Prompting for Power:

Benchmarking Large

Language Models for Low-Power RTL Design
Generation

Abstract—As system complexity and energy constraints
tighten in modern SoC designs, there is a growing need for
early-stage RTL generation tools that incorporate power
optimization techniques. This paper presents a compre-
hensive evaluation of large language models (LLMs) on
their ability to generate power-aware Verilog RTL. We
systematically assess multiple LLMs for their effectiveness
in synthesizing RTL that reflects key low-power design
strategies such as clock gating, operand isolation, and logic
restructuring. To facilitate this evaluation, we introduce a
curated dataset containing: (1) baseline RTL modules, (2)
corresponding low-power optimized versions, (3) associated
power-aware prompt templates, and (4) LLM-generated
RTL completions. We analyze the generated RTL using
industry-standard EDA tools to measure functional cor-
rectness, power consumption, and the presence of power-
aware constructs. Our results highlight notable differences
in model performance, reveal the impact of prompt design
on power optimization effectiveness, and demonstrate that
prompt-guided LLMs can partially replicate human-like
power-aware design intent. This work provides the first
systematic study of LLMs for low-power RTL generation
and offers a dataset and methodology to benchmark future
research in this direction.

Index Terms—Low Power Design, Verilog, RTL Generation,
Large Language Models, Hardware Design Automation,
Prompt Engineering

I. INTRODUCTION

The emergence of Large Language Models (LLMs)
such as GPT-40, Claude, and Mistral has significantly
reshaped the landscape of automated code generation and
design automation. Trained on vast corpora that com-
bine general text with extensive software and hardware
codebases, these models have demonstrated increasingly
sophisticated capabilities in program synthesis, debug-
ging, and architecture-level reasoning. Recent advances
have extended these capabilities to hardware design,
where LLMs are being actively investigated as poten-
tial accelerators for automating hardware description
language (HDL) synthesis, verification, and Electronic
Design Automation (EDA) workflows. Early applications
of LLMs in hardware design have primarily focused on
generating functionally correct Register-Transfer Level
(RTL) code from high-level natural language specifi-
cations, creating testbenches, and assisting in verifica-
tion flows. However, as hardware design complexity

increases, especially in modern System-on-Chip (SoC)
architectures, functional correctness alone is no longer
sufficient. Power optimization has become a first-order
concern, particularly for edge computing, mobile Al
accelerators, and energy-constrained IoT devices where
dynamic and leakage power must be minimized at early
design stages. Traditional RTL-level power optimization
relies heavily on expert design engineers who manu-
ally integrate low-power design intent into code using
techniques such as clock gating, operand isolation, logic
restructuring, and fine-grained control logic insertion.
These optimizations, while effective, are labor-intensive,
error-prone, and require extensive domain expertise. Au-
tomating the incorporation of these power-aware design
patterns at the RTL generation stage would provide
significant productivity gains and enable rapid design-
space exploration. Our paper investigates a fundamental
question: Can Large Language Models automatically
generate power-aware RTL that incorporates industry-
standard low-power optimization techniques? We pro-
pose a systematic benchmarking framework that eval-
uates multiple LLMs’ ability to synthesize Verilog de-
signs with built-in power optimizations. Specifically, we
target three widely adopted low-power design strategies:
(i) clock gating, (ii) operand isolation, and (iii) logic
restructuring — techniques that directly target switching
activity reduction.

Our contributions are as follows:

o« We present the first comprehensive evaluation of
multiple LLMs (GPT-40, Claude Sonnet 4, and
Mistral) for generating low-power Verilog RTL,
focusing on key low-power techniques such as clock
gating, operand isolation, and logic restructuring.

e We construct a fully automated benchmarking
framework that combines a curated dataset of base-
line RTL designs, multiple low-power prompt tem-
plates, LLM-generated variants, and commercial
EDA tools to extract post-synthesis power metrics.

o We develop a hierarchical dataset format that stores
the full generation workflow, capturing prompt sen-
sitivity, model output variations, synthesis reports,
and extracted power consumption across models

TABLE I
REPRESENTATIVE LLM-BASED RESEARCH IN HARDWARE DESIGN, VERIFICATION, AND EDA AUTOMATION (INCLUDING THIS WORK)

Work I Domain I Output Format [LLM Generation Quality | User Input
Digital Design
Prompting for Power (This Work) | Digital (Low-Power RTL) RTL (Verilog) Power-aware optimized RTL Prompted RTL transformation
HDLGen |1 Digital Verilog/VHDL + Testbenches Mostly complete (needs review) Project type + design goal
AutoChip |2} Digital RTL (Verilog) Complete (error-corrected) NL module specification
Chip-Chat |3] Processor RTL Verilog Complete (fabricated chip) Conversational natural language
RTLLM [4 Digital RTL (Verilog) Benchmark quality Design instructions (natural language)
SpecLLM |[5] Digital Spec Generation HDL Specs/Descriptions Draft-level specs NL + structural constraints
MEV-LLM |6 Digital RTL (Verilog) Complete (multi-expert model) Textual design description
ChipGPT [7] Digital RTL (Verilog) Complete (PPA optimized) NL spec + PPA goals
GPT4AIGChip [8] Accelerator Design RTL + HLS Partial templates Accelerator templates
TPU-Gen [9 Digital (AI Hardware) RTL (Verilog systolic array) Complete High-level architecture spec
C2HLSC |10] HLS Design HLS C Code Complete (generates RTL) C code + streaming pattern
VeriGen [11] Digital RTL (Verilog) Usable with review Function description
Verification and Security
LLM4DV [12 Verification Verilog Testbenches Complete NL specification + design intent
UVLLM |13] Verification (UVM) SystemVerilog + UVM Testbenches Complete (error-free) RTL design + UVM testbench
AssertLLM [14] Formal Verification SystemVerilog Assertions Usable with review Bug/design specification
VeriMind [15 Verification RTL (Verilog) Usable with review Design requirements
LLM-IFT |16] Security Verification Info Flow Reports Complete RTL netlist
MARVEL |[17] RTL Security Analysis Vulnerability Reports Usable with review RTL + security policies
EDA A ion / Flow Assist:
ChatEDA [18 EDA Flow Assist Tool Scripts Complete (RTL to GDSII) NL spec + RTL
ChipNeMo [19] EDA Debug Assist Tool Scripts + Bug Reports Complete Task queries/tool commands
LLMCompass [20] EDA Estimation PPA Reports Accurate estimates Hardware graph + parameters
HDLCoRe [21 HDL Repair Verilog/VHDL Usable with review HDL task descriptions
JARVIS [22] EDA Task Automation Tool Scripts Complete NL task descriptions
EDAId [23 EDA Task Automation Tool Scripts Complete NL task descriptions

and design variants.

e We conduct a detailed quantitative and qualita-
tive comparison across models, analyzing power
savings, functional correctness, structural construct
presence, and the influence of prompt engineering.

o« We propose a reusable and scalable evaluation
framework and dataset for future research at the
intersection of Al-assisted hardware generation and
low-power design automation.

This work extends the scope of recent LLM-for-EDA
studies, many of which have focused on functional
RTL synthesis, verification testbench generation, and
EDA scripting automation [7]], [T1]], [13]], [23]|. Table [I
summarizes the state-of-the-art LLM applications across
multiple hardware domains. As seen, despite recent
breakthroughs, low-power RTL generation remains
largely unexplored. Our work aims to fill this critical
gap and provide the first systematic dataset, methodol-
ogy, and experimental analysis for benchmarking power-
aware RTL synthesis via LLMs.

II. BACKGROUND AND RELATED WORK

A. Low-Power RTL Design Principles

Reducing switching activity at the RTL level has long
been a crucial step in optimizing dynamic and leakage
power for ASIC and SoC designs. Key low-power coding
patterns integrated at RTL include:

¢ Clock Gating: Disabling the clock for idle blocks
to avoid unnecessary toggling.

e Operand Isolation: Preventing data-path transi-
tions when downstream computations are disabled.

o Logic Restructuring: Simplifying boolean expres-
sions and minimizing unnecessary reconvergent
fanouts.

« FSM Optimization: Encoding states to minimize
state-switching activity.

o Data Gating Resource Sharing: Reducing bus
toggling and functional unit activation for unused
operations.

o Multibit FF Merging: Consolidating registers to
minimize clock tree power.

In our study, we focus on the most critical RTL-
accessible constructs: clock gating, operand isolation,
and logic restructuring — which together account for
a large fraction of early-stage dynamic power savings
opportunities.

B. LLMs for Hardware Code Synthesis and EDA Au-
tomation

LLM-driven code generation has rapidly expanded into
hardware design domains. Table [I] summarizes recent
research on LLMs applied to RTL synthesis, testbench
generation, verification, and EDA tooling. Approaches
such as ChipGPT [7], VeriGen [11], UVLLM [13]], and
HDLGen [/1]] have shown promising results for function-
ally correct RTL generation. Others, like ChatEDA [18]
and HDLCoRe [21], automate EDA script generation,
while works like MARVEL [17]] apply LLMs to RTL
security verification.

However, these efforts have predominantly focused on
functional synthesis and EDA scripting, rather than
physical design or power-aware coding practices. To
our knowledge, there is no existing large-scale dataset

LLM Low Power RTL Dataset Generation Framework

JSON Dataset

",

"design_name": “accu",
"baseline": {
"rtl_file": “accu.sv",
"power_report": “accu_power.rpt"

b

Claudev2

"low_power_versions": [

{
"version": "lpv1",
“prompt™: "prompt_lpv1.txt",
"models": {
"gpt-4o0™: {
"generated_rtl": “accu_lpvl_gptdo.sv",

"power_report": “accu_lpvl_gptdo_power.rpt"
h
“claude": {... },
"mistral7b": {... }

F—————————————————————‘

. } J

Fig. 1. Overview of Dataset Generation and Storage Framework: The framework takes as input a collection of baseline RTL designs. Each
RTL file is processed by multiple Large Language Models (LLMs)—like GPT-40, Claude—using a set of power-aware prompt templates (e.g.,
Prompt 1 to Prompt N). For each prompt and model combination, the LLM generates a corresponding low-power optimized RTL variant. Each
generated RTL version is subsequently synthesized and analyzed using industry-standard EDA tools to extract its power report. The entire dataset
is stored in a structured hierarchical JSON format (right), which maps each design to its baseline RTL and power report, and further organizes
low-power versions by prompt, model, generated RTL file, and corresponding power report. This organization enables systematic benchmarking
across designs, LLMs, and low-power prompt strategies, facilitating both quantitative power reduction analysis and qualitative evaluation of

inserted low-power design constructs.

or benchmarking framework that directly targets LLM-
generated low-power RTL synthesis — making this
work the first systematic exploration of LLMs’ ability
to insert optimization-aware hardware design intent into
generated RTL code.

III. PROPOSED FRAMEWORK AND DATASET
GENERATION

In this work, we propose a comprehensive frame-
work that systematically combines dataset construction,
prompt engineering, model inference, and automated
synthesis and power analysis for benchmarking LLM-
generated low-power RTL designs. Our goal is to es-
tablish a controlled environment where the ability of
LLMs to replicate classical low-power hardware design
techniques can be rigorously evaluated. The overall
framework consists of four tightly integrated stages:
dataset generation, prompt formulation, LLM-driven
RTL synthesis, and automated EDA-based evaluation.
The dataset generation phase forms the foundation of
the entire framework. We curated a collection of 120
RTL designs, covering diverse digital hardware modules
that span arithmetic, datapath, control, and memory-
centric circuits. Each design includes both a baseline
functional RTL implementation, written without specific
low-power optimizations, and one or more manually
crafted reference versions incorporating classical low-

power techniques. These manually optimized variants
apply methods such as fine-grained clock gating, operand
isolation, and combinational logic restructuring. The
designs themselves encompass widely-used hardware
blocks such as accumulators, arithmetic logic units
(ALUs), fixed-point adders and subtractors, pipelined
multipliers, dividers, and processing elements. For each
design instance, we systematically constructed a family
of carefully engineered prompt templates. These prompts
serve to guide the LLMs toward generating hardware
descriptions that reflect both functional correctness and
low-power awareness. Two primary classes of prompts
were employed: baseline prompts that instruct the model
to simply generate synthesizable RTL for a given func-
tional block, and low-power prompts that explicitly re-
quest power-optimized versions using techniques such
as clock gating and operand isolation. Each design was
paired with eight prompt templates, varying across zero-
shot, one-shot, and few-shot learning configurations to
assess the models’ responsiveness to different levels of
design context. To enable direct interaction with LLMs,
we selected three state-of-the-art language models for
RTL generation: GPT-40 (OpenAl), Claude Sonnet 4
(Anthropic), and Mistral-7B. For every design, all eight
prompts were applied to each model, producing a total of
24 generated RTL versions per design. Each model was
instructed to maintain strict adherence to the pre-defined

Baseline Logic: Expected Isolation:

Operand Isolation)i Baseline Logic: FSM
.

(always @(posedge clk or negedge rst_n)

assign isolated_in = (enable) ? data_in: 0;

always @(posedge clk or negedge rst_n) begin

LLM Output:

b.egln wire [7:0] result = isolated_in + other_in; i (Irst_n)
if (Irst_n)
reg_out<=0;

else

elseif (enable)
reg_out<=data_in;
end

wire [7:0] result = (enable) ? (data_in + other_in): 0;

state <= next_state;

{
I
i
I
|
{
| state <= IDLE;
i
i
i
: end
|

LLM Output with Faulty Clock Gating:

~

p d Logic Restructuring:

Faulty LLM Output:

(wire gated_clk;
assign gated_clk = clk & ~enable; // Incorrect polarity|

always @(posedge gated_clk or negedge rst_n) assign out=(a &b)| d;

//since (a &b) already covers (a &b &c)

// FSM no longer transitionswhen enable is low:
always @(posedge clk or negedge rst_n) begin

begin

if('rst_n) LLM Output:

state <= IDLE;

reg out<=0;
else
reg_out<=data_in;
end

assigntmp1=a &b;
assigntmp2=a &b &c;

assign out=tmp3|d;

assign tmp3=tmp1|tmp2; // Redundantrecomputatior]

else if (enable)
state <= next_state;
end

i
T
T
T
T
T
1
| iferstn)
1
1
1
1
1
1
1
1
{
1
i

N -

Fig. 2. Representative LLM failure cases in low-power RTL synthesis: polarity inversion in clock gating, incorrect operand isolation logic,

redundant logic restructuring, and FSM enable handling errors.

module name and interface specifications to ensure con-
sistency in downstream evaluation. Furthermore, mod-
els were explicitly asked to apply power-aware design
techniques wherever possible, allowing us to directly
evaluate their capability to internalize and apply such
optimization strategies. The generated RTL outputs were
then passed into a fully automated synthesis and power
analysis flow. We leveraged Synopsys Design Compiler
for logic synthesis, targeting the SAED 14nm standard
cell library, and Synopsys PrimeTime PX for post-
synthesis power estimation. This automated EDA flow
handles module detection, constraint application, elabo-
ration, synthesis, and power extraction entirely in batch
mode, ensuring consistent and scalable evaluation across
the entire dataset. Alongside the LLM-generated designs,
the baseline and manually optimized versions were also
processed through the same flow, providing a ground
truth reference for power consumption. All generated
results, including synthesized netlists, power reports, and
metadata, were stored in a structured hierarchical JSON
format to facilitate reproducible experiments and effi-
cient downstream analysis. The dataset schema captures
the design name, LLM model used, specific prompt
applied, the corresponding RTL source code, and de-
tailed power consumption metrics. This allows for both
quantitative analysis of power reduction percentages and
qualitative inspection of structural RTL changes induced
by each model. Importantly, the prompts were crafted
to emphasize key low-power optimization patterns com-
monly applied by expert ASIC designers. In particular,
clock gating was prioritized to prevent unnecessary regis-
ter toggling under idle conditions, operand isolation was
applied to suppress switching activity on arithmetic units
when input operands are not active, and logic restruc-
turing was used to simplify datapath computations and
reduce switching depth. The presence or absence of such
constructs in the LLM-generated designs was explicitly

analyzed alongside their power measurements, providing
a holistic view of both functional and structural design
quality. Overall, this integrated framework enables a
rigorous, scalable, and reproducible evaluation of LLMs
in their ability to synthesize high-quality low-power
RTL hardware, bridging both functional correctness and
power-aware design principles. This dataset serves as
the basis for both quantitative evaluation and qualitative
inspection of the generated RTL designs.

IV. RESULTS

We present the results of our comprehensive benchmark-
ing study, guided by the research questions (RQ1-RQ8).
The evaluation incorporates both quantitative and struc-
tural analyses, leveraging commercial EDA tools and
systematic prompt variation.

A. Evaluation Framework

To rigorously assess the low-power RTL generation ca-
pabilities of different LLMs, we adopt a comprehensive
set of evaluation metrics that jointly capture functional
correctness, power efficiency, and structural design qual-

ity:

1) Functional Correctness: All LLM-generated RTL
outputs are simulated using Synopsys VCS to ver-
ify that they maintain identical functional behavior
compared to the original baseline designs. Self-
checking System Verilog testbenches are employed
to validate correctness across representative input
scenarios.

2) Power Reduction: Power consumption is esti-
mated from post-synthesis reports generated by
Synopsys Design Compiler. Both dynamic and
static power values are extracted from synthesized
netlists using default activity assumptions. While
these reports may not capture full post-layout par-
asitics, they offer a consistent baseline to compare

TABLE II
LLM-GENERATED LOW-POWER RTL: TOTAL POWER (MW) ACROSS VARIANTS

Design Baseline GPT-4o Claude
(mW) Ipv2 Ipv3 Ipv4 Ipv2 Ipv3 Ipv4

accu 0.108 0.108 0.1067 0.1067 | 0.1519 0.1996 0.1996
alu 0.8278 0.7311 0.7599 0.8008 | 1.6254 0.5497 0.4613
div_16bit 1.3618 0.3015 03015 03015 | 09142 09142 09142
fixed_point_adder 0.494 0.6968 0.6968 0.6968 | 1.5128 0.494 0.494
fixed_point_subtractor 0.3024 0.6189 0.6189 0.6189 | 0.8272 0.7013 1.2547
pe 2.2278 2.8563 2.8563 2.8563 | 3.0819 3.0819 3.0819

relative power savings across LLM variants and
prompts.

Prompt Sensitivity: Multiple prompt formulations
are tested for each design. The outputs are an-
alyzed to assess the stability and reproducibility
of LLM behavior under different prompt wordings
and levels of specificity.

Cross-Model Performance Comparison: For
each design, we evaluate and compare GPT-4o,
and Claude (other models can be added by chang-
ing the config file in our framework), using iden-
tical inputs and prompts to quantify differences
in model performance and consistency across the
low-power generation task.

3)

4)

B. RQI: Can LLMs generate syntactically valid Verilog
RTL with low-power constructs?

All three LLMs demonstrated strong capability in gen-
erating syntactically valid Verilog code that could be
successfully parsed, elaborated, and synthesized using
Synopsys Design Compiler. Generated modules con-
sistently adhered to proper port declarations, module
interfaces, and behavioral constructs. However, the ex-
tent to which power-aware design features (e.g., clock
gating, operand isolation) were incorporated varied no-
tably across models. GPT-4o consistently generated more
complete and correct low-power structures, successfully
inserting gated clocks, enable logic, and optimized com-
binational paths, while smaller models exhibited more
limited use of such constructs.

C. RQ2: To what extent is functional correctness pre-
served in LLM-generated RTL?

Functional correctness was evaluated using automated
simulation flows based on self-checking SystemVerilog
testbenches in Synopsys VCS. GPT-40 and Claude
achieved high rates of functional correctness across most
designs, reliably replicating the intended behaviors. In
contrast, Mistral-7B occasionally produced functionally
incorrect outputs, particularly for more complex arith-
metic or pipelined designs. Any RTL designs failing

functional validation were excluded from subsequent
power evaluation to ensure only correct implementations
were analyzed.

D. RQ3: How effective are LLMs in generating power-
efficient RTL?

Post-synthesis power analysis using Synopsys Prime-
Time PX revealed that LLMs can generate power-
optimized designs with meaningful reductions relative to
baseline implementations. GPT-40 consistently achieved
the highest power savings across designs, often ap-
proaching the efficiency of manually optimized RTL
variants. The power reduction was directly correlated
with correct insertion of clock gating, operand isolation,
and structural optimizations. Claude achieved modest
power improvements, while Mistral-7B showed minimal
reductions without strong prompt guidance.

E. RQ4: How do different LLMs compare across design
categories?

When comparing models across various design types
(arithmetic, control, datapath), GPT-40 demonstrated the
most consistent performance, maintaining both syntactic
and optimization quality even as design complexity in-
creased. Claude produced valid syntax but was generally
more conservative in applying complex optimizations.
Mistral-7B struggled on more complex designs and often
required highly specific prompt scaffolding to generate
any low-power constructs. Overall, model scale and
instruction-following ability played significant roles in
performance consistency.

F. RQ5: What structural patterns and optimizations do
LLMs apply?

Manual inspection of synthesized netlists and RTL
outputs revealed that GPT-4o0 frequently applied non-
trivial structural optimizations, including conditional
clock enables, datapath restructuring, and switching ac-
tivity reduction. Claude typically inserted basic clock
gating but was less consistent with operand isolation
and combinational restructuring. Mistral-7B occasion-
ally inserted operand enables but often failed to apply

optimizations systematically. These observations suggest
that while some models internalize standard low-power
design idioms, their depth of application remains model-
dependent.

G. RQ6: How sensitive are models to prompt engineer-
ing?

Prompt phrasing had a strong influence on model behav-
ior. Prompts that explicitly listed desired optimization
techniques (e.g., clock gating, operand isolation) led to
better results than generic requests for low-power RTL.
Few-shot examples embedded within prompts further
improved stability and optimization quality, especially
for GPT-40. Smaller models exhibited high sensitivity to
prompt wording, often defaulting to trivial completions
unless given highly structured guidance.

H. RQ7: What are common failure modes in LLM-
generated RTL?

Several recurring failure modes were observed across
models. These included redundant clock gating on non-
critical paths, incorrect enable logic that unintentionally
disabled state updates, omission of reset conditions,
and improper dataflow rewiring leading to logic loops.
Failure rates generally correlated with model size and
prompt complexity, with GPT-40 exhibiting fewer criti-
cal structural errors compared to Claude and Mistral-7B.

I. RQ8: Can commercial EDA tools support large-scale
evaluation of LLM-generated RTL?

The evaluation framework successfully integrated com-
mercial EDA tools, combining Synopsys Design Com-
piler for synthesis, VCS for functional verification, and
PrimeTime PX for power analysis into a fully automated
pipeline. This enabled scalable evaluation across hun-
dreds of generated RTL designs with consistent syn-
thesis, simulation, and power reporting, ensuring repro-
ducibility and reliability of both functional and power
measurements. The evaluation framework successfully
integrated commercial synthesis (Synopsys Design Com-
piler), simulation (Synopsys VCS), and power analysis
(PrimeTime PX) into a scalable automation pipeline.
This allowed large-scale evaluation across hundreds of
generated RTL designs with consistent metrics and
ensured reproducibility of both functional and power
evaluation results.

V. DISCUSSION

Our results highlight that LLMs can generate func-
tionally correct and partially power-optimized RTL but
still fall short of fully replacing expert design. Ex-
plicit prompt guidance, especially referencing clock gat-
ing and operand isolation, substantially improves low-
power RTL generation. GPT-40 shows strong ability
to apply structural optimizations, while smaller models

like Claude and Mistral-7B require heavily engineered
prompts to generalize low-power transformations. This
underscores the importance of both model capacity
and domain-specific prompt engineering. Failure patterns
were consistent across models, including incomplete
enables, redundant logic, missing resets, and incorrect
pipeline modifications. These issues illustrate the gap
between syntactic code generation and deeper design
intent reasoning. Importantly, our automated frame-
work—leveraging commercial EDA tools—enabled scal-
able evaluation of both functionality and power metrics.
While current evaluations focus on synthesis-level es-
timates, future work incorporating post-layout analysis
may reveal additional optimization gaps. Overall, while
LLMs show emerging promise, substantial expert vali-
dation and post-processing remain necessary to ensure
correctness and optimization intent.

VI. FUTURE RESEARCH DIRECTIONS

Our findings motivate several important directions for
advancing LLM-driven low-power RTL generation:

o Domain-Specific Fine-Tuning: Fine-tuning LLMs
on curated low-power RTL datasets could improve
stability and optimization quality.

o Formal Verification Integration: Incorporating
formal checks for gated clock correctness, enable
exclusivity, and state preservation can systemati-
cally detect subtle design errors.

o Reinforcement Learning with Simulation Feed-
back: Closed-loop optimization using simulation
and power feedback may guide LLMs toward more
efficient designs.

o Multi-Agent LLM Architectures: Partitioning de-
sign, verification, and optimization tasks across
specialized LLM agents may enhance design quality
while ensuring correctness.

« IMC and Mixed-Signal Extensions: Extending
LLM-driven approaches to In-Memory Computing
(IMC), mixed-signal, and analog domains presents
new challenges for hardware-aware generation.

VII. CONCLUSION

We present a benchmarking framework to evaluate LLMs
in low-power RTL design generation using curated
datasets, multi-prompt evaluations, and commercial EDA
tools. While large models like GPT-40 capture key low-
power design principles, their outputs remain sensitive
to prompt design and exhibit notable failure modes. Our
dataset, methodology, and automation framework offer
a foundation for future research in LLM-driven power-
aware hardware synthesis.

[1]

[3

=

[4

=

[5]

[6]

[7

—

[8

[t

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

F. Morgan, J. P. Byrne, A. Bupathi, R. George, A. Elahi,
F. Callaly, S. Kelly, and D. O’Loughlin, “Hdlgen-chatgpt case
study: Risc-v processor vhdl and verilog model-testbench and
eda project generation,” in Proceedings of the 34th International
Workshop on Rapid System Prototyping, 2023, pp. 1-7.

S. Thakur, J. Blocklove, H. Pearce, B. Tan, S. Garg, and R. Karri,
“Autochip: Automating hdl generation using 1lm feedback,” arXiv
preprint arXiv:2311.04887, 2023.

J. Blocklove, S. Garg, R. Karri, and H. Pearce, “Chip-chat:
Challenges and opportunities in conversational hardware design,”
in 2023 ACM/IEEE 5th Workshop on Machine Learning for CAD
(MLCAD). IEEE, 2023, pp. 1-6.

Y. Lu, S. Liu, Q. Zhang, and Z. Xie, “Rtllm: An open-source
benchmark for design rtl generation with large language model,”
in 2024 29th Asia and South Pacific Design Automation Confer-
ence (ASP-DAC). IEEE, 2024, pp. 722-727.

M. Li, W. Fang, Q. Zhang, and Z. Xie, “Specllm: Exploring
generation and review of vlsi design specification with large
language model,” arXiv preprint arXiv:2401.13266, 2024.

B. Nadimi and H. Zheng, “A multi-expert large language model
architecture for verilog code generation,” in 2024 [EEE LLM
Aided Design Workshop (LAD). 1EEE, 2024, pp. 1-5.

K. Chang, Y. Wang, H. Ren, M. Wang, S. Liang, Y. Han, H. Li,
and X. Li, “Chipgpt: How far are we from natural language
hardware design,” arXiv preprint arXiv:2305.14019, 2023.

Y. Fu, Y. Zhang, Z. Yu, S. Li, Z. Ye, C. Li, C. Wan, and Y. C.
Lin, “Gpt4aigchip: Towards next-generation ai accelerator design
automation via large language models,” in 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD).
IEEE, 2023, pp. 1-9.

D. Vungarala, M. E. Elbtity, S. Syed, S. Alam, K. Pan-
dit, A. Ghosh, R. Zand, and S. Angizi, “Tpu-gen: Llm-
driven custom tensor processing unit generator,” arXiv preprint
arXiv:2503.05951, 2025.

L. Collini, S. Garg, and R. Karri, “C2hlsc: Leveraging large
language models to bridge the software-to-hardware design gap,”
ACM Transactions on Design Automation of Electronic Systems,
2024.

S. Thakur, B. Ahmad, H. Pearce, B. Tan, B. Dolan-Gavitt,
R. Karri, and S. Garg, “Verigen: A large language model for
verilog code generation,” ACM Transactions on Design Automa-
tion of Electronic Systems, vol. 29, no. 3, pp. 1-31, 2024.

Z. Zhang, G. Chadwick, H. McNally, Y. Zhao, and R. Mullins,
“Llm4dv: Using large language models for hardware test stimuli
generation,” arXiv preprint arXiv:2310.04535, 2023.

Y. Hu, J. Ye, K. Xu, J. Sun, S. Zhang, X. Jiao, D. Pan,
J. Zhou, N. Wang, W. Shan et al, “Uvllm: An automated
universal rtl verification framework using llms,” arXiv preprint
arXiv:2411.16238, 2024.

Z. Yan, W. Fang, M. Li, M. Li, S. Liu, Z. Xie, and H. Zhang,
“Assertllm: Generating hardware verification assertions from
design specifications via multi-llms,” in Proceedings of the 30th
Asia and South Pacific Design Automation Conference, 2025, pp.
614-621.

B. Nadimi, G. O. Boutaib, and H. Zheng, “Verimind: Agentic llm
for automated verilog generation with a novel evaluation metric,”
arXiv preprint arXiv:2503.16514, 2025.

N. Mashnoor, M. Akyash, H. Kamali, and K. Azar, “Llm-ift: LIm-
powered information flow tracking for secure hardware,” arXiv
preprint arXiv:2504.07015, 2025.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

L. Collini, B. Ahmad, J. Ah-kiow, and R. Karri, “Marvel: Multi-
agent rtl vulnerability extraction using large language models,”
arXiv preprint arXiv:2505.11963, 2025.

H. Wu, Z. He, X. Zhang, X. Yao, S. Zheng, H. Zheng, and B. Yu,
“Chateda: A large language model powered autonomous agent for
eda,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2024.

M. Liu, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang,
J. Alben, H. Anand, S. Banerjee, 1. Bayraktaroglu et al., “Chip-
nemo: Domain-adapted llms for chip design,” arXiv preprint
arXiv:2311.00176, 2023.

H. Zhang, A. Ning, R. Prabhakar, and D. Wentzlaff, “A hardware
evaluation framework for large language model inference,” arXiv
preprint arXiv:2312.03134, 2023.

H. Ping, S. Li, P. Zhang, A. Cheng, S. Duan, N. Kanakaris,
X. Xiao, W. Yang, S. Nazarian, A. Irimia et al., “Hdlcore:
A training-free framework for mitigating hallucinations in llm-
generated hdl,” arXiv preprint arXiv:2503.16528, 2025.

G. Pasandi, K. Kunal, V. Tej, K. Shan, H. Sun, S. Jain, C. Li,
C. Deng, T.-D. Ene, H. Ren, and S. Pratty, “Jarvis: A multi-
agent code assistant for high-quality eda script generation,” arXiv
preprint arXiv:2505.14978, 2025.

H. Wu, H. Zheng, Z. He, and B. Yu, “Divergent thoughts
toward one goal: Llm-based multi-agent collaboration system for
electronic design automation,” arXiv preprint arXiv:2502.10857,
2025.

	Introduction
	Background and Related Work
	Low-Power RTL Design Principles
	LLMs for Hardware Code Synthesis and EDA Automation

	Proposed Framework and Dataset Generation
	Results
	Evaluation Framework
	RQ1: Can LLMs generate syntactically valid Verilog RTL with low-power constructs?
	RQ2: To what extent is functional correctness preserved in LLM-generated RTL?
	RQ3: How effective are LLMs in generating power-efficient RTL?
	RQ4: How do different LLMs compare across design categories?
	RQ5: What structural patterns and optimizations do LLMs apply?
	RQ6: How sensitive are models to prompt engineering?
	RQ7: What are common failure modes in LLM-generated RTL?
	RQ8: Can commercial EDA tools support large-scale evaluation of LLM-generated RTL?

	Discussion
	Future Research Directions
	Conclusion
	References

