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Abstract

Knowledge base (KB) embeddings have been001
shown to contain gender biases (Fisher et al.,002
2020b). In this paper, we study two questions003
regarding these biases: how to quantify them,004
and how to trace their origins in KB? Specif-005
ically, first, we develop two novel bias mea-006
sures respectively for a group of person enti-007
ties and an individual person entity. Evidence008
of their validity is observed by comparison009
with real-world census data. Second, we use010
the influence function to inspect the contribu-011
tion of each triple in KB to the overall group012
bias. To exemplify the potential applications013
of our study, we also present two strategies (by014
adding and removing KB triples) to mitigate015
gender biases in KB embeddings.016

1 Introduction017

Gender biases have been shown to have noticeable018

presences in a wide range of NLP models. For ex-019

ample, we can observe that the word embedding of020

“engineer” is closer to “he” than “she” (Bolukbasi021

et al., 2016), and co-reference systems associate022

“surgeon” more with masculine pronouns than with023

feminine ones (Rudinger et al., 2018). These biases024

are brought to our models from training data by our025

algorithms. Hence, besides revealing the existence026

of gender biases, it is important to quantify them027

and explain their origins in data.028

Knowledge bases (KB, e.g. Freebase, Bollacker029

et al., 2007) provide accessible organizations of030

human knowledge by the form of triples. Each031

triple consists of a head entity, a relation, and a032

tail entity. For example, the fact that Marie Curie033

is a chemist is represented as 〈Marie Curie,034

people.person.profession, chemist〉.035

KB embeddings encode these knowledge into036

dense vector representations. It is important to037

understand gender biases in KB embeddings for038

two major reasons. First, KB embeddings serve as039

sources of prior knowledge in many downstream040

NLP models (e.g. pre-trained language models, 041

Zhang et al., 2019). Clearly, if biases exist in KB 042

embeddings, they can easily propagate into these 043

models, and drive these models more biased. Sec- 044

ond, Garg et al. (2018) observe that word embed- 045

dings reflect biases in the training corpora, and 046

hence our society. Likewise, we suspect KB em- 047

beddings to reflect biases encoded in KBs, as also 048

suggested by Radstok et al. (2021). 049

In this paper, we propose two novel gender 050

bias measures for KB embeddings, one for a group 051

of person entities (group bias) and the other for 052

an individual person entity (individual bias). Fur- 053

thermore, with influence function (Koh and Liang, 054

2017), we explain the origins of group bias at 055

the fact triple level (i.e. how each triple in KB con- 056

tribute to group bias). In practice, we use TransE 057

(Bordes et al., 2013) to demonstrate our methods, 058

for its popularity and simplicity. However, most of 059

our study can generalize to other embedding algo- 060

rithms. Specifically, we make four contributions. 061

First, regarding a group of person entities with 062

a shared relation-tail pair (e.g. of the same occu- 063

pation), using correlation analyses, we measure 064

their gender biases by the differences between dif- 065

ferent genders’ link prediction errors. 066

Second, to understand the origins of the group 067

bias, we use influence function to find its highly- 068

influential triples in KB (i.e. triples that will change 069

the bias most if being removed during training). 070

Third, regarding a single person entity, using 071

counterfactual analyses, we develop a bias mea- 072

sure by measuring the change of the link prediction 073

error when we keep everything else the same and 074

perturb its gender. To avoid the unaffordable com- 075

putational cost of re-training, we propose to use 076

influence function to approximate the results. 077

Fourth, to further facilitate large-scale influence 078

function based analyses, we derive a closed-form 079

Hessian of TransE loss. We therefore improve the 080

time complexity of computing influence function 081
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from O(n) (stochastic approximation) to O(1).082

Moreover, in further analyses, we show that both083

group and individual bias correlate well with real-084

world biases. We argue that this suggests the valid-085

ity of our bias measures. We also show the accuracy086

of our group influence approximation by compar-087

ing with the brute-force strategy (i.e., leave-one-out088

re-training). Finally, to exemplify the applications089

of our study, we propose two simple de-biasing090

strategies, and demonstrate their effectiveness.091

2 Preliminaries092

Knowledge Base KB is a set of structural human093

knowledge represented by triples G = {〈h, r, t〉},094

where h is a head entity, r is a relation type, and095

t is a tail entity. Moreover, these triples form a096

graph with entities as nodes (denoted by E, where097

e ∈ E is an entity) and relations as edges. In098

this work, since we are particularly interested in099

person entities and their gender, we use 〈s, rg,m〉100

or 〈s, rg, f〉 to represent a person s with gender101

male or female, where rg is the relation of gender.1102

TransE The entities and relations in KB can be103

represented with embedding vectors. These em-104

beddings can serve in many NLP task as a source105

of prior knowledge. In this work, we focus on the106

widely used TransE (Bordes et al., 2013).107

Given a triple 〈h, r, t〉, the key idea of TransE is
to make vectors of h, r and t close to each other in
the sense of small link prediction error. Concretely,
TransE embeddings are learned by minimizing a
margin-based ranking loss,

L =
∑

〈h,r,t〉∈G
[m+ ψ(h, r, t)− ψ(h′, r, t′)]+,

where m is a scalar margin and ψ is a distance108

measure. The lower ψ(h, r, t) is, the more likely109

〈h, r, t〉 forms a fact. h′ and t′ are two randomly110

sampled entities. The triple 〈h′, r, t′〉 is called a111

negative sample because it is not in G. This loss112

function basically says that the dissimilarity of a113

positive triple 〈h, r, t〉 should be smaller than a114

negative sample by a margin m.2 Specifically, in115

1We operate with binary gender here, because it is naturally
encoded in KB.

2For simplicity, we consider only linear loss in the rest
of this paper. This is a feasible choice both empirically and
theoretically in our analyses. Empirically, in experiments we
observe that the link prediction errors of all triples converge
at a larger-than-margin value. Theoretically, when link pre-
diction errors converge at values smaller than the margin, the
gradients become 0. Its influence thus becomes 0, too.

this paper, we take ψ to be the L2-norm distance 116

ψ(h, r, t) = ‖h+ r− t‖22, where h, r, t ∈ Rd are 117

the embeddings of h, r and t, respectively. 118

In this paper, we use Freebase’s (Bollacker et al., 119

2007) subset FB5M (Bordes et al., 2015) as the KB 120

for training TransE embeddings and performing our 121

analyses. See Appendix A for detailed setup. 122

Influence Function (Cook and Weisberg, 1982; 123

Koh and Liang, 2017) provides an efficient way 124

to approximate each training sample’s impact on 125

correctly predicting a test sample. 126

Formally, let L(z, θ) be a convex loss function 127

on a training set {zi}ni=1 with parameters θ. The 128

empirical risk minimizer (ERM) is given by θ̂ = 129

argminθ
1
n

∑n
i=1 L(zi, θ). We are interested in a 130

training sample z’s impact on θ̂, with a weight of 131

ε. In this case, the new ERM is given by θ̂z,ε = 132

argminθ
1
n

∑n
i=1 L(zi, θ) + εL(z, θ) (Note that if 133

ε = − 1
n , it equals to removing z). 134

Influence function provides an efficient method
of approximating the difference between θ̂z,ε and
θ̂, without retraining the model,

θ̂z,ε − θ̂ ≈ εIup,param(z), (1)

where Iup,param(z)
def
= −H−1

θ̂
∇θL(z, θ̂). Hθ = 135

1
n

∑
i∇2L(zi, θ) is the Hessian matrix of the orig- 136

inal loss function. 137

Moreover, we are interested in the change of the
test performance, which is a function F of the test
sample ztest and the model parameter. By applying
chain rule to F and Equation 1, we can obtain the
difference of test performance. Formally,

F (θ̂z,ε, ztest)− F (θ̂, ztest) ≈ εIup,F (z, ztest),(2)

where Iup,F (z,ztest)
def
= ∇θF (ztest ,θ̂)>Iup,param(z). 138

Similarly, by splitting perturbation to first re-
move then add, we can also inspect the change of F
when a training sample z is perturbed to z′. Denote
θ−z,z′,ε = argminθ

1
n

∑n
i=1 L(zi, θ)− εL(z, θ) +

εL(z′, θ), and apply Equation 2 twice, we obtain

F (θ̂−z,z′,ε, ztest)− F (θ̂, ztest)

≈ εIup,F (z
′, ztest)− εIup,F (z, ztest)

def
=εIpert,F (z, z

′, ztest). (3)

Finally, besides single sample estimation, we are 139

also interested in inspecting the influence of remov- 140

ing a group of training samples. In these cases, 141

following Koh and Liang (2017), we simply add 142
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Occupation Bgr #male #female

soldier 8.65× 10−2 3110 78
engineer 6.26× 10−2 3761 113
singer 1.46× 10−2 17260 13155
animator −1.70× 10−2 1342 235
model −3.11× 10−2 1595 5876
nurse −9.77× 10−2 36 466

Table 1: A gallery of group bias (Bgr) results. #male
and #female are the numbers of male and female per-
son entities in KB with this occupation respectively.

up the influence of each removed training sample.143

However, as noted by Koh and Liang (2017), when144

handling a group of samples, although influence145

function approximation still holds a strong correla-146

tion with the ground truth change of the parameters,147

the estimation can suffer from larger errors.148

3 Gender Bias Measures149

In this section, based on link prediction, we take150

two views to quantify gender biases in KB embed-151

dings. First, using correlation analysis, we take152

a macro view to inspect gender biases of a group153

of person entities (e.g., how gender influences the154

overall occupation prediction accuracy of a group155

of engineer entities). Second, under the framework156

of counterfactual analysis, we take a micro view157

to assess gender biases of an individual person en-158

tity (e.g., how a specific engineer entity’s gender159

influences its occupation prediction accuracy). Af-160

terwards, we build connections between them.161

In this following, we adopt occupation predic-162

tion as our running example. The reason is two163

fold. First, among all of the relations connected164

with person entities, occupation relation has the165

highest coverage rate (i.e. connect with the most166

person entities). Second, most previous relevant167

studies also focus on occupation. Our choice makes168

it easier to perform comparative studies (Garg et al.,169

2018; Fisher et al., 2020b).170

3.1 Gender Biases of a Group171

To see whether a group of entities exhibits bias,
one direct solution is to deploy methods analog to
those applied to analyze bias in word embeddings
(Bolukbasi et al., 2016). For example, we can com-
pute a projection of the TransE embedding of an
occupation o to gender bearing entities (Bourli and
Pitoura, 2020),

Bwo = o>(m− f),

where m and f are the embeddings of male and 172

female entity respectively. However, we argue 173

that because TransE follows a different learning 174

regime (link prediction style objective instead of 175

the vector-similarity-based ones in word embed- 176

ding algorithms), directly adapt existing settings 177

may not fully explore the semantics of TransE em- 178

beddings. 179

Therefore, we propose to detect group bias based
on the correlation between genders and link pre-
diction errors. Intuitively, given an occupation o,
person entities of o’s privileged gender will link
to o with lower errors than those of unprivileged
gender. Formally, we define the group bias of o as

Bgr =
1
|F |
∑
s∈F

ψ(s, rp, o)− 1
|M |

∑
s∈M

ψ(s, rp, o),

where M and F are the sets of all male and female 180

person entities with o respectively, and rp is the 181

relation people.person.profession. The 182

higher Bgr is, the more o’s embedding is biased to- 183

wards male. Table 1 lists Bgr of some occupations, 184

as well as the gender frequency of this occupation 185

in KB. We make two observations. 186

First, we observe the existence of gender biases 187

in KB embeddings, and note their consistency with 188

real-world biases. For example, engineer and nurse 189

have more extreme bias scores respectively towards 190

male and female, while singer and animator have 191

more moderate ones (quantitative analyses in §4). 192

Second, although the gender ratio of person en- 193

tities has a great impact on Bgr, it is not the only 194

decisive factor. For example, animator has a gender 195

ratio of 5.7:1, but its Bgr is biased towards female. 196

Inspecting the Origins of Biases The second 197

observation motivates us to trace the origins of 198

biases. More concretely, in the context of KB: how 199

do different triples contribute to Bgr? To answer 200

this question, we apply influence function (Equa- 201

tion 2) with F = Bgr and observe how removing a 202

training triple changes the overall group bias score. 203

One appealing property of TransE is that we are 204

able to get a closed-form of the Hessian inverse 205

in Iup, param. Taking advantage of this, we can re- 206

duce the computation of Iup,Bgr to constant time 207

complexity (w.r.t. training set size), which is much 208

faster than the LiSSA algorithm (Agarwal et al., 209

2017) applied in (Koh and Liang, 2017) (O(n) to 210

get an approximation of the Hessian inverse). Con- 211

cretely, using basic calculus, we have the following 212

lemma (proof in the Appendix B). 213
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Figure 1: The relationship between different triples’
δzBgr (i.e. the change of group bias Bgr if we re-train
the KB embedding model without this triple) w.r.t. the
occupation of actor and their person entities’ attributes.
Gender information is shown by blue and orange points,
and node degrees is exhibited by grey points. We
can observe that triples with positive (negative) δzBgr
mostly contain person entities of female (male) gender.
Moreover, triples contain high degree person entities
likely to have close-to-zero δzBgr.

Lemma 1. Suppose that for a positive sample
〈h, r, t〉, we generate its corresponding negative
sample by randomly choosing h or t and corrupt-
ing it to a random entity in E, then the expectation
of Hessian (w.r.t. different random negative sam-
ples) of TransE is a diagonal matrix with entries

EHθ̂ =



e r

. . .
...

... 0

e · · · αeId
...

r · · · · · · 0

0
. . .


,

where αe = Ne − c, Id is the identity matrix of214

Rd×d, Ne is the frequency of triples containing215

entity e, and c = 2|G|/|E| is a constant.216

Remark 2. αe could be zero or negative, which217

breaks the positive definiteness of Hθ̂. Following218

Koh and Liang (2017), we add λI (λ > 0) to Hθ̂219

(i.e., αe ← αe + λ), which equals adding an L2220

regularization on parameters.221

Following Equation 2 (ε = −1/n), we can com-
pute the change of group bias (denoted by δzBgr)

after removing a training triple z = 〈h, r, t〉,3

δzBgr =
1

n
∇θB>gr

(
EH−1

θ̂
∇θL(z, θ̂)

)
.

A triple z with positive δzBgr means that re-training 222

without it will increase Bgr (i.e., towards “mascu- 223

line”) and vice versa. We note that due to the diag- 224

onal Hessian, z will have a non-zero influence iff it 225

is reachable from o in two hops (i.e., entities of z 226

take part in the computation of Bgr). In practice, we 227

calculate δzBgr of each triple in KB regarding Bgr 228

of each occupation, and make three observations. 229

First, regarding relations in KB, we find most 230

of the highly-influential triples (i.e. triples with 231

highest absolute δzBgr values) to be of the profes- 232

sion relation (i.e., rp) and its inverse4. For example, 233

regarding the occupation of singer, these two rela- 234

tions occupy 74% of the top 1% positive triples and 235

78% of the top 1% negative triples. It suggests that 236

compared with indirectly (i.e. two-hop) connected 237

triples, triples directly connect with an entity have 238

larger impact on it, which matches our intuitions. 239

Second, regarding gender, we find that most per- 240

son entities in triples with high positive δzBgr are 241

of female gender, and vice versa. Figure 1 take 242

the occupation of actor as an example to illustrate 243

this.5 This observation agrees with previous obser- 244

vation: triples with person entities of male gender 245

will drive the overall biases towards masculine, and 246

removing them will reverse this effect. 247

Third, regarding graph substructure, we find that 248

if a triple contains a high degree person entity, it 249

usually has a nearly zero δzBgr (i.e. has small im- 250

pact on other triples, see Figure 1), We suspect 251

the reason to be as follows: the more neighbors 252

an entity has, the more constraints its embedding 253

needs to put on others (by link prediction). It makes 254

the embedding less optimal to represent each con- 255

straint, and hence less influential to each triple. 256

3.2 Gender Biases of an Individual 257

Group-level correlation analyses offer us a coarse 258

portrayal of biases. However, we are also interested 259

in finer characterization (for each group member). 260

Moreover, because of the complexity of KB struc- 261

tures, there very likely exist confounders between 262

3More precisely, z is a pair of triples (〈h, r, t〉, 〈h′, r, t′〉).
To handle randomness of negative samples, we adopt two
strategies in our implementation. First, we freeze negative
samples in training epochs to get consistent results. Second,
we use EHθ̂ to replace random Hθ̂ in influence functions.

4i.e. people.person.people_with_this_profession
5Similar patterns are observed in other occupations for

both this observation and the next one.
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Figure 2: Distributions of Bin. A positive value means
the corresponding person entity’s embedding is more
biased towards male and vice versa. We can observe
that for each occupation they are tightly distributed and
consistent with real-world stereotypes.

person entities and occupations (e.g. if two person263

entities of the same occupation are connected them-264

selves, they are confounders of each other). In this265

case, correlation does not imply causation. In266

other words, gender differences are not guaranteed267

to be the only cause of Bgr. Therefore, in this sec-268

tion, we study a further question: can we perform269

analyses on a specific person entity and measure270

its gender biases based on how its gender change271

its link prediction error (i.e. causality)?272

By virtue of the structured knowledge in KB, we
are able to conduct this individual-level analysis
in a tractable way. The key idea is, what if we
keep everything else identical and perturb only
the gender? Intuitively, given an occupation o, if
flipping a person entity’s gender from female to
male will make it easier to connect the person with
o, o should be biased towards male. Formally, we
define individual bias Bin of 〈s, rp, o〉 as

Bin = ψ(s, rp, o)|f − ψ(s, rp, o)|m,

where ψ|f (ψ|m) is ψ computed on a version of273

TransE where s’s gender is female (male). A high274

Bin means that, it is more difficult to predict s’s275

occupation if s is female. We would thus argue that276

〈s, rp, o〉 is biased toward male. Because we keep277

all other attributes identical, this counterfactual def-278

inition naturally offers us causation.279

The practical issue of Bin is the computation of280

the counterfactual: for each triple, this definition281

naively requires the re-training of the entire embed-282

ding model. This is intractable for large-scale anal-283

yses because of the extremely high computational284

cost. To avoid this issue, here we apply influence285

−0.001 0.000 0.001 0.002
Bin

−0.2

0.0

0.2

0.4

B′ in

journalist

Figure 3: Relationship between Bin and B′in. We ob-
serve that these two bias measures align well. Never-
theless, there exist a substantial amount of data points
with positive Bin but near zero B′in.

function (Equation 3) for a fast evaluation of Bin. 286

Indeed, together with Lemma 1, we can obtain a 287

closed-form Bin (proof in Appendix B). 288

Corollary 3. Assume that for each person entity
s, we have the same negative sample for 〈s, rp, f〉
and 〈s, rp,m〉, then

Bin ≈ −
4

αsn
(s+ rp − o)> (m− f) . (4)

289

One important observation of Bin is that it is 290

essentially a mixture of local graph substructure in- 291

formation (αs, the degree of s in KB), and a projec- 292

tion of link prediction residual (s+rp−o) onto the 293

gender difference (m− f , a reminiscence of word 294

embedding gender subspace proposed in Bolukbasi 295

et al., 2016). Compared with directly projecting o 296

onto Bwo (a hard generalization of word embedding 297

bias measure), the link prediction residual is more 298

compatible with the TransE learning objective. 299

Figure 2 exhibits the distributions of Bin of sev- 300

eral occupations. We make two observations from 301

the results. First, although there are a number of 302

outliers, most Bin are tightly distributed. It shows 303

the consistency of the individual bias scores among 304

different triples. Second, the bias scores correlate 305

well with real-world gender stereotypes: engineer 306

and lawyer lean more towards male, while model 307

and actor lean more towards female. It suggests 308

the validity of Bin in describing biases in KB. 309

Differences with Fisher et al. (2020b) A simi- 310

lar definition of bias is proposed in Fisher et al. 311

(2020b) (denoted as B′in). B′in is defined as fol- 312

lows: After training the embedding model to con- 313

vergence, they perform one extra step of updating 314
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on the gender direction. The bias score is defined315

as the difference of the link prediction error before316

and after the update. We would like to note here317

the two aspects of differences between Bin and B′in.318

First, compared with B′in, Bin offers better in-319

terpretability. Concretely, in our definition, we320

approximate a purely counterfactual setting: flip321

the gender and re-train the entire model until con-322

vergence. In contrast, Fisher et al. (2020b) update323

the embedding after the convergence, which may324

not happen in real-world training.325

Second, Bin takes more structural information
into account. Under the case of TransE, B′in can be
expanded into the form (details in Appendix C),

B′in ∝ −(s+ rp − o)>(m− f). (5)

Compared with Equation 5, Equation 4 (approxi-326

mation of Bin) has an additional graph information327

term αs. Intuitively, αs serves as a normalization328

term: entities with more connections will be less329

affected by a single perturbation. In other words,330

the more connections an entity has, the less its link331

prediction error relies on one of them (i.e. gender).332

Again, take the occupation of journalist as an333

example, we show the relationship between Bin334

and B′in in Figure 3 and make two observations.335

First, there is a strong correlation between these336

two bias measures: points are approximately dis-337

tributed along the diagonal. Second, we notice that338

there exist a substantial number of data points with339

positive B′in but near zero Bin. This suggests that340

the normalization term αs can prevent the over-341

estimation of biases of person entities with many342

connections. This also corresponds to our third ob-343

servation regarding the distribution of δzBgr (§3.1).344

3.3 Connections between Bgr and Bin345

After obtaining Bin, a remaining question is: given346

a group of person entities, how to use individual347

biases to characterize the group’s overall bias?348

The rationale behind is that, if we can accurately349

measure biases of individuals, we should be able350

to aggregate them to represent biases of the group.351

A natural solution to this question is to directly352

average Bin. However, in practice, we find that353

the averaged Bin of all occupations align poorly354

with Bgr (r ≈ 0.27). We suspect this inconsistency355

to originate from the mismatches among different356

person entities’ contexts in KB (i.e. different con-357

nections and local substructure). In other words,358

without controlling backdoor variables, simply av-359

eraging associations observed from each individual360

vanilla weighted
r p r p

B′in 0.470 .003 0.590 < 10−4

Bin 0.480 .002 0.610 < 10−4

Bgr − − 0.668 < 10−5

Table 2: Alignment results with census data. Vanilla
and weighted denotes for vanilla averaging and
weighted averaging, respectively. Note that because
Bgr is not applicable for averaging strategies, we sim-
ply put its score into weighted. Significant p values
(< .01) are shown in bold font.

may not be suitable for representing association of 361

the entire group (Pennington et al., 2014).6 362

In our analyses, because of the complexity of 363

KB, it is infeasible to control all factors. Never- 364

theless, we can control some of them to alleviate 365

this issue. Here, we focus on controlling gender for 366

two reasons. First, occupations in KB are often of 367

very imbalanced gender ratios (e.g., nurse connects 368

with more female entities than male entities). At 369

the same time, different genders usually have dif- 370

ferent distributions of Bin: female entities mainly 371

have above zero Bin, while Bin of male entities 372

distributes in a wider range.7 Therefore, control- 373

ling gender should be able to effectively reduce the 374

context mismatch. Second, because we treat the 375

average link prediction error of each gender equally 376

in group bias (§3.1), controlling gender can help us 377

to obtain more comparable results. 378

We thus propose to average scores of each gen-
der separately to calibrate this mismatch (weighted
averaging instead of vanilla averaging). Formally,

1
|F |
∑
s∈F
Bin(〈s, rp, o〉) + 1

|M |
∑
s∈M
Bin(〈s, rp, o〉).

We find weighted averaging align much better with 379

Bgr (r ≈ 0.50) and real-world biases (§4.1). 380

4 In-depth Analyses 381

4.1 Comparison with Real-world Biases 382

One method of inspecting the validity of a bias mea- 383

sure is to analyze its connection with real-world 384

statistics (e.g. gender ratios of occupations). How- 385

ever, most existing datasets fail to meet our needs, 386

because they have different occupation categories 387

with FB5M (e.g. Garg et al., 2018; Du et al., 2019). 388

6Other examples of this phenomenon include Simpson’s
Paradox and ecological fallacy.

7We show Bin distribution of the occupation of journalist
as an example in Figure 5 in Appendix D, and find similar
trends in other occupations.
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Accordingly, we take the following steps to build389

a new dataset. First, we collect the gender distri-390

butions of occupations in 2018 by the U.S. census391

data (Ruggles et al., 2020). Afterwards, we cal-392

culate their log proportions8 and manually pair up393

them with occupations in KB.9 We use it as our394

validation data and refer it as census data.395

Table 2 shows the Pearson’s r values and p val-396

ues between census data and all five bias measures397

described in §3 (Bgr, Bin and B′in with both averag-398

ing strategies). Our observations are two fold.399

First, both Bgr and Bin exhibit significant corre-400

lations (especially under weighted averaging) with401

census data (p < .01), indicating their validity of402

measuring gender biases in KB embeddings.403

Second, individual bias measures (Bin and B′in)404

align better with census data under weight averag-405

ing than under vanilla averaging. This backs up our406

suspicion regarding contexts’ mismatches, as well407

as our solution strategy (weighted averaging).408

4.2 Accuracy of the Group Influence409

Approximation410

Because influence function of a group of training411

samples is only an approximation of the test per-412

formance change after re-training, one may con-413

cern the accuracy of this influence approximation.414

Therefore, in this section, we perform a validation415

experiment to address this concern. Specifically,416

for each occupation o, we first remove k triples417

with highest δzBgr, then re-train the TransE model418

from scratch, and calculate their Bgr regarding o.419

Afterwards, we compare the sum of δzBgr with the420

ground truth changes in Bgr. In practice, we take421

ks to be [500, 1000, 1500, ..., 5000].422

We show a few randomly selected occupations’423

alignment results as examples in Figure 4a-4c. We424

observe strong correlations between our approxi-425

mation and the ground truth (r ≈ 1 for all occupa-426

tions). It suggests the accuracy of our approxima-427

tion (some additional results in Appendix D).428

4.3 Application: De-biasing KB Embeddings429

Our study can broadly benefit relevant future re-430

search regarding societal biases and KB. As exam-431

ples of such applications, based on our study in432

§3.1, we explore two strategies for de-biasing KB433

embeddings. We note that these two strategies aim434

to exemplify the potential impacts of our previous435

8log-prop = p
1−p , where p is % of men in occupation.

9We apply a many to many pairing to match the occupation
categories in census data and KB.

Occupation Bgr de-biased Bgr

architect 7.30× 10−2 4.32× 10−2

physicist 2.16× 10−2 0.22× 10−2

actor −7.67× 10−2 −6.53× 10−2

nurse −9.80× 10−2 −9.16× 10−2

Table 3: Examples of Bgr before and after adding
dummy entities. We observe that this strategy can effec-
tively mitigate bias, although the extent differs among
different occupations.

study, and are not necessarily the best method to 436

de-bias KB embeddings.10 Instead, we highly en- 437

courage future studies to build better de-biasing 438

methods on the basis of our findings. 439

Strategy 1: De-biasing by Adding In Table 1, 440

we observe that gender ratio has a substantial im- 441

pact on Bgr. Based on this, one natural idea of de- 442

biasing is to balance gender proportion by adding 443

dummy triples. The advantage of this strategy is 444

that, because we do not remove triples, we are able 445

to keep the information of the original KB intact. 446

Specifically, suppose an occupation o with M 447

male entities and F female entities, where M is 448

larger than F . To alleviate bias, we create c(M − 449

F )11 dummy entities and connect them with only 450

the female gender and o. Afterwards, we re-train 451

TransE and observe the Bgr regarding o. 452

Table 3 lists a few examples of the results. We 453

find that this de-biasing strategy overall works well. 454

It is worth noting that the changes of biases of 455

some occupations (e.g. nurse) are smaller, which 456

matches our previous observation: gender ratio is 457

not the only decisive factor of Bgr. 458

Strategy 2: De-biasing by Removing Based 459

on our study on the origins of biases, and in- 460

spired by the validation results in §4.2, we inves- 461

tigate a straightforward de-biasing strategy: we 462

simply remove the top k most influential triples 463

based on the approximation of influence func- 464

tion (IF-REMOVE). Again, we take ks to be 465

[500, 1000, 1500, ..., 5000]. Besides, for the pur- 466

pose of controlling variable, we compare it to 467

a naive baseline method, in which we randomly 468

delete triples of all entities (Random-REMOVE). 469

Figure 4d-4f exhibit some examples of the re- 470

sults. We observe that comparing with the baseline, 471

10For example, Fisher et al. (2020a) and Arduini et al.
(2020) adopt adversarial loss for de-biasing KB embeddings.

11In practice, we set c to be 0.5, and limit the number of
total added entities of each occupation to be < 10000.
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Figure 4: 4a - 4c are the correlations between approximated influence and ground truth results (obtained by remov-
ing triples and re-training). The titles list the Pearson’s r and significance p values of the alignments. 4d-4f show
the Bgr of influence-function-based triples removing (IF-REMOVE) and random removing (Random-REMOVE).
Compared with Random-REMOVE, IF-REMOVE reduces Bgr much more significantly.

where Bgr rarely change, this de-biasing strategy472

is able to mitigate biases very effectively. Several473

additional examples are included in Appendix D.474

5 Related Work475

Various measures have been proposed to quantify476

gender biases in word embeddings (Bolukbasi et al.,477

2016; Caliskan et al., 2017; Swinger et al., 2019).478

Many of them are based on vector similarity (e.g.479

cosine similarity) between words, which matches480

the training objective of most word embedding al-481

gorithms (maximize the vector similarities between482

similar words, Mikolov et al., 2013; Pennington483

et al., 2014). Moreover, Garg et al. (2018) sug-484

gest that word embedding can reflect biases in the485

training corpora and hence our society.486

Recently, a few studies have explored gender487

biases in KBs and their embeddings. A pioneer488

study by Janowicz et al. (2018) analyze the poten-489

tial bias issues in KBs from both data and schema490

viewpoints. Fisher et al. (2020b) propose a KB em-491

bedding bias measure based on the change of link492

prediction error after a one-step update towards493

male. Furthermore, Fisher et al. (2020a) and Ar-494

duini et al. (2020) propose to use adversarial train-495

ing objective to mitigate biases in KB embeddings.496

Influence function is a commonly used technique497

in robust statistics (Cook and Weisberg, 1982). Koh498

and Liang (2017) first use it to inspect each training 499

point’s influence on a neural network’s prediction. 500

A following study by Koh et al. (2019) investigate 501

the accuracy of influence function on measuring 502

the effect of removing a group of training samples, 503

and show that its approximation has strong correla- 504

tions with actual effects. Afterwards, Brunet et al. 505

(2019) apply influence function as a differential 506

bias measure to study gender bias in word embed- 507

ding. Moreover, Pezeshkpour et al. (2019) use an 508

simplification of influence function to perform ad- 509

versarial attack on link prediction. 510

6 Conclusion 511

In this paper, we study the gender biases in KB 512

embeddings. First, we develop two bias measures 513

to quantify biases: one from the group level and 514

the other from the individual level. Evidence of 515

their validity are obtained in comparison with real- 516

world biases. Second, to understand the origins 517

of biases, we adopt influence functions for triple- 518

level analysis and develop an efficient method for 519

fast evaluation. The accuracy of this method is 520

validated by comparing our approximation with 521

group-truth changes after re-training. Moreover, as 522

examples of the potential applications of our find- 523

ings, we propose two de-biasing strategies for KB 524

embeddings and obtain promising performance. 525
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Ethical Statement526

Intended Usage Our work intend to provide in-527

sights of gender biases in KB and its embeddings,528

on how to measure these biases and how to trace529

the origins of them. Moreover, as discussed in §4.3,530

future studies can build better de-biasing methods531

based on our findings. In this way, our framework532

can contribute to the development of models that533

are less biased and hence potentially less harmful.534

Limitations In this study, we use gender infor-535

mation already encoded in KB to measure and trace536

gender biases. However, because only binary gen-537

der is recorded in the KB that we use (Freebase),538

we take a narrow view of binary gender in our anal-539

yses. We hope to see more future studies on gender540

biases in KB embeddings that consider non-binary541

gender identities as well as intersectional identities.542
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A Experimental Setup695

Choices of datasets Freebase (Bollacker et al.,696

2007) is one of the largest publicly available KBs,697

with over three billion triples covering a wide range698

of real-world facts. Due to time and hardware con-699

straints, in this work, we use its subset FB5M (Bor-700

des et al., 2015) as the KB for our experiments. In701

practice, we find that although FB5M only holds702

0.5% of the triples from Freebase, it covers a much703

higher percentage of human type entities and their704

related facts. Regarding professions, we select ones705

with ≥ 400 person entities and contain both male706

and female in FB5M.707

TransE training We use DGL-KE 0.1.0 (Zheng708

et al., 2020) to train TransE embeddings. To get709

deterministic results across different training runs,710

we fix the random seeds and restricted the training711

process to run under a single thread.712

Due to that TransE involves negative sampling in713

its training objective, we save all negative samples714

from the final epoch to make sure that influence715

function can output accurate results.12 Regarding716

hyper-parameters, we use a number of dimensions717

of 200, a batch size of 8000, and stop training after718

120000 updating steps. It takes approximately 40719

minutes with a single GTX TITAN X GPU.720

B Proofs721

Proof of Lemma 1. For an entity e and a relation722

r, it is easy to see that ∇e,rL = 0 (i.e., Hθ̂ is723

diagonal) and ∇2
rL = 0. To compute ∇2

eL, we724

consider two types of training samples: e appears in725

positive triples 〈h, r, t〉 and e is sampled to corrupt726

a positive sample.727

For the first case, when e = h, we have 0.5
probability of lefting h in its negative sample, so

E∇2
eL=

∑
h=e

(
∇2

eϕ(h, r, t)− E∇2
eϕ(h

′, r, t′)
)

=
∑
h=e

2Id − (0.5× 2 + 0.5× 0) Id

=
∑
h=e

Id

Similarly, when e = t, E∇2
eL =

∑
t=e Id. Adding728

them up, we have E∇2
eL = NeId when e appears729

in positive samples.730

12To ensure the results from influence function are accurate,
we only use the negative samples when the embeddings are
close to convergence.

For the second case, since we corrupt a triple
by uniformly sampling all entities, e is picked out
with probability 1/|E|, so

E∇2
eL= −E

∑
〈h,r,t〉∈G

∇2
eϕ(h

′, r, t′)

= −
∑

〈h,r,t〉∈G

2

|E|Id = −
2|G|
|E| Id.

Putting them together, we get the conclusion. 731

Proof of Corollary 3. We consider the case that the
TransE parameter θ̂ is learned with 〈s, rp, f〉 in KB
and we perturb it to 〈s, rp,m〉. The other direction
is identical. Following Equation 3 by setting F =
ψ(s, rp, o), z = 〈s, rg, f〉, z′ = 〈s, rg,m〉 and
ε = −1/n, we have

Bin ≈ 1
n∇θψ(s, rp, o)>H−1θ̂(

∇θL(z, θ̂)−∇θL(z′, θ̂)
)
.

Let d1 = 2(s+ rp − o), ∇θψ(s, rp, o)> equals

[ s rp o

.. d>1 ... d>1 ... −d>1 ..
]
.

On the other side, ∇θL(z, θ̂) − ∇θL(z′, θ̂) =
∇θψ(s, rg, f)−∇θψ(s, rg,m) by cancelling neg-
ative samples. Let d2 = 2(f −m), d3 = 2(h +
rg − f) and d4 = 2(h + rg −m), its transpose
equals

[ s rg f m

... d>2 ... d>2 ... d>3 ... −d>4 ...
]
.

Finally, by approximating Hθ̂ using EHθ̂ (Lemma 732

1), we see that only the product of di and d2 is 733

non-zero. 734

C Derivations of Fisher et al. (2020b) 735

To measure gender biases in KB embeddings,
Fisher et al. (2020b) first define a function m to
be the difference between link prediction error of
male and female entity,

m(θ) = ψ(s, rg,m)− ψ(s, rg, f).
Afterwards, the bias score of a person entity re-
garding an occupation o is the change of the link
prediction error after updating the entity embed-
ding using the gradient of m (i.e., updating s to
make m larger),

B′in = ψ(s′, rp, o)− ψ(s, rp, o),
where s′= s+ η

dm

ds
.
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For L2 TransE loss, the gradient equals to

dm

ds
= 2(s+ rg − f)− 2(s+ rg −m)

= 2(f −m).

Therefore,

B′in = ψ(s′, rp, o)− ψ(s, rp, o)
= (s+ 2η(f −m) + rp − o)2 − (s+ rp − o)2

= (s+ rp − o)2 + 4η(s+ rp − o)>(m− f)

+ 4η2(m− f)2 − (s+ rp − o)2

= k + 4η(s+ rp − o)>(m− f)

Omitting the constant part k = 4η2(m − f)2, we736

can find that B′in is essentially the projection of link737

prediction error s+ rp − o onto gender subspace738

m− f , which is similar to Bin.739

D Additional Results740
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Figure 5: Different distributions of Bin between male
and female entities. We can observe that the Bin distri-
butions of different genders are clearly different.
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Figure 6: Figure 6a-6c exhibit additional results for the validation of group influence approximation. Figure 6d-6f
show additional results for de-biasing KB embeddings by removing highly influential triples.
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