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ABSTRACT

Inference attacks have been widely studied and offer a systematic risk assessment
of ML services; however, their implementation and the attack parameters for op-
timal estimation are challenging for non-experts. The emergence of advanced
large language models presents a promising yet largely unexplored opportunity
to develop autonomous agents as inference attack experts, helping address this
challenge. In this paper, we propose IAAgent, an autonomous agent capable
of independently conducting inference attacks without human intervention. We
evaluate it on 20 target services. The evaluation shows that our agent, using GPT-
4o, achieves a 100.0% task completion rate and near-expert attack performance,
with an average token cost of only $0.627 per run. The agent can also be pow-
ered by many other representative LLLMs and can adaptively optimize its strategy
under service constraints. We further perform trace analysis, demonstrating that
design choices, such as a multi-agent framework and task-specific action spaces,
effectively mitigate errors such as bad plans, inability to follow instructions, task
context loss, and hallucinations. We anticipate that such agents could empower
non-expert ML service providers, auditors, or regulators to systematically assess
the risks of ML services without requiring deep domain expertise.

1 INTRODUCTION

The deployment of ML models in security-sensitive domains calls for a comprehensive understand-
ing of potential risks during the inference phase. Inference attacks (IA), such as membership infer-
ence (Salem et al., 2019; Shokri et al., 2017; Song & Mittal, 2021) and model stealing (Carlini et al.,
2020; Jagielski et al., 2020; Tramer et al., 2016), are pivotal for assessing a model’s robustness by
highlighting vulnerabilities that could lead to sensitive information leakage. These vulnerabilities
not only threaten privacy but also jeopardize the model owner’s intellectual property (Cristofaro,
2020). Hence, ML service providers, third-party auditors, and even regulators are increasingly ex-
pected to assess the security and privacy risks of ML services. Despite their importance, conducting
risk assessment via inference attacks remains challenging, as it requires detailed analysis, such as
selecting the most appropriate shadow datasets.

This complexity presents significant hurdles for those without specialized expertise and demands
considerable effort even from experienced practitioners. Recent progress in large language models
(LLM) has introduced autonomous agents to automate complex tasks across various domains, such
as web interactions (Zhou et al., 2023; Xie et al., 2024), data analysis (Cao et al., 2024; Lai et al.,
2023), and ML experimentation (Huang et al., 2024). These agents have shown remarkable potential
to reduce manual labor and improve efficiency (Lu et al., 2024; Liu et al., 2024a; Huang et al.,
2024). However, our evaluation later demonstrates that current agent frameworks lack effectiveness
in conducting risk assessment (see Section 4.1).

To fill this gap, we propose IAAgent, an autonomous agent tailored to automate the risk assess-
ment of various inference attacks. Specifically, we focus on membership inference (Salem et al.,
2019; Shokri et al., 2017; Song & Mittal, 2021; Nasr et al., 2019), model stealing (Carlini et al.,
2020; Jagielski et al., 2020; Tramer et al., 2016), data reconstruction (Fredrikson et al., 2015; Yin
et al., 2020; Zhang et al., 2020), and attribute inference attacks (Melis et al., 2019; Song & Raghu-
nathan, 2020; Song & Shmatikov, 2020). We present the details of each attack in Appendix C. The
proposed agent acts as an independent expert in conducting risk assessments, dynamically adapt-
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ing its behavior based on the basic information of the given target service and real-time execution
feedback. In this way, it empowers non-experts to systematically assess the risks of ML services
with minimal input and without requiring domain expertise. As shown in Figure 1, ITAAgent com-
prises ControllerAgent, which manages attacks, and AttackAgent, which executes them.
We further manually identify all critical steps in the assessment process and encapsulate each as a
separate action with detailed guidelines to construct task-specific action spaces for the two agents.
The environment is equipped with reusable resources, including Linux shells, starter scripts with
implementations for different inference attacks, and datasets and models available for use.

We evaluate TAAgent on 20 target services. Our agent with GPT-40 achieves a 100.0% task com-
pletion rate, defined as the percentage of five runs in which all possible attacks are successfully exe-
cuted. For comparison, the state-of-the-art MLAgentBench (Huang et al., 2024), originally designed
for ML experimentation but adaptable for risk assessment in the same environment, achieves only a
26.3% completion rate. We further compare it with a human expert. They use ML-Doctor (Liu et al.,
2022b), an assessment framework, to conduct inference attacks. We observe that IAAgent achieves
near-expert performance. The average attack accuracy of IAAgent in conducting membership in-
ference is only 1.0% lower than that of a human expert. Our agents are also cost- and time-efficient,
with a token cost of $0.627 and 27.11 steps per run on average. In addition, we demonstrate that
IAAgent can adapt a more optimized strategy for adaptive scenarios such as service constraints
(e.g., query limitation). Closed-source models consistently outperform open-source models, but
over time, open-source models, especially DeepSeek, have improved substantially. Through trace
analysis, we identify four common types of errors in MLAgentBench: bad plans, inability to follow
instructions, task context loss, and three types of hallucinations. We then illustrate how each major
component of our design is intended to mitigate these errors.

Contributions. We summarize our contributions as follows:
* We propose the first autonomous agent, TAAgent, capable of automating risk assessment of
inference attacks for the given ML services without human intervention.

* We evaluate the agent on 20 target services, demonstrating that our agent, powered by a robust
LLM (e.g., GPT-40), achieves near-expert performance at low cost ($0.627 per run).

* We present trace analysis to illustrate how each major component of our design contributes to the
performance, and we summarize key lessons learned from the development process.

2 IAAGENT

2.1 MOTIVATIONS

Non-experts, such as ML service
providers, third-party auditors, and
regulators, are increasingly expected
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Challenge #1: One must choose a dataset with a semantically similar label relevant to the
same task, from at least Z‘Q'l Lp, options. This is non-trivial: it requires selecting a candidate
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dataset whose data samples contain sufficient information to support the target task. Furthermore,
one must ensure that the annotated labels within the selected dataset include one that is relevant
to the target task, ideally with equivalent semantic meaning. In more complex cases, the inclusion
of multiple labels per task results in a combinatorial explosion of possible options. In addition,
the input modalities and output formats must be compatible; for instance, the selected label should
have a similar number of classes to those used in the target model. Without this alignment, the
shadow model may fail to replicate the decision boundaries of the target, significantly weakening
the effectiveness of the attack.

Challenge #2: Choosing an appropriate model involves balancing similarity and capability.
We take model stealing as an example. Powerful models can capture finer details in data, which
help approximate the target model’s outputs more precisely. However, using a model that differs
significantly from the target model may reduce the fidelity of the imitation, thus weakening attack
reliability.

Challenge #3: Hyperparameter choices lead to a further combinatorial explosion. Given a set
of n hyperparameters, each with k; possible values, the total number of hyperparameter configura-
tions is [ ;- , k;, resulting in a combinatorial explosion in the search space. These include factors
such as the dataset size and number of training epochs, each of which can have a substantial impact
on the final outcome. For example, in membership inference, a smaller training dataset can make
the shadow model more prone to overfitting, providing clearer signals for the attack to distinguish
members from non-members. However, if the training dataset is too small, extreme overfitting could
reduce the shadow model’s ability to effectively mimic the target model’s behavior.

Challenge #4: The combinatorial explosion of dataset, model, and hyperparameter choices can
overwhelm non-expert users. While it is possible to enumerate all combinations across candidate
datasets with their possible labels, model architectures, and hyperparameters, resulting in a search
space of size Z‘ZQ‘I Lp, x|M|x H?Zl k;, selecting an optimal configuration from this space remains
a substantial challenge, especially for those who may lack the experience or resources.

Challenge #5: Effective result interpretation is essential for usability. After completing the as-
sessment, a report with intuitive explanations to interpret the attack results, along with correspond-
ing defense suggestions to address these risks, is essential for those without specialized expertise to
understand and manage the risks associated with target ML services.

2.2 DESIGN GOALS

The goal of TAAgent is to enable non-

experts, such as ML service providers, Table 1: ControllerAgent’s action space.
third-party auditors, and regulators, to sys-

tematically assess the risks of a given Action Name Iput_ Observation _Purpose

ML service with minimal prior knowledge, DATC AIELS litate, v o e
while achieving near-expert-level perfor- atiacks e e ™
mance. Rather than surpassing state-of- S T e ot et o
the-art attacks, we focus on facilitating as- faunched - been launched At ackhgent for
sessments that help these non-experts iden- Monitor Attacks None Xi:fiims;m lclﬁtgk the status of
tify vulnerabilities and make informed de- FnalAnswer N Newo e e ent
cisions about service deployment. We con- and environment

sider four goals for TAAgent:

* Minimal Knowledge Required. The required knowledge includes black-box access to the target
service, as well as basic information such as the task it performs and the general format of its
inputs and outputs. This knowledge is commonly available to most potential users.

* Near-Expert Performance. IAAgent aims to complete risk assessment and achieve near-expert
attack performance. This involves dynamically adapting its behavior based on both the basic
information of each target service and real-time observations during execution.

* Low Cost. It also aims to accomplish the task with an acceptable API cost.

* High Non-Expert Readability Since our intended users may lack expertise in inference attacks
and may not have the knowledge to conduct these attacks or interpret results solely based on metric
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values, we provide them with an assessment report that clearly explains the attack process and the
risks their service faces based on these results. We further provide alternative defense suggestions.

2.3 FRAMEWORK DESIGN

As illustrated in Figure 1, to conduct a risk assessment of their service, users need to provide basic
information, including a brief description of the target tasks offered by the service (e.g., an age pre-
diction task), the access (e.g., API endpoints), and the input and output formats. Optionally, the user
can also provide a sensitive attribute (e.g., gender) that is not directly related to the original task of
the target service to determine if there are unintentional leakages of this attribute. The assessment
process proceeds without human intervention. The ControllerAgent receives basic informa-
tion about the target service from users. It then determines which inference attacks it can perform
and initializes AttackAgent concurrently to execute each attack. The AttackAgent conducts
an inference attack following the instruction from ControllerAgent. After finishing the entire
attack process, AttackAgent generates an easy-to-understand assessment report to interpret the
attack results and explain the potential risk to the service. Both agents follow the same basic flow
(see details in Appendix B.1), with a difference in the action space.

ControllerAgent. It is the entry point, and its main objective is to understand the cur-
rent knowledge provided by the user, determine which attacks can be performed, and initialize
AttackAgent for each one. The ControllerAgent continuously monitors the status of each
running AttackAgent and exits the entire process once all AttackAgents have completed
their tasks. Yang et al. (2024) demonstrate that important operations should be consolidated into as
few actions as possible. Hence, we identify the critical steps and encapsulate each step as a separate
action. Table 1 lists the actions available, and the details of each action are in Appendix B.2.

AttackAgent. The main objective of AttackAgent is to conduct an attack assigned by
ControllerAgent and generate an easy-to-understand assessment report that summarizes the at-
tack process and interprets the results. Similar to Cont rollerAgent, we identify all critical steps
in the attack process, especially those related to challenging decisions as discussed in Section 2.1,
and consolidate each into a separate action. Table 2 lists actions available for the AttackAgent.
These actions include basic file system operations (e.g., reading files) and LLM calls. Moreover,
as suggested by Cao et al. (2024), we provide domain knowledge as a guideline to help actions
successfully progress toward their goal. More details of each action can be found in Appendix B.3.

Environment.  Assessing the risk of the target service is a case-by-case task. Depending on
the service, we may adjust shadow datasets, labels, model architectures, and hyperparameters for
optimal assessment. While these choices vary, the inference attack workflow remains reusable.
To streamline decision-making, we provide a reusable environment comprising four components:
Linux shells, starter scripts, available datasets, and available models, to enable agents to accomplish
their tasks more efficiently. More details of each component can be found in Appendix B.4.

3 EVALUATION

3.1 EXPERIMENTAL SETUP

LLMs. We evaluate IAAgent with closed-source representatives, including GPT-40, GPT-4-
Turbo, 03-mini, and Claude 3.5 Sonnet, as well as open-source representatives, including Mixtral-
8x22B, Llama-3.1 (70B), and DeepSeek-V3.

Target Service.  We train 20 different target models across five datasets and four model ar-
chitectures. The dataset include CIFAR10 (Canadian Institute For Advanced Research, 2009),
STL10 (Coates et al., 2011), CelebA (Liu et al., 2015), UTKFace (Zhang et al., 2017), and
AFAD (Niu et al., 2016). The model architectures include Xception (Chollet, 2017), ResNet18 (He
et al., 2016), ResNet50 (He et al., 2016), and a SimpleCNN consisting of three blocks of convo-
lutional layers followed by a 2-layer fully connected network. We set up a web service based on
(Flask, 2010) as the target service. This service loads the trained models from disk and provides API
endpoints. For models trained on CIFAR10 and STL10, we expose a prediction endpoint that returns
posterior probabilities, For models trained on the remaining three, in addition to the prediction end-
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Table 2: Task-specific action spaces for AttackAgent. Cz denotes a solution to Challenge x.

Action Name

Input

Observation

Purpose

List Files

Check Required Parameters

Choose Shadow Dataset

Choose Attribute

Choose Shadow Model Architecture

Set Parameters

Execute Script

A path of directory

A script name

A file name, target task de-
scription, input format, out-
put format, and target at-
tribute

A file name, target task
description, shadow dataset
name, output format

A file name, target service
access, and the attack name
A script name, a dataset
name, a model name, an at-
tack name, and the purpose
of this script

A script name and a dictio-
nary with parameter names

A list of files and folders in
the directory

Descriptions of all required
parameters

The name of the selected
dataset with its path

The name of the selected at-
tribute; If there are multiple
attributes, return a string with
attribute names separated by
commas

The name of the selected
shadow architecture
Parameters with the exact val-
ues and concise reasons

Any output from this execu-
tion

List all files and folders in the
given directory

Extract all parameters re-
quired to be set when execut-
ing the given script

Choose the most similar
dataset as the shadow dataset
(n

Choose the most suitable at-
tributes as the target labels for
the shadow model (C1)

Choose the most suitable
model architecture (C2)
Set the learning rate, batch
size, number of epochs, and
dataset size (C3 and C4)

Execute the given script

and values

Final Answer None None Generate reports (C5) and

shut down the agent

point, we also expose an embedding endpoint that extracts representations from intermediate layers.
See training details of the target models and deployment details of the target service in Appendix D.

Environment. The environment for the proposed agent includes the second half of the datasets and
model architectures listed above. It also provides starter scripts for several attack methods: metric-
based attacks (Salem et al., 2019) and neural-based attacks (Song & Mittal, 2021) for membership
inference; standard model stealing and attribute inference attacks; and inversion alignment (Yang
et al., 2019) for data reconstruction. Note that these attack methods only require black-box access.

Evaluation Protocol. The target services built on CIFAR10 and STL10 are expected to complete
membership inference, model stealing, and data reconstruction attacks due to the absence of sensi-
tive attributes (e.g., gender). Those built on AFAD, CelebA, and UTKFace are expected to complete
all four types of attacks. We conduct five runs for each agent, allowing a maximum of 50 steps per
run within a 5-hour runtime limitation. Our initial evaluation shows that increasing the number of
steps or runtime does not improve effectiveness.

Baseline. To the best of our knowledge, there is currently no agent framework specifically de-
signed to conduct risk assessment of ML services. Hence, we leverage the state-of-the-art agent
from MLAgentBench (Huang et al., 2024), which is designed for ML experimentation, as a base-
line. Its evaluation shows a better performance on 13 ML tasks than (LangChain, 2022) and (Au-
toGPT, 2023). To enable MLAgentBench to perform risk assessment, we provide it with the same
environment, including the initial attack implementation, available datasets, and models.

Compare With Human Experts. The main goal of IAAgent is to accomplish the risk assessment
as a human expert. Hence, we consider a human expert using ML-Doctor (Liu et al., 2022b), the
state-of-the-art assessment framework, to conduct inference attacks. The expert, with knowledge
of the training configuration of the target service, uses the disjoint set of the same dataset as the
shadow dataset, along with the same shadow model architecture and training hyperparameters such
as dataset size, batch size, and number of epochs. Note that this is the default setting in ML-Doctor.

Evaluation Metrics. We compare the baseline, ITAAgent, and human from two perspectives:
(1) Task Completion Rate. We define task success as whether the agent performs a complete risk
assessment based on the information provided by the user. The task completion rate is the percentage
over five runs for each target service. We assume that a human expert, when using the default tool,
can achieve a 100.0% task completion rate. (2) Performance Metric. For membership inference, we
use the highest attack accuracy. For model stealing, as our primary goal is to achieve the highest
accuracy on the target task, so we consider the classification accuracy on the evaluation dataset.
For attribute inference, we consider the accuracy of inferring the target attribute as the performance
metric. For data reconstruction, we consider the average mean square error (MSE) between the
reconstructed images and the images from the target training dataset. For the first three performance
metrics, higher values are better; for the last performance metric, lower values are better.

Cost Calculation. We consider the time, steps, and token consumption by the agent to complete
the risk assessment, with token consumption converted to actual API cost based on current pricing.
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Table 3: Attack performance of our agents with GPT-40 and a human expert using ML-Doctor (Liu
et al., 2022b) on 20 target services (Section 3.1). We run five rounds for each target and take the
average values. “-” denotes not applicable.

Target Membership Inference (1) | Model Stealing (1) | Data Reconstruction ({) | Attribute Inference (1)
Dataset ~ Model Arch. ‘ Ours Expert Ours Expert Ours Expert Ours Expert
Xception | 0.855 0.867 0.525 0.460 0.05218 0.05594
CIFARI0 SimpleCNN | 0.761 0.762 0.585 0.557 0.05045 0.05046
ResNet18 0.855 0.859 0.543 0.492 0.05176 0.05198
ResNet50 0.850 0.855 0.545 0.485 0.04949 0.05010
Xception | 0.893 0916 0.444 0.424 0.05332 0.04901
STL10 SimpleCNN | 0.762 0.750 0.455 0.465 0.05541 0.05009
ResNet18 0.888 0.902 0.469 0.439 0.05266 0.04809
ResNet50 0.880 0.900 0.446 0.428 0.05101 0.04625
Xception | 0.895 0.890 0.329 0.333 0.04791 0.04667 0.637 0.647
AFAD SimpleCNN | 0.872 0.879 0.325 0.328 0.04745 0.04655 0.672 0.710
ResNet18 0.918 0.945 0.339 0.341 0.04718 0.04731 0.754 0.772
ResNet50 0914 0.925 0.348 0.335 0.04717 0.04578 0.693 0.717
Xception | 0.829 0.834 0.559 0.560 0.07200 0.07223 0.790 0.891
CelebA SimpleCNN | 0.735 0.735 0518 0.353 0.06618 0.06579 0.878 0.884
ResNetl8 | 0.815 0.869 0.524 0.507 0.06618 0.06766 0.884 0.894
ResNet50 0.828 0.831 0.558 0.536 0.06008 0.06314 0.885 0.888
Xception | 0.722 0.725 0733 0.708 0.04258 0.04283 0.569 0573
UTKFace SimpleCNN | 0.711 0.718 0.705 0.663 0.04137 0.04169 0.579 0.631
ResNet18 0.746 0.746 0.728 0.706 0.04143 0.04245 0.713 0.727
ResNet50 0.717 0.726 0.726 0.715 0.04349 0.04253 0.632 0.642
Average 0.822 0.832 0.520 0.492 0.05197 0.05133 0.724 0.748

3.2 MAIN EVALUATION

IAAgent achieves 100.0% task completion rate. Our TAAgent achieves a far better task com-
pletion rate of 100.0% compared to the baseline, which only has 26.3% on average. See more details
in Appendix E.1. We discuss common errors of the baselines and how we mitigate in Section 4.

IAAgent achieves near-expert attack performance. We present the performance of the pro-
posed agents with GPT-40. Due to the low task completion rate of the baseline, we decide not to
compare against it. As illustrated in Table 3, our agents have near-expert performance compared
with the human expert using ML-Doctor (Section 3.1). On average, our agents’ maximum attack
accuracy in conducting membership inference is only 1.0% lower than that of the human expert,
and in conducting attribute inference attacks, the difference is only 2.4%. In model stealing, our
agents even outperform the human expert by 2.8%. We attribute the good performance to our step-
by-step guidelines encompassed in each task-specific action. For example, they instruct the agent
to choose the most similar datasets in terms of target task, concept relevance, target label/attribute,
and input/output formats. Even when the target labels used by the target service are not explicit,
the guidelines can help the agent match the number of classes. Furthermore, in model stealing, the
guidelines instruct the agent to select more powerful model architectures and choose a larger number
of training epochs and dataset size, leading to even better performance than the human expert. Note
that the human expert follows the default settings in ML-Doctor (Liu et al., 2022b) without per-case
optimization, as this would require substantial manual effort and make the cost difficult to measure.

IAAgent only costs $0.672 per run. On

average, TAAgent with GPT-4o spends about  Table 4: Model stealing attack performance
147,971 input and 25,665 output tokens for when the TAAgent adopts random selection and

each assessment. ~Converting with the cur-  jmportance-based optimization strategies under a
rent API prices (OpenAl, 2025), each run costs  3000-query limitation.

$0.627. With its much lower task completion

rate, the baseline’s expected cost per run be- | CIFARIO | STLIO | AFAD | CelebA | UTKFace
comes $0.873. See more details of token us- Random
age in Appendix E.2. We further present the Optimization
distribution of the time spent and steps in Ap-

pendix E.3. TAAgent takes 27.11 steps and 17.39 minutes per run, while the baseline takes 32.67
steps and 21.05 minutes per run, even though there are many cases where it ends early before com-
pletion or reaching the maximum steps.

0.535 0.445 | 0322 | 0.420 0.656

0.522 ‘ 0.422 ‘ 0312 ‘ 0.348 ‘ 0.646

IAAgent is extendable with specific actions for adaptive scenarios. We consider the target
service to have a 3,000 query limit and evaluate TAAgent in a model stealing experiment. We
equip IAAgent with an importance-based optimization strategy (Wen et al., 2025). This study
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shows that higher-importance data yields better attack performance. Therefore, we include an ac-
tion that calculates the importance of each data point in the shadow dataset to optimally select query
samples. When the TAAgent is aware that there is a query limitation on the target ML service, it
autonomously selects an appropriate dataset based on the given information and optimally chooses
the best data samples. As illustrated in Table 4, it indeed helps the TAAgent achieve better perfor-
mance. Notably, on the CelebA dataset, with the same data size, the attack performance improves
from 0.348 to 0.420. We further demonstrate that the proposed agent is also resistant to prompt
injection attacks (see details in Appendix E.4).

Closed-source models consistently outperform open-source ones, but over time, open-source
models have improved substantially. We evaluate our agents with representative LLMs, including
closed-source models (Claude 3.5 Sonnet, GPT-4-Turbo) and open-source models (Mixtral-8x22B,
Llama-3.1 70B). In general, the two closed-source models perform well, with Claude 3.5 Sonnet
achieving a 100.0% task completion rate and near-expert attack performance. The details of the
attack performance and efficiency comparison can be found in Appendix E.5. In contrast, two open-
source models are much more prone to triggering errors. They randomly make multiple fabricated
assumptions, using actions, e.g., Change Directory, thatdo notexist in action spaces (Table 2).
Worse yet, these open-source models appear less effective at resolving errors. A predominant action
usually emerges, repeatedly appearing in the trace instead of consulting memory or the environment.
For Mixtral, the most frequent action accounts for 88.6% of occurrences in attack traces on average,
and for LLaMA 3.1, it reaches 72.9%. This leads to recurring errors until the maximum step is
reached. Fortunately, future LLMs continue to improve in instruction-following capabilities and
reduce hallucination. We test two recent models, 03-mini and DeepSeek-V3; 03-mini succeeded in
20/20 cases, and DeepSeek-V3 in 18/20, narrowing down the performance gap.

4 TRACE ANALYSIS

4.1 ERRORS OCCURRED IN BASELINES

MLAgentBench has a single agent. The actions, suchas Write File and Understand File,
are generally applicable to ML tasks. Such general actions may be well-suited for applying the
agent to different types of ML tasks. However, the generalizability might also cause the agent to
lack control in decision-making (Xia et al., 2024) and ignore critical steps in the tasks. We analyze
the traces of MLAgentBench and identify four types of common errors:

Bad Plans: Agents make bad plans, which can lead to severe consequences such as incomplete as-
sessment and logical errors. For example, they may generate inappropriate actions, such as Final
Answer to end the assessment without performing any of the attacks. The agent may also pro-
duce inappropriate action inputs. For example, the action Edit Script receives the edit instruc-
tion set the dataset path to eval_dataset, which uses the evaluation dataset as the
shadow dataset, causing logical errors. They also schedule attacks poorly. For example, it initially
inspects all starter scripts and collects extensive information, which can overwhelm its memory and
cause context loss and hallucinations during execution. See details of each example in Appendix F.1.

Inability to Follow Instruction: Agents produce incorrect action inputs that violate usage guide-
lines in the instruction, causing them to become consistently stuck in an environment error. For
example, the agent ignores the initial instruction insert the parameter value as the
default values and explicitly passes parameters to the script for execution. However, the
Execute Script action in MLAgentBench does not support explicitly passing the parameter,
leading to a persistent environment error (see examples in Appendix F.2).

Task Context Lost: Agents may lose the task context, especially during the debugging process. For
example, the agent gets stuck in a loop, repeatedly missing required parameter values, correcting
them, and then missing them again(see examples in Appendix F.3).

Hallucinations: Agents make fabricated assumptions about the environment. Through our trace
analysis, we observe three types of hallucination in MLAgentBench: Type-I refers to generating
non-existent action names; Type-II refers to making fabricated assumptions about action inputs;
Type-III refers to generating fabricated performance values. See more details of these hallucination
and how do we mitigate them in Appendix G.
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4.2 BENEFITS OF OUR DESIGN CHOICES

Component-I: Multiple Agents As The Basic Framework. In MLAgentBench, each response
contains a Research Plan and Status entry used to trace what has been done. This entry is
highly detailed and interpretable, making it useful for guiding the agent. However, the assessment
tasks are not trivial and require many steps to complete. Furthermore, once the agent enters the
debugging process, the entry becomes excessively long, causing it to forget the instructions and task
context, and sometimes even ending the task without completing it, as shown above. Huang et al.
(2024) also mention this entry fails to prevent situations where the agent plans to carry out overly
complex edits and becomes stuck in debugging.

To mitigate such errors, we leverage the multi-

agent framework. ControllerAgent Taple 5: The impact of different components

determines which attacks to perform and i, TaAAgent on the task completion rate.
launch AttackAgent for each attack. Each

AttackAgent is responsible for only one attack MLAgentBench | +C1 | +CII | +C1II | 1AAgent
and maintains its own memory independently. 263% | 78.0% | 649% | 50.5% | 100.0%
This framework prevents the agent from maintain-
ing an overly long memory. It also ensures that
each attack is executed independently, preventing one attack from blocking the execution of others
if it gets stuck and reducing the risk of unexpected errors from using intermediate results across
attacks. Meanwhile, the ControllerAgent submits the final answer only if it confirms that
all AttackAgents have completed their attacks, ensuring that no attacks remain unperformed.
As illustrated in Table 5, the task completion rate can be increased to 78.0%. Note that while the
multi-agent framework improves task completion rate, attack performance remains poor due to
random selection of datasets, models, and hyperparameters. For example, on a target service using
the CelebA dataset and CNN model, the membership inference attack achieves 0.191, and the
model stealing attack reaches 0.205.

Component-II: Task-Specific Action Spaces. In MLAgentBench, the agent does not recognize
critical steps in the assessment. For example, choosing a shadow dataset is a critical step (see Sec-
tion 2). A similar shadow dataset is critical to obtain high attack performance (Wen et al., 2025).
Moreover, when conducting attribute inference, a mandatory requirement is that the shadow dataset
must contain the target attribute intended for inference. However, we observe cases where the tar-
get service performs a facial attribute task. In these cases, the agent directly selects CIFARI10 as
the shadow dataset to perform the attribute inference attack, even though CIFARI10 lacks attribute
information. This causes the agent to become stuck in the debugging process and unable to resolve
the issue until the maximum step limit is reached. The agent may also choose inappropriate actions
while carrying out its plan. For example, they may execute Final Answer to finish the assess-
ment without performing any attacks, even though it claims to be preparing to perform them in the
action input (see the example in Appendix F.1). We speculate that it might be because the agent
does not find an appropriate action in action spaces. These failure modes motivate us to develop
a task-specific action space in which we manually identify all critical steps and encapsulate each
as a separate action. In each action, we follow the design principle (Cao et al., 2024) to provide
a step-by-step guideline to help the action successfully progress towards the goal. As illustrated
in Table 5, the task completion rate increases to 64.9%. More importantly, this design improves the
attack performance. For example, in model-stealing attacks targeting a race classification service,
MLAgentBench achieves 0.531 accuracy, whereas our design achieves 0.723.

Component-III: Response Format With Record Information. The agent may hallucinate about
the environment due to missing relevant information in its memory (see examples in Section 4.1).
This inspired us to add the entry Important Information in the response format to remind
the agent that it has acquired important information, especially parameters with their values required
when executing scripts. Specifically, this entry records all information about the target (e.g., the
target task), as well as all paths (e.g., dataset paths) and names (e.g., attribute names) that appeared in
observations or in previous steps. With this design, we indeed observe a reduction in hallucinations,
and the task completion rate increases to 50.5%.

IAAgent. Asillustrated in Table 5, these components are all indispensable, achieving the current
100.0% task completion rate and strong attack performance.
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5 LIMITATIONS AND FUTURE WORK

We take an initial step toward developing an autonomous agent capable of conducting inference
attacks without human intervention. As this is an early-stage effort, our primary focus lies in the
agent’s design, including a multi-agent framework, task-specific actions, and instruction prompting,
in order to establish a solid foundation. We summarize the lessons learned in Appendix H. We
acknowledge limitations that can be improved in future work as follows.

More Target Models. We did not target additional models, especially LLMs, because our main focus
is on agent design rather than incremental extensions. Moreover, inference-time attacks on LLMs
are typically evaluated using traditional reference-based methods, which are considered strong but
require extensive resources that we acknowledge we do not have (Hayes et al., 2025).

More Attacks and Methods. Following previous work (Cristofaro, 2020; Duddu et al., 2024; Liu
et al., 2022b), we focus on four representative inference attacks. However, our agent is flexi-
ble to perform other attacks. As an initial investigation, we test adversarial attacks (Goodfellow
et al., 2015), with results presented in Appendix I. This demonstrates the feasibility of extending
IAAgent to additional attacks; future work may develop richer action guidelines to enable more
advanced attack techniques. Our evaluation does not cover all methods for each inference attack.
While feasible, such incremental extensions are left as future work, as they lie outside the core
contribution.

More Adaptive Evaluation. In Section 3.2 and our initial exploration of adversarial attacks, we show
that TAAgent can perform adaptive evaluations under service-level defenses, such as query rate
limits, and model-level defenses, such as adversarial training. The agent optimizes its strategy either
by learning under known constraints or iteratively adapting when unaware of defenses. Future work
could extend TAAgent with additional actions to handle a broader range of defense mechanisms.

More Human Evaluation. All authors reviewed the assessment report and found it accurately de-
scribes the attack process, interprets results, and provides defense suggestions. Future work will
involve non-expert Al practitioners for a more systematic evaluation.

6 RELATED WORK

Applications of LLM-Based Agents. Researchers and industry practitioners have recently be-
gun exploring the capabilities of LLM-based agents to tackle complex tasks across various do-
mains (Zhou et al., 2023; Cao et al., 2024; Lai et al., 2023; Huang et al., 2024; Zhang et al., 2024;
Yang et al., 2024; Jimenez et al., 2024; Bouzenia et al., 2024; Carlini et al., 2025). (Huang et al.,
2024) propose MLAgentBench that includes 13 ML tasks to evaluate the capability of autonomous
agents to solve these tasks. Yang et al. (2024) introduce SWE-agent that provides a set of agent-
computer interfaces to facilitate LLM-based agents to autonomously solve software engineering
tasks. Carlini et al. (2025) propose a benchmark to exploit the agent’s capability to break adversarial
example defenses. These agents are designed with different goals, they vary in their frameworks,
available environment, tools, action spaces, and prompt designs. These differences help them per-
form well in their own tasks but limit their generalizability to other settings. Importantly, they cannot
be directly applied to risk assessment. The most related work is by Carlini et al. (2025), but their
goal is to break adversarial example defenses, and the agent in that setting has white-box access to
both the model and the defense implementation.

7 CONCLUSION

We propose an autonomous agent TAAgent. It empowers non-experts to conduct risk assessment
on a given ML service at a level comparable to human experts. It only requires black-box access
and basic information, which are typically easy to obtain. We evaluate it on 20 target services built
across five datasets and four model architectures. The evaluation demonstrates that our agent with
arobust LLM (e.g., GPT-40), across all target services, achieves a 100.0% task completion rate and
near-expert attack performance, with an average token cost of only $0.627 per run.
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ETHICS STATEMENT

During the evaluation, all datasets are research-oriented and publicly available, so there is no risk
of users being de-anonymized. Therefore, our work is not considered human subjects research by
our institutional review board. We further build the target services with exposed APIs to perform
the evaluation, rather than directly targeting real-world ML services, to avoid causing any harm to
them. In this paper, we aim to design an autonomous agent that assists the owners of ML services
in understanding the potential security and privacy risks during the inference phase. To avoid being
exploited by a malicious adversary, the proposed agent framework will have the request-access
feature enabled, and we will manually review applicants’ information.

REPRODUCIBILITY STATEMENT

We are committed to sharing our artifacts to promote research and the development of effective,
cost-efficient autonomous agents, particularly for automating labor-intensive tasks. They include
the evaluation datasets and code for the proposed agent framework and the deployment of the target
service.
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B DETAILS OF AGENT DESIGN

B.1 AGENT WORKING PIPELINE

Figure 2 presents an example of the basic flow of AttackAgent. It acts on memory m,, which
consists of an initial instruction mg and the plans and observations from the last three time steps,
to produce the plan p;. The plan includes an action a; from the action space in Table 2. It then
executes the action in environment e;_; to produce an observation o; and an updated environment
e;. Finally, it updates the memory based on the plan and observation at the current time step ¢. The
ControllerAgent follows the same basic flow, with a difference in the action space (see details
in Table 1).

You are an expert for inference machine learning attacks ... You have access to the following tools: 2
Choose Shadow Dataset: .m. Iniilzed For ip nference Attack

Conduct a comprehensive risk assessment on the target service.

You have the following knowledge about the target service:
- Target Task Description: The target task is an 8-class facial attribute prediction task.
Plan p,

You have the following resources to help you accomplish the task:
- For different types of attacks, you can use the following python scripts: Reflection: . Research Plan and Status _ Fact
Check .. Important Information: . Thought:
initialized for membership inference attack only. Now perform the attack! — @@ — e

Always respond in this format exactly: Action Input:

Initial Instruction my e a
nvironment

‘Assistant. Pis et
Reflection: _ Research Plan and Status . Fact Check .. Important Information: . Thought: - g, !
Action: Choose Shadow Dataset

Action Input 0ea Execute
Observation:

The most suitable shadow dataset is the "celeba" dataset. Here s the reasoning l Observation o,

Observation:
Assistant:

Reflection: . Research Plan and Status .. Fact Check .. Important Information: .. Thought:
Action: Choose Shadow Model Architecture

Action Input;

Observation:

ﬂ:’: The script has been executed, Here is the output:
Epoch 50: Test Loss: 1.5216, Test Accuracy: 78.28%

02 Model saved to
shadow_sssets/models/celeba_resnet50_5000_shadow_model_final.pth
Model Name: "resnet50"
Reason:

Assistant: T
Reflection: _ Research Plan and Status... Fact Check . Important Information: . Thought: . g, |
Action: Set Parameters —  Update
Action Input: .. a:

Observation:

Environment
l @

Here are the recommended values for each parameter along with the reasoning

Memory m,

Figure 2: An example of the basic flow of AttackAgent.

B.2 CONTROLLERAGENT’S ACTION SPACE

Determine Attacks. This action aims to determine which attacks to perform by the AttackAgent.
It takes a list of attack names that ControllerAgent determines to perform based on the given
information about the target service and returns the attack names that have been confirmed to be
executable by AttackAgent.

Launch AttackAgent. It aims to create an environment and launch AttackAgent for each
determined attack. After successfully launching all agents, it returns a success message.

Monitor Attacks. It aims to monitor the ongoing progress of each AttackAgent. The
AttackAgent sends a completion message to the ControllerAgent once the entire at-
tack process is finished. The observation contains status reports (e.g., Completed) from all
AttackAgents.

Final Answer. The ControllerAgent uses this action to shut down the environment after com-
pleting the assessment.

B.3 ATTACKAGENT’S ACTION SPACE

Check Required Parameters. This action aims to check all required parameters that need to be set
when executing the given script. It takes a script name as input, reads the script, and calls an LLM
to summarize the required parameters needed to execute the script. It returns concise descriptions
of all parameters, including their types and purposes.

Choose Shadow Dataset. This action aims to select the most similar dataset to the shadow dataset. It
takes a file name (e.g., available_datasets. json) that includes information about all avail-
able datasets in the environment, a description of the target task (e.g., an age prediction
task), the input format (e.g., image) and output format (e.g., 5-dim posteriors), and the
target attribute (e.g., gender) as input. The target attribute can be any sensitive attribute that is not
directly related to the original task. It first reads the file and calls an LLM to summarize relevant
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information about each available dataset, such as the number of classes, common tasks that can be
performed, and the dataset path. Then, it calls an LLM to select the shadow dataset using a detailed
guideline to assist in the decision-making process. The guideline instructs the LLM to consider
factors such as the shadow dataset having the same target task, sharing similar concept relevance,
having the same target label and target attribute, and having the same input and output formats.

Choose Attribute. This action aims to select the appropriate attributes as the target label for the
shadow model. It takes a file name that includes all attribute information for the selected shadow
dataset (e.g., available_datasets. json), the description of the target task (e.g., a facial
attribute prediction task), the selected shadow dataset name, and the output format of
the target service (e.g., 8—dim posteriors) as input. It first reads the file and calls an LLM
to summarize all available attributes with their number of classes in this shadow dataset. Then,
it calls an LLM to select the most appropriate attribute(s), guided by a detailed instruction to aid
the decision-making process. This guideline provides empirical insights on selecting attributes,
especially when none of the available datasets clearly match the target service’s task description and
the target label. In such cases, we attempt to match the output format, i.e., the number of classes
of the target label. For example, we may select multiple attributes and combine them into a single
label with the same number of classes as the target label. This action returns the exact name of the
selected attribute(s) along with the number of classes. If multiple attributes are selected, it returns a
string with attribute names separated by commas.

Choose Shadow Model Architecture. This action aims to select the appropriate shadow model archi-
tecture. Inputs include a file (e.g., available models. json) with architecture details, target
service access type (e.g., black-box), and attack name (e.g., model stealing attack). It first
reads the file and calls an LLM to summarize relevant information about each available architecture.
Then, it calls an LLM to select the most appropriate shadow model architecture, guided by a detailed
instruction. This guideline contains empirical insights on maximizing the performance of the given
attack. For example, if the primary goal of model stealing attacks is to maximize accuracy, a more
powerful architecture is beneficial (Krishna et al., 2020). Hence, the guideline recommends starting
with a more complex model architecture in model stealing, but not one that is overly complex, to
avoid overfitting. This action returns the name of the selected model architecture and the reason for
the choice.

Set Parameters. This action aims to set hyperparameters, including the learning rate, batch
size, number of epochs, and dataset size, for training either the shadow model or the attack
model. Before executing this action, the agent needs to execute the action Check Required
Parameters to confirm whether these parameters need to be set. It takes a script name (e.g.,
train_shadow.model.py), a dataset name (e.g., UTKFace), a model name (e.g., ResNet 50),
an attack name (e.g., membership inference attack), and the purpose of the script (e.g.,
training a shadow model) as input. Then, it calls an LLM to set the values of these hyper-
parameters guided by detailed instruction, including empirical insights on maximizing the perfor-
mance of the given attack. For instance, in shadow model training for membership inference attacks,
a smaller dataset can increase overfitting risk, aiding the attacker’s ability to differentiate members.
Yet, if too small, excessive overfitting could reduce the shadow model’s ability to effectively mimic
the target model’s behavior. Therefore, the guideline recommends starting with a small dataset size
and gradually increasing it if needed. This action returns all parameters with the exact parameter
values and concise reasons for choosing each parameter value.

Execute Script. This action aims to execute the given scripts with parameters. It takes a script name
and a dictionary consisting of parameter names and corresponding values as input. Then, it explicitly
passes these parameters to execute the given script and returns any output from this execution.

Final Answer. 1t shuts down the environment after completing the entire attack process. To en-
sure non-expert readability, it also generates an easy-to-understand report of the attack, including a
description of the target service (e.g., task description and access point), the attack process, attack
results with metric values (e.g., attack accuracy), explanations (e.g., whether the results indicate
high risks), and defense suggestions.

15



Under review as a conference paper at ICLR 2026

B.4 ENVIRONMENT

Assessing the risk of the target service is a case-by-case task. Depending on the service, we may
adjust shadow datasets, labels, model architectures, and hyperparameters for optimal assessment.
While these choices vary, the inference attack workflow remains reusable. To streamline decision-
making, we provide a reusable environment comprising four components:

Linux Shells. IAAgent is built on a Linux environment and equipped with Shells to run Python
scripts.

Starter Scripts. Attack implementations are reusable across target services, removing the need to
reimplement them each time. We provide starter scripts covering all attacks, along with functions to
access available datasets and models for a stable attack workflow. This enables the agent to focus
on making challenging decisions, such as selecting suitable datasets, models, hyperparameters, etc.,
rather than generating code for different methods. Similarly, (Huang et al., 2024) provides starter
code and data to build MLAgentBench for ML experimentation.

Available Datasets. Many inference attacks rely on an auxiliary dataset to either train a shadow
model that mimics the behavior of the target model (e.g., membership inference and model stealing)
or to directly train the attack model (e.g., attribute inference). We equip the environment with
available datasets that can be used as auxiliary (shadow) datasets. We also provide descriptions of
all available datasets in a JSON file. The description of each available dataset includes the number of
classes, input data size, class names, dataset path, and common tasks it can perform, helping agents
select the most suitable dataset for conducting attacks.

Available Models. We also provide a JSON file that includes a list of models available in the
environment, determined by the maximum GPU resources in the environment. Only models that
can run in the current environment are included in the list to avoid CUDA out-of-memory errors.

C DETAILS OF RISK ASSESSMENT

Inference attacks allow adversaries to learn sensitive information about the training data as well
as the functionality or parameters within the models. Following previous work (Cristofaro, 2020;
Rigaki & Garcia, 2024; Duddu et al., 2024; Liu et al., 2022b), we mainly focus on four representative
inference attacks: membership inference, attribute inference, data reconstruction, and model stealing
attacks.

Membership Inference Attack. It is a common type of privacy attack aimed at determining if a
specific data sample is part of a training dataset (Liu et al., 2022a; Shokri et al., 2017; Salem et al.,
2019; Choo et al., 2021; Li & Zhang, 2021; Ye et al., 2022). An adversary has access to a target
service and attempts to determine whether a given data sample (x,y) is included in its training
dataset. Most attack methods require the adversary to train shadow models that mimic the target
model’s behavior on a shadow dataset. The adversary is also provided with additional information
about the data distribution D, which facilitates the creation of the shadow dataset. The quality of the
shadow dataset and the performance of the shadow models are crucial to the overall success of the
attack.

Model Stealing Attack. This attack aims to replicate a shadow model that mimics the functionality
of the target model (Carlini et al., 2020; Jagielski et al., 2020; Tramer et al., 2016). The workflow
is that the adversary leverages data samples {x;}}_; from a specific distribution and queries the
target service to obtain outputs {P(x)}7_, as pseudo-labels. They then construct the training
dataset D = {x,P(xy)}}_, to train the shadow model that replicates the functionality of the
target service. In this attack, the quality of the shadow dataset and the architecture of the shadow
models are crucial to the overall success.

Data Reconstruction Attack. It aims to recover the data samples of the target training
dataset (Fredrikson et al., 2015; Yang et al., 2019; Yin et al., 2020; Zhang et al., 2020). A rep-
resentative workflow (Yang et al., 2019): The adversary first collects an auxiliary dataset {zs}}_,
from public sources based on background knowledge. This dataset is expected to share key features
with the target service. The adversary then queries the target service with {zy}}_, to obtain pre-
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diction vectors {gjk}};:l, and uses the resulting pairs {(yx, 2;)}7_, to train an inversion model that
learns to reconstruct inputs from outputs.

Attribute Inference Attack. It aims to predict sensitive attributes that are not directly related to the
original task of the target task (Melis et al., 2019; Song & Raghunathan, 2020; Song & Shmatikov,
2020). For example, a target service for predicting ages may unintentionally predict race. The
adversary collects a shadow dataset {xx, y, }1_, where y, is the sensitive attribute that they aim
to infer. This dataset is used to train the attack model, a two-layer fully connected network, where
the input is the embedding, and the model predicts the sensitive attribute. The adversary queries
the target service with {a;}7_, to obtain embeddings {€(xx)}}_, to construct the attack training
dataset. The shadow dataset needs to include annotated target attributes, and its quality is also crucial
to the success of the attack.

D DETAILS OF TARGET SERVICE

We consider five datasets including CIFAR10 (Canadian Institute For Advanced Research, 2009),
STL10 (Coates et al., 2011), CelebA (Liu et al., 2015), UTKFace (Zhang et al., 2017), and
AFAD (Niu et al., 2016). Each task corresponds to a downstream task as follows:

* CIFAR10 is a benchmark dataset that contains 6,000 images for each of 10 classes. The target task
is a 10-class image classification task that categorizes animals (e.g., cats and dogs) and transport
tools (e.g., airplanes and ships).

* STL10 is a 10-class image dataset that contains 1,300 images for each of 10 classes. The target
task is a 10-class image classification that can classify airplanes, birds, cars, cats, deer, dogs,
horses, monkeys, ships, and trucks.

* CelebA is a facial image dataset that contains more than 200,000 facial images, each annotated
with 40 binary attributes. Following previous work (Zhong et al., 2022; Wen et al., 2025; Nguyen
& Tran, 2021), we select the three most balanced attributes to create an 8-class facial attribute
prediction task.

* UTKFace contains approximately 23,000 images, each annotated with three attributes: gender,
race, and age. We consider 5-class race classification as the target task.

* AFAD contains more than 160,000 facial images, each annotated with age and gender attributes.
We divide age values into five bins to create a 5-class age prediction task.

Each dataset is split into two halves: the first for training target models and the second for risk
assessment. We randomly sample 3,000 samples from the first half of STL10 and 5,000 samples
from the first half of each of the other five datasets to train separate target models for each dataset.
We use cross-entropy as the loss function and Adam as the optimizer, with a learning rate of 1e-3 and
a batch size of 64. Each target model is trained for 300 epochs. The deployment of target services
with API endpoints is shown in Figure 3.

Model

|

Dataset 5 Train |
Architecture Target Model |
Hyper-Parameters |

|

|

|

|

Deploy l

Black-Box
Prediction API
Target
Service
| Black-Box o

I Embedding APl |
| g

Figure 3: Deployment of target services with API endpoints.
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E DETAILS OF EVALUATION RESULTS

E.1 TASK COMPLETION RATE

We report the task completion rate over five runs where each agent successfully completes the en-
tire assessment in Figure 4. Our IAAgent achieves a far better task completion rate of 100.0%
compared to the agent in MLAgentBench, which only has 26.3% on average.

100.0 100.0 CIFAR10 jmivoX0] 60.0 100.0
100.0 100.0 STL10 soNy} 100.0 80.0
100.0 100.0 AFAD oK) 80.0 100.0

100.0 100.0 CelebA

UTKFace X} 100.0 UTKFace
Xeeption Simplecyyy ResNet1g ResNets Xeeption Simplecpyp ResNet1g ResNetsg

(a) Claude 3.5 Sonnet (b) GPT-4-Turbo

Figure 4: Task completion rate of ITAAgent with closed-source models, shown as the percentage
over 5 runs in which the agent completes the entire risk assessment.

E.2 DISTRIBUTION OF TOKEN USAGE
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Figure 5: The distribution of token usage of the TAAgent and baseline with GPT-4o for each run.

We present the distribution of numbers of input and output tokens consumed by IAAgent in Fig-
ure 5. Our TAAgent demonstrates stable input and output token usage within a concentrated range,
indicating that TAAgent is better optimized for consistent performance. In contrast, the baseline
shows a much wider spread in both input and output token consumption, reflecting unstable and
unpredictable task performance.

E.3 DISTRIBUTION OF TIMES AND STEPS

We show the distribution of the time spent and steps taken by our IAAgent and the baseline for
each run in Figure 6. We observe that our agents complete the assessment within a concentrated,
shorter range of time and with fewer, consistent steps, indicating high efficiency. A few runs take
longer, as they select a larger dataset size to improve the attack performance of model stealing at-
tacks. In contrast, we observe that many runs fall into the first and last bins in Figure 6b. These
correspond to cases where inappropriate actions lead to incomplete assessments, and where trigger-
ing numerous errors causes the agent to get stuck in the debugging process until the maximum steps
are reached. On average, IAAgent takes 27.11 steps and 17.39 minutes per run, while the baseline
takes 32.67 steps and 21.05 minutes per run, even though there are many cases where it ends early
before completing the assessment or reaching the maximum steps.
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Figure 6: The distribution of (a) time spent (b) steps taken by IAAgent and the baseline with GPT-
4o for each run.

We further present the distribution of steps taken for each by IAAgent with GPT-4o0 in Figure 7.
We observe that different attacks require varying numbers of steps to complete. On average, data re-
construction attacks require only 4.64 steps per run, the fewest steps, indicating a relatively straight-
forward attack. Membership inference attacks require more steps, 8.86 steps per run, indicating
a higher complexity. In general, the steps taken for each attack are concentrated within a narrow
range, demonstrating that TAAgent has considerable stability in achieving these attacks.

60

Model Stealing

Data Reconstruction
Membership Inference
Attribute Inference

40
e
5
o
|
20 |||
0 I- =

Number of Steps

Figure 7: The distribution of steps taken by IAAgent with GPT-4o for each attack.

E.4 ROBUSTNESS OF PROMPT INJECTION ATTACKS

IAAgent is resistant to prompt injection. Prompt injection attacks manipulate the agent’s
behavior through crafted inputs, corrupting its ability to perform the target task and causing it to
execute attacker-desired actions. This can lead to harmful outcomes such as sensitive file leakage
and unauthorized external requests (Liu et al., 2024b; Salem et al., 2023; Abdelnabi et al., 2023).
We apply the standard prompt injection framework (Liu et al., 2024b) to assess IAAgent’s re-
sistance to such misuse. Specifically, we assume a black-box adversary who can only manipulate
inputs at the agent’s entry point related to the target service. The adversary leverages native attacks,
escape characters, context ignoring, fake completion, and combined attacks, and the injected task
is spam detection. We observe that TAAgent successfully performs all attacks in all cases, i.e.,
100.0% attack resistance. We attribute the high robustness to only the ControllerAgent receiv-
ing structured inputs (see Figure 2). Even with injected data, the Important Information
entry only retained assessment-relevant details, and the AttackAgent launches and completes
the assessment successfully.

E.5 PERFORMANCE OF DIFFERENT LLMS
We compare the attack performance of IAAgent with different LLMs in Table 6. Here, for GPT-

4-Turbo, we only include the attack performance in successful runs. We observe that, in successful
runs, different LLMs achieve comparable attack performance across all target services.
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Table 6: Attack performance of all four types of attacks launched by our agents with GPT-40, GPT-
4-Turbo (Turbo), and Claude 3.5 Sonnet (Claude) on target services built on five datasets and four
architectures. We run five rounds for each setting and take the average values. “-” denotes not
applicable.

Target Membership Inference (1) Model Stealing (1) Data Reconstruction () Attribute Inference (1)
Dataset ~ Model Arch. | GPT-40 Turbo Claude | GPT-40 Turbo Claude | GPT-4o  Turbo  Claude | GPT-40 Turbo Claude

Xception 0.855  0.864  0.849 0525 0539 0524 | 0.05218 0.05218 0.05218 -
CIFAR10 SimpleCNN | 0.761  0.765  0.765 0.585  0.577  0.589 | 0.05046 0.05050 0.05051
ResNet18 0.855  0.863  0.869 0.543  0.540 0.546 | 0.05176 0.05176 0.05176 -
ResNet50 0.850  0.856  0.840 0.545 0542 0.540 | 0.04949 0.04952 0.04952 -
Xception 0.893  0.895 0912 0444 0443 0.447 | 0.05332 0.05334 0.05332 -
STLI10 SimpleCNN | 0.762  0.737  0.750 0455 0458 0.464 | 0.05541 0.05540 0.05540
; ResNet18 0.888  0.889  0.889 0469 0461  0.462 | 0.05266 0.05266 0.05266 -
ResNet50 0.880  0.887  0.852 0446  0.448  0.442 | 0.05101 0.05101 0.05101 -
Xception 0.895  0.893 0912 0329 0330 0343 | 0.04791 0.04792 0.04792 | 0.637  0.647  0.639
AFAD SimpleCNN | 0.872  0.886  0.877 0325  0.494 0323 | 0.04745 0.04746 0.04747 | 0.672 0595 0.663
ResNet18 0918 0940 0938 0339 0340 0345 | 0.04718 0.04717 0.04720 | 0.754  0.688  0.774
ResNet50 0914  0.883 0910 0.348 0347 0346 | 0.04717 0.04722 0.04722 | 0.693  0.585  0.700
Xception 0.829 0719 0831 0.559 0561 0578 | 0.07200 0.07201 0.07201 | 0.790  0.800  0.888
CelebA SimpleCNN | 0.735  0.652  0.735 0.518 0516 0505 | 0.06618 0.06617 0.06617 | 0.878  0.727  0.728
ResNet18 0.815  0.829  0.866 0524 0523 0.521 | 0.06618 0.06618 0.06618 | 0.884  0.843  0.891
ResNet50 0.828  0.788  0.822 0.558  0.556  0.559 | 0.06008 0.06008 0.06008 | 0.885  0.888  0.702
Xception 0722 0722 0.732 0733 0.725 0727 | 0.04258 0.04262 0.04261 | 0.569 0578  0.584
UTKFace SimpleCNN | 0.711  0.713  0.712 0705 0.706  0.709 | 0.04137 0.04138 0.04138 | 0.579  0.587 0.614
h ResNet18 0.746  0.744  0.752 0.728  0.725  0.728 | 0.04143 0.04145 0.04145 | 0.713  0.714  0.693
ResNet50 0717 0723 0.723 0726 0.726  0.727 | 0.04349 0.04354 0.04353 | 0.632  0.654  0.627
Average 0.822 0812 0827 0520 0528 0521 | 0.05197 0.05198 0.05198 ‘ 0724 0.692  0.709
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Figure 8: Comparison between IAAgent with different LLMs in terms of efficiency. Each point
represents the average results of a target service over five runs.

We further compare the efficiency of IAAgent with different LLMs in Figure 8. Specifically,
both GPT-40 and Claude 3.5 Sonnet are cost- and step-efficient and also demonstrate consistent
performance. GPT-4-Turbo, while capable, incurs higher costs and requires more steps on average,
making it less efficient for this task.

F MORE EXAMPLES OF ERRORS OCCURRED IN BASELINES

F.1 BAD PLANS

As shown below, they may generate inappropriate actions, such as Final Answer to end the
assessment without performing any of the attacks.

Action: Final Answer
Action Input: {

"final_answer": "The feasible attacks given the access we have are:
Membership Inference Attack, Model Stealing Attack, and Data
Reconstruction Attack. Attribute Inference Attack is not feasible

as it requires a black-box embedding API, which we do not have
access to. We will proceed with preparing for these attacks by
understanding the required parameters and setting them
appropriately."}
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As shown below, the action Edit Script receives the edit instruction set the dataset
path to eval_dataset, which uses the evaluation dataset as the shadow dataset, causing log-
ical errors.

Action: Edit Script (AI)
Action Input: {
"script_name": "membership_inference/train_shadow_model.py",
"edit_instruction": "Set default values for the required arguments:
—-—dataset_path to ’"eval_datasets’, ...",
"save_name": "membership_inference/train_shadow_model_with_defaults.
py" }

F.2 INABILITY TO FOLLOW INSTRUCTION

For example, as shown below, the agent ignores the initial instruction insert the parameter
value as the default values and explicitly passes parameters to the script for execution.
However, the Execute Script action in MLAgentBench does not support explicitly passing the
arguments parameter as input, leading to a persistent environment error.

Action: Execute Script
Action Input: {

"script_name": "data_reconstruction/inversion_attack.py",
"arguments": {"-—-num_classes": 5,...}

}

Observation:

‘“‘EnvError: The file data_reconstruction/inversion_attack.py",
"arguments": {"--num_classes": 5,...} does not exist. ‘'

F.3 TAskK LosT

Research Plan and Status:

- Encountered an error due to missing required arguments during script
execution.

- Edited the script to set default values for all required arguments,
ensuring successful execution.

- Encountered a ‘FileNotFoundError‘' due to missing shadow training
dataset.

- Verified that the ‘shadow_train_data/‘ directory does not exist in the
current directory.

— Determined the correct path for the CelebA dataset as
supported_datasets/celeba_shadow.pt ‘.

— Successfully prepared the shadow dataset using the CelebA dataset path.

- Encountered an error due to missing required arguments during script
execution.

— Inspected ‘metric_based_attack.py' and confirmed it requires several
command-line arguments.

— Edited ‘metric_based_attack.py' to set default values for all required
arguments.

— Encountered a ‘FileNotFoundError' due to missing shadow training
dataset.

F.4 HALLUCINATION

As shown below, the agent sets the shadow dataset name as default_shadow_dataset,
shadow dataset path as path/to/shadow_dataset, and the eval dataset directory
path/to/eval _dataset.

Action: Edit Script (AI)
Action Input: {
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"script_name": "attribute_inference/attack.py",

"edit_instruction": "Set default values for the required parameters:
shadow_dataset_name=’default_shadow_dataset’, shadow_dataset_path
='path/to/shadow_dataset’, ..., eval_data_dir='path/to/
eval_dataset’. Ensure these defaults are used if no command-line
arguments are provided.",

"save_name": "attribute_inference/attack_modified.py"}

F.5 FAILURE MODES OF A SINGLE AGENT

In the following example, the agent completes membership inference, model stealing, and attribute
inference, and then directly submits the final answer, stating that it did not perform the data re-
construction attack due to a lack of specific instructions or scripts for this attack. However, the
Research Plan and Status records indicate that all four attacks can be performed.

Research Plan and Status:
2. Determine which attacks can be performed based on the available access

— We have access to both black-box prediction and embedding APIs, as
well as white-box access to the model.
- Status: All four types of attacks can be performed.

Fact Check:

— The successful execution of the ‘attribute_inference/
attack_final_corrected_v2.py"' script and the final test accuracy of
88.22% are directly confirmed by the observation.

Thought:

Action: Final Answer

Action Input: {

"final_answer": "...Data Reconstruction Attack: Not performed due to
the lack of specific instructions or scripts for this attack..."

G THREE TYPES OF HALLUCINATION

* Type-I refers to generating non-existent action names, such as Change Directory and
Review Code, and attempting to have the agent execute them. It only appears in some spe-
cific LLMs, such as Mixtral and Llama-3.1 (see details in Section 3.2). By switching to stronger
models (e.g., GPT-40), we effectively reduce hallucinations.

* Type-II refers to making fabricated assumptions about action inputs. For example, the
agent sets the shadow dataset as default_shadow._dataset, shadow dataset path as
path/to/shadow_dataset, and the eval dataset directory path/to/eval_dataset (see
examples in Appendix F.4). Although MLAgentBench can explore the environment to find the
correct attack parameters and recover, it may get stuck in debugging, i.e., the inability to fol-
low instructions and context loss, repeatedly reintroducing hallucinations. IAAgent decomposes
tasks into sub-agents and leverages specific actions to guide the process, mitigating such issues.

» Type-III refers to generating fabricated performance values. It occurs when evaluation results are
missing from the context, causing the agent to fabricate them. Explicitly recording this informa-
tion effectively mitigates the issue.

H LESSONS LEARNED

We introduce an autonomous multi-agent framework IAAgent to conduct inference attacks. Our
agent-based approach diverges fundamentally from simple scripting by incorporating a dynamic, it-
erative reasoning process that enables contextual understanding and adaptive problem-solving. This
enables the synthesis of complex ideas, subtle decision-making, handling ambiguity or incomplete
information, and effective error debugging and recovery, which are crucial for automated inference
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attacks. Although IAAgent is designed for risk assessments, insights from its development can be
applied to autonomous agents for other tasks.

First, a multi-agent framework breaks complex tasks into subtasks, with each agent handling a spe-
cific task and sharing memory only when necessary. This prevents overload and minimizes errors
from shared results, allowing for more specialized instructions.

Second, we identify key steps in inference attacks and consolidate them into compact actions (Yang
et al., 2024). These task-specific action spaces provide critical benefits by minimizing errors from
overlooked critical steps and inappropriate actions, ensuring that agents progress toward the final
goal. Step-by-step guidelines (Cao et al., 2024) improve stability and performance.

Third, a refined response format with key progress information helps mitigate errors, especially
hallucinations. Robust LLMs (e.g., GPT-40 and Claude 3.5 Sonnet) are critical, as open-source
models (e.g., Mixtral-8 x22B and Llama-3.1) are more prone to errors and less effective at resolving
them.

Fourth, reusable resources like starter scripts, datasets, and model architectures, establish a stable
workflow, minimizing repetitive edits and allowing agents to focus on decisions.

I EXTENSION TO ADVERSARIAL ATTACKS

we perform an initial investigation on adversarial

attacks, which use carefully designed perturbations  Taple 7: The attack performance of the initial
to inputs to reduce the accuracy of target mod- pPGD attack and the final PGD attack after op-
els Goodfellow et al. (2015); Kurakin et al. (2016);  timization by IAAgent. The metric is the ac-
Madry et al. (2018). We equip IAAgent with an  cyracy of the target service.

initial implementation capable of performing the

projected gradient desce':nt (PGD) attac.k (Mfldl')’ | CIFARIO | STLIO | AFAD | CelebA | UTKFace
et al.,, 2018). We also incorporate basic actions, Initial | 0450 | 0399 | 0369 | 0317 | 0423
such as understanding and editing the script, into Final | 0.071 ‘ 0.092 ‘ 0.369 ‘ 0.064 ‘ 0.099

IAAgent. This allows the agent to iteratively tune
the attack parameters of the initial script. We con-
duct an evaluation on target services with CNN models. More notably, these models are trained
with the adversarial training technique (Madry et al., 2018), a technique that improves model ro-
bustness by incorporating adversarial examples during training. TAAgent has no knowledge that
the target model was trained with adversarial training. As illustrated in Table 7, we observe that,
except for AFAD, the attacks successfully reduce accuracy to < 10%. The agent effectively applied
some strategies, such as tuning PGD hyperparameters (e.g., step count) and adding momentum.
However, the agent’s attempts to modify the PGD attack into more advanced attacks, such as C&W
attack (Carlini & Wagner, 2017), fail and introduce numerous bugs.
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