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Abstract
To increase the adoption of counterfactual explanations in practice, several criteria that these should
adhere to have been put forward in the literature. We propose counterfactual explanations using
optimization with constraint learning (CE-OCL), a generic and flexible approach that addresses
all these criteria and allows room for further extensions. Specifically, we discuss how we can
leverage an optimization with constraint learning framework for the generation of counterfactual
explanations, and how components of this framework readily map to the criteria. We also propose
two novel modeling approaches to address data manifold closeness and diversity, which are two key
criteria for practical counterfactual explanations. We test CE-OCL on several datasets and present
our results in a case study. Compared against the current state-of-the-art methods, CE-OCL allows
for more flexibility and has an overall superior performance in terms of several evaluation metrics
proposed in related work.

1. Introduction

Interpretability in machine learning (ML) is an ongoing research field that has received increasing
attention in recent years. Off the many approaches and tools for interpretability, counterfactual
explanations (CEs) are expected to be especially promising due to their resemblance to how we
provide explanations in everyday life [17]. It has been established that we do not seek to explain
the cause of an event per se, but relative to some other event that did not occur. Typically, we have
a factual instance vector x̂ for which the (prediction) outcome ŷ relative to some other, desired,
outcome ỹ should be explained. The key idea for generating a CE is to find a data point x̃ close to
the factual instance x̂, such that the prediction outcome for x̃ is ỹ. The difference in the features
constitutes the explanation. As CEs do not try to explain all possible causes of an event but focus on
necessary changes to the environment to reach a certain state, they tend to be simpler, and with that,
also easier to understand than those methods which communicate explanations based on the entire
feature space [17].

Wachter et al. [30] are the first to propose an optimization-based approach for generating CEs.
Having a trained classifier h(·), the aim is to find at least one CE, say x̃, which has the closest
distance to the original factual instance x̂ such that h(x̃) is equal to a different target ỹ. Such a CE
can be obtained by solving the following mathematical optimization model:

min
x

max
λ

λ(h(x)− ỹ)2 + d(x̂,x), (1)
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where d(·, ·) is a distance function and λ acts as a nonnegative balancing weight to ensure h(x) = ỹ.
Much work has been devoted to refine this problem such that the generated CEs are useful and
attainable in practice. From the literature [e.g., 19, 20, 24, 27, 30], we can identify the following
eight criteria that a generated CE should fulfill in both theory and practice: Proximity: The CE
should be as close as possible to the factual instance x̂ with respect to the feature values. Validity:
The prediction for the CE x̃ should be equal to ỹ ̸= ŷ. Coherence. When one-hot encoding is
used for categorical data, we should be able to map it back to the input feature space to obtain
coherent explanations. Sparsity: The CE should differ from the factual instance in as few features
as possible. Actionability: We can distinguish between immutable, mutable but not actionable, and
actionable features. Data manifold closeness: To ensure the generation of realistic and actionable
explanations, the generated CEs should be close to the observed (training) data. Causality: Any
(known) causal relationships in the data should be respected in the proposed CEs to further ensure
realistic explanations. Diversity: Any algorithm for the generation of CEs should return a set of
CEs which differ in at least one feature.

These criteria have been partially addressed in recent work, see Table 1. For example, Russell
[24] and Ustun et al. [26] address coherence and actionability, the latter introducing the notion of
immutable, conditionally immutable and mutable features. Further, Russell [24] focuses on diver-
sity and suggests adding constraints greedily by restricting the state of variables altered in previously
generated CEs, while Mothilal et al. [19] base their approach to diverse CEs on determinantal point
processes [13]. Kanamori et al. [9] attempt to optimize the idea of proximity and data manifold
closeness using Mahalanobis’ distance and the local outlier factor to generate CEs close to the
empirical distribution of the training data. Poyiadzi et al. [23] base their work on graph theory, and
apply a shortest path algorithm to minimize the f -distance quantifying the trade-off between the
path length and the density along this path, by that ensuring a solution that lies in a high density re-
gion. To address causality, Kanamori et al. [10] discuss the use of a structural causal model (SCM),
while others advocate a post-hoc filtering approach [19]. We refer to Verma et al. [27] and Guidotti
[7] for an extensive overview of recent works on counterfactual explanations.

To the best of our knowledge ours is the first work that addresses all of these criteria in a
combined setting . We propose CE-OCL, a generic and flexible approach for generating CEs based
on optimization with constraint learning (OCL). OCL is a new and fast-growing research field whose
aim is to learn parts of an optimization model (e.g., constraints or objective function) using ML
models whenever explicit formulae are not available (see Fajemisin et al. [5] for a recent survey
on OCL). We show how all the criteria proposed in the literature can be addressed by an OCL
framework. Based on the concept of trust regions, we also propose a new modeling approach to
ensure data manifold closeness and coherence. Finally, we propose using incumbent solutions to
obtain diverse CEs in a single execution. With our extensive demonstration on standard datasets
from the CE literature, we also set new benchmarks for future research.

2. Generation of counterfactual explanations

In an OCL framework, ML models are used to design constraint and objective functions of an
optimization model when explicit expressions are unknown. First, the predictive model is trained
on historical data and then it is embedded into the optimization model using decision variables
as inputs [2, 28, 29]. Although the interplay between optimization and ML has a different aim
in OCL than CE generation, we notice that the two frameworks have a similar structure. Recent
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Table 1: State-of-the-art methods to generate CEs

Proximity Sparsity Coherence Actionability Data Manifold Closeness Causality Diversity

Laugel et al. [14]    – – – –
Russell [24]  G#  – – –  
Ustun et al. [26]     – – –
Kanamori et al. [9]  –  –  – –
Mahajan et al. [15]  –  G#   –
Karimi et al. [12]  –  – –  –
Kanamori et al. [10]     –   
Mothilal et al. [19]  G#   – G#  
Karimi et al. [11]     – –  
Poyiadzi et al. [23]  –    – –
CE-OCL        

 : addressed; G#: partially addressed; –: absent

advances in OCL successfully reduce the computational burden of embedding fitted ML models
into an optimization model [6, 18, 25] and can be easily transferred to the problem of generating
CEs. In this regard, we show how the problem of generating CEs, given a fitted model h(·), a factual
instance x̂, and the desired outcome ỹ, can be seen as a special case of optimization with constraint
learning. In an OCL setting, a dataset D = {(x̄i, ȳi)}Ni=1 with observed feature vector x̄i and
outcome of interest ȳi for sample i, is used to train predictive models that are to be constrained or
optimized in a larger optimization problem. An OCL model is typically presented as

minimize
x∈Rn,y∈R

f(x, y) (2a)

subject to g(x, y) ≤ 0, (2b)

y = h(x), (2c)

x ∈ X , (2d)

where x ∈ Rn is the decision vector with components xi ∈ R, f(·, ·) : Rn+1 7→ R and g(·, ·) :
Rn+1 7→ Rm are known functions possibly also depending on the predicted outcome y, and
h(·) : Rn 7→ R represents the predictive model1 trained on D. The set X defines the trust re-
gion, i.e., the set of solutions for which we trust the embedded predictive models (see below for
details). Formulation (2a-2d) is quite general and encompasses a large body of work that includes
CE generation. Now, we characterize the parallelism between some of the eight criteria listed in
Section 1 and the structure of the resulting OCL model. We elaborate and discuss the remaining
criteria in Appendix A.

Validity. While the trained model h(·) is used in constraint learning to define, completely or par-
tially, the objective function and/or the constraints, in CE generation it is used to enforce the validity
constraint. Constraint (2c) is likely to be an encoding of the predictive model. In other words, em-
bedding a trained ML model requires adding multiple constraints and auxiliary variables. When
h(·) is a classification model, the CE validity is obtained by constraining the model prediction to be
equal to the desired class ỹ; that is, we set y = ỹ. If h(·) is a regression model, the OCL framework

1. To simplify our exposition, we include only one predictive model. However, a general OCL framework admits
multiple learned constraints in the model.
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still applies, and an inequality constraint can be used to enforce validity; e.g., y ≤ ỹ−δ or y ≥ ỹ+δ
for some fixed δ ∈ R+.

Data manifold closeness. One of the requirements to obtain plausible CEs is that they are close
to the data manifold. For this purpose, we can make use of the trust region constraints. Maragno
et al. [16] define the trust region as the convex hull (CH) of D in the features space, and they use
it in OCL to prevent the trained model from extrapolating, therefore, mitigating the deterioration in
predictive performance for points that are farther away from the data points in D. In CE generation,
the trust region, or rather data manifold region, serves the purpose of ensuring solutions in a high-
density region. To this end, we can also denote a CE (x̃) as the convex combination of samples in
D, in particular samples belonging to the desired class (ỹ).

In case the CH is too restrictive, we can use a relaxed formulation to enlarge the data manifold
by including those solutions that are in the ϵ-ball surrounding some feasible solutions in the CH:

ϵ-CH =

{
x

∣∣∣∣∑
i∈I

λix̄i = x+ s,
∑
i∈I

λi = 1, λ ≥ 0, ||s||p ≤ ϵ

}
, (3)

where λi ∈ [0, 1] and s ∈ Rn are auxiliary variables, ϵ ≥ 0 is a hyperparameter, and I denotes
the indices corresponding to the subset of samples in D belonging to the desired class ỹ. When
ϵ = 0, we obtain the trust region as discussed in Maragno et al. [16]. However, ϵ > 0 leads to a
less restrictive set of conditions. Further details are available in Appendix A as well as a graphical
representation of the data manifold closeness in Figure 2.

Causality. CEs might be inefficient or unrealistic when causal relations are not considered in the
generation process. Both these situations are exemplified in Karimi et al. [12], where the authors
show the importance of causal relations to obtain CEs that better answer the question “what should
be done in the future considering the laws governing the world.” When a causal model is available,
we can formulate the causal relations among variables as extra constraints of the optimization model.
When there is not an explicit formulation of the causal relations, we are in a typical constraint
learning scenario where an ML model can be trained and embedded into the optimization. We
provide the formulation of causality constraints in Appendix A.

Diversity. Most of the methods for generating multiple and diverse CEs in the literature require
multiple runs and extra constraints to generate diverse CEs for the same input. Following an iterative
approach, we can generate diverse CEs using constraints on the actionability of features [24], or
constraints on the distance between the subsequent CE and all the previously generated ones [11].
Again in an iterative way, we can also use the data manifold constraints to generate diverse CEs (i)
by finding one CE for each clustered CH, (ii) by enlarging the CH with increasing ϵ whenever the
data manifold constraints are active. The use of diversity constraints offers great flexibility at the
expense of computation time. As an alternative, we propose to solve one single optimization model
and use the pool of incumbent solutions as the set of CEs. In mixed-integer optimization, solvers like
Gurobi or CPLEX allow retrieving the sub-optimal solutions found during the tree search procedure
[3, 8]. In this way, collecting a set of CEs comes at no cost in terms of computation time.

3. Experiments and results

In this section, we demonstrate the effectiveness of OCL through empirical experiments on mul-
tiple datasets and comparing the results with other state-of-the-art methods. The experiments are
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Figure 1: Performance of CE-OCL and CE-OCL_tr (with trust region) compared to performance of current state-
of-the-art methods for generating counterfactual explanations on the COMPAS dataset. Left: we generated one counter-
factual for each of 30 factual instances; rf as predictive model. Right: we generated three counterfactuals for the same
instances; lr as predictive model. Not all methods support generating several counterfactuals.

executed using OptiCL 2 [16], an open-source Python package for optimization with constraint
learning. OptiCL has been originally designed to help practitioners in modeling an optimization
problem whose constraints are partially unknown, but where ML models can be deployed to learn
them [16]. However, as detailed in Section 2, the problem of generating CEs directly relates to an
OCL problem. OptiCL currently supports several MIO-representable predictive models, includ-
ing logistic regression (lr), support vector machines (svm), (optimal) decision trees (cart), random
forests (rf), gradient boosting machines (gbm), and neural networks with ReLU activation functions
(mlp). Moreover, OptiCL allows for trust region constraints as defined in (3). Whenever a causal
model is available but the relations are not explicit, OptiCL allows representing the relation using
one of the MIO-representable ML models. The open-source implementation for reproducing all our
results is available at https://github.com/tabearoeber/CE-OCL.

We performed an extensive comparison of our method against four state-of-the-art methods:
Growing Spheres (GS) [14], FACE[23], Actionable Recourse (AR) [26], and DiCE
[19]. Here, we present the results on the COMPAS dataset3. We generated CEs for 30 factual
instances, then averaged the scores on the evaluation metrics proposed by Mothilal et al. [19]. Our
results are presented in Figure 1 (see Appendix B for details on the evaluation metrics). For the sake
of clarity, we have rescaled values such that they range from 0 (worst) to 1 (best). Since the majority
of the other methods do not generate a set of CEs, we chose to generate only one CE for each factual
instance and hence do not report any diversity scores (Figure 1 left). Furthermore, we compare our
approach in terms of diversity by generating three CEs for each of the 30 factual instances and
compare the results with DiCE [19] (Figure 1 right). Extensive results for all datasets and with
different predictive models are included in Appendix B. We further demonstrate the generation
of CEs in a step-wise manner on the Statlog (German Credit Data) dataset [4], which is one of
the standard datasets in the CE literature4. The German Credit dataset classifies people described
by a set of 20 features as good or bad credit risk, see Table 4 in Appendix C.1 for an overview
of the features. For this demonstration, we gradually add constraints to the model and present

2. https://github.com/hwiberg/OptiCL, under the MIT license.
3. Appendix B includes the results for three further datasets: Adult, Give Me Some Credit, and HELOC.
4. We also provide another demonstration on the Statlog (Heart) dataset [4] in Appendix C.
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the generated CEs at each step in Table 5 shown in Appendix C.1. The table is divided into six
parts (A-F), each showing the set of CEs generated, and a dash is used to represent no change to
the corresponding features. In Table 5 in Appendix C.1, we present the evaluation of these CEs
using several evaluation metrics proposed by Mothilal et al. [19]: validity, sparsity, categorical
and continuous proximity, categorical and continuous diversity, and sparsity-based diversity. The
complete mathematical model is detailed in Appendix C.2.

We fit several ML models to the data, all of which performed similarly well. For demonstration
purposes, we have chosen a linear support vector machine. The factual instance x̂ used for this case
study is reported in Table 5. We start the demonstration considering only validity, proximity, and
coherence (Part A), and using the ℓ2-norm as a distance function. The optimal solution suggests
several changes in the factual instance and is not actionable in practice due to the negative value for
F2 (credit amount). To induce sparsity (Part B), we use auxiliary variables to keep track of the num-
ber of features changed and penalize them in the objective function. Multiple and diverse CEs are
generated using incumbent solutions (Part C). To ensure that the set of generated CEs is valuable in
practice, we add actionability constraints (Part D). Respecting these constraints, the set of generated
CEs seems more realistic however, they may still not be attainable in practice. Specifically, if we
consider solution (c) of Part D, the only suggested change concerns F4 (age). However, this CE is
unlikely to represent a realistic data point, considering the other feature values remain unchanged.
In other words, CEs that do not resemble the training data come with the risk of being unattainable
in practice. To this end, we use the idea of a data manifold region, as detailed in Section 2. As
a result, in Part E, we obtain a more realistic set of CEs, although at the expense of sparsity and
(categorical) proximity (see the scores reported in Table 5, Appendix C.1). From a qualitative point
of view, the three CEs show a more sensible combination of feature values compared to those in Part
D. Finally, we can leverage the partial SCM provided by Karimi et al. [12] for this dataset, which
shows that F1 (duration) is causally related to F2 (credit amount). This relationship is learned by a
multi-layer perceptron (MLP) using 5-fold cross validation. In Part F, we display the set of CEs that
satisfy also the learned causality constraints.

4. Discussion

With this work, we propose CE-OCL, a generic approach for generating sensible and practical
counterfactual explanations. In Section 3, we report the generally superior performance achieved
by CE-OCL compared to other popular methods. Nevertheless, we acknowledge the limitations of
using incumbent solutions as multiple counterfactuals caused by the lack of control over the solu-
tions’ diversity. Whenever we have specific diversity requirements to meet, the iterative approaches
proposed by Russell [24] and Karimi et al. [11] may suit best. Moreover, owing to the MIO structure
of CE-OCL and various constraints used to satisfy the established criteria, the feasibility space may
shrink to the point of being empty, making the optimization problem infeasible. In the infeasibility
case, we recommend following an approach similar to that presented in Section 3, where constraints
are added one at a time. Infeasibility problems due to data manifold constraints can be mitigated by
enlarging the data manifold region at the (potential) expense of the sensibility of the CEs. For future
research, we plan to investigate the effect of clustering and enlargement of the data manifold region
on the CE quality and on diversity. We also intend to extend CE-OCL with additional criteria like
robustness in the sense that the generated CEs are not point solutions, but that they are defined by
ranges in the feature values.
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Appendix A. Generate counterfactuals

In Section 2, we describe how criteria such as validity, closeness, causality, and diversity can be
fulfilled exploiting OCL components. Likewise, other criteria can be mathematically represented in
the following way:

Proximity. By definition, a CE has to be in the proximity of the factual instance according to
some user-defined distance function. To obtain a CE x̃ in the proximity of x̂, we can write the
objective function (2a) as a distance function d(x, x̂). In the literature, this function is represented
by ℓ1-norm, ℓ2-norm, or as the Mahalanobis’ distance.

Coherence. When one-hot encoding is used to deal with categorical features, we can use the
constraints proposed by Russell [24] to obtain coherent CEs. That is, we write for k categorical
features the following constraints: ∑

j′∈Cj

xj′ = 1, j = 1, . . . , k, (4)

where Cj is a set of indices referring to the dummy (binary) variables used to represent the cate-
gorical feature j. The use of a data manifold region (with a sufficiently small ϵ) has an interesting
impact on CE coherence because constraints (4) become redundant. To exemplify how data mani-
fold constraints guarantee coherence, we consider a set of samples represented by the set of indices
I, and a categorical feature diet that can assume only three values: vegan, vegetarian, or omnivore.
We use one-hot encoding to replace the feature diet and describe a CE with the dummy (binary)
variables xvegan, xvegetarian, xomnivore. From (3), we have

xj =
∑
i∈I

λix̄i,j , j ∈ {vegan, vegetarian, omnivore},

with
∑

i∈I λi = 1. One of the dummy variables, say xvegan, can assume value 1 only if it is the
convex combination of data points x̄i with x̄i,vegan = 1 and x̄i,vegeterian = x̄i,omnivore = 0. Thus,
λi > 0 only when x̄i,vegan = 1, and consequently, we obtain xvegetarian = xomnivore = 0.

Sparsity. The sparsity can be handled by enforcing the following set of constraints:

|xj − x̂j | ≤ Mzj , j = 1, . . . , n, (5a)
n∑

i=1

zi ≤ K, (5b)

where zj ∈ {0, 1}, j = 1, . . . , n are auxiliary variables that are simply used to count the number
of features in x that differ from x̂, and K is an upper bound on the number of allowed changes.
Alternatively, constraints (5b) can be relaxed and moved to the objective function with a scaling
penalty factor α > 0. That is, we obtain the new objective function f(x, y) + α

∑n
i=1 zi. Though

simpler, this relaxation does not guarantee to lead to an optimal solution with less than or equal to
K changes.
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Figure 2: The effect of the data manifold region on the generated CE. The left figure shows the
factual instance and its closest counterfactual without closeness constraints. The right figure shows
the same factual instance with the CE constrained to be within the data manifold region.

Actionability. As a recommended CE should never change the immutable features, we can restrict
the CE to be equal to the factual instance for all the immutable features. Suppose that the set of
immutable features is represented by Im, then we simply add the following constraints:

xi = x̂i, i ∈ Im. (6)

Other feasibility constraints might concern actionable variables that cannot take certain values, such
as age, which can only be increased, or has_phd, which can only change from false to true. These
conditions can be added exactly like immutable features.

Data manifold region. Figure 2 shows how the CH of D in the features space ensures a solution
closer to the data manifold, leading to more plausible CEs. In some cases, the CH may be too re-
strictive, which is why we introduce formulation 3 to enlarge the data manifold region by including
solutions that are in the ϵ-ball around some feasible solutions in the CH. Being able to enlarge the
data manifold region represents a solution to the criticism by Balestriero et al. [1]: “[...] interpola-
tion5 almost surely never occurs in high-dimensional spaces (> 100) regardless of the underlying
intrinsic dimension of the data manifold.” Aside from the bound on the norm of s, all constraints in
(3) are linear. Fortunately, the most common norms used to constraint s are ℓ1-, ℓ2-, or ℓ∞-norm.
These norms lead to convex conic constraints that can be handled easily with off-the-shelf optimiza-
tion solvers. The effectiveness of the data manifold region might be hampered by the fact that the
CH includes low-density regions. In this case, Maragno et al. [16] advocate a two-step approach:
first, clustering is used to identify distinct high-density regions, and then, the data manifold region
is represented as the union of the (enlarged) convex hulls of the individual clusters.
Causality The causality constraints are modelled by applying the Abduction-Action-Prediction
steps [22], Karimi et al. [12] define the endogenous variables (with indices in the set E) as

xi = x̂i + ci(pi)− ci(p̂i), i ∈ E , (7)

where ci(pi) is a function of the parents of xi, namely the predecessors of the feature i in the SCM.
Both x̂i and ci(p̂i) are known before the optimization and therefore treated as parameters. When

5. Interpolation occurs for a sample x whenever this sample belongs to the CH of a set of data points.
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there is not an explicit formulation of ci(·), we are in a constraint learning scenario where an ML
model can be trained and embedded into the optimization as ci = hi(pi) for all i ∈ E .

Appendix B. Comparison against other methods

We compared CE-OCL to four open-source tools for generating CEs: Growing Spheres [14],
FACE[23], Actionable Recourse [26], and DiCE [19]. The experiments are performed using
CARLA [21], a Python library to benchmark counterfactual explanation and recourse models. The
predictive model used in the experiments is a random forest and the evaluation is performed by
generating a counterfactual for 30 different factual instances on four datasets available in CARLA:
Adult, Give Me Some Credit, COMPAS, and HELOC. We average the results for the evaluation
metrics proposed by Mothilal et al. [19] and present them together with the standard error (s.e.) in
Table 2. Validity, sparsity, categorical proximity, categorical diversity, and sparsity-based diversity
range in the interval [0,1], where 0 and 1 represent the worst and the best scores (↑10), respectively.
Continuous diversity is a positive number, and the higher it is, the better (↑+0 ). Continuous proximity
is a negative number, and the closer it is to 0, the better (↑0−).

While CE-OCL can deal with causality and closeness constraints, this does not apply to DiCE
which uses a post-hoc filtering approach to remove unrealistic CEs. In addition to causality and
closeness constraints, Actionable Recourse, and Growing Sphere cannot generate more than
one counterfactual for each instance. FACE does not support diversity and causality constraints but
it is able to generate CEs close to the data manifold region. Therefore, in Table 2 we report both the
results obtained with CE-OCL including validity, proximity, coherence, sparsity, and immutabil-
ity constraints, and the results obtained including also the closeness constraints, CE-OCL_tr.
The results show that, across all datasets, both CE-OCL and CE-OCL_tr exhibit better perfor-
mance in terms of validity, categorical proximity, and sparsity. Actionable Recourse and
CE-OCL/CE-OCL_tr perform equally well in terms of continuous proximity.

We performed a more thorough comparison between CE-OCL and DiCE on the same four
datasets but this time generating three CEs for each instance and using all the predictive models
supported by both OptiCL and DiCE. In Table 3, we report the results obtained with CE-OCL in-
cluding validity, proximity, coherence, sparsity, diversity, and actionability together with the results
obtained considering also the data manifold closeness, (CE-OCL_tr). The results clearly show
how CE-OCL outperforms DiCE in terms of validity, categorical proximity, continuous proximity,
and sparsity. While both methods have a categorical diversity score very close to zero in every sce-
nario, DiCE has a generally better performance in terms of continuous diversity. Similarly, DiCE
has a better sparsity-based diversity score with the exception of the COMPAS dataset. The addition
of closeness constraints (CE-OCL_tr) has a negative effect on the sparsity and proximity scores but
it positively affects the diversity scores when compared to CE-OCL. This was to be expected, as
the data manifold region forces solutions to be located in a high-density region, which might lead
to optimal solutions with more feature changes. While the sparsity decreases, this loss comes at a
high potential of more valuable counterfactuals.
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Table 2: Comparison of CE-OCL with DiCE (genetic), Algorithmic Recourse, Growing spheres,
and FACE using Random Forest as predictive model.

validity (↑10) cat. proximity (↑10) cont. proximity (↑0−) sparsity (↑10)
mean (s.e.) mean (s.e.) mean (s.e.) mean (s.e.)

CE-OCL 1.00 (0.00) 1.00 (0.00) -4844.35 (575.93) 0.93 (0.00)
CE-OCL_tr 1.00 (0.00) 0.97 (0.02) -21785.50 (7506.35) 0.86 (0.01)
DiCE 1.00 (0.00) 0.74 (0.03) -84278.61 (11613.30) 0.50 (0.02)

ADULT Actionable Recourse 1.00 (0.00) 0.78 (0.07) 0.00 (0.00) 0.89 (0.04)
Growing Spheres 0.80 (0.07) 0.95 (0.01) -78901.08 (10395.08) 0.59 (0.01)
FACE 0.80 (0.07) 0.65 (0.03) -108614.33 (18804.05) 0.47 (0.02)
CE-OCL 1.00 (0.00) 1.00 (0.00) -15.23 (5.84) 0.85 (0.01)
CE-OCL_tr 1.00 (0.00) 1.00 (0.00) -30.83 (16.00) 0.85 (0.01)
DiCE 0.74 (0.09) 0.94 (0.03) -35.58 (9.59) 0.61 (0.01)

COMPAS Actionable Recourse 0.67 (0.11) 0.94 (0.03) -0.87 (0.10) 0.85 (0.01)
Growing spheres 0.80 (0.07) 0.98 (0.02) -39.88 (6.58) 0.56 (0.01)
FACE 0.80 (0.07) 0.65 (0.05) -98.83 (21.18) 0.37 (0.03)
CE-OCL 1.00 (0.00) – -12.21 (2.67) 0.94 (0.01)
CE-OCL_tr 1.00 (0.00) – -92.71 (13.75) 0.75 (0.02)
DiCE 0.97 (0.03) – -203.83 (13.70) 0.22 (0.02)

HELOC Actionable Recourse∗ – – – –
Growing spheres 0.77 (0.08) – -87.36 (13.16) 0.00 (0.00)
FACE 0.77 (0.08) – -361.80 (25.20) 0.17 (0.02)
CE-OCL 1.00 (0.00) – -1.18 (0.66) 0.90 (0.01)
CE-OCL_tr 1.00 (0.00) – -120.61 (118.54) 0.87 (0.01)
DiCE 1.00 (0.00) – -1618.33 (305.53) 0.25 (0.02)

CREDIT Actionable Recourse 0.83 (0.17) – -8.47 (7.96) 0.88 (0.02)
Growing spheres 0.63 (0.09) – -47.73 (27.24) 0.10 (0.00)
FACE 0.63 (0.09) – -3001.73 (430.61) 0.11 (0.02)

For the comparison, one counterfactual was generated for each of 30 factual instances.
The scores were averaged over all instances, and the standard error was derived.
* For the Heloc dataset, Actionable Recourse did not yield any counterfactuals for any of the thirty factual instances.
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Table 3: Comparison of CE-OCL, CE-OCL with trust region, and DiCE (genetic) with a range of
preditive models.

validity(↑10) cat. pro- cont. sparsity(↑10) cat. di- cont. sparsity-based
ximity (↑10) proximity(↑0−) versity (↑10) diversity (↑+0 ) diversity(↑10)

mean (s.e.) mean (s.e.) mean (s.e.) mean (s.e.) mean (s.e.) mean (s.e.) mean (s.e.)

Adult dataset

CE-OCL 1.00 (0.00) 0.99 (0.00) -6775.61 (953.24) 0.92 (0.00) 0.01 (0.01) 5796.61 (1056.70) 0.11 (0.01)
rf CE-OCL_tr 1.00 (0.00) 0.97 (0.02) -25044.04 (7645.82) 0.86 (0.01) 0.00 (0.00) 13288.83 (3236.28) 0.13 (0.01)

DiCE 1.00 (0.00) 0.74 (0.02) -81581.97 (8003.12) 0.51 (0.01) 0.19 (0.02) 79595.54 (7496.70) 0.26 (0.02)
CE-OCL 1.00 (0.00) 0.99 (0.01) -4226.05 (794.33) 0.89 (0.01) 0.01 (0.01) 8042.59 (1418.66) 0.19 (0.01)

lr CE-OCL_tr 1.00 (0.00) 0.96 (0.02) -23288.53 (6837.94) 0.84 (0.01) 0.05 (0.02) 23421.06 (7376.79) 0.22 (0.01)
DiCE 0.71 (0.05) 0.68 (0.03) -111661.60 (10261.28) 0.47 (0.02) 0.30 (0.03) 110668.36 (11019.56) 0.35 (0.02)
CE-OCL 1.00 (0.00) 0.88 (0.02) -13994.62 (4198.07) 0.83 (0.02) 0.21 (0.04) 26889.72 (8343.13) 0.27 (0.03)

cart CE-OCL_tr 1.00 (0.00) 0.94 (0.01) -19490.98 (5725.22) 0.84 (0.01) 0.08 (0.02) 20313.32 (5702.44) 0.19 (0.01)
DiCE 0.65 (0.06) 0.77 (0.02) -91507.16 (10271.17) 0.55 (0.02) 0.23 (0.02) 84111.77 (11802.96) 0.25 (0.01)
CE-OCL 1.00 (0.00) 1.00 (0.00) -10553.10 (1842.00) 0.88 (0.01) 0.00 (0.00) 2538.19 (669.37) 0.15 (0.02)

mlp CE-OCL_tr 1.00 (0.00) 0.97 (0.02) -21467.01 (7465.77) 0.86 (0.01) 0.00 (0.00) 6229.99 (2385.40) 0.14 (0.01)
DiCE 0.62 (0.06) 0.67 (0.03) -89314.87 (10646.04) 0.47 (0.02) 0.26 (0.03) 83848.59 (11476.56) 0.31 (0.02)
CE-OCL 1.00 (0.00) 1.00 (0.00) -2488.82 (865.72) 0.91 (0.00) 0.00 (0.00) 4475.59 (1737.16) 0.13 (0.01)

gbm CE-OCL_tr 1.00 (0.00) 0.97 (0.01) -22732.34 (7545.41) 0.88 (0.01) 0.02 (0.01) 10609.72 (3583.71) 0.15 (0.01)
DiCE 0.91 (0.04) 0.70 (0.02) -113297.47 (11606.39) 0.49 (0.01) 0.25 (0.02) 75728.74 (10042.23) 0.27 (0.02)

COMPAS dataset

CE-OCL 1.00 (0.00) 1.00 (0.00) -18.79 (6.15) 0.85 (0.00) 0.00 (0.00) 8.87 (4.30) 0.17 (0.01)
rf CE-OCL_tr 1.00 (0.00) 1.00 (0.00) -38.02 (16.46) 0.85 (0.01) 0.00 (0.00) 9.41 (4.49) 0.16 (0.01)

DiCE 0.81 (0.04) 0.96 (0.01) -40.94 (7.06) 0.60 (0.01) 0.06 (0.02) 22.30 (5.78) 0.20 (0.01)
CE-OCL 1.00 (0.00) 1.00 (0.00) -121.74 (13.72) 0.80 (0.01) 0.00 (0.00) 229.89 (28.27) 0.34 (0.01)

lr CE-OCL_tr 1.00 (0.00) 0.98 (0.01) -35.84 (11.03) 0.75 (0.01) 0.01 (0.01) 34.68 (7.79) 0.35 (0.01)
DiCE 0.85 (0.05) 0.94 (0.02) -56.05 (12.83) 0.59 (0.01) 0.08 (0.02) 30.61 (9.48) 0.21 (0.02)
CE-OCL 1.00 (0.00) 1.00 (0.00) -23.14 (6.03) 0.84 (0.01) 0.00 (0.00) 33.38 (11.83) 0.19 (0.01)

cart CE-OCL_tr 1.00 (0.00) 1.00 (0.00) -28.43 (9.16) 0.83 (0.01) 0.00 (0.00) 31.16 (10.10) 0.19 (0.01)
DiCE 0.77 (0.08) 0.96 (0.01) -32.99 (6.04) 0.60 (0.01) 0.07 (0.02) 24.31 (6.63) 0.18 (0.01)
CE-OCL 1.00 (0.00) 1.00 (0.00) -16.55 (2.11) 0.81 (0.01) 0.00 (0.00) 16.20 (4.62) 0.22 (0.01)

mlp CE-OCL_tr 1.00 (0.00) 1.00 (0.00) -27.75 (10.25) 0.82 (0.01) 0.00 (0.00) 7.29 (4.09) 0.18 (0.01)
DiCE 0.82 (0.06) 0.96 (0.01) -59.11 (13.01) 0.58 (0.01) 0.06 (0.02) 24.95 (5.78) 0.22 (0.02)
CE-OCL 1.00 (0.00) 1.00 (0.00) -10.10 (2.60) 0.86 (0.00) 0.00 (0.00) 13.64 (3.09) 0.21 (0.01)

gbm CE-OCL_tr 1.00 (0.00) 1.00 (0.00) -25.70 (10.66) 0.85 (0.01) 0.00 (0.00) 13.49 (5.08) 0.20 (0.01)
DiCE 0.59 (0.07) 0.96 (0.01) -42.64 (6.32) 0.60 (0.01) 0.08 (0.02) 24.51 (5.81) 0.20 (0.01)

Heloc dataset

CE-OCL 1.00 (0.00) – -13.53 (2.35) 0.93 (0.00) – 9.94 (2.74) 0.09 (0.01)
rf CE-OCL_tr 1.00 (0.00) – -94.24 (13.68) 0.75 (0.02) – 18.93 (4.62) 0.24 (0.02)

DiCE 0.90 (0.03) – -231.05 (11.17) 0.21 (0.02) – 223.91 (14.16) 0.61 (0.02)
CE-OCL 1.00 (0.00) – -99.09 (14.22) 0.88 (0.01) – 188.16 (28.38) 0.21 (0.01)

lr CE-OCL_tr 1.00 (0.00) – -138.29 (16.52) 0.72 (0.02) – 72.51 (8.39) 0.34 (0.02)
DiCE 0.70 (0.06) – -232.39 (12.87) 0.21 (0.02) – 207.02 (11.34) 0.61 (0.02)
CE-OCL 1.00 (0.00) – -13.12 (1.40) 0.95 (0.00) – 19.72 (2.41) 0.08 (0.00)

cart CE-OCL_tr 1.00 (0.00) – -99.05 (13.45) 0.73 (0.02) – 41.03 (6.53) 0.31 (0.02)
DiCE 0.80 (0.07) – -216.70 (13.47) 0.22 (0.02) – 234.89 (16.10) 0.61 (0.02)
CE-OCL 1.00 (0.00) – -25.09 (7.57) 0.92 (0.01) – 21.30 (4.18) 0.12 (0.01)

mlp CE-OCL_tr 1.00 (0.00) – -98.94 (15.87) 0.75 (0.02) – 15.41 (5.52) 0.26 (0.02)
DiCE 0.67 (0.07) – -252.56 (14.17) 0.20 (0.02) – 246.96 (16.31) 0.61 (0.02)
CE-OCL 1.00 (0.00) – -8.41 (2.45) 0.94 (0.00) – 16.31 (4.92) 0.10 (0.00)

gbm CE-OCL_tr 1.00 (0.00) – -89.91 (14.70) 0.76 (0.02) – 18.70 (6.87) 0.25 (0.02)
DiCE 0.73 (0.08) – -234.96 (11.60) 0.22 (0.02) – 248.95 (17.34) 0.59 (0.02)

Give me some credit dataset

CE-OCL 1.00 (0.00) – -6.77 (4.43) 0.90 (0.00) – 9.14 (5.53) 0.15 (0.01)
rf CE-OCL_tr 1.00 (0.00) – -97.01 (95.21) 0.89 (0.01) – 115.65 (113.90) 0.16 (0.01)

DiCE 1.00 (0.00) – -2166.72 (318.36) 0.23 (0.02) – 2446.71 (455.17) 0.32 (0.01)
CE-OCL 1.00 (0.00) – -3.79 (1.24) 0.88 (0.01) – 7.50 (2.49) 0.24 (0.01)

lr CE-OCL_tr 1.00 (0.00) – -614.00 (202.97) 0.83 (0.01) – 1107.84 (381.92) 0.25 (0.01)
DiCE 0.92 (0.05) – -1946.86 (256.37) 0.21 (0.02) – 1909.26 (187.85) 0.29 (0.01)
CE-OCL 1.00 (0.00) – -1.85 (0.23) 0.87 (0.00) – 1.91 (0.23) 0.17 (0.00)

cart CE-OCL_tr 1.00 (0.00) – -212.82 (100.91) 0.85 (0.01) – 285.60 (121.56) 0.22 (0.01)
DiCE 0.00 (0.00) – -1895.95 (230.21) 0.25 (0.02) – 2214.51 (319.98) 0.32 (0.01)
CE-OCL 1.00 (0.00) – -24.21 (8.71) 0.89 (0.00) – 38.15 (13.75) 0.15 (0.01)

mlp CE-OCL_tr 1.00 (0.00) – -996.30 (370.04) 0.85 (0.01) – 971.37 (447.54) 0.17 (0.01)
DiCE 0.97 (0.03) – -2526.22 (265.46) 0.20 (0.02) – 3205.58 (427.42) 0.32 (0.01)
CE-OCL 1.00 (0.00) – -175.98 (74.32) 0.89 (0.01) – 296.26 (134.93) 0.17 (0.01)

gbm CE-OCL_tr 1.00 (0.00) – -219.19 (131.96) 0.87 (0.01) – 123.61 (82.17) 0.16 (0.01)
DiCE 0.93 (0.04) – -2222.50 (277.89) 0.22 (0.02) – 2749.12 (409.75) 0.31 (0.02)
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Appendix C. Case studies

We reserve this appendix for the details of our case study, Statlog (German Credit Data) dataset,
and for the additional demonstration on the Statlog (Heart) dataset.

C.1. German Credit Data tables

We report an overview of the Statlog (German Credit Data) dataset features and the CEs generated
at each step detailed in Section 3 in Table 4 and Table 5, respectively.

Table 4: Information on Statlog (German Credit Data) Data Set [4]

Label Variable name Description Domain∗ Constraint

F1 duration Duration in months real ≥ 0

F2 credit_amount Credit amount real ≥ 0

F3 instalment_commitment Installment rate in percentage of disposable income real ≥ 0

F4 age Age in years real xage ≥ x̂age

F5 residence_since Present residence since X years integer xresidence_since ≥ x̂residence_since

F6 existing_credits Number of existing credits at this bank integer ≥ 0

F7 num_dependents Number of people being liable to provide maintenance for integer ≥ 0

F8 checking_status Status of existing checking account, in Deutsche Mark binary –

F9 credit_history Credit history (credits taken, paid back duly, delays, critical accounts) binary –

F10 employment Present employment, in number of years. binary conditionally immutable

F11 foreign_worker Foreign worker (yes,no) binary immutable

F12 housing Housing (rent, own,...) binary –

F13 job Job binary –

F14 other_parties Other debtors / guarantors binary –

F15 other_payment_plans Other installment plans (banks, stores) binary –

F16 own_telephone Telephone (yes,no) binary –

F17 personal_status Personal status (married, single,...) and sex binary immutable

F18 property_magnitude Property (e.g. real estate) binary –

F19 purpose Purpose of the credit (car, television,...) binary immutable

F20 saving_status Status of savings account/bonds, in Deutsche Mark. binary –

∗ All categorical are one-hot encoded and therefore considered binary.
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Table 5: CE-OCL demo on the Statlog (German Credit Data) Data Set [4].

(a) Counterfactual explanations generated for enriching the optimization model step by step with the
constraint presented in Section 2

F1 F2 F3 F4 F8∗ F10 F12 F14 F16 F18∗ F20∗

x̂ 24.0 1371.26 4.0 25.0 A 1≤X<4 rent none none A A
Part A: validity, proximity, coherence
(a) 15.02 -333.52 3.86 27.04 – – – – – – –
Part B: validity, proximity, coherence, sparsity
(a) 7.12 – – – – – – – – – –
Part C: validity, proximity, coherence, sparsity, diversity
(a) 7.12 – – – – – – – – – –
(b) – -2873.47 – 30.06 – – – – – – –
(c) – – 1.96 26.63 – – – – – – –
Part D: validity, proximity, coherence, sparsity, diversity, actionability
(a) 7.12 – – – – – – – – – –
(b) – – 1.96 26.63 – – – – – – –
(c) – – – 75.52 – – – – – – –
Part E: validity, proximity, coherence, sparsity, diversity, actionability, data manifold closeness
(a) 22.0 1283.52 – – B 4≤X<7 – – – B –
(b) 10 1363.43 2.0 64.0 B – own – yes C B
(c) 12.0 1893.04 – 29.0 – – own guarantor yes B B
Part F: validity, proximity, coherence, sparsity, diversity, actionability, data manifold closeness, causality
(a) – – – – B 4<=X<7 – – – B –
(b) 22.0 990.51 – – B 4<=X<7 – – – B –
(c) 26.83 1910.28 – – B 4<=X<7 – – – B –

F1–F20 represent the 20 features of the dataset. See Table 4 in Appendix C for a description.
The dash (–) represents no change in a feature with respect to the factual instance.
F5, F6, F7, F9, F11, F13, F15, F17, F19: None of the counterfactual explanations proposed a change in these variables. For space
reasons they are not displayed here.
∗ F8: A: <0, B: no checking; F18: A: real estate, B: life insurance, C: car ; F20: A: no known savings, B: <100

(b) Evaluation∗ of counterfactuals generated for a single factual instance, with constraints added gradually.

categorical continuous sparsity(↑10) categorical continuous sparsity-based
proximity(↑10) proximity(↑0−) diversity(↑10) diversity(↑+0 ) diversity(↑10)

Part A 1.00 -1715.94 0.8 – – –
Part B 1.00 -16.88 0.95 – – –
Part C 1.00 -1423.45 0.92 0.00 2845.81 0.15

Part D 1.00 -23.69 0.93 0.00 46.29 0.12

Part E 0.67 -230.12 0.63 0.36 441.68 0.42
Part F 0.77 -308.20 0.78 0.00 616.40 0.10

Part A: validity, proximity, coherence; Part B: validity, proximity, coherence, sparsity; Part C: validity, proximity, coherence,
sparsity, diversity; Part D: validity, proximity, coherence, sparsity, diversity, actionability; Part E: validity, proximity, coherence,
sparsity, diversity, actionability, data manifold closeness; Part F: validity, proximity, coherence, sparsity, diversity, actionability.
data manifold closeness, causality
∗validity (↑10): 1.00 in all cases
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C.2. German Credit Data CE generation model

For the case study in Section 3, we made use of the Statlog (German Credit Data) dataset [4] 6.
Table 4 provides an overview of features in this dataset, alongside a short description and the mea-
surement level. For conciseness, we labelled the features F1-F20, and use those labels throughout
the manuscript. Table 4 also displays the actionability constraints we imposed on the features. The
following mathematical model is used to generate CEs and contains all the constraints – criteria –
presented in Section 2:

minimize
x,z,s∈Rn,λ∈R|I|

≥0

ℓ2(x, x̂) + α
∑
i

zi + βℓ1(s, s̃) (8a, proximity, sparsity, and closeness)

subject to h(x) = 1 (8b, validity)

|x− x̂| ≤ Mz, (8c, sparsity)∑
i∈I

λix̄i = x+ s, (8d, data manifold closeness)∑
i∈I

λi = 1, (8e, data manifold closeness)

xi ≥ 0, i ∈ {F1, F2, F3, F6, F7} (8f, actionability)

xi ≥ x̂i, i ∈ {F4, F5} (8g, actionability)

xi = x̂i, i ∈ {F11, F17, F19} (8h, immutability)

xF10 ∈ CF10, (8i, conditional immutability)

xF1 = x̂F1 + hcausality(xF2)− hcausality(x̂F2), (8j, causality)

x ∈ L, (8k, Domain (real, integer, binary))

6. Preprocessed from https://datahub.io/machine-learning/credit-g.
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C.3. Heart tables

Similarly to the German Credit Data case study, we report Table 6 with the CEs generated at each
step and the scores for the evaluation metrics, and Table 7 with an overview of the features.

Table 6: CE-OCL demo on the Statlog (Heart) Data Set [4]

(a) Counterfactual explanations generated for enriching the optimization model step by step with the
constraint presented in Section 2

age bp sch mhrt opk chp ecg exian fbs sex slope thal vessel

x̂ 49.0 130.0 265.98 171.01 0.6 atypical angina normal no false male upsloping normal 0

Part A: validity, proximity, coherence

(a) 48.82 139.28 328.09 153.98 1.05 - - - - - - - -

Part B: validity, proximity, coherence, sparsity

(a) - - 407.24 - - - - - - - - - -

Part C: validity, proximity, coherence, sparsity, diversity

(a) - - 407.24 - - - - - - - - - -

(b) - - 393.92 175.14 - - - - - - - - -

(c) - - 404.04 - 0.47 - - - - - - - -

Part D: validity, proximity, coherence, sparsity, diversity, actionability

(a) - - 407.24 - - - - - - - - - -

(b) - - 393.92 175.14 - - - - - - - - -

(c) - - - 124.37 - - - - - - - - -

Part E: validity, proximity, coherence, sparsity, diversity, actionability, data manifold closeness

(a) - 111.77 253.81 152.7 0.0 nonanginal pain - - - - - - -

(b) - 137.0 258.5 147.01 1.55 asymptomatic left ventricular hypertrophy - - - flat reversible defect -

(c) - 140.61 274.7 128.61 0.49 asymptomatic left ventricular hypertrophy yes - - - reversible defect -

See Table 7 for a description of each feature
The dash (–) represents no change in a feature with respect to the factual instance.

(b) Evaluation∗ of counterfactuals generated for a single factual instance, with constraints added gradually.

categorical continuous sparsity(↑10) categorical continuous sparsity-based
proximity(↑10) proximity(↑0−) diversity(↑10) diversity(↑+0 ) diversity(↑10)

Part A 1.00 -89.05 0.62 - - -

Part B 1.00 -141.26 0.92 - - -

Part C 1.00 -137.17 0.87 0.00 11.72 0.18

Part D 1.00 -106.66 0.90 0.00 128.02 0.15

Part E 0.62 -50.19 0.46 0.42 50.25 0.56

Part A: validity, proximity, coherence; Part B: validity, proximity, coherence, sparsity; Part C: validity, proximity, coherence,
sparsity, diversity; Part D: validity, proximity, coherence, sparsity, diversity, actionability; Part E: validity, proximity, coherence,
sparsity, diversity, actionability, data manifold closeness; Part F: validity, proximity, coherence, sparsity, diversity, actionability.
data manifold closeness, causality
∗validity (↑10): 1.00 in all cases
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Table 7: Information on Statlog (Heart) Data Set [4]

Variable name Description Domain∗ Constraint

age Patient age in years real immutable
sex Gender binary immutable
chp Chest pain type binary -
bp Resting blood pressure real ≥ 0

sch Serum cholesterol real ≥ 0

fbs Fasting blood sugar >120 mg/dL binary -
ecg Resting electrocardiographic result binary -
mhrt Maximum heart rate real ≥ 0

exian Exercise induced angina binary -
opk Old peak real ≥ 0

slope Slope of peak exercise ST segment binary -
vessel Number of major vessels binary -
thal Defect type binary -
∗ All categorical are one-hot encoded and therefore considered binary.

C.4. Heart CE generation model

The following mathematical model is used to generate CEs and contains all the constraints – criteria
– presented in the Section 2:

minimize
x,z,s∈Rn,λ∈R|I|

≥0

ℓ2(x, x̂) + α
∑
i

zi + βℓ1(s, s̃) (9a, proximity, sparsity, and closeness)

subject to h(x) = 1 (9b, validity)

|x− x̂| ≤ Mz, (9c, sparsity)∑
i∈I

λix̄i = x+ s, (9d, data manifold closeness)∑
i∈I

λi = 1, (9e, data manifold closeness)

xi ≥ 0, i ∈ {bp, sch,mhrt, opk} (9f, actionability)

xi = x̂i, i ∈ {age, sex} (9g, immutability)

x ∈ L, (9h, Domain (real, binary))

The predictive model used for this demo is a neural network with one hidden layer of 50 nodes
and ReLU activation functions. A description of the Statlog (Heart) dataset used in the experiment
is given in Table 7. The experiments have the same structure described in Section 3, and the results
are reported in Table 6.
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