significantly less than
CGN that learns deterministic causal mechanisms as
discussed in Section 2. Even though we used Cycle-
GAN in this work, for the cases where the number
of generative factors are more, StarGAN (Choi et al.,
2018) can be used to minimize the time required to learn the mappings from one domain to another
domain (Wang et al., 2022; Goel et al., 2021).

6 CONCLUSIONS

We studied the adverse effects of confounding in observational data on the performance of a clas-
sifier. We showed the relationship between confounding and correlation in the causal processes
considered, and we proposed a methodology to remove the correlation between the target vari-
able and generative factors that works even when the dataset is highly confounded. Specifically, we
proposed a counterfactual data augmentation method that systematically removes the confounding
effect rather than addressing the confounding problem through random augmentations. Using the
generated counterfactuals leads to substantial increase in a downstream classifier’s accuracy. That
said, we observed that the counterfactual quality can still be improved, which will be interesting
future work.
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