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Abstract

Motion forecasting is an essential task for autonomous driving, and utilizing infor-
mation from infrastructure and other vehicles can enhance forecasting capabilities.
Existing research mainly focuses on leveraging single-frame cooperative informa-
tion to enhance the limited perception capability of the ego vehicle, while under-
utilizing the motion and interaction context of traffic participants observed from
cooperative devices. In this paper, we propose a forecasting-oriented representation
paradigm to utilize motion and interaction features from cooperative information.
Specifically, we present V2X-Graph, a representative framework to achieve inter-
pretable and end-to-end trajectory feature fusion for cooperative motion forecasting.
V2X-Graph is evaluated on V2X-Seq in vehicle-to-infrastructure (V2I) scenarios.
To further evaluate on vehicle-to-everything (V2X) scenario, we construct the first
real-world V2X motion forecasting dataset V2X-Traj, which contains multiple
autonomous vehicles and infrastructure in every scenario. Experimental results
on both V2X-Seq and V2X-Traj show the advantage of our method. We hope
both V2X-Graph and V2X-Traj will benefit the further development of cooperative
motion forecasting. Find the project at https://github.com/AIR-THU/V2X-Graph.

1 Introduction
In recent years, autonomous driving has made significant progress. However, single-vehicle au-
tonomous driving still faces substantial safety challenges due to its limited perception ability. Utiliz-
ing external information, such as data from other connected autonomous vehicles and infrastructure
sensors through vehicle-to-everything (V2X), has shown great potential to enhance autonomous
driving capabilities. In this paper, we focus on motion forecasting, a fundamental task for autonomous
driving that has received significant attention in recent years [40, 33, 31, 19]. Specifically, considering
currently practical communication conditions, we transmit perception results and input trajectories
from the ego vehicle and external sources for cooperative motion forecasting.

Cooperative motion forecasting involves the ego vehicle aggregating its own data with data transmitted
from other connected vehicles or infrastructure devices to predict future waypoints for each agent in
traffic scenarios. To accommodate limited communication conditions, we consider data in the form
of perception results. These perception results form historical trajectories of agents from respective
views, termed cooperative trajectories. The autonomous vehicle utilizes these trajectories to enhance
its motion forecasting capabilities. High-definition (HD) maps are also used in this task.

To leverage cooperative trajectories for improving motion forecasting performance, two critical
issues must be addressed: (1) Observations of the agents from different views may different due
to various sensor perspectives and configurations; (2) In the cooperative scenario, there are multi-
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Figure 1: Scheme Comparison. (a) Existing methods utilize cooperative perception information at
each frame individually then performs forecasting. (b) Our V2X-Graph considers this information
from a typical forecasting perspective and employs interpretable trajectory feature fusion in an end-
to-end manner, to enhance the historical representation of agents for cooperative motion forecasting.

view observations of multi-agents, the redundant data need to be leveraged interpretably. Existing
research mainly focuses on single-frame feature fusion to support real-world applications and enhance
detection performance [50, 44, 46, 4, 42]. A recent method [51] attempts to complement perception
over the historical horizon to improve forecasting performance. These methods are depicted in
fig. 1(a). However, the above single-frame methods obtain the agent state at each frame individually,
which may lead to a trade-off between the states observed from distinct views, and cannot utilize
motion and interaction context sufficiently, thus failing to sufficiently model the historical behavior of
agents. Instead, considering historical observations from each view holistically could address these
shortcomings. Compared to previous approaches, this paper explores a novel forecasting-oriented
trajectory feature fusion method, which aims to enhance the historical representation of agents,
including their historical motion and surrounding interactions, for motion forecasting.

To address the challenges and effectively utilize the cooperative information, we propose V2X-Graph,
a graph-based framework to achieve cooperative trajectory feature fusion for motion forecasting.
Theoretically, V2X-Graph offers two advantages for enhancing motion forecasting performance.
(1) Forecasting-oriented cooperative representation. For accurate motion forecasting, it is common
practice to represent motion features from an agent’s historical trajectory and interaction features
from other agents [10, 25, 58, 19]. Instead of perception complement, our method is the first
to consider cooperative perception information from the typical motion forecasting perspective,
which independently represents motion and interaction representations of cooperative trajectories,
customized relative spatial-temporal encodings are designed to support trajectories feature fusion
of each agent over historical horizon. (2) Graph-guided heterogeneous feature fusion. To support
multi-agent motion forecasting in a cooperative scenario, it is essential to interpretably integrate
heterogeneous motion and interaction features for each specific agent from cooperative trajectories.
Drawing inspiration from graph link prediction [12, 55], a classical task that analyzes the relationship
of nodes in a graph, this may further support downstream applications like node feature propagation.
To achieve end-to-end optimization in V2X-Graph, we constructed a graph that represents the
cooperative scenario, an interpretable association is established to guide heterogeneous feature fusion
based on agent identification across views. The framework is represented in fig. 1(b).

V2X-Graph is evaluated on V2X-Seq [51], which contains vehicle-to-infrastructure (V2I) cooperative
scenarios. To evaluate its effectiveness in vehicle-to-vehicle (V2V) and further more cooperative
devices scenarios, we construct the first public and real-world vehicle-to-everything (V2X) motion
forecasting dataset V2X-Traj. This dataset is the first to include multiple autonomous vehicles and
infrastructure in every scenario, broadening the research devoted to V2X motion forecasting task.
Extensive experiments conducted on V2X-Seq and V2X-Traj show the advantages of V2X-Graph in
utilizing additional cooperative information to enhance the motion forecasting capability.

Our contributions are four fold: (1) We propose a forecasting-oriented representation paradigm to
utilize motion and interaction features from cooperative information. (2) We design V2X-Graph,
a representative framework to achieve interpretable and end-to-end trajectory feature fusion for
cooperative motion forecasting. (3) We construct V2X-Traj, which is the first public and real-world
dataset for V2X motion forecasting. It includes not only V2I but also V2V cooperation in every
cooperative scenario. (4) Our approach achieves state-of-the-art on both V2X-Seq and V2X-Traj.
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2 Related Work
Cooperative Autonomous Driving. In recent years, more and more researchers pay attention to
cooperative autonomous driving, which leverages additional information from infrastructure-side
devices and other vehicles to achieve system-wide performance improvement. As several public
cooperative perception datasets [45, 49, 15] have been released, most of them focus on cooperative
perception. Different from the single-side object detection [56, 24, 8, 47, 48], cooperative detection
methods aim to promote performance and transmission latency trade-offs to support real-world
applications [46, 22, 44, 41, 50, 9, 4]. Some works also dive into cooperative segmentation task [38,
43]. However, as the downstream task of cooperative perception and directly influences the actions of
autonomous vehicles, cooperative motion forecasting has not been well studied. A recent endeavor
supplies historical observations with perception information from infrastructure devices to improve
motion forecasting performance [51]. Instead of perception completion then forecasting, this paper
presents an end-to-end cooperative motion forecasting framework for cooperative trajectory feature
fusion, to achieve comprehensive utilization of motion and interaction contexts from cooperative
information. To further broaden the research into V2X cooperative motion forecasting, we construct
the first real-world and public motion forecasting dataset for general V2X scenario, termed V2X-Traj,
including not only V2I but also V2V cooperations in every scenario.

Motion Forecasting. Motion forecasting is an indispensable task in autonomous driving systems,
which takes sequential perception results of agents and map elements into account to predict future
trajectories of agents. Early works rasterize scenarios as images and deploy convolution neural
networks to extract information [34, 21]. The research community turns to vectorize the represen-
tations of agents and maps for motion and interaction contexts [10]. Some works consider pooling
mechanism for feature fusion [1, 14, 10, 35]. Others utilize the convolution technique to extract local
features [25, 52, 5]. Inspired by the effectiveness and widespread usage of the Transformer model
[36], recent works adopted attention mechanism for learning representations in motion forecasting
task [26, 39, 31, 58, 33, 19, 40]. Instead of sequential perception supplementation then forecast-
ing, V2X-Graph explores novel trajectory feature fusion to comprehensively utilize information.
It represents and decouples trajectory features into motion and interaction features for each view
independently, and employs customized Transformer modules for aggregating interpretable features
based on agent identification, which facilitates cooperative motion forecasting.

GNNs for Motion Forecasting. Graph neural network (GNN) [20, 37] is a common structure for
motion forecasting. A graph consists of nodes and edges, with each node typically representing
information related to an agent or a map element. While edges represent the relative information
between pairs of nodes. The message-passing mechanism aggregates and updates node features
from their neighbors. Previous methods adopted homogeneous GNN for unified but coarse scene
representation [30, 10, 23, 57, 25, 13, 11]. While recent research introduced heterogeneous GNN [54,
16] to distinguish and further extracting features based on various settings of agents [32, 29, 18, 19].
Compared to previous approaches, V2X-Graph explores leveraging heterogeneous edge encodings
and interpretable graph link prediction for trajectory-based motion and interaction features fusion.

3 Preliminary
Cooperative motion forecasting can play an important role for autonomous driving as it better reasons
the future movements of surrounding agents. The ego vehicle receives sequential perception results
from cooperative devices, including infrastructures and other vehicles, to enhance the capability of
motion forecasting. The contextual information in the vector map is also taken into account.

Problem Formulation. The inputs of cooperative motion forecasting include multiple-source
trajectories and vector maps. The cooperative motion forecasting scenario is represented as S =
{T,L}, where T and L are described as follows. (1) Trajectory. In a typical V2X cooperation
scenario, each cooperative device independently captures the historical status of agents as trajectories.
The multi-source trajectories are denoted as T = {Tego,Tother}, here Tother can include received
multi-source cooperative trajectories such as Tinf and Tveh from the views of infrastructure and
cooperative vehicles. The total number of trajectories is Nt = Nego+Nother. Trajectory information
is summarized as T ∈ RNt×T×Ct , where T is the historical horizon and Ct is the attributes of each
trajectory to depict corresponding agent (e.g., tracking id, location, heading angle, detection bounding
box and agent type). Specifically, the historical spatial status of each trajectory is formulated as
{pt

i, r
t
i}Tt=1, where pt

i ∈ R2 is the trajectory i’s location, and rti represents the heading theta vector
at time step t. (2) Vector Map. Vectorized representation [10] is usually adopted for representing the
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map elements in motion forecasting task, which leverages the sample points of the centerline within
each lane and enables an efficient vectorized representation of spatial information. In this paper,
we further consider vectorized lane segment, i.e., the vector between each two neighboring sample
points. The set of vectorized lane segments is denoted as: L ∈ RNl×2×Cl , where Nl is the number of
lane segments and Cl is the attributes of each lane segment (e.g., location and road type). The start
point and the end point of the lane segment are formulated as {pstart

l ,pend
l }, here l ∈ [1, 2, ..., Nl].

Evaluation. The output is K future trajectories of the specified target agent in each scenario, the
best one is chosen for evaluation, here K = 6. Evaluation metrics are minADE, minFDE and MR,
standard metrics for motion forecasting. Lower number is better.

Challenges. To enhance the capability of motion forecasting considering abundant cooperative
trajectories, it is essential to: (1) effectively represent the cooperative scenario, (2) efficiently utilize
valuable information from redundant cooperative trajectories.

4 Methodology
This section presents V2X-Graph, a graph-based framework designed to achieve interpretable tra-
jectory feature fusion for cooperative motion forecasting. To represent the cooperative scenario, it
constructs a graph with node and edge encodings. To enhance cooperative trajectory feature fusion,
an interpretable graph consisting of three subgraphs is designed for the aggregation of heterogeneous
motion and interaction features. The overall architecture is depicted in fig. 2.

4.1 Scene Representation with Graph
In the graph that represents the cooperative scenario, trajectories from each view and their corre-
sponding lane segments are independently encoded as nodes, while the relative spatial and temporal
features between these nodes are encoded as edges.

Graph Node Encodings. We encode the node features from three perspectives: trajectory motion
features, trajectory spatial-temporal features, and lane segment spatial features.

Compared to previous methods that leverage cooperative information at each frame individually, we
encode differential information from each view then fuse it with correlation to mitigate the deviation
caused by direct single-frame fusion. The embeddings of differential coordinates {pt

i − pt−1
i }Tt=1 of

the trajectory are considered as the motion features at each timestep. The self-attention mechanism
[6] is adopted to incorporate temporal dependency. Here, missing frames are padded with learnable
tokens, and the attention mechanism is enforced to only attend to the preceding time steps.

For the purposes of trajectory identification for interpretable association and motion correlation
measurement, we also encode spatial-temporal features for trajectories from each view. The spatial-
temporal features are encoded by incorporating the temporal dependency between the ego-centric
normalized coordinates of the trajectory. Missing frames are masked in the attention module.

Overall, node encodings of trajectory from each view are formulated as:

vmot
i = SelfAttn(MLP(rTi (p

t
i − pt−1

i )) + PEt), vst
i = SelfAttn(MLP(pt

i) + PEt), (1)

where PEt signifies the learnable positional embedding at timestep t, SelfAttn(·) is the multi-head
self-attention module, and MLP(·) represents a multi-layer perceptron.

To enhance the representation of trajectories for future intention reasoning, the feature of the vector
map structure is incorporated. Specifically, the spatial feature of lane segments are represented by the
relative coordinates (from the start point to the end point of each lane segment) in an agent-centric
frame [35], and further encoded as nodes for feature aggregation. The formulation is:

vmap
l = MLP(rTi,l(p

end
l − pstart

l )), (2)

where rTi,l is the relative heading vector between trajectory i with lane segment l in its current frame.

Graph Edge Encodings. For effective trajectory feature fusion, we design heterogeneous edge
encodings, including spatial-temporal encoding and relative spatial encoding.

We use an attention module to aggregate the spatial-temporal encodings between each pair of cross-
view trajectories. The spatial-temporal encoding captures the spatial-temporal correlations between
two trajectories at each timestep, which facilitates motion feature fusion.
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Figure 2: V2X-Graph overview. Trajectories from the ego-view and other views, along with vector
map information, are encoded as nodes and edges for graph construction to represent a cooperative
scenario. The novel interpretable graph provides guidance for forecasting-oriented trajectory feature
fusion, including motion and interaction features. In this figure, solid rectangles represent encodings
of ego-view trajectories, hollow circles represent encodings of cooperative trajectories, distinguished
by distinct colors. Specifically, within the same view, the use of the same color indicates interruptions
caused by occlusion. Triangles represent encodings of lane segments. In trajectory feature fusion,
grey arrow indicates an missing frame in motion case, a lane segment vector in interaction case.

To capture the interaction features, we also introduce relative spatial encodings as edges.

Edge encodings can be formulated as follows:

esti→j = SelfAttn(concat[vst
i ,vst

j ]), ersi→j = MLP(rTi (pi − pj)), (3)

where ersi→j represents both agent-agent and agent-lane interaction relations. For agent-agent inter-
action, the coordinates of the current frame for trajectories are denoted by pi and pj . While for
agent-lane interaction, the encoding represents the feature between current coordinate pi of trajectory
i and the starting point coordinates pstart

l of the lane segment.

4.2 Feature Fusion with Interpretable Graph
To achieve comprehensive historical representations of agents in a cooperative scenario, an in-
terpretable graph is designed for multi-view trajectory feature fusion. Serving as a guidance for
heterogeneous feature representations, the Interpretable Association component (IA) establishes ex-
plicit associations between trajectories of the same agent across views. The Motion Fusion subGraph
(MFG) represents cooperative motion features by considering both explicit associations and implicit
spatial-temporal encodings. The Agent-Lane subGraph (ALG) fuses the features from each view
with lane segment features. The Cooperative Interaction subGraph (CIG) represents dense interaction
representations by leveraging the spatial encodings between different agents from all views.

Algorithm 1: Pseudo Labels Generator
Input: Ego-view trajectories Tego, Other-view trajectories Tother

Output: Cross-views trajectories matching pesudo labels Ã
for t = 0 to T do
Bego,Bother ← Collect ego-view, other-view detection bounding boxes from Tt

ego,T
t
other ;

Calculate bounding boxes IOU matrix Mt ∈ R|Bego|×|Bother| ;
At ← Solving the optimal matching: Hungarian Algorithm(Mt);
Update greedy trajectory matching at t: A ← At;

Ã ← Solve error matching with length intersection threshold ϵlength from A.

Interpretable Association. To achieve end-to-end optimization of heterogeneous feature fusion, we
formulate the association process as a graph link prediction problem. An interpretable association
component is introduced to establish interpretable associations of cross-view trajectories of agents,
providing explicit guidance for the fusion of motion and interaction features. Additionally, we propose
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a pseudo label generator, described in alg. 1, to collect trajectory matching labels for trajectories from
the ego and another view over the historical horizon within the training set for knowledge distillation.

We denote an adjacency matrix for the two sets of trajectories A = {ai,j |i ∈ Nego, j ∈ Nother},
where elements referring to associations are supervised by Ã which can be predicted as:

A = ΦClassifier(e
st
i→j) ∈ {0, 1}|Nego|×|Nother|, (4)

here ΦClassifier refers to a MLP for binary classification to determine whether there exists an association
between two trajectories, thereby instructing the perception information belonging to the same agent.
The classification is based on relative spatial-temporal encodings of trajectories across views.

Motion Fusion SubGraph. To comprehensively represent the historical motion of agents, we employ
the Motion Fusion subGraph (MFG) to aggregate cooperative motion feature representations from
cross-view associated trajectories. MFG models cooperative motion representations by incorporating
both interpretable associations and temporal-spatial correlations.

MFG is defined as: Gmfg = (V, E) and Amfg = A, where the node set V = {vi|i ∈ Nt}, and the
edge set E = {ei,j} denotes the edges captured by Amfg . Feature fusion and update process is:

v
(k+1)
i = FFN(v

(k)
i + CrossAttn(v(k)

i ,v
(k)
j + esti→j)), (5)

where v
(k+1)
i represents the updated feature of node v

(k)
i , FFN(·) is a feed-forward network.

Agent-Lane SubGraph. We employ the Agent-Lane subGraph (ALG) to incorporate map informa-
tion for cooperative motion forecasting. ALG is a bipartile graph that enables agent motion features
to query relevant lane segment interaction features using relative spatial encodings. We consider all
lane segments within the observation range of the current frame of agents from each view.

ALG is defined as: Galg = (V, E), where V = {vi, vl|i ∈ Nt, l ∈ Nl} and E = {ei,l}. The process
of interaction feature aggregation and update from agents to lane segments can be formulated as:

v
(k+1)
i = FFN(v

(k)
i + CrossAttn(v(k)

i ,v
(k)
l + ersi→l + al)), (6)

where al represents learnable tokens of semantic attributes associated with the corresponding lane
segment, such as turn direction and road type.

Cooperative Interaction SubGraph. The Cooperative Interaction subGraph (CIG) is employed
for cooperative interaction features representation between trajectories of distinguished agents in all
views. Incorporating both interpretable associations and relative spatial correlations, CIG models
denser interaction representations in a cooperative scenario.

CIG is defined as: Gcig = (V, E) and Acig =∼ A, where V = {vi|i ∈ Nt}, E = {ei,j} denotes the
set of not associated cross-view trajectories, which is captured by the adjacency matrix Acig , and all
intra-view edges. The process of interaction feature fusion and update in CIG formulated as:

v
(k+1)
i = FFN(v

(k)
i + CrossAttn(v(k)

i ,v
(k)
j + ersi→j + ai,j)), (7)

where ai,j represents the learnable features of interaction attributes associated between two trajecto-
ries, such as relative headings at the current timestep. Note that CIG only considers the interaction
among trajectories observed in the current frame.

4.3 Multimodal Future Decoder
The future motion of traffic agents is inherently multi-modal. We parameterize the distribution of
future trajectories as Laplacian Mixture Model (LMM) following [58]. Every agent from each view is
predicted and supervised during training phase for representations of trajectory feature fusion. While
during inference phase, the decoder predicts the future trajectory of distinct agents in the cooperative
scenario from the ego-view, guided by interpretable associations. Technically, we employ a MLP as a
prediction head to aggregate all the intermediate features, which can be formulated as:

Z1:T
i = MLP(concat[vst

i ,vmot
i ,vmfg

i ,valg
i ,vcig

i ]), (8)
where Z1:T

i includes K Laplacian components N1:K with multi-modal probability distributions p1:K.
The formulation for predicting the future coordinate distribution of agent i at time t is as:

Pt(o) =

K∑
k=1

pk · N1:K(µx, σx, µy, σy, ρ), (9)

the future positions are generated by the center of distributions. The distribution N (µx, µy) and
corresponding probability pk are generated by two MLPs separately.
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(a) Statistic (b) Visualizations of Ego-Infra-Veh Views

Figure 3: V2X-Traj dataset. (a) Statistics of the total number and average length for the 8 classes of
agents. (b) Visualizations. Orange boxes represent autonomous vehicles, blue elements denote other
traffic participants and the green box denotes the target agent needs to be predicted.

4.4 Training Losses
To achieve interpretable trajectory feature fusion, the framework is trained in an end-to-end manner
with two components of optimization objectives. The first part is the cross-entropy loss to optimize
the graph link prediction. The second part includes the regression loss and classification loss to
optimize the motion forecasting. Please refer to appendix for more loss details.

5 Experiment
In this section, we evaluate the proposed V2X-Graph framework not only on V2I cooperative
scenarios but also on V2V and broader V2X cooperative scenarios.

5.1 Experimental Setup
Dataset. V2X-Graph is evaluated on both V2I and broader V2X scenarios. (1) V2X-Seq [51]. A
public large-scale and real-world V2I dataset. V2X-Seq consists of 51,146 V2I scenarios, and each
scenario is 10 seconds long with the sample rate of 10 Hz. The task is to predict the motion of agents
for the next 5 seconds, given the initial 5-second observation from both infrastructure and ego-view.
(2) V2X-Traj (Ours). To study the effectiveness of V2X-Graph in V2V and broader V2X scenarios,
especially its ability to handle more than two views of trajectories, including both V2I and V2V
cooperation, we construct the first real-world and public V2X cooperative motion forecasting dataset,
termed V2X-Traj. It comprises 10,102 scenarios in challenging intersections. Each scenario includes
two intelligent vehicles and an infrastructure perception device. The statistics and visualization of
V2X-Traj are presented in fig. 3. Each scenario lasts for 8 seconds with a sample rate of 10 Hz. The
4-second observations from each view are used to predict the future motion in the next 4 seconds.
We hope the V2X-Traj dataset can facilitate the development of cooperative motion forecasting for
general V2X scenarios. More details are described in the Appendix.

Implementation Details. For scene graph representation, V2X-Graph employs a 4-layer temporal
self-attention Transformer to encode motion features, a 2-layer temporal self-attention Transformer
and a 2-layer self-attention module for relative temporal-spatial feature encoding. In the interpretable
graph, there are 3 layers of MFG, 1 layer of ALG and 3 layers of CIG. The dimensions of the hidden
feature is set as 128, and the number of heads in all multi-head attention blocks is 16. The lane
segments corresponding to agents within a observation range of 50 meters are taken into consideration.
For training, the initial learning rate is set to 1× 10−3 and is scheduled according to cosine annealing
[27]. The AdamW optimizer [28] is adopted with a weight decay of 1× 10−4. The model is trained
for 64 epochs with batch size of 64 on a server with 8 NVIDIA RTX 4090s.

5.2 Main Results
Cooperative method comparison. We compare our method with other cooperative methods on
V2X-Seq. To the best of our knowledge, PP-VIC [51] is the only existing method of the same type.
Typically, PP-VIC provides the ego vehicle with infra-side perception information in a frame-by-
frame manner within the historical horizon. After supplementation, the perception information is
provided to popular and competitive vanilla forecasting methods DenseTNT [13] and HiVT [58].
For comparison, we also provide the output of PP-VIC to V2X-Graph in a similar way to the ego-
view perception. As shown in table 1, perception completion enhances the downstream forecasting
performance of HiVT and V2X-Graph. However, the trade-off in cross-view perception also leads to
error propagation, resulting in performance degradation of DenseTNT. Instead, V2X-Graph enhances
the historical representation of agents through trajectory feature fusion, leading to performance
improvements, as evidenced by −0.07 in minADE, −0.19 in minFDE, and −5% in MR.
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Table 1: Cooperative method comparison on V2X-Seq.

Method DenseTNT[13] HiVT[58] V2X-Graph

Vehicle-only PP-VIC[51] Vehicle-only PP-VIC[51] Vehicle-only PP-VIC[51] Feature Fusion

minADE 1.71 1.84 1.28 1.12 1.16 1.12 1.05
minFDE 2.43 2.56 2.15 1.97 2.04 1.98 1.79

MR 0.27 0.28 0.31 0.30 0.30 0.30 0.25

Table 2: Graph-based methods comparison on V2X-Traj.

Method Vehicle-only V2V V2I V2V&I
minADE minFDE MR minADE minFDE MR minADE minFDE MR minADE minFDE MR

DenseTNT[13] 1.23 2.09 0.25 1.20 2.04 0.25 1.32 2.34 0.29 1.26 2.24 0.28
HDGT[19] 0.91 1.48 0.14 0.94 1.57 0.17 0.94 1.59 0.16 0.94 1.56 0.17
V2X-Graph 0.90 1.56 0.17 0.77 1.26 0.12 0.80 1.30 0.13 0.72 1.13 0.11

Graph-based methods comparison. To reflect the unique advantages of V2X-Graph, we conduct
evaluations on V2X-Traj and compared it with representative graph-based methods. Similar to V2X-
Graph, cooperative trajectories are encoded as vanilla nodes of agents in each compared methods,
for fair comparison. Experimental results in four typical settings are reported in table 2. As shown
in the table, HDGT [19] achieves superior performance through precise heterogeneous design to
represent relationship of agents, compared with DenseTNT [13], which employs a homogeneous
graph to represent the scenario. V2X-Graph is also highly competitive in vehicle-only task, without
sophisticated feature engineering and decoder design. However, our method outperforms compared
methods by large margins in all cooperative settings and achieves the best performance in V2V&I co-
operation, with −0.22 in minADE, −0.43 in minFDE, and −6% in MR, illustrating the effectiveness
of aggregation heterogeneous motion and interaction features to enhance cooperative forecasting.
5.3 Ablation Study
To further illustrate the effectiveness of the method for trajectory feature fusion and the final result,
we conduct ablation studies on the V2X-Traj validation set. Considering extensive ablation studies,
experiments are conducted based on our small model with a hidden-size of 64.

Table 3: Effect of major components.
MFG ALG CIG minADE minFDE MR

✓ ✓ 1.16 2.30 0.28
✓ ✓ 1.26 2.60 0.30
✓ ✓ 1.08 2.07 0.25
✓ ✓ ✓ 0.95 1.79 0.21

Table 4: Effect of cooperative representations.
MFG ALG CIG minADE minFDE MR

✓ ✓ 1.03 2.04 0.25
✓ ✓ 1.19 2.37 0.28
✓ ✓ 1.08 2.17 0.27
✓ ✓ ✓ 0.95 1.79 0.21

Effectiveness of Major Components. Firstly,
we alternately removing one of the components
to illustrate the contribution of each component
to the cooperative motion forecasting perfor-
mance. As shown in table 3, the components
within the interpretable graph separately rep-
resent the typical motion feature of historical
states of agents and the interaction features with
surroundings, demonstrating a marked perfor-
mance enhancement of motion forecasting.

Effectiveness of Cooperative Representations.
We further evaluate the effectiveness of the
model in trajectory feature fusion by alternately
masking the features of cooperative trajectories
within each component. As demonstrated in
table 4, each customized component benefits tra-
jectory feature fusion and results in performance improvements to a certain degree. Specifically,
the MFG effectively integrates the motion features of associated trajectories, leading to −0.08 in
minADE. Relatively, the ALG and CIG components fuse the interaction features of lane segments and
cooperative trajectories. These component primarily enhance the performance of long-term intention
prediction, as indicated −0.59 in minFDE and −7% in MR.

Effectiveness of Interpretable Feature Fusion. Moreover, we evaluate the effectiveness of the
proposed interpretable graph in aggregating heterogeneous motion and interaction features within
cooperative trajectories. In table 5, the first line presents the result of the vehicle-only setting, which
has no cross-view motion and interaction features fusion. We simply employ fully connections in our
graph to aggregate motion and interaction features, compared with the ego-setting, there is no obvious
positive effect with a large amount of features fusion. The last line shows the result of interpretable
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Table 5: Effectiveness of feature fusion with interpretable graph. "Fusion Count" represents statistics
average fusion counts of features per scenario. "Interpretable Fusion" indicates the aggregation of
motion and interaction features through associations.

Motion Fusion Fusion Count in MFG Interaction Fusion Fusion Count in CIG minADE minFDE MR

No Fusion 0 Ego 986 1.06 2.09 0.27
Full Fusion 14,191 Interpretable Fusion 6,788 1.10 2.18 0.25

Interpretable Fusion 172 Full Fusion 6,982 1.08 2.32 0.27
Full Fusion 14,191 Full Fusion 6,982 1.04 2.09 0.24

Interpretable Fusion 175 Interpretable Fusion 6,836 0.95 1.79 0.21
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Figure 4: Effectiveness of pseudo label supervision.

Figure 5: Qualitative results on V2X-Traj. There are several interesting cooperative scenarios at
the challenging intersection, including speed-up, lane changing and turning. We visualize only the
forecasting results of the target agent in each scenario for clarity. The ground-truth trajectories are
shown in red, and the multimodal predicted trajectories are shown in green.

features fusion, it achieves improved performance with a low computational cost, demonstrating the
effectiveness to interpretably aggregate heterogeneous cooperative features.

Effectiveness of Pseudo Label Supervision. To demonstrate the quality of pseudo labels and
influence on the final motion forecasting performance, we disturb labels randomly for supervision
and evaluate the motion forecasting results. As shown in fig. 4, as the proportion of disturbed pseudo
labels increases, corresponding forecasting performance decreases, which illustrates the effectiveness
of both interpretable feature fusion and pseudo label supervision. This also suggests that there is
potential for further improvement in forecasting performance as the quality of labels increases.

6 Conclusion and Limitation
In this paper, we introduce a forecasting-oriented representation paradigm to utilize motion and
interaction features from cooperative information, and present V2X-Graph, a graph-based framework
to achieve interpretable and end-to-end trajectory feature fusion for cooperative motion forecasting.
Comparing to existing methods that rely on single-frame perception information cooperation, our
approach enhances the historical representation of agents from lightweight cooperative trajectories,
and achieve improved performance in the downstream task, namely cooperative motion forecasting.
Moreover, we construct V2X-Traj, the first real-world and public V2X cooperative motion forecasting
dataset, expanding the research from V2I to broader V2X motion forecasting task. Experiments on
both two datasets demonstrate the effectiveness of our method.

Limitation and future work. Compared to the single-frame method, the proposed V2X-Graph
explores trajectory feature fusion, which mitigates errors from single-frame perception completion
and achieves better motion and interaction representation of agents. Despite these advantages, the
performance still relies on the tracking quality from each view. Jointly optimizing the performance
from perception to forecasting is significant to explore in the future.
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Appendix

In this supplementary material, detailed information about the training loss is provided in appendix A.
Comprehensive details regarding the V2X-Traj dataset are presented in appendix B. Additional
experimental results are presented in appendix C. The implementation details of the compared
methods on the V2X-Traj and V2X-Seq datasets are presented in appendix D. Additional qualitative
results of the proposed V2X-Graph framework on the V2X-Seq dataset are provided in appendix E.

A Details of Training Loss

To achieve interpretable trajectory feature fusion in cooperative scenarios, the framework is trained in
an end-to-end manner with two components of optimization objectives.

For the first part of optimization objectives, we utilize the cross-entropy as the knowledge distillation
loss Ldis to optimize the prediction of the adjacency matrix A = {ai,j}, which represents the
associations between trajectories of agents across views and is supervised by the pseudo labels α(Ã),
here α(·) indicates a pre-pruning strategy to mitigate the class imbalance issue. This strategy is
utilized when there is no intersection between the minimum bounding rectangles of two trajectories,
or when the agent types are different.

The second part includes the regression loss Lreg and classification loss Lcls to optimize the motion
forecasting. For optimization, we select the trajectory with the minimum average L2 distance from the
ground truth among K modalities. We utilize the cross-entropy loss as the selection loss to optimize
pi,k. The negative log-likelihood loss is employed as the regression loss and can be formulated as:

Lreg = − 1

NH

K∑
k=1

pi,k

T+H∏
t=T+1

logP(rTi (p
t
i − pT

i |µ̂
t
i, b̂
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where P(·|·) represents the probability density function of the Laplace distribution, and {µ̂t
i}T+H

t=T+1,
{b̂t

i}
T+H
t=T+1 denote the coordinates and the corresponding uncertainties of the best-predicted trajectory

for the agent. Overall, the final training loss can be formulated as follow:

L = Ldis + Lreg + Lcls. (11)

B Details of V2X-Traj Dataset

V2X-Traj is the first and real-world V2X cooperative motion forecasting dataset. In this section, we
provide a more comprehensive description of our V2X-Traj dataset. Dataset comparison is presented
in table 6. Other details includes dataset composition (appendix B.1), collection and annotation
process (appendix B.2) and additional visualizations (appendix B.3).

B.1 Dataset Composition

V2X-Traj dataset contains a total of 10,102 scenarios, which are randomly split into the training,
validation, and test set, consisting of 6,062, 2,020, and 2,020 scenarios, respectively. Each scenario
comprises three independent sets of trajectories from two autonomous driving vehicles and an
infrastructure-side perception device. Additionally, considering the agents are moved with the
constraints of traffic rules, we also provide the static vector map and real-time traffic light signals.

Trajectory. Each trajectory represents the information of an agent detected and tracked independently
by a single perception device. The trajectory information includes the timestamp, unique ID, agent
type, location, 7-dimensional detection bounding box, heading, and velocity.

Vector Map. Following [3], we collect map information in the form of vectorized representations to
provide valuable hints for motion forecasting. Vector maps contain lane, crosswalk, stopline, and
junction elements. For each lane, we provide sample points of centerline and boundary, and semantic
attributes such as turning direction, lane topology and traffic control.

Traffic Light. We provide real-time traffic light signals as they have a substantial impact on the
behavior of traffic participants. During the data collection and storage process, we simultaneously
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Table 6: Comparison with the public motion forecasting dataset. ’-’ denotes that the information
is not provided or not available. V2X-Traj is the first cooperative dataset that supports research on
V2V and broader V2V&I cooperative motion forecasting. The dataset contains abundant real-world
cooperative trajectories from infrastructure and cooperative vehicles, as well as information about
vector maps and real-time traffic lights.

Dataset Year View Ego-view
Tracks

Infra-view
Tracks

Veh-view
Tracks

With
Vector Map

With
Traffic Light Scenes

Nuscenes [2] 2019 Single-veh 43 - - ! # 1,000
Apolloscape [17] 2019 Single-veh 51 - - # # 103
Interaction [53] 2019 Single-veh - - - # # 40,054
Argoverse [3] 2019 Single-veh 36 - - ! # 324,000

Waymo motion [7] 2021 Single-veh 73 - - ! ! 10,4000
V2X-Seq [51] 2023 V2I 101 50 - ! ! 51,146

V2X-Traj 2024 V2V&I 86 40 82 ! ! 10,102

Table 7: Detailed statistics on the total number and length of trajectories per class.

Class Van Car Cyclist Motorcyclist Pedestrian Bus Tricyclist Truck

Number 62,725 572,527 120,310 291,437 291,702 24,088 44,909 16,875
Length 54 51 28 31 21 56 32 48

record traffic light data at a frequency of 10 Hz. The traffic light signal information includes the
timestamp, location, direction, corresponding lane ID, color status, and remaining time.

We provide detailed statistics in table 7. As the table shows, the V2X-Traj dataset contains abundant
trajectories of 8 classes of agents to depict real-world V2X cooperative scenarios.

Dataset schema is represented in fig. 6. In each cooperative scenario, three sets of trajectories
are independently collected by the ego vehicle, the infrastructure perception device, and another
autonomous vehicle; simultaneously, data on traffic light synchronization is gathered. Additionally,
we offer a comprehensive vector map covering intersections.

B.2 Data Collection and Annotation

This subsection details the process to construct the V2X-Traj dataset.

We choose 28 urban traffic intersections in Beijing and deploy 4-6 pairs of 300-beam LiDAR and high-
resolution cameras for each intersection. These infrastructure sensors can fully cover the intersection
areas. We deploy one 40-beam LiDAR and six high-quality cameras for the autonomous vehicle. We
provide the configuration of sensor deployment of autonomous vehicles and infrastructure in fig. 7.
The perception devices of autonomous driving vehicles and infrastucture devices have trained 3D
object detection and tracking models. These models are used to generate trajectory sequences.

To collect the trajectory data, the two autonomous driving vehicles were driven simultaneously and
randomly through areas equipped with sensors. The V2X cooperative scenarios are collected when
there is a certain overlap in the perception range of the two vehicles and the infrastructure device,
resulting in the V2X cooperative trajectory sequences repository. The trajectories from each view
were stored independently.

Finally, we mined interesting segments from the repository to create 10,102 cooperative scenarios.
The trajectory mining process consisted of several steps, including scenario fragmentation, trajectory
scoring and scenario selection. In the first step, we divided the sequences from each view into
8-second segments. In the second step, a score was assigned to each trajectory from ego-view
based on the interesting behaviors of agents such as turning, speeding up, slowing down and lane
changing. In the third step, we retained a total of 10,102 sequences with high-score trajectories.
Within each segment, one trajectory was designated as the target agent for prediction, while the
remaining trajectories were assigned as others.
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Figure 6: Schema of the V2X-Traj dataset.

Figure 7: Sensor deployment in autonomous vehicles (left) and in infrastructure (right).

B.3 Additional Dataset Visualization

fig. 9 presents four interesting scenarios from our V2X-Traj dataset. As the figure describes, each
scenario includes trajectories from the ego-vehicle, the cooperative infrastructure and the cooperative
autonomous driving vehicle. The inclusion of cooperative trajectories from both the autonomous
vehicle and the infrastructure device enhances the information available to the ego-vehicle.

C Additional Experimental Results

C.1 Effectiveness of Major Components

In this experiment, we conduct an additional ablation study on the V2X-Seq dataset to demonstrate
the contribution of each key component to the cooperative motion forecasting performance. Similar
to before, we evaluate the effectiveness by removing one of the components alternately. As shown
in Table 8, each component within the interpretable graph demonstrates a marked enhancement in
performance. The MFG efficiently integrates motion features from associated trajectories, leading
to a significant decrease in minADE by 0.15. The ALG incorporates interaction feature from lane
segments and the CIG merges dense interaction features from cooperative trajectories, resulting
in a maximum reduction of 0.51 in minFDE and 7% in MR. In summary, these components con-
tribute significantly to performance improvements by learning heterogenerous cooperative feature
representations.
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Table 8: Effect of major components.

MFG ALG CIG minADE minFDE MR

✓ ✓ 1.29 2.11 0.30
✓ ✓ 1.34 2.48 0.36
✓ ✓ 1.30 2.23 0.34
✓ ✓ ✓ 1.14 1.97 0.29

Table 9: Effect of cooperative representations.

MFG ALG CIG minADE minFDE MR

✓ ✓ 1.29 2.11 0.30
✓ ✓ 1.22 2.17 0.32
✓ ✓ 1.26 2.11 0.31
✓ ✓ ✓ 1.14 1.97 0.29

C.2 Effectiveness of Cooperative Representation

We further evaluate the effectiveness of the model in cooperative feature representations on V2X-Seq
by alternately masking out the infrastructure-view trajectories in each component. As demonstrated in
Table 9, the customized cooperative representation learning of each component results in performance
improvements to a certain degree. Concretely, the MFG effectively integrates the motion features
of associated trajectories through explicit associations and implicit temporal-spatial encoding. This
component leads to improved performance in motion forecasting for each future frame, as evidenced
by the decrease of 0.15 in the minADE metric. Relatively, the ALG and CIG components fuse the
interaction features of lane segments and cooperative trajectories through compact spatial encoding.
These component primarily enhances the performance of long-term intention prediction, as indicated
by a maximum reduction of 0.20 in the minFDE and 3% in the MR metrics.

1.1

1.2

1.3

1.4

1.5

1.6

5k 10k 15k 20k 25k

m
in
AD

E

1.9

2.1

2.3

2.5

2.7

5k 10k 15k 20k 25k

m
in
FD

E

Vehicle-only Cooperation

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

5k 10k 15k 20k 25k
M
R

Figure 8: Scalability study on different dataset sizes.

C.3 Scalability Study

Compared with vanilla motion forecasting, collecting large-scale data in cooperative scenarios for
cooperative motion forecasting poses some realistic limitations. Therefore, it is essential to study
how the performance of the method scales with dataset size.

In this experiment, we randomly split data of different sizes from the training set of V2X-Seq to
train the V2X-Graph framework and evaluate the model on the full validation set. We compare the
proposed V2X-Graph framework in both vehicle-only and cooperative settings to assess how the
scalability of the proposed framework for cooperative motion forecasting varies with dataset size.

As shown in fig. 8, as the amount of training data increases, both vehicle-only and cooperative settings
achieve improved performance. Notably, V2X-Graph achieves greater advantages in cooperation,
which illustrates the scalability of the framework in cooperative motion forecasting.

C.4 Robustness of Latency and Data Loss

We conduct robustness experiments on V2X-Seq dataset, taking both data synchronization problem
and communication latency into consideration.

Specifically, we simulate latency by dropping the latest one or two frames of infra-view data during
transmission. And we address the latency issue with a simple interpolation to obtain synchronized
trajectory data. Experiment results in table 10 shows that there is little performance degradation to
communication latency.

Data loss and sensor failures are common practical challenges. The performance advantage on
real-world datasets demonstrates the robustness of our method. We further evaluate V2X-Graph
under different data loss ratios on V2X-Seq dataset. Specifically, we randomly drop perception results
data in each frame from the infra-view in transmission with various dropping ratios. As shown in
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Table 10: Robustness of latency.

Latency (ms) minADE minFDE MR

0 1.0458 1.7855 0.2527
100ms 1.0468 1.7879 0.2562
200ms 1.0779 1.8385 0.2688

Table 11: Robustness of data loss.

Loss Ratio (%) minADE minFDE MR

0 1.05 1.79 0.25
10 1.05 1.81 0.26
30 1.08 1.85 0.27
50 1.10 1.88 0.28

table 11, the forecasting performance decreases as the ratio increases, but it is worth mentioning that
our method outperforms the compared methods (table 1 on page 8) even under extreme conditions
with a 50% loss rate.

C.5 Parameter Size and Inference Cost Comparison

Table 12: Parameter size comparison.

Dataset Methods

V2X-Seq DenseTNT [13] HiVT [58] V2X-Graph
Param. (M) 1.0 2.6 5.0

V2X-Traj DenseTNT [13] HDGT [19] V2X-Graph
Param. (M) 1.0 12.1 4.9

As shown in table 12, the parameter size of V2X-Graph is comparable with other forecasting methods.

Table 13: Inference cost comparison.

Dataset Methods

V2X-Seq PP-VIC [51] + DenseTNT [13] PP-VIC [51] + HiVT [58] V2X-Graph
Latency (ms) 161.45 + 371.38 161.45 + 53.30 51.50

V2X-Traj DenseTNT [13] HDGT [19] V2X-Graph
Latency (ms) 168.88 1260.70 52.69

Then we conduct the inference experiment on single NVIDIA GTX 4090 and compare the inference
cost. As for the experiment results shown in table 13, the proposed V2X-Graph is even faster than
the compared vanilla motion forecasting methods, benefiting from the synchronous temporal state
modeling and integration.

D Additional Implementation Details

In this section, we provide implementation details of compared methods in our experiemnts.

Implementation Details of HiVT. We compare our proposed V2X-Graph with the official evaluation
of the V2X-Seq dataset [51] from https://github.com/AIR-THU/DAIR-V2X-Seq. For fair comparison,
we re-implemented a larger model of HiVT [58] with a hidden size of 128 for improved performance
as reported in the corresponding paper.

Implementation Details of DenseTNT. For comparison, we re-implemented the classical homoge-
neous graph method DenseTNT [13] on our V2X-Traj dataset using their official code package, from
https://github.com/Tsinghua-MARS-Lab/DenseTNT. The model is trained using the default settings
of two stages on the V2X-Traj training set, utilizing a server with 8 NVIDIA RTX 3090s. During
the first stage, all modules are trained, except for the goal set predictor, for 16 epochs. In the second
stage, the goal set predictor is trained for 6 epochs. The batch size is set to 64, the initial learning rate
is 0.001, and it decays by 30% every epoch. The hidden size of the feature vectors is set to 128, and
the head number of our goal set predictor is 12.

Implementation Details of HDGT. We further re-implemented the advanced heterogeneous graph
method HDGT [19] based on their official code from https://github.com/OpenDriveLab/HDGT. We
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re-implemented a larger model of HDGT with a hidden size of 256, and the number of heads in all
multi-head attention blocks is 64, for better performance for comparison. The size of the kernel of the
AgentTemporalEncoder in HDGT is set to 40-13-3 to accommodate the specific observation horizon
of 40 time steps in V2X-Traj. During training phase, we follow the default settings, which uses the
AdamW optimizer with an initial learning rate of 5× 10−4, weight decay of 1× 10−4, and batch size
of 64. For the V2X-Traj dataset, the number of training epochs is set to 30, with a 1-epoch warmup
and linear decay to 0. The type-specific agent distance buffer hyperparameters are empirically set to
30 meters for vehicles, 10 meters for pedestrians, and 20 meters for cyclists.

E Additional Qualitative Results

In this section, we present qualitative results on V2X-Seq dataset, including the visualizations of
interpretable association (appendix E.1) and the visualizations of our proposed V2X-Graph and
compared method (appendix E.2).

E.1 Visualizations of Interpretable Association

Here we present the visualizations of the interpretable association on V2X-Seq. For clarity, we
only visualize the associations of the historical trajectories of the target agent from the ego-view
(fig. 10 (a)) and the infrastructure-side (fig. 10 (b)). Dashed circles indicate a part of the additional
information from infrastructure-side trajectories that can be utilized. As shown in the figure, our
method enables the interpretable association of trajectories across views, serving as guidance for the
end-to-end learning of cooperative trajectory representations.

E.2 Qualitative Results on V2X-Seq

We present additional qualitative results on the V2X-Seq dataset; three challenge scenarios are
selected for methods comparison. In particular, the motion forecasting results of HiVT [58], which
employs PP-VIC [51] to utilize cooperative information, are shown in fig. 10 (c), and the results of
our proposed V2X-Graph are shown in fig. 10 (d). In the methods comparison, our method exhibits
exceptional performance in motion forecasting, in particular of predicting long-range intentions,
which demonstrates the ability of proposed V2X-Graph for further utilization of information within
cooperative trajectories.
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Figure 9: Visualizations of the V2X-Traj dataset. Each scenario consists trajectories from the ego-
vehicle, the cooperative infrastructure and the cooperative autonomous vehicle. In this figure, orange
boxes represent autonomous vehicles, blue elements denote traffic participants, and green boxes
denote the target agent that needs to be predicted.
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Figure 10: Qualitative results on three challenge scenarios over V2X-Seq. The historical trajectories
of the target agent are shown in yellow. The red dashed circles indicate a part of the enhanced
information from the infrastructure view. The ground-truth trajectories are shown in red, and the
predicted trajectories are shown in green.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we claim the contributions made in cooperative
motion forecasting in this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In section 6, we discuss the contributions of cooperative motion forecasting in
this paper and the relationship of the proposed method to the vanilla forecasting task. In
appendix C.3, we discuss how the performance of the method scales with dataset size.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide details of the proposed method in section 4 and describe the
experimental settings in section 5. The code is provided in the supplemental material and
will be released along with the dataset once accepted.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide details of the experimental settings in section 5. The code is
provided in the supplemental material, the code and the dataset will be released along with
sufficient instructions once accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details of the experimental settings in section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not formally reported because it would be too computationally
expensive. However, we conduct the experiment multiple times and record universally
representative results to support the main claims of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details of the computational resources in section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in this paper conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We hope both the V2X-Graph framework and V2X-Traj dataset can facilitate
the further development of cooperative motion forecasting.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

25

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The proposed real-world dataset does not contain personal information and
has been encrypted to mitigate related risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The related code and data in this paper have proper licenses and have been
cited appropriately.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide details of the new real-world dataset in appendix B, and the local
government has granted permission for the release of this dataset.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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