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Abstract

Large Language Models have emerged to show
remarkable capabilities in the NLP domain.
Their effectiveness can mainly be attributed
to their ability to adapt to an array of down-
stream tasks. However, generally, full fine-
tuning is a computationally expensive job. To
mitigate this, many techniques have been de-
veloped that prime efficiency, a prominent one
being Low-Rank Adaptation (LoRA). However,
LoRA and its variants employ re-parametrized
additive updates. In this paper, we propose Low
Rank Multiplicative Adaptation (LoRMA),
which shifts the paradigm of additive updates
to a much richer space of matrix multiplicative
transformations. We tackle challenges such as
computational complexity and rank inhibition
by strategically ordering matrix operations and
introducing rank inflation strategies. We con-
duct extensive experiments to show the effec-
tiveness of our approach in terms of evaluation
metrics and computational costs.

1 Introduction

Large Language Models (LLMs) have demon-
strated strong performance across various NLP
benchmarks (Fourrier et al., 2024). Though LLMs
have shown impressive generalization capabilities
(for example, via In-context learning (Dong et al.,
2024)), sometimes these tend to have lower perfor-
mance on some niche or low-resource tasks, thus
requiring task-specific fine-tuning. LLMs usage
follows a pre-train and fine-tune paradigm (Zhao
et al., 2023), where the model is trained on a mas-
sive amount of text in an unsupervised fashion, and
subsequently, the model is fine-tuned for some spe-
cific tasks/domains. Given the size of these models
(order of billions of parameters), it may not always
be feasible to fine-tune the entire model due to
high computational costs. In recent years, a new
class of techniques (referred to as PEFT (Param-
eter Efficient Fine Tuning)) has been proposed to
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Figure 1: Transformation of a vector W by two meth-
ods: one is via rotation and scaling, the other is via the
addition of a vector v.

address large computational costs associated with
fine-tuning.

Various PEFT techniques have been introduced
(Han et al., 2024); however, they often introduce
trade-offs such as lack of parallelism, increased
inference latency (e.g., Adaptors (Houlsby et al.,
2019)), or restricted sequence lengths (Petrov et al.,
2024). Consequently, re-parametrization-based
techniques such as Low-Rank Adaptation (LoRA)
(Hu et al., 2022) based fine-tuning methods have
gained popularity. Typically, during fine-tuning,
the weights (in the form of the weight matrix, e.g.,
query/key/value matrix) of LLMs are updated us-
ing additive update rule, i.e., Wy + AW, where
AW is the update in the weights obtained due to
fine-tuning. The main idea behind LoRA is to ap-
proximate the update matrix AW € R¥* by a
low-rank approximation BA, where B € R*"
and A € R™** are low-rank matrices (r < d, k),
ie, W =Wjg+ 2 -BA, where < is a scaling fac-
tor. The key intuition is that information required
for task-specific updates has a smaller intrinsic rank
and lies on a much smaller manifold compared to
the entire space of d x k matrices (Aghajanyan et al.,
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Figure 2: Comparing LoRA (a) and LoRMA (b). @ denotes matrix multiplication. Z, and Z, represent additive and
permutation based rank inflation respectively (§3). In case of LoRMA, initialization of A and B depends on the type

of inflation (§3).

2021; Hu et al., 2022). All the current LoRA-based
approaches (Yang et al., 2024) have employed ad-
ditive transformations, where the low-rank update
matrix can be added to the original weight matrix
during inference. However, similar transformation
could also be achieved via multiplicative updates.
For example, consider a weight vector W' (Fig. 1)
and we would like to transform it to vector W, this
could be accomplished via the addition of a vector
v, or it could also be done by rotating W by angle 6
(done via Rotation Matrix Ry) and subsequently by
scaling it by scalar «. Inspired by this intuition, we
propose Low Rank Multiplicative Adaptation
(LoRMA) for efficiently fine-tuning LLMs on new
tasks. LoRMA applies low-rank multiplicative up-
date to a weight matrix, i.e., W = % - (BA)W,,
where 2 is a scalar and A € R¥" and B € Rk
are low-rank matrices (r < d, k). LoRMA, how-
ever, introduces two new challenges: an increase
in computational complexity due to additional ma-
trix multiplication operations and a limitation on
the maximum rank of the product due to the prop-
erty: R(AB) < min(R(A),R(B)), where R(-)
denotes the rank of a matrix. We employ appro-
priate ordering of matrix multiplication to address
the issue of computational complexity (§3). Addi-
tionally, to counteract the issue of rank inhibition
caused by matrix multiplication, we introduce rank
inflation strategies and demonstrate their effective-
ness (Fig. 2). On average, the proposed techniques
have better performance than LoRA (§5). More-
over, it has faster convergence (hence lower train-
ing time) than LoRA (§5). In a nutshell, we make
the following contributions:

* We propose a new technique for adapting
LLMs for downstream tasks: Low Rank

Multiplicative Adaptation (LoRMA). We
employ multiplicative updates as an alternative
to additive updates used in LoRA. To make
the proposed method computationally efficient
and overcome rank inhibition brought in by ma-
trix multiplication of low-rank matrices, we pro-
pose two variants: Low Rank Multiplicative
Adaptation with additive inflation (LoRMA )
and Low Rank Multiplicative Adaptation
with permutation-based inflation (LoRMA;). We
propose a very generic framework that can
adapted into existing enhancements of LoRA
such as Q-LoRA (Dettmers et al., 2023), Au-
toLoRA (Zhang et al., 2024), DyLoRA (Valipour
et al., 2023), and DoRA (Liu et al., 2024)).

* We perform an extensive set of experiments by
applying LoRMA on transformer-based LLMs on
various NLU and NLG tasks and compare it with
existing LoRA baselines. On average, the pro-
posed techniques perform better. We show that
LoRMA shows faster convergence. Further, we
perform various ablation studies to see the effect
of rank, weight matrix choice, and correlation
between updated weight matrices of LoRA and
LoRMA. We release model code via anonymous
repo: https://anonymous.4open.science/r/
LoRMA-7B44.

2 Related Work

LLMs are generally fine-tuned using Parameter
Efficient Fine Tuning (PEFT) methods. Exist-
ing PEFT techniques typically fall into three cat-
egories (Han et al., 2024): (1) Additive meth-
ods (these involve the inclusion of a small set of
additional trainable parameters/modules into pre-
trained LLMs, e.g., Adaptors (Houlsby et al., 2019),
Prefix-tuning (Li and Liang, 2021)); (2) Selective
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methods (these involve selecting a smaller subset
of parameters/modules (e.g. bias in the case of Bit-
Fit (Ben Zaken et al., 2022)) and fine-tuning only
those (via application of binary masks), e.g., Diff
pruning (Guo et al., 2021)); (3) Re-parametrization
techniques (these involve re-parameterization of
existing weight update matrix via low-rank approx-
imation, e.g., LoORA (Hu et al., 2022)).

Several variants of LoRA have been proposed, each
focusing on different aspects of the method (Mao
et al., 2025). Here, we describe some of the promi-
nent ones; for more details, please refer to the sur-
vey by Yang et al. (2024). DyLoRA (Valipour
etal., 2023) dynamically searches for optimal ranks
for different weight matrices of the model rather
than using a fixed rank across all layers. Methods
like AutoL.oRA (Zhang et al., 2024) and AdaLLoRA
(Zhang et al., 2023) adaptively allocate the parame-
ter budget across the model matrices by determin-
ing an importance score. ReLoRA (Lialin et al.,
2024) introduces aggregated low-rank updates to
large neural networks during the training phase
with a jagged learning rate scheduler, which de-
pends on the interval in which updates are made
to the weight matrix. DoRA (Liu et al., 2024)
improves convergence by splitting magnitude and
directional updates, enabling weight updates close
to traditional fine-tuning. VeRA (Kopiczko et al.,
2024) further reduces storage requirements by us-
ing fixed matrices A and B across layers and in-
troducing trainable diagonal matrices. PRoLoRA
(Wang et al., 2024) introduces re-using parame-
ters within the LoRA adapter matrix by replicating
chunks across rows and columns. The paper intro-
duces a rotation enhancement operation involving
chunks in the adapter matrices to recover the ex-
pressivity in BA lost due to replicating parameters
and add a set of trainable parameters to further en-
hance expressivity. Our work is different from PRo-
LoRA; we introduce operations at the row level to
inflate the rank of the matrix. All these methods dis-
cussed are additive in nature. We explore the effect
of replacing additive modules with multiplicative
transformations. By investigating multiplicative
updates, we aim to address some of the limitations
of additive approaches while maintaining the effi-
ciency and effectiveness of PEFT. Multiplicative
updates offer a more expressive mechanism for
modifying weight matrices. By leveraging matrix
multiplication, we can encode richer transforma-
tions, which may better capture several complex
relationships.

3 Proposed Technique: LoRMA

3.1 Background

Rank of a matrix (R(-)) is defined as the num-
ber of independent rows/columns of a matrix and
is equivalent to the dimensionality of the space
spanned by the rows/columns of the matrix. The
rank of a matrix is a fundamental quantity that cap-
tures various important characteristics. Some of
the key properties (Strang, 2009) are:

R(M) < min(n,m), forM € R**™ (1)
R(M: +Mz) > |R(M1) — R(Ma2)] 2)
R(M; x Ma) < min(R(M1),R(Mz)) (3

)

(M) = n, M € R"" if M is invertible (4)

Property 1 indicates that the rank of a matrix is
bounded by its dimensions. Property 2 specifies a
lower bound for the rank when matrices undergo
addition. Property 3 constrains the rank of the prod-
uct of two matrices to be bounded by the smaller of
both. Property 4 states that square matrices that are
invertible (for example, identity matrix I,,) have a
rank equal to the number of rows/columns (n).
Existence: In LoRA, weights are updated via addi-
tive updates; however, we are proposing a different
paradigm where weights are updated via a mul-
tiplicative process. One could argue if it is even
feasible to attain the same updates via a multiplica-
tive process. In this regard, we first provide proof
that it is indeed possible to transform a matrix into
another matrix via multiplicative mapping.

Theorem 1. Given My € R"™ ™ where
n > m and let R(My) = m. For all
M e R™™ 3 My € R™™, such that
M = M 4M,.

Proof. Given My € R"™*™ where n > m and
R(Mjp) = m, implies that My is a full column
matrix, i.e., all its columns are independent. This
implies that there exists a left inverse of the matrix
My, say M, such that M(J{Mo =1,,. We need
to show the existence of a matrix M 4 for any given
M € R™™ gsuch that pre-multiplication of M 4
with My gives M, i.e., M = M 4Mj. Construct
the matrix M4 = MMSF. This proves the claim
as M4M, = (MM )M, = ML, = M. O

Corollary 1.1. Given My € R™*™ where n > m
and R(My) = m. There exists M € R"*"™ such
thatV My € R™*™ M # MM 4.



Proof. Suppose that V M € R™"*™ 3 My, such
that post-multiplication, i.e., MgM 4 = M. In
other words R™*™ = {MoMy | My € R™*™},
This does not hold as the degrees of freedom on
the right-hand side for a given full column matrix
M, is m? (number of elements in M ), while the
potential degrees of freedom required is nm-many
in R™*™_ Formally, consider a counter-example.
Assume the given My = ( I ) Let the re-

O0n—m

quired transformation be to M = (0;_7”) , where
m

0,,—,, denotes a zero matrix € R(=m)xm ¢ jg
easy to verify that A M 4 € R™*™ which satisfies
the desired transformation. ]

Corollary 1.2. Given the square matrix M €
R™ "™ and non-singular matrix My € R"*™,
there exist matrices M 4,, My, € R"*" that can
transform My into M via pre-multiplication/post-
multiplication respectively, i.e., M = My,Mjy
and M = MM, .

Remark. We present the above results to moti-
vate the existence of a multiplicative transforma-
tion that maps frozen pre-trained weight matrices
M) to potentially any other set of weights with
the same dimensionality. A key requirement under-
lying this hypothesis is that the weight matrices—
such as attention.self.query in RoBERTa or
the spliced c_attn in GPT-2 (the models used in
§4)—are invertible. To ensure this, we verify that
these matrices are either full rank or close to full
rank, typically within 99% of the maximum possi-
ble rank.

3.2 LoRMA

LoRA (Hu et al.,, 2022) updates a pre-trained
weight matrix Wy € RIF by additive up-
date, ie, h = Wyx + AWx, where x
is the input and Wy is frozen during fine-
tuning. The updates AW are constrained to
a low-rank decomposition BA where B €
R>" A € R™ and r < min(d, k), ie.

h=(Wo+ = BA)x
T

N——
AW

where « is a scalar. To ensure that the initial train-
ing pass resembles the pre-trained model, B is ini-
tialized to 0.

Theorem 1 guarantees the existence of a matrix
M 4 for a desired transformation. Hence, we pro-
pose a multiplicative update rule, i.e., M 4 x Wy,
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Figure 3: Permutation-Based Inflation Z; operation. Re-
arrange matrix entries to inflate the rank.

The update is approximated using low-rank approx-
imation, i.e.,

h = ((BA) x Wo)x

where, B € R?*", A € R™*¢ with r < min(d, k)
are low-rank matrices such that the product BA
captures the desired transformation of matrix W.
However, this naive approach has a few shortcom-
ings. In accordance with property 3, the resul-
tant matrix product is limited to be of rank 7 since
R(BAW,) < R(B) < r. This significantly un-
dermines the potential desirable independence of
rows/columns in the final representation of the up-
dated weights. Further, during the onset of the
fine-tuning, in the case of LoRA, it is preferable
to have AW = 0, so that h = Wx, this ensures
stability during fine-tuning (Hu et al., 2022). This
is achieved by initializing B with zeros, ensuring
that the additive update starts at zero. In our case,
this would require the matrix BA to be equal to the
identity matrix I;. However, the property 3 dictates
that this cannot be the case as R(I;) = d. This
forces the tuning to have a significant deviation
from the beginning. We propose two strategies to
mitigate the rank limitation imposed by low-rank
matrices to capture the multiplicative transforma-
tion.

Permutation-Based Inflation (7). Permutation-
based rank inflation utilizes the idea of strategic
re-arrangement of elements of the matrices to in-
crease the rank of a matrix. The rows of the matrix
are rotated cyclically in incremental steps. The
¢ th row is rotated by i, i.e. (row 0 by 0, row 1
by 1 ...). As can be seen in Fig. 3, this effective
rearranging of a matrix’s elements has enhanced
the matrix’s rank from 1 to a full rank of 3. We
introduce this operation on the product of the ma-
trices BA, which equips the model with the ability
to learn a higher-rank representation. Since the
operation is simply a re-arrangement of the param-
eters, it does not make the gradient in-tractable.

h = (Z;(BA) x Wy)x
This inflation strategy also provides a better ini-

tialization scheme. This is achieved by warranting
Z.(BA) = I;. The first column of B is set to




Method Computation Complexity
LoRA (Wo +BA)x O(dkb)
LoRMA BAWx O(dkb)
LORMA . T.(BA)Wox  O(d*(r + b))
LoRMA;. Wiox + BAWyx O(dkb)

Table 1: Time Complexity for computations incurred by
different methods during training time.

ones, while the rest of the elements are randomly
initialized. A[0, 0] is set to one, while the rest of
the elements in A are set to zero. We refer to this
variant as LORMA,.

Additive Rank Inflation (Z;). Motivated by the
need for an identity initialization of the trans-
formation matrix, we introduce another tech-
nique to address the rank limitation inherent
in low-rank approximations. Drawing inspira-
tion from ridge regression, where the solution
is stabilized by adding a regularization term
(é = (XITX + - I)_lXTY>, we incorporate an
identity matrix into our formulation through ad-
dition. Specifically, the resulting transformation
takes the form:

h=Z,(BA)Wox = (= BA +1;) Wox

The rank of the sum (¢ - BA + I;) (here « is the
scaling factor) is guaranteed to be at least d — r, as
dictated by property 2. Since r < d, d — r = d,
this preserves sufficient rank flexibility, enabling
richer transformations during training. This ap-
proach ensures that the transformation begins with
identity initialization at the start of the fine-tuning
process by setting B = 0 and randomly initializing
A. We refer to this variant as LORMA ;.

To summarize, formally, the update rule for LoRMA
is given by:

h = (Z(BA) x Wo)x

where, Wy € Rk B € R A € R"™*? and
r < min(d, k) and Z denotes rank inflation tech-
niques employed (Z/Z,.). A and B are initialized
such that Z(BA) = I;. In our case, the applica-
tion of the LoRMA over RoOBERTa and GPT-2 ( §4) is
over square matrices and Corollary 1.2 ensures the
existence of a multiplicand which is being adapted.
Computational Complexity: An obvious consid-
eration to take is the computational cost incurred
by the multiplicative transformations that are being
introduced. Table 1 (also see App. §A), provides a
comparative analysis of the computational costs of
LoRA for x € R¥*? where b denotes the batch size.
Utilizing associativity of matrix multiplications and
first performing multiplication with x helps make

the cost comparable to LoRA. The cost of LoRMA
is relatively higher since there is the requirement to
first compute B A since the Z; operation is being
applied on the product.

LoRMA Advantages: Similar to LoRA, LORMA helps
to avoid inference-time latency by permitting the
merging of updates into the frozen weights, i.e.,
Wiine-tuned = Z(BA) x Wy. In the multiplicative
representation, on updating a single parameter, the
resultant weight matrix has many more updates as
compared to additive transformations, as can be
seen in App. Fig. 7. This can lead to the require-
ment of fewer updates to modify the weight matrix
to another matrix. We observe this empirically in
our experiments (§5).

4 Experiments

We conduct a comprehensive set of experiments
to evaluate the effectiveness of our proposed
techniques on two widely-used language models:
RoBERTa (‘base’ and ‘large’)(Liu et al., 2019) and
GPT-2 (medium) (Radford et al., 2019). The choice
of models and tasks is motivated by the need for
a fair comparison with the original LoRA. Our
evaluation spans a variety of downstream tasks in
natural language understanding (NLU) and natural
language generation (NLG). For ROBERTa, we as-
sess the performance of our approach on the GLUE
benchmark (Wang et al., 2018). The GLUE bench-
mark provides a comprehensive set of tasks ranging
from single-sentence tasks (CoLA and SST-2) to
similarity and paraphrasing tasks (MRPC, STS-B,
QQP) to natural language inference tasks (MNLI,
QNLIL RTE). For GPT-2, we present results on the
E2E dataset (Novikova et al., 2017), commonly
used for evaluating NLG capabilities. Additional
NLG experiments, including DART (Nan et al.,
2021) and WebNLG (Gardent et al., 2017), to eval-
uate our approach have been discussed in App. §C.
Details of tasks, dataset statistics, and task-specific
hyperparameters can be found in App. §B and
App. 8§D, respectively. We compare LoRMA; and
LoRMA with Full Finetuning (FT), BitFit (Ben Za-
ken et al., 2022), LoRA (Hu et al., 2022), and Au-
toLoRA (Zhang et al., 2024). Comparison with Au-
toLoRA is motivated by its superior performance
over LoRA and its variants. We adhere to the stan-
dard experimental setup used in LoRA to ensure
consistency with prior work. Specifically, our mul-
tiplicative transformation technique is applied to
the query (W) and value (W) matrices within the
attention mechanism of the models.



Method # Params MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
ROBERTapqse (FT)* 125.0M 87.6 948 902 63.6 92.8 91.9 787 91.2 86.4
ROBERTap, (BitFit)* 0.IM 847 937 927 620 91.8 840 815 90.8 85.2
RoBERTap (AutoLoRA)* 03M  87.0 949 894 613 929 903 77.0 90.8 85.5
ROBERTapa (LORA) 03M 875 946 91.0 63.6 927 90.8 78.0 89.5 85.9
ROBERTap, (LORMA) 03M 874 942 91.1 635 921 90.5 754 90.6 85.6
ROBERT2p,5c (LORMA ) 03M 875 947 913 642 926 90.6 765 90.9 86.0
ROBERTae (FT)* 355.0M 902 964 909 68.0 947 922 86.6 924 889
ROBERTaj,g (Adapter)*  0.8M 903 963 877 663 947 915 729 915 86.4
ROBERTay,rge (LORA) 08M 907 962 93.0 68.1 946 91.6 852 92.0 88.9
ROBERTay,. (LORMA,) 0.8M 893 952 923 66.8 93.5 90.0 845 91.9 88.0
ROBERTayrzc (LORMA ;) 08M 907 959 93.0 67.8 949 913 86.6 92.2 89.0

Table 2: Performance on GLUE tasks. The metrics are Matthews correlation for CoLLA, Pearson coefficient for
STS-B, F1 for MRPC, and accuracy for other tasks. * denotes metrics published in prior works. The values present
are averaged over 3 runs on different seeds. Full tuning (FT) statistics are also reported for comparison purposes.

Method # Params

BLEU NIST MET ROUGE-L CIDEr

E2E

Inference: Beam size 10

GPT-2medium (FT)* 354.92M 68.2 8.62 46.2 71.0 2.47
GPT-2edium (Adapter™)*  11.090M 673 8.50 46.0 70.7 2.44
GPT-2pedium (AutoLoRA)*  0.3M 679 8.68 46.0 68.9 2.37
GPT-2medium (LORA) 03M 69.1 8.73 46.5 714 2.51
GPT-2medium (LORMA7) 03M 69.0 8.72 46.4 70.8 242
GPT-2medium (LORMA 1) 03M 693 8.75 463 70.8 2.51

Table 3: Performance on NLG. *x denotes metrics published in prior works. Full tuning (FT) statistics are also

reported for comparison purposes.

5 Results and Analysis

Results: Table 2 summarizes the results of
NLU tasks performed on RoBERTap, and
RoBERTay,ee, whereas Table 3 presents the re-
sults of NLG tasks. Both multiplicative adapta-
tion methods, LORMA ; and LoRMA, show superior
and/or comparable performances over a wide ar-
ray of NLU and NLG tasks. Though on average,
LoRMA | has slightly better performance. We per-
form various ablation experiments on the proposed
model as described next.

Presence v/s Absence of Rank-Inflation: Earlier
we explained (§3.1) why a naive low-rank multi-
plicative adaptation of Wy has limitations. We
present here the empirical verification of the same,
and the results are shown in Table 4. The experi-
ments were done on ROBERTa,ge 0n a subset of
GLUE tasks, and all the hyperparameters and train-
ing conditions were kept exactly the same, apart
from the presence and absence of the rank inflation
strategies. The results for the Z; have been repro-
duced for comparison. Further, we evaluate the
effectiveness of the proposed rank inflation strate-

gies by monitoring the rank of matrices throughout
the training procedure. We observe that these oper-
ations successfully help break the rank bottleneck,
and the matrices are almost full rank throughout
(refer to App. SE.1).

Method MRPC STS-B RTE

81.2 15.6  52.7
92.9 92.2  86.6

Table 4: The absence of rank inflation severely limits
the model’s capabilities.

LoRMA
LORMA |

Method CoLA MRPC STS-B RTE
LoRMA, (Post) 689 925 91.8 863
LoRMA,(Pre) 678 929 922  86.6

Table 5: Comparison of Pre-multiplication vs Post-
multiplication.

Pre-multiplication v/s Post multiplication: The
Corollary 1.2 allows for an equivalent representa-
tion of the multiplicative transformation, i.e., post
and pre-multiplication. We test post-multiplicative
LoRMA . (Table 5) and observe almost comparable
performance with the strategy mentioned above.
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Figure 4: Comparing performance over different ranks for the GLUE tasks RTE, STSB, CoLA, MRPC for adaptation

of ROBERTapc.
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Figure 5: Train loss curves for CoLA: RoBERTay,g. for
various techniques.

This verifies the discussion in §3.1.

Task % AUC | (I) % AUC | (I,
SST-2 (ROBERTapsse) ~ 10.84 30.21
CoLA (RoBERTapy) 2320 51.97

Table 6: % AUC decrease in comparison with LoRA

Choice of Weight Matrix: With a fixed parameter
budget, it becomes crucial to strategically allocate
adaptive weights to achieve optimal performance.
To investigate this, we set a parameter budget of
approximately 150K parameters, corresponding to
r = 8 for single-weight-type adaptation across the
GLUE tasks MRPC and STS-B. The adapted model
is ROBERTay,, with a scaling factor a = r (for
varying ranks r) used in the additive variant of our
method(LoRMA ). The trends observed in Table 7
suggest that, given a fixed budget, diversifying the
adaptive tuning—i.e., distributing the adaptation
across multiple weight matrices—Ileads to better
performance.

Rank r v/s Performance: To see the effect of rank
r over performance, we adapt W,, {W,, W}
and {W,, Wy, W,, W,} weight matrices with

LoRMA ; and the results are compiled in Table 8. The
general trend indicates that performance improves
as the rank (and consequently the number of pa-
rameters) increases. This observation aligns with
similar experiments conducted on LoRMA ;, LoRMA .,
and LoRA (Fig. 4). Once again, the overarching
trend shows that performance improves with higher
ranks across all techniques. However, this trend is
neither strict nor monotonic, as performance dips
at higher ranks are also observed. This could pos-
sibly be due to a low intrinsic rank of AW being
sufficient to capture the transformation and higher
ranks leading to over-parametrization rather than
learning additional information. Notably, LoRMA
scales effectively across different ranks and demon-
strates comparable or even superior performance to
LoRA, particularly in highly parameter-constrained
scenarios. This underscores the scalability and ef-
fectiveness of LoRMA, along with its rank-inflation
variants, in resource-constrained settings.

Faster convergence of LoRMA: Convergence time
reflects how quickly a model reaches a stable or
desirable level of performance during training. To
complement the competitive evaluation metrics pre-
sented in Table 2, we demonstrate in this section
that our proposed techniques achieve faster con-
vergence compared to LoORA. We quantify conver-
gence speed using the Area Under the Curve (AUC)
metric for the training loss curve, where a lower
AUC indicates faster convergence. Fig. 5 illus-
trates the training loss curves for LoRMA (both Z
and Z, variants) compared to LoRA on the CoLA
task while using ROBERTa,s. model. The results
show a steeper decline in training loss. The per-
centage reduction in AUC for various tasks relative



‘ # Trainable Parameters ~ 150K

Weight Matrix | W, W, W, W, W, W,W, W,W,W,W,
r 8 8 8 4 4 2

MRPC 902 910 914 90.2 91.3 91.6

STS-B 89.0 893 909 90.5 89.2 91.2

Table 7: RoOBERTay,, with LoRMA_ on a fixed budget for the GLUE tasks MRPC and STS-B, with scaling factor

a = r for respective r’s depending upon the application.

| Weight Matrix | r=1 r=2 r=4 r=38 r =64
W, 89.6 90.5 90.2 90.2 91.2
MRPC W,, W, 90.6 91.4 91.3 91.4 91.8
W, Wi, W,, W, 90.7 91.6 91.7 91.7 93.2
W, 88.4 88.6 88.6 89.0 89.3
STS-B W,, W, 89.1 89.5 89.2 89.3 89.2
W, Wi, W, W, | 910 91.2 90.9 90.9 91.1

Table 8: RoBERTay,s. with LoRMA. Validation accuracy across different weights being adapted with varying ranks

r for the GLUE tasks MRPC and STS-B.

| Layer 3 Layer 23
Metric ‘ AWLORMA+ AWLORMAW Random ‘ AVVL‘)RMAJr AWLORMA,\. Random
W — AWLeral| & 3.54 31.93 1024.27 10.02 38.31 1022.40
cos-sim(W, AWpera) | 74.2 x 1072 4.1x107% 0.1 x10-3|68.1x107% 03x107® —12x1073
(W, AWL()RA);S 0.99 8.93 176.18 3.75 13.40 175.67
(W, AW Lora) ¢ 0.06 2.67 89.07 0.49 3.31 89.70
01 (W, AWiora) 2.28 x 107% 227 x107°% 1.56 234 x107% 2.32x107°% 1.57

Table 9: Correlation between the learned representations of AWy ra and AW grua for ROBERTa e model.

to LoRA is summarized in Table 6. Similar trends
were observed for other tasks as well.

Comparision with AWy ga: Let us define AW
for any technique to be the difference between
the final adapted weight matrix and the initial
weight matrix (the frozen weights). We investi-
gate the relationship between AW/ ora, as learned
by LORA, and AWLoRMA+ as well as AWLORMAW’
which is obtained through our multiplicative adap-
tation method. To assess the correlation between
any two two matrices, we employ a variety of met-
rics, the results of which are summarized in Table 9.
We compute the Frobenius norm (||-|| ) between
the two matrices, where a larger value indicates a
bigger deviation between the two matrices. We also
evaluate the cosine similarity of the flattened matri-
ces (cos-sim(+,-)) to measure their alignment. We
compute the sum of squared differences between
the top-r singular values (-,-)’ and eigenvalues
(+, )& of the two matrices to assess their similarity.
Finally, we measure the principal subspace angle
O1(+,-) between their column spaces to quantify
their geometric alignment, where smaller angles
indicate a higher degree of overlap between the
subspaces. The overarching trend of these metrics

implies a high correlation between AW ra and
AW opma, and AW, opua,., Which shows that out
multiplicative techniques are learning similar rep-
resentations to that learnt by LoRA. To assess the
expressibility of the transformations, we compare
the rank of AW. For LoRA, AW = BA; hence,
it is restricted to be a low-rank update (property
3). While for LoRMA ., there are no such limitations.
We empirically observe them to be almost full-rank
matrices (refer to App. §E.2).

6 Conclusion

In this work, we proposed LoRMA, a completely
different and new way of updating weights of a
language model via multiplicative updates. We
mathematically proved the existence of multiplica-
tive updates. Further, to overcome the limitations
of the naive approach of multiplicative updates, we
propose two methods to inflate the rank of the up-
date matrix via permutation and additive identity.
Extensive experiments prove the good performance
and training efficacy of the proposed approach. In
the future, we plan to experiment with combining
LoRMA with some of the existing LoRA-based en-
hancements like DoRA and DyLoRA.



Limitations

The ability to plug out the parameters. In a pro-
duction setting, LORA converts a base model to the
model tuned to a task by adding B A to the weight
matrix of the model, and one can recover the orig-
inal model by subtracting out the original weight
matrix. In the case of LoRMA, by updating the orig-
inal weight matrix by multiplication with Z(BA),
the tuned model can be deployed. The recovery
of original model weights from the updated form
would require Z(BA) to be invertible, which might
not be the case, as discussed above. To mitigate
this, a copy of the original parameters would have
to be maintained.

Time complexity of 7 during training. As dis-
cussed in Section 3, while other variants of LoRMA
have a similar order of time complexity as LoORA
during the training process, LoRMA,: has a slightly
higher time complexity at training time. How-
ever, by merging weights during inference time,
all of them would have no inference latency, which
makes the method still a viable option.
Experiments with Smaller Models. In this paper,
in order to be comparable with previous works, we
experimented mainly with ROBERTa and GPT-2
models. We performed experiments on a variety of
tasks, and the results are indicative of the efficacy
of the proposed method. We expect the results to
generalize to larger sized LLMs as well.

Ethical Considerations

We abide by the ACL Code of Ethics code during
our research. This work introduces a new variant
of parameter-efficient fine-tuning approaches for
LLMs that do not directly have possible harms as-
sociated with them. The use of LLMs has ethical
considerations that should be kept in mind. We
have used public models (RoBERTa and GPT?2)
and public datasets (GLUE, E2E, WebNLG and
DART) to evaluate the effectiveness of our pro-
posed approach.
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A Time complexity calculations

Here, we describe the strategic re-ordering of opera-
tions to mitigate the large time complexity incurred
due to matrix multiplications. These have been
summarized in Table 10.

LoRA

Multiply Wy with x (O(dkb)). Multiply A with
x (O(krb)). Multiply B with Ax (O(drb)). Add
Wox with BAx (O(db)).

LoRMA

Multiply Wy with x (O(dkb)). Multiply A
with Wox (O(drd)). Multiply B with AWx
(O(drbd)).

LORMA

Multiply W with x (O(dkb)). Multiply B with A..
Inflation Z, of BA (O(d?r)). Multiply Z,(BA))
with Wox (O(d?b)).

LoRMA

Multiply W with x (O(dkb)) for first term. Multi-
ply Wy with x (O(dkb)) for second term. Multiply
A with Wox (O(drd)). Multiply B with AW x
(O(drb)). Add Wox with BAWx (O(db)).

Method Computation Complexity Calculation
Loka  (WorBAp I
LoRMA BAW,x dk(g (tufgl)rb

dkb + d°r + d*b

LoRMA,  Z,(BA)Wox O (r + b))

LoRMA, Wox + BAWx Qdkbg (chigb) +db

Table 10: Time Complexity for computations incurred
by different methods during training time.

B Dataset description

* GLUE Benchmark: The benchmark com-
prises wide-ranging natural language under-
standing tasks mostly restricted to English
language. It consists of tasks like CoLA
((Warstadt et al., 2019), grammatical accept-
ability), SST-2 ((Socher et al., 2013), senti-
ment analysis), MRPC ((Dolan and Brock-
ett, 2005), semantic textual similarity), STS-
B ((Cer et al., 2017), semantic textual sim-
ilarity), QQP ((Sharma et al., 2019), ques-
tion answers), and inference tasks like MNLI



(Williams et al., 2018), QNLI (Rajpurkar et al.,
2018) as well as RTE (Poliak, 2020).

The datasets are available under public license
and were used using the datasets API pro-
vided by HuggingFace. The dataset statistics
are presented in Table 11.

E2E NLG Challenge: The E2E dataset was
released in Novikova et al. (2017) and is a
popular dataset for testing efficacy in natural
language generation tasks. The dataset con-
sists of 42061 training samples, 4672 dev, and
4693 test samples. Success on this task is typ-
ically measured by achieving a high BLEU,
NIST, METEOR, Rouge-L, and CIDEr score,
as presented in the paper.

DART: This is a large dataset for open-
domain record-to-text generation published
in (Nan et al., 2021). It has a total of close
to 82K samples. The underlying task is rdf-
to-text (which is mapping entity relations to
text).

WebNLG Challenge: WebNLG challenge
(Gardent et al., 2017) is yet another dataset
that consists of mapping data to text. Data is
a set of triples, and text is the verbalization
of this data. It has close to 22K total samples.
It involves examples from 9 distinct DBPedia
categories during training, with the complete
dataset having 15 categories.

C Additional Experiments

We conduct more experiments to test and bench-
mark the capabilities of our multiplicative adapters.
In this series, we repeat our NLG experiments for
DART (Nan et al., 2021) and WebNLG challenge
(Gardent et al., 2017). The trends are similar to
that observed in Table 3. Our adapters perform
comparably in evaluation with LoRA. The results
are presented in Table 12.

D Hyperparameters and Training Setup

We adhere to the standard experimental setup
used in LoRA to ensure consistency with prior
work. Specifically, our multiplicative transforma-
tion technique is applied to the query (W,) and
value (W,) matrices within the attention mecha-
nism of the models. This means that for a 12-layer
RoBERTap,5e or GPT-2 M model, our multiplica-
tive adapters are applied a total of 24 times—once
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for each query and value matrix across all layers.
Similarly, for the 24-layer ROBERTajarpe model, the
multiplicative adapter is applied 48 times. We use
the pre-trained versions of ROBERTap,se (125M
parameters) and ROBERTaj,e (355M parameters)
available in the HuggingFace Transformers library
(Wolf et al., 2020). We employed the PEFT (Man-
grulkar et al., 2022) support on the HuggingFace
where available for running experiments. For NLG
experiments based on GPT-2, we draw inspiration
from LoRA’s published code. The pre-trained GPT-
2 models have been made available by Hugging-
Face.

D.1 RoBERTa

We utilize AdamW optimizer (Loshchilov and Hut-
ter, 2019) along with a linear learning rate decay
schedule. The results reported are the mean of runs
for 3 random seeds, with the result for a single run
taken to be from the best epoch. The pre-trained
RoBERTa model is taken and fine-tuned for each
task separately. The hyperparameters have been
presented in Table 13. For the results of previous
works, refer to Ben Zaken et al. (2022); Houlsby
et al. (2019); Zhang et al. (2024).

D.2 GPT-2

The GPT-2 models have been trained via the
AdamW optimizer using a linear learning rate
schedule for 5 epochs. The hyper-parameters used
for the experiments are presented in Table 14. For
the results of previous works, refer to Zhang et al.
(2024); Hu et al. (2022).

E Ablation

E.1 Rank Progression with training

As discussed in §3, the proposed initialization
schemes, along with rank inflation, help to begin
the training process with Z(BA) = I; which is a
full rank matrix. To empirically verify whether
the rank inflation techniques, beginning with a
high rank during initialization, also retain it across
the training process, we monitor the rank Z(BA)
where d = 1024, B € R1024x8 A ¢ R8x1024 For
both 7, and Z,, throughout the fine-tuning pro-
cess, it is observed that the inflated matrix product
is always almost full rank (1024). Thus helping
preserve the representational capacity of the matrix
product.


https://www.dbpedia.org/
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/peft/index
https://github.com/microsoft/LoRA

‘ CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE
Train 8551 67349 3668 5749 363871 392702 104743 2490
Validation 1043 872 408 1500 40432 9815 5463 277
Table 11: GLUE Benchmark statistics

Method # Params E2E DART WebNLG
(M) BLEU NIST MET ROUGE-L CIDEr\BLEU METEOR TER \BLEU METEOR TER
Inference: Beam size 15 Inference: Beam size 10 Inference: Beam size 10
GPT-2medium (LORA) 0.3M  67.5 8.53 46.2 70.8 2.49 | 45.35 0.38 0.53 | 52.27 0.40 0.45
GPT-21pedium (LORMAL)  0.3M 684 8.63 46.1 70.6 2.50 | 43.64 0.38 0.53 | 49.98 0.38 0.47

Table 12: Certain extra results for NLG. For all the metrics, higher is better except TER.
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Figure 6: Variation of rank of resultant multiplicative
adapters, i.e., R(Z,(BA)) and R(Z+(BA)) across
epochs.

E.2 Ranks of the weight updates

To measure the richness of the weight updates re-
ceived by the end of the fine-tuning process, we
compare the ranks of AW. Table 15 shows the
substantial difference in their ranks. In the case
of LoRA, the weight update (AW = BA) is con-
strained to be of rank » = 8. A similar bound ex-
ists in the case of LORMA (AW = BAW,). For
LoRMA ., no such restriction exists, and the weight
update is an almost full rank matrix.
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Fine-Tuning Method = Rank of Weight Update

LoRA 8
LoRMA - 8
LoRMA 1021

Table 15: Rank of the AW for Layer 13 of
ROBERTay, being fine-tuned for CoLA for r = 8.

Additive
PH .
_|*
X A + = -
+
B Wy W
Multiplicative
FLT T R+
LT _ [FEEE
g A X T R
33+
B Wo w

Figure 7: Impact on the resultant matrix on updating a
single element in Additive vs Multiplicative updates.



Model and method Task \ MNLI SST-2 MRPC CoLA OQNLI QQP RTE STS-B
Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear
Batch Size 64 64 32 64 64 16 32 16
Epochs 30 60 30 100 25 25 80 40
ROBERTapas Leaming Rate | 4E-4 SE-4 4E-4 4E-4 4E4 SE4 SE-4 4E-4
LoRMA | i
Matrices and r Tq="Ty =28
Scaling « 4 8 8 4 4 8 8 8
Max Seq. Len. 512
Weight decay 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1
Batch Size 64 64 32 64 64 16 32 16
Epochs 30 60 30 100 25 25 80 40
ROBERTapsc Learning Rate | 4E-4 SE-4 4B-4 4B-4 4E4 SE-4 SE-4 4E4
LoRMA .
Matrices and r Tq="Ty =28
Scaling av 8
Max Seq. Len. 512
Weight decay 0.1
Batch Size 64 64 32 64 64 16 32 16
Epochs 30 60 30 100 25 25 80 40
ROBERTapsc Leamning Rate | 4E-4 S5E-4 4E-4 4E-4 4E4 5E-4 5E4 4B4
LoRA .
Matrices and r Tq =Ty =28
Scaling « 8
Max Seq. Len. 512
Weight decay 0.1
Batch Size 8 8 4 8 4 4 8 4
Epochs 10 10 20 20 20 20 20 10
ROBERTarge Leaming Rate | 3E-4 4E-4 3E-4 3E-4 2E4 3E4 4E4 3E4
LoRMA | i
Matrices and r Tq =Ty =8
Scaling 8 8 4 4 4 8 4 4
Max Seq. Len. | 128 512 512 128 512 512 512 128
Weight decay 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1
Batch Size 8 8 4 8 4 4 8 4
Epochs 10 10 20 20 20 20 20 10
ROBERTaje Learning Rate | 3E-4 4E-4 3E-4 3BE-4 2E4 3E4 4BE4 3E4
LoRMA .
Matrices and r Tq =Ty =28
Scaling av 8
Max Seq. Len. 128 512 512 128 512 512 512 128
Weight decay 0.1
Batch Size 8 8 4 8 4 4 8 4
Epochs 10 10 20 20 20 20 20 10
ROBERTage Learning Rate | 3E-4 4E-4 3E-4 3E-4 2E4 3E4 4E-4 3E4
LoRA .
Matrices and r Tq =Ty =28
Scaling « 8
Max Seq. Len. 128 512 512 128 512 512 512 128
Weight decay 0.1

Table 13: The hyperparameters we used for ROBERTa on the GLUE benchmark.
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Task | E2E. WebNLG DART

‘ Training
Optimizer AdamW
Weight Decay 0.01 0.01 0.0
Dropout Prob 0.1 0.1 0.0
Batch Size 8
# Epoch 5
Warmup Steps 500
Learning Rate Schedule Linear
Label Smooth 0.1 0.1 0.0
Learning Rate (Z) 0.0002
Learning Rate (Z) 0.0001
Matrices and r rg =1y, =4
Scaling o (Z) 32
Scaling o (Z) 8

Inference

Beam Size 10/15 10 10
Length Penalty 0.9 0.8 0.8
no repeat ngram size 4
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Table 14: The hyperparameters for GPT-2 M LoRMA on E2E, WebNLG and DART.
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