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Abstract

Large Language Models have emerged to show001
remarkable capabilities in the NLP domain.002
Their effectiveness can mainly be attributed003
to their ability to adapt to an array of down-004
stream tasks. However, generally, full fine-005
tuning is a computationally expensive job. To006
mitigate this, many techniques have been de-007
veloped that prime efficiency, a prominent one008
being Low-Rank Adaptation (LoRA). However,009
LoRA and its variants employ re-parametrized010
additive updates. In this paper, we propose Low011
Rank Multiplicative Adaptation (LoRMA),012
which shifts the paradigm of additive updates013
to a much richer space of matrix multiplicative014
transformations. We tackle challenges such as015
computational complexity and rank inhibition016
by strategically ordering matrix operations and017
introducing rank inflation strategies. We con-018
duct extensive experiments to show the effec-019
tiveness of our approach in terms of evaluation020
metrics and computational costs.021

1 Introduction022

Large Language Models (LLMs) have demon-023

strated strong performance across various NLP024

benchmarks (Fourrier et al., 2024). Though LLMs025

have shown impressive generalization capabilities026

(for example, via In-context learning (Dong et al.,027

2024)), sometimes these tend to have lower perfor-028

mance on some niche or low-resource tasks, thus029

requiring task-specific fine-tuning. LLMs usage030

follows a pre-train and fine-tune paradigm (Zhao031

et al., 2023), where the model is trained on a mas-032

sive amount of text in an unsupervised fashion, and033

subsequently, the model is fine-tuned for some spe-034

cific tasks/domains. Given the size of these models035

(order of billions of parameters), it may not always036

be feasible to fine-tune the entire model due to037

high computational costs. In recent years, a new038

class of techniques (referred to as PEFT (Param-039

eter Efficient Fine Tuning)) has been proposed to040
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Figure 1: Transformation of a vector W by two meth-
ods: one is via rotation and scaling, the other is via the
addition of a vector v.

address large computational costs associated with 041

fine-tuning. 042

Various PEFT techniques have been introduced 043

(Han et al., 2024); however, they often introduce 044

trade-offs such as lack of parallelism, increased 045

inference latency (e.g., Adaptors (Houlsby et al., 046

2019)), or restricted sequence lengths (Petrov et al., 047

2024). Consequently, re-parametrization-based 048

techniques such as Low-Rank Adaptation (LoRA) 049

(Hu et al., 2022) based fine-tuning methods have 050

gained popularity. Typically, during fine-tuning, 051

the weights (in the form of the weight matrix, e.g., 052

query/key/value matrix) of LLMs are updated us- 053

ing additive update rule, i.e., W0 + ∆W, where 054

∆W is the update in the weights obtained due to 055

fine-tuning. The main idea behind LoRA is to ap- 056

proximate the update matrix ∆W ∈ Rd×k by a 057

low-rank approximation BA, where B ∈ Rd×r 058

and A ∈ Rr×k are low-rank matrices (r ≪ d, k), 059

i.e., W = W0 +
α
r ·BA, where α

r is a scaling fac- 060

tor. The key intuition is that information required 061

for task-specific updates has a smaller intrinsic rank 062

and lies on a much smaller manifold compared to 063

the entire space of d×k matrices (Aghajanyan et al., 064
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Figure 2: Comparing LoRA (a) and LoRMA (b). @ denotes matrix multiplication. I+ and Iπ represent additive and
permutation based rank inflation respectively (§3). In case of LoRMA, initialization of A and B depends on the type
of inflation (§3).

2021; Hu et al., 2022). All the current LoRA-based065

approaches (Yang et al., 2024) have employed ad-066

ditive transformations, where the low-rank update067

matrix can be added to the original weight matrix068

during inference. However, similar transformation069

could also be achieved via multiplicative updates.070

For example, consider a weight vector W (Fig. 1)071

and we would like to transform it to vector Ŵ, this072

could be accomplished via the addition of a vector073

v, or it could also be done by rotating W by angle θ074

(done via Rotation Matrix Rθ) and subsequently by075

scaling it by scalar α. Inspired by this intuition, we076

propose Low Rank Multiplicative Adaptation077

(LoRMA) for efficiently fine-tuning LLMs on new078

tasks. LoRMA applies low-rank multiplicative up-079

date to a weight matrix, i.e., W = α
r · (BA)W0,080

where α
r is a scalar and A ∈ Rd×r and B ∈ Rr×k081

are low-rank matrices (r ≪ d, k). LoRMA, how-082

ever, introduces two new challenges: an increase083

in computational complexity due to additional ma-084

trix multiplication operations and a limitation on085

the maximum rank of the product due to the prop-086

erty: R(AB) ≤ min(R(A),R(B)), where R(·)087

denotes the rank of a matrix. We employ appro-088

priate ordering of matrix multiplication to address089

the issue of computational complexity (§3). Addi-090

tionally, to counteract the issue of rank inhibition091

caused by matrix multiplication, we introduce rank092

inflation strategies and demonstrate their effective-093

ness (Fig. 2). On average, the proposed techniques094

have better performance than LoRA (§5). More-095

over, it has faster convergence (hence lower train-096

ing time) than LoRA (§5). In a nutshell, we make097

the following contributions:098

• We propose a new technique for adapting099

LLMs for downstream tasks: Low Rank100

Multiplicative Adaptation (LoRMA). We 101

employ multiplicative updates as an alternative 102

to additive updates used in LoRA. To make 103

the proposed method computationally efficient 104

and overcome rank inhibition brought in by ma- 105

trix multiplication of low-rank matrices, we pro- 106

pose two variants: Low Rank Multiplicative 107

Adaptation with additive inflation (LoRMA+) 108

and Low Rank Multiplicative Adaptation 109

with permutation-based inflation (LoRMAπ). We 110

propose a very generic framework that can 111

adapted into existing enhancements of LoRA 112

such as Q-LoRA (Dettmers et al., 2023), Au- 113

toLoRA (Zhang et al., 2024), DyLoRA (Valipour 114

et al., 2023), and DoRA (Liu et al., 2024)). 115

• We perform an extensive set of experiments by 116

applying LoRMA on transformer-based LLMs on 117

various NLU and NLG tasks and compare it with 118

existing LoRA baselines. On average, the pro- 119

posed techniques perform better. We show that 120

LoRMA shows faster convergence. Further, we 121

perform various ablation studies to see the effect 122

of rank, weight matrix choice, and correlation 123

between updated weight matrices of LoRA and 124

LoRMA. We release model code via anonymous 125

repo: https://anonymous.4open.science/r/ 126

LoRMA-7B44. 127

2 Related Work 128

LLMs are generally fine-tuned using Parameter 129

Efficient Fine Tuning (PEFT) methods. Exist- 130

ing PEFT techniques typically fall into three cat- 131

egories (Han et al., 2024): (1) Additive meth- 132

ods (these involve the inclusion of a small set of 133

additional trainable parameters/modules into pre- 134

trained LLMs, e.g., Adaptors (Houlsby et al., 2019), 135

Prefix-tuning (Li and Liang, 2021)); (2) Selective 136
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methods (these involve selecting a smaller subset137

of parameters/modules (e.g. bias in the case of Bit-138

Fit (Ben Zaken et al., 2022)) and fine-tuning only139

those (via application of binary masks), e.g., Diff140

pruning (Guo et al., 2021)); (3) Re-parametrization141

techniques (these involve re-parameterization of142

existing weight update matrix via low-rank approx-143

imation, e.g., LoRA (Hu et al., 2022)).144

Several variants of LoRA have been proposed, each145

focusing on different aspects of the method (Mao146

et al., 2025). Here, we describe some of the promi-147

nent ones; for more details, please refer to the sur-148

vey by Yang et al. (2024). DyLoRA (Valipour149

et al., 2023) dynamically searches for optimal ranks150

for different weight matrices of the model rather151

than using a fixed rank across all layers. Methods152

like AutoLoRA (Zhang et al., 2024) and AdaLoRA153

(Zhang et al., 2023) adaptively allocate the parame-154

ter budget across the model matrices by determin-155

ing an importance score. ReLoRA (Lialin et al.,156

2024) introduces aggregated low-rank updates to157

large neural networks during the training phase158

with a jagged learning rate scheduler, which de-159

pends on the interval in which updates are made160

to the weight matrix. DoRA (Liu et al., 2024)161

improves convergence by splitting magnitude and162

directional updates, enabling weight updates close163

to traditional fine-tuning. VeRA (Kopiczko et al.,164

2024) further reduces storage requirements by us-165

ing fixed matrices A and B across layers and in-166

troducing trainable diagonal matrices. PRoLoRA167

(Wang et al., 2024) introduces re-using parame-168

ters within the LoRA adapter matrix by replicating169

chunks across rows and columns. The paper intro-170

duces a rotation enhancement operation involving171

chunks in the adapter matrices to recover the ex-172

pressivity in BA lost due to replicating parameters173

and add a set of trainable parameters to further en-174

hance expressivity. Our work is different from PRo-175

LoRA; we introduce operations at the row level to176

inflate the rank of the matrix. All these methods dis-177

cussed are additive in nature. We explore the effect178

of replacing additive modules with multiplicative179

transformations. By investigating multiplicative180

updates, we aim to address some of the limitations181

of additive approaches while maintaining the effi-182

ciency and effectiveness of PEFT. Multiplicative183

updates offer a more expressive mechanism for184

modifying weight matrices. By leveraging matrix185

multiplication, we can encode richer transforma-186

tions, which may better capture several complex187

relationships.188

3 Proposed Technique: LoRMA 189

3.1 Background 190

Rank of a matrix (R(·)) is defined as the num- 191

ber of independent rows/columns of a matrix and 192

is equivalent to the dimensionality of the space 193

spanned by the rows/columns of the matrix. The 194

rank of a matrix is a fundamental quantity that cap- 195

tures various important characteristics. Some of 196

the key properties (Strang, 2009) are: 197

R(M) ≤ min(n,m), for M ∈ Rn×m (1)
R(M1 +M2) ≥ |R(M1)−R(M2)| (2)
R (M1 ×M2) ≤ min(R(M1),R(M2)) (3)

R(M) = n, M ∈ Rn×n if M is invertible (4)
198

Property 1 indicates that the rank of a matrix is 199

bounded by its dimensions. Property 2 specifies a 200

lower bound for the rank when matrices undergo 201

addition. Property 3 constrains the rank of the prod- 202

uct of two matrices to be bounded by the smaller of 203

both. Property 4 states that square matrices that are 204

invertible (for example, identity matrix In) have a 205

rank equal to the number of rows/columns (n). 206

Existence: In LoRA, weights are updated via addi- 207

tive updates; however, we are proposing a different 208

paradigm where weights are updated via a mul- 209

tiplicative process. One could argue if it is even 210

feasible to attain the same updates via a multiplica- 211

tive process. In this regard, we first provide proof 212

that it is indeed possible to transform a matrix into 213

another matrix via multiplicative mapping. 214

Theorem 1. Given M0 ∈ Rn×m where
n > m and let R(M0) = m. For all
M ∈ Rn×m,∃ MA ∈ Rn×n, such that
M = MAM0.

215

Proof. Given M0 ∈ Rn×m where n > m and 216

R(M0) = m, implies that M0 is a full column 217

matrix, i.e., all its columns are independent. This 218

implies that there exists a left inverse of the matrix 219

M0, say M+
0 , such that M+

0 M0 = Im. We need 220

to show the existence of a matrix MA for any given 221

M ∈ Rn×m, such that pre-multiplication of MA 222

with M0 gives M, i.e., M = MAM0. Construct 223

the matrix MA = MM+
0 . This proves the claim 224

as MAM0 = (MM+
0 )M0 = MIm = M. 225

Corollary 1.1. Given M0 ∈ Rn×m where n > m 226

and R(M0) = m. There exists M ∈ Rn×m such 227

that ∀MA ∈ Rm×m,M ̸= M0MA. 228
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Proof. Suppose that ∀ M ∈ Rn×m, ∃ MA, such229

that post-multiplication, i.e., M0MA = M. In230

other words Rn×m = {M0MA |MA ∈ Rm×m}.231

This does not hold as the degrees of freedom on232

the right-hand side for a given full column matrix233

M0 is m2 (number of elements in MA), while the234

potential degrees of freedom required is nm-many235

in Rn×m. Formally, consider a counter-example.236

Assume the given M0 =

(
Im

0n−m

)
. Let the re-237

quired transformation be to M =

(
0n−m

Im

)
, where238

0n−m denotes a zero matrix ∈ R(n−m)×m. It is239

easy to verify that ∄ MA ∈ Rm×m which satisfies240

the desired transformation.241

Corollary 1.2. Given the square matrix M ∈242

Rn×n and non-singular matrix M0 ∈ Rn×n,243

there exist matrices MAℓ
,MAr ∈ Rn×n that can244

transform M0 into M via pre-multiplication/post-245

multiplication respectively, i.e., M = MAℓ
M0246

and M = MMAr .247

Remark. We present the above results to moti-248

vate the existence of a multiplicative transforma-249

tion that maps frozen pre-trained weight matrices250

M0 to potentially any other set of weights with251

the same dimensionality. A key requirement under-252

lying this hypothesis is that the weight matrices—253

such as attention.self.query in RoBERTa or254

the spliced c_attn in GPT-2 (the models used in255

§4)—are invertible. To ensure this, we verify that256

these matrices are either full rank or close to full257

rank, typically within 99% of the maximum possi-258

ble rank.259

3.2 LoRMA260

LoRA (Hu et al., 2022) updates a pre-trained261

weight matrix W0 ∈ Rd×k by additive up-262

date, i.e., h = W0x + ∆Wx, where x263

is the input and W0 is frozen during fine-264

tuning. The updates ∆W are constrained to265

a low-rank decomposition BA where B ∈266

Rd×r,A ∈ Rr×k and r ≪ min(d, k), i.e.267

h = (W0 +
α

r
·BA)︸ ︷︷ ︸
∆W

x
268

where α is a scalar. To ensure that the initial train-269

ing pass resembles the pre-trained model, B is ini-270

tialized to 0.271

Theorem 1 guarantees the existence of a matrix272

MA for a desired transformation. Hence, we pro-273

pose a multiplicative update rule, i.e., MA ×W0.274

1
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Figure 3: Permutation-Based Inflation Iπ operation. Re-
arrange matrix entries to inflate the rank.

The update is approximated using low-rank approx- 275

imation, i.e., 276

h = ((BA)×W0)x 277

where, B ∈ Rd×r, A ∈ Rr×d with r ≪ min(d, k) 278

are low-rank matrices such that the product BA 279

captures the desired transformation of matrix W0. 280

However, this naive approach has a few shortcom- 281

ings. In accordance with property 3, the resul- 282

tant matrix product is limited to be of rank r since 283

R(BAW0) ≤ R(B) ≤ r. This significantly un- 284

dermines the potential desirable independence of 285

rows/columns in the final representation of the up- 286

dated weights. Further, during the onset of the 287

fine-tuning, in the case of LoRA, it is preferable 288

to have ∆W = 0, so that h = Wx, this ensures 289

stability during fine-tuning (Hu et al., 2022). This 290

is achieved by initializing B with zeros, ensuring 291

that the additive update starts at zero. In our case, 292

this would require the matrix BA to be equal to the 293

identity matrix Id. However, the property 3 dictates 294

that this cannot be the case as R(Id) = d. This 295

forces the tuning to have a significant deviation 296

from the beginning. We propose two strategies to 297

mitigate the rank limitation imposed by low-rank 298

matrices to capture the multiplicative transforma- 299

tion. 300

Permutation-Based Inflation (Iπ). Permutation- 301

based rank inflation utilizes the idea of strategic 302

re-arrangement of elements of the matrices to in- 303

crease the rank of a matrix. The rows of the matrix 304

are rotated cyclically in incremental steps. The 305

i th row is rotated by i, i.e. (row 0 by 0, row 1 306

by 1 ...). As can be seen in Fig. 3, this effective 307

rearranging of a matrix’s elements has enhanced 308

the matrix’s rank from 1 to a full rank of 3. We 309

introduce this operation on the product of the ma- 310

trices BA, which equips the model with the ability 311

to learn a higher-rank representation. Since the 312

operation is simply a re-arrangement of the param- 313

eters, it does not make the gradient in-tractable. 314

h = (Iπ(BA)×W0)x 315

This inflation strategy also provides a better ini- 316

tialization scheme. This is achieved by warranting 317

Iπ(BA) = Id. The first column of B is set to 318
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Method Computation Complexity

LoRA (W0 +BA)x O(dkb)
LoRMA BAW0x O(dkb)
LoRMAπ Iπ(BA)W0x O(d2(r + b))
LoRMA+ W0x+BAW0x O(dkb)

Table 1: Time Complexity for computations incurred by
different methods during training time.

ones, while the rest of the elements are randomly319

initialized. A[0, 0] is set to one, while the rest of320

the elements in A are set to zero. We refer to this321

variant as LoRMAπ.322

Additive Rank Inflation (I+). Motivated by the323

need for an identity initialization of the trans-324

formation matrix, we introduce another tech-325

nique to address the rank limitation inherent326

in low-rank approximations. Drawing inspira-327

tion from ridge regression, where the solution328

is stabilized by adding a regularization term329 (
θ̂ = (XTX+ λ · I)−1XTY

)
, we incorporate an330

identity matrix into our formulation through ad-331

dition. Specifically, the resulting transformation332

takes the form:333

h = I+(BA)W0x =
(α
r
·BA+ Id

)
W0x334

The rank of the sum
(
α
r ·BA+ Id

)
(here α is the335

scaling factor) is guaranteed to be at least d− r, as336

dictated by property 2. Since r ≪ d, d − r ≈ d,337

this preserves sufficient rank flexibility, enabling338

richer transformations during training. This ap-339

proach ensures that the transformation begins with340

identity initialization at the start of the fine-tuning341

process by setting B = 0 and randomly initializing342

A. We refer to this variant as LoRMA+.343

To summarize, formally, the update rule for LoRMA344

is given by:345

h = (I(BA)×W0)x346

where, W0 ∈ Rd×k, B ∈ Rd×r, A ∈ Rr×d and347

r ≪ min(d, k) and I denotes rank inflation tech-348

niques employed (Iπ/I+). A and B are initialized349

such that I(BA) = Id. In our case, the applica-350

tion of the LoRMA over RoBERTa and GPT-2 ( §4) is351

over square matrices and Corollary 1.2 ensures the352

existence of a multiplicand which is being adapted.353

Computational Complexity: An obvious consid-354

eration to take is the computational cost incurred355

by the multiplicative transformations that are being356

introduced. Table 1 (also see App. §A), provides a357

comparative analysis of the computational costs of358

LoRA for x ∈ Rk×b where b denotes the batch size.359

Utilizing associativity of matrix multiplications and360

first performing multiplication with x helps make361

the cost comparable to LoRA. The cost of LoRMAπ 362

is relatively higher since there is the requirement to 363

first compute BA since the Iπ operation is being 364

applied on the product. 365

LoRMA Advantages: Similar to LoRA, LoRMA helps 366

to avoid inference-time latency by permitting the 367

merging of updates into the frozen weights, i.e., 368

Wfine-tuned = I(BA)×W0. In the multiplicative 369

representation, on updating a single parameter, the 370

resultant weight matrix has many more updates as 371

compared to additive transformations, as can be 372

seen in App. Fig. 7. This can lead to the require- 373

ment of fewer updates to modify the weight matrix 374

to another matrix. We observe this empirically in 375

our experiments (§5). 376

4 Experiments 377

We conduct a comprehensive set of experiments 378

to evaluate the effectiveness of our proposed 379

techniques on two widely-used language models: 380

RoBERTa (‘base’ and ‘large’)(Liu et al., 2019) and 381

GPT-2 (medium) (Radford et al., 2019). The choice 382

of models and tasks is motivated by the need for 383

a fair comparison with the original LoRA. Our 384

evaluation spans a variety of downstream tasks in 385

natural language understanding (NLU) and natural 386

language generation (NLG). For RoBERTa, we as- 387

sess the performance of our approach on the GLUE 388

benchmark (Wang et al., 2018). The GLUE bench- 389

mark provides a comprehensive set of tasks ranging 390

from single-sentence tasks (CoLA and SST-2) to 391

similarity and paraphrasing tasks (MRPC, STS-B, 392

QQP) to natural language inference tasks (MNLI, 393

QNLI, RTE). For GPT-2, we present results on the 394

E2E dataset (Novikova et al., 2017), commonly 395

used for evaluating NLG capabilities. Additional 396

NLG experiments, including DART (Nan et al., 397

2021) and WebNLG (Gardent et al., 2017), to eval- 398

uate our approach have been discussed in App. §C. 399

Details of tasks, dataset statistics, and task-specific 400

hyperparameters can be found in App. §B and 401

App. §D, respectively. We compare LoRMAπ and 402

LoRMA+ with Full Finetuning (FT), BitFit (Ben Za- 403

ken et al., 2022), LoRA (Hu et al., 2022), and Au- 404

toLoRA (Zhang et al., 2024). Comparison with Au- 405

toLoRA is motivated by its superior performance 406

over LoRA and its variants. We adhere to the stan- 407

dard experimental setup used in LoRA to ensure 408

consistency with prior work. Specifically, our mul- 409

tiplicative transformation technique is applied to 410

the query (Wq) and value (Wv) matrices within the 411

attention mechanism of the models. 412
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Method # Params MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.

RoBERTabase (FT)* 125.0M 87.6 94.8 90.2 63.6 92.8 91.9 78.7 91.2 86.4

RoBERTabase (BitFit)* 0.1M 84.7 93.7 92.7 62.0 91.8 84.0 81.5 90.8 85.2
RoBERTabase (AutoLoRA)* 0.3M 87.0 94.9 89.4 61.3 92.9 90.3 77.0 90.8 85.5
RoBERTabase (LoRA) 0.3M 87.5 94.6 91.0 63.6 92.7 90.8 78.0 89.5 85.9
RoBERTabase (LoRMAπ) 0.3M 87.4 94.2 91.1 63.5 92.1 90.5 75.4 90.6 85.6
RoBERTabase (LoRMA+) 0.3M 87.5 94.7 91.3 64.2 92.6 90.6 76.5 90.9 86.0

RoBERTalarge (FT)* 355.0M 90.2 96.4 90.9 68.0 94.7 92.2 86.6 92.4 88.9

RoBERTalarge (AdapterH)* 0.8M 90.3 96.3 87.7 66.3 94.7 91.5 72.9 91.5 86.4
RoBERTalarge (LoRA) 0.8M 90.7 96.2 93.0 68.1 94.6 91.6 85.2 92.0 88.9
RoBERTalarge (LoRMAπ) 0.8M 89.3 95.2 92.3 66.8 93.5 90.0 84.5 91.9 88.0
RoBERTalarge (LoRMA+) 0.8M 90.7 95.9 93.0 67.8 94.9 91.3 86.6 92.2 89.0

Table 2: Performance on GLUE tasks. The metrics are Matthews correlation for CoLA, Pearson coefficient for
STS-B, F1 for MRPC, and accuracy for other tasks. ∗ denotes metrics published in prior works. The values present
are averaged over 3 runs on different seeds. Full tuning (FT) statistics are also reported for comparison purposes.

Method # Params E2E
BLEU NIST MET ROUGE-L CIDEr

Inference: Beam size 10

GPT-2medium (FT)* 354.92M 68.2 8.62 46.2 71.0 2.47

GPT-2medium (AdapterH)* 11.09M 67.3 8.50 46.0 70.7 2.44
GPT-2medium (AutoLoRA)* 0.3M 67.9 8.68 46.0 68.9 2.37
GPT-2medium (LoRA) 0.3M 69.1 8.73 46.5 71.4 2.51
GPT-2medium (LoRMAπ) 0.3M 69.0 8.72 46.4 70.8 2.42
GPT-2medium (LoRMA+) 0.3M 69.3 8.75 46.3 70.8 2.51

Table 3: Performance on NLG. ∗ denotes metrics published in prior works. Full tuning (FT) statistics are also
reported for comparison purposes.

5 Results and Analysis413

Results: Table 2 summarizes the results of414

NLU tasks performed on RoBERTabase and415

RoBERTalarge, whereas Table 3 presents the re-416

sults of NLG tasks. Both multiplicative adapta-417

tion methods, LoRMA+and LoRMAπ, show superior418

and/or comparable performances over a wide ar-419

ray of NLU and NLG tasks. Though on average,420

LoRMA+ has slightly better performance. We per-421

form various ablation experiments on the proposed422

model as described next.423

Presence v/s Absence of Rank-Inflation: Earlier424

we explained (§3.1) why a naive low-rank multi-425

plicative adaptation of W0 has limitations. We426

present here the empirical verification of the same,427

and the results are shown in Table 4. The experi-428

ments were done on RoBERTalarge on a subset of429

GLUE tasks, and all the hyperparameters and train-430

ing conditions were kept exactly the same, apart431

from the presence and absence of the rank inflation432

strategies. The results for the I+ have been repro-433

duced for comparison. Further, we evaluate the434

effectiveness of the proposed rank inflation strate-435

gies by monitoring the rank of matrices throughout 436

the training procedure. We observe that these oper- 437

ations successfully help break the rank bottleneck, 438

and the matrices are almost full rank throughout 439

(refer to App. §E.1). 440

Method MRPC STS-B RTE

LoRMA 81.2 15.6 52.7
LoRMA+ 92.9 92.2 86.6

Table 4: The absence of rank inflation severely limits
the model’s capabilities.

Method CoLA MRPC STS-B RTE

LoRMA+(Post) 68.9 92.5 91.8 86.3
LoRMA+(Pre) 67.8 92.9 92.2 86.6

Table 5: Comparison of Pre-multiplication vs Post-
multiplication.

Pre-multiplication v/s Post multiplication: The 441

Corollary 1.2 allows for an equivalent representa- 442

tion of the multiplicative transformation, i.e., post 443

and pre-multiplication. We test post-multiplicative 444

LoRMA+ (Table 5) and observe almost comparable 445

performance with the strategy mentioned above. 446
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Figure 4: Comparing performance over different ranks for the GLUE tasks RTE, STSB, CoLA, MRPC for adaptation
of RoBERTabase.
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Figure 5: Train loss curves for CoLA: RoBERTabase for
various techniques.

This verifies the discussion in §3.1.447

Task % AUC ↓ (I+) % AUC ↓ (Iπ)

SST-2 (RoBERTabase) 10.84 30.21
CoLA (RoBERTabase) 23.20 51.97

Table 6: % AUC decrease in comparison with LoRA

Choice of Weight Matrix: With a fixed parameter448

budget, it becomes crucial to strategically allocate449

adaptive weights to achieve optimal performance.450

To investigate this, we set a parameter budget of451

approximately 150K parameters, corresponding to452

r = 8 for single-weight-type adaptation across the453

GLUE tasks MRPC and STS-B. The adapted model454

is RoBERTabase, with a scaling factor α = r (for455

varying ranks r) used in the additive variant of our456

method(LoRMA+). The trends observed in Table 7457

suggest that, given a fixed budget, diversifying the458

adaptive tuning—i.e., distributing the adaptation459

across multiple weight matrices—leads to better460

performance.461

Rank r v/s Performance: To see the effect of rank462

r over performance, we adapt Wq, {Wq,Wk}463

and {Wq,Wk,Wv,Wo} weight matrices with464

LoRMA+and the results are compiled in Table 8. The 465

general trend indicates that performance improves 466

as the rank (and consequently the number of pa- 467

rameters) increases. This observation aligns with 468

similar experiments conducted on LoRMA+, LoRMAπ, 469

and LoRA (Fig. 4). Once again, the overarching 470

trend shows that performance improves with higher 471

ranks across all techniques. However, this trend is 472

neither strict nor monotonic, as performance dips 473

at higher ranks are also observed. This could pos- 474

sibly be due to a low intrinsic rank of ∆W being 475

sufficient to capture the transformation and higher 476

ranks leading to over-parametrization rather than 477

learning additional information. Notably, LoRMA 478

scales effectively across different ranks and demon- 479

strates comparable or even superior performance to 480

LoRA, particularly in highly parameter-constrained 481

scenarios. This underscores the scalability and ef- 482

fectiveness of LoRMA, along with its rank-inflation 483

variants, in resource-constrained settings. 484

Faster convergence of LoRMA: Convergence time 485

reflects how quickly a model reaches a stable or 486

desirable level of performance during training. To 487

complement the competitive evaluation metrics pre- 488

sented in Table 2, we demonstrate in this section 489

that our proposed techniques achieve faster con- 490

vergence compared to LoRA. We quantify conver- 491

gence speed using the Area Under the Curve (AUC) 492

metric for the training loss curve, where a lower 493

AUC indicates faster convergence. Fig. 5 illus- 494

trates the training loss curves for LoRMA (both I+ 495

and Iπ variants) compared to LoRA on the CoLA 496

task while using RoBERTabase model. The results 497

show a steeper decline in training loss. The per- 498

centage reduction in AUC for various tasks relative 499
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# Trainable Parameters ≈ 150K

Weight Matrix Wq Wk Wv Wq,Wv Wq,Wk Wq,Wk,Wv,Wo

r 8 8 8 4 4 2

MRPC 90.2 91.0 91.4 90.2 91.3 91.6
STS-B 89.0 89.3 90.9 90.5 89.2 91.2

Table 7: RoBERTabase with LoRMA+on a fixed budget for the GLUE tasks MRPC and STS-B, with scaling factor
α = r for respective r’s depending upon the application.

Weight Matrix r = 1 r = 2 r = 4 r = 8 r = 64

MRPC
Wq 89.6 90.5 90.2 90.2 91.2

Wq,Wk 90.6 91.4 91.3 91.4 91.8
Wq,Wk,Wv,Wo 90.7 91.6 91.7 91.7 93.2

STS-B
Wq 88.4 88.6 88.6 89.0 89.3

Wq,Wk 89.1 89.5 89.2 89.3 89.2
Wq,Wk,Wv,Wo 91.0 91.2 90.9 90.9 91.1

Table 8: RoBERTabase with LoRMA+. Validation accuracy across different weights being adapted with varying ranks
r for the GLUE tasks MRPC and STS-B.

Layer 3 Layer 23

Metric ∆WLoRMA+ ∆WLoRMAπ Random ∆WLoRMA+ ∆WLoRMAπ Random

∥W −∆WLoRA∥F 3.54 31.93 1024.27 10.02 38.31 1022.40
cos-sim(W,∆WLoRA) 74.2× 10−3 4.1× 10−3 0.1× 10−3 68.1× 10−3 0.3× 10−3 −1.2× 10−3

(W,∆WLoRA)
r
S 0.99 8.93 176.18 3.75 13.40 175.67

(W,∆WLoRA)
r
E 0.06 2.67 89.07 0.49 3.31 89.70

Θ1(W,∆WLoRA) 2.28× 10−6 2.27× 10−6 1.56 2.34× 10−6 2.32× 10−6 1.57

Table 9: Correlation between the learned representations of ∆WLoRA and ∆WLoRMA for RoBERTalarge model.

to LoRA is summarized in Table 6. Similar trends500

were observed for other tasks as well.501

Comparision with ∆WLoRA: Let us define ∆W502

for any technique to be the difference between503

the final adapted weight matrix and the initial504

weight matrix (the frozen weights). We investi-505

gate the relationship between ∆WLoRA, as learned506

by LoRA, and ∆WLoRMA+ as well as ∆WLoRMAπ ,507

which is obtained through our multiplicative adap-508

tation method. To assess the correlation between509

any two two matrices, we employ a variety of met-510

rics, the results of which are summarized in Table 9.511

We compute the Frobenius norm (∥·∥F ) between512

the two matrices, where a larger value indicates a513

bigger deviation between the two matrices. We also514

evaluate the cosine similarity of the flattened matri-515

ces (cos-sim(·, ·)) to measure their alignment. We516

compute the sum of squared differences between517

the top-r singular values (·, ·)rS and eigenvalues518

(·, ·)rE of the two matrices to assess their similarity.519

Finally, we measure the principal subspace angle520

Θ1(·, ·) between their column spaces to quantify521

their geometric alignment, where smaller angles522

indicate a higher degree of overlap between the523

subspaces. The overarching trend of these metrics524

implies a high correlation between ∆WLoRA and 525

∆WLoRMA+ and ∆WLoRMAπ , which shows that out 526

multiplicative techniques are learning similar rep- 527

resentations to that learnt by LoRA. To assess the 528

expressibility of the transformations, we compare 529

the rank of ∆W. For LoRA, ∆W = BA; hence, 530

it is restricted to be a low-rank update (property 531

3). While for LoRMAπ, there are no such limitations. 532

We empirically observe them to be almost full-rank 533

matrices (refer to App. §E.2). 534

6 Conclusion 535

In this work, we proposed LoRMA, a completely 536

different and new way of updating weights of a 537

language model via multiplicative updates. We 538

mathematically proved the existence of multiplica- 539

tive updates. Further, to overcome the limitations 540

of the naive approach of multiplicative updates, we 541

propose two methods to inflate the rank of the up- 542

date matrix via permutation and additive identity. 543

Extensive experiments prove the good performance 544

and training efficacy of the proposed approach. In 545

the future, we plan to experiment with combining 546

LoRMA with some of the existing LoRA-based en- 547

hancements like DoRA and DyLoRA. 548
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Limitations549

The ability to plug out the parameters. In a pro-550

duction setting, LoRA converts a base model to the551

model tuned to a task by adding BA to the weight552

matrix of the model, and one can recover the orig-553

inal model by subtracting out the original weight554

matrix. In the case of LoRMA, by updating the orig-555

inal weight matrix by multiplication with I(BA),556

the tuned model can be deployed. The recovery557

of original model weights from the updated form558

would require I(BA) to be invertible, which might559

not be the case, as discussed above. To mitigate560

this, a copy of the original parameters would have561

to be maintained.562

Time complexity of Iπ during training. As dis-563

cussed in Section 3, while other variants of LoRMA564

have a similar order of time complexity as LoRA565

during the training process, LoRMAπ has a slightly566

higher time complexity at training time. How-567

ever, by merging weights during inference time,568

all of them would have no inference latency, which569

makes the method still a viable option.570

Experiments with Smaller Models. In this paper,571

in order to be comparable with previous works, we572

experimented mainly with RoBERTa and GPT-2573

models. We performed experiments on a variety of574

tasks, and the results are indicative of the efficacy575

of the proposed method. We expect the results to576

generalize to larger sized LLMs as well.577

Ethical Considerations578

We abide by the ACL Code of Ethics code during579

our research. This work introduces a new variant580

of parameter-efficient fine-tuning approaches for581

LLMs that do not directly have possible harms as-582

sociated with them. The use of LLMs has ethical583

considerations that should be kept in mind. We584

have used public models (RoBERTa and GPT2)585

and public datasets (GLUE, E2E, WebNLG and586

DART) to evaluate the effectiveness of our pro-587

posed approach.588
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A Time complexity calculations 865

Here, we describe the strategic re-ordering of opera- 866

tions to mitigate the large time complexity incurred 867

due to matrix multiplications. These have been 868

summarized in Table 10. 869

LoRA 870

Multiply W0 with x (O(dkb)). Multiply A with 871

x (O(krb)). Multiply B with Ax (O(drb)). Add 872

W0x with BAx (O(db)). 873

LoRMA 874

Multiply W0 with x (O(dkb)). Multiply A 875

with W0x (O(drb)). Multiply B with AW0x 876

(O(drb)). 877

LoRMAπ 878

Multiply W0 with x (O(dkb)). Multiply B with A. 879

Inflation Iπ of BA (O(d2r)). Multiply Iπ(BA)) 880

with W0x (O(d2b)). 881

LoRMA+ 882

Multiply W0 with x (O(dkb)) for first term. Multi- 883

ply W0 with x (O(dkb)) for second term. Multiply 884

A with W0x (O(drb)). Multiply B with AW0x 885

(O(drb)). Add W0x with BAW0x (O(db)).

Method Computation Complexity Calculation

LoRA (W0 +BA)x
dkb+ krb+ drb+ db

O(dkb)

LoRMA BAW0x
dkb+ 2drb
O(dkb)

LoRMAπ Iπ(BA)W0x
dkb+ d2r + d2b
O(d2(r + b))

LoRMA+ W0x+BAW0x
2dkb+ 2drb+ db

O(dkb)

Table 10: Time Complexity for computations incurred
by different methods during training time.

886

B Dataset description 887

• GLUE Benchmark: The benchmark com- 888

prises wide-ranging natural language under- 889

standing tasks mostly restricted to English 890

language. It consists of tasks like CoLA 891

((Warstadt et al., 2019), grammatical accept- 892

ability), SST-2 ((Socher et al., 2013), senti- 893

ment analysis), MRPC ((Dolan and Brock- 894

ett, 2005), semantic textual similarity), STS- 895

B ((Cer et al., 2017), semantic textual sim- 896

ilarity), QQP ((Sharma et al., 2019), ques- 897

tion answers), and inference tasks like MNLI 898
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(Williams et al., 2018), QNLI (Rajpurkar et al.,899

2018) as well as RTE (Poliak, 2020).900

The datasets are available under public license901

and were used using the datasets API pro-902

vided by HuggingFace. The dataset statistics903

are presented in Table 11.904

• E2E NLG Challenge: The E2E dataset was905

released in Novikova et al. (2017) and is a906

popular dataset for testing efficacy in natural907

language generation tasks. The dataset con-908

sists of 42061 training samples, 4672 dev, and909

4693 test samples. Success on this task is typ-910

ically measured by achieving a high BLEU,911

NIST, METEOR, Rouge-L, and CIDEr score,912

as presented in the paper.913

• DART: This is a large dataset for open-914

domain record-to-text generation published915

in (Nan et al., 2021). It has a total of close916

to 82K samples. The underlying task is rdf-917

to-text (which is mapping entity relations to918

text).919

• WebNLG Challenge: WebNLG challenge920

(Gardent et al., 2017) is yet another dataset921

that consists of mapping data to text. Data is922

a set of triples, and text is the verbalization923

of this data. It has close to 22K total samples.924

It involves examples from 9 distinct DBPedia925

categories during training, with the complete926

dataset having 15 categories.927

C Additional Experiments928

We conduct more experiments to test and bench-929

mark the capabilities of our multiplicative adapters.930

In this series, we repeat our NLG experiments for931

DART (Nan et al., 2021) and WebNLG challenge932

(Gardent et al., 2017). The trends are similar to933

that observed in Table 3. Our adapters perform934

comparably in evaluation with LoRA. The results935

are presented in Table 12.936

D Hyperparameters and Training Setup937

We adhere to the standard experimental setup938

used in LoRA to ensure consistency with prior939

work. Specifically, our multiplicative transforma-940

tion technique is applied to the query (Wq) and941

value (Wv) matrices within the attention mecha-942

nism of the models. This means that for a 12-layer943

RoBERTabase or GPT-2 M model, our multiplica-944

tive adapters are applied a total of 24 times—once945

for each query and value matrix across all layers. 946

Similarly, for the 24-layer RoBERTalarge model, the 947

multiplicative adapter is applied 48 times. We use 948

the pre-trained versions of RoBERTabase (125M 949

parameters) and RoBERTalarge (355M parameters) 950

available in the HuggingFace Transformers library 951

(Wolf et al., 2020). We employed the PEFT (Man- 952

grulkar et al., 2022) support on the HuggingFace 953

where available for running experiments. For NLG 954

experiments based on GPT-2, we draw inspiration 955

from LoRA’s published code. The pre-trained GPT- 956

2 models have been made available by Hugging- 957

Face. 958

D.1 RoBERTa 959

We utilize AdamW optimizer (Loshchilov and Hut- 960

ter, 2019) along with a linear learning rate decay 961

schedule. The results reported are the mean of runs 962

for 3 random seeds, with the result for a single run 963

taken to be from the best epoch. The pre-trained 964

RoBERTa model is taken and fine-tuned for each 965

task separately. The hyperparameters have been 966

presented in Table 13. For the results of previous 967

works, refer to Ben Zaken et al. (2022); Houlsby 968

et al. (2019); Zhang et al. (2024). 969

D.2 GPT-2 970

The GPT-2 models have been trained via the 971

AdamW optimizer using a linear learning rate 972

schedule for 5 epochs. The hyper-parameters used 973

for the experiments are presented in Table 14. For 974

the results of previous works, refer to Zhang et al. 975

(2024); Hu et al. (2022). 976

E Ablation 977

E.1 Rank Progression with training 978

As discussed in §3, the proposed initialization 979

schemes, along with rank inflation, help to begin 980

the training process with I(BA) = Id which is a 981

full rank matrix. To empirically verify whether 982

the rank inflation techniques, beginning with a 983

high rank during initialization, also retain it across 984

the training process, we monitor the rank I(BA) 985

where d = 1024,B ∈ R1024×8,A ∈ R8×1024. For 986

both I+ and Iπ, throughout the fine-tuning pro- 987

cess, it is observed that the inflated matrix product 988

is always almost full rank (1024). Thus helping 989

preserve the representational capacity of the matrix 990

product. 991
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CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE

Train 8551 67349 3668 5749 363871 392702 104743 2490
Validation 1043 872 408 1500 40432 9815 5463 277

Table 11: GLUE Benchmark statistics

Method # Params E2E DART WebNLG
(M) BLEU NIST MET ROUGE-L CIDEr BLEU METEOR TER BLEU METEOR TER

Inference: Beam size 15 Inference: Beam size 10 Inference: Beam size 10

GPT-2medium (LoRA) 0.3M 67.5 8.53 46.2 70.8 2.49 45.35 0.38 0.53 52.27 0.40 0.45
GPT-2medium (LoRMA+) 0.3M 68.4 8.63 46.1 70.6 2.50 43.64 0.38 0.53 49.98 0.38 0.47

Table 12: Certain extra results for NLG. For all the metrics, higher is better except TER.
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Figure 6: Variation of rank of resultant multiplicative
adapters, i.e., R(Iπ(BA)) and R(I+(BA)) across
epochs.

E.2 Ranks of the weight updates992

To measure the richness of the weight updates re-993

ceived by the end of the fine-tuning process, we994

compare the ranks of ∆W. Table 15 shows the995

substantial difference in their ranks. In the case996

of LoRA, the weight update (∆W = BA) is con-997

strained to be of rank r = 8. A similar bound ex-998

ists in the case of LoRMA+(∆W = BAW0). For999

LoRMAπ, no such restriction exists, and the weight1000

update is an almost full rank matrix.1001

Fine-Tuning Method Rank of Weight Update

LoRA 8
LoRMA+ 8
LoRMAπ 1021

Table 15: Rank of the ∆W for Layer 13 of
RoBERTalarge being fine-tuned for CoLA for r = 8.

X

X

+ =

=X

Additive

Multiplicative

- Change

Figure 7: Impact on the resultant matrix on updating a
single element in Additive vs Multiplicative updates.
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Model and method Task MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear

RoBERTabase
LoRMA+

Batch Size 64 64 32 64 64 16 32 16
Epochs 30 60 30 100 25 25 80 40
Learning Rate 4E-4 5E-4 4E-4 4E-4 4E-4 5E-4 5E-4 4E-4
Matrices and r rq = rv = 8
Scaling α 4 8 8 4 4 8 8 8
Max Seq. Len. 512
Weight decay 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1

RoBERTabase
LoRMAπ

Batch Size 64 64 32 64 64 16 32 16
Epochs 30 60 30 100 25 25 80 40
Learning Rate 4E-4 5E-4 4E-4 4E-4 4E-4 5E-4 5E-4 4E-4
Matrices and r rq = rv = 8
Scaling α 8
Max Seq. Len. 512
Weight decay 0.1

RoBERTabase
LoRA

Batch Size 64 64 32 64 64 16 32 16
Epochs 30 60 30 100 25 25 80 40
Learning Rate 4E-4 5E-4 4E-4 4E-4 4E-4 5E-4 5E-4 4E-4
Matrices and r rq = rv = 8
Scaling α 8
Max Seq. Len. 512
Weight decay 0.1

RoBERTalarge
LoRMA+

Batch Size 8 8 4 8 4 4 8 4
Epochs 10 10 20 20 20 20 20 10
Learning Rate 3E-4 4E-4 3E-4 3E-4 2E-4 3E-4 4E-4 3E-4
Matrices and r rq = rv = 8
Scaling α 8 8 4 4 4 8 4 4
Max Seq. Len. 128 512 512 128 512 512 512 128
Weight decay 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1

RoBERTalarge
LoRMAπ

Batch Size 8 8 4 8 4 4 8 4
Epochs 10 10 20 20 20 20 20 10
Learning Rate 3E-4 4E-4 3E-4 3E-4 2E-4 3E-4 4E-4 3E-4
Matrices and r rq = rv = 8
Scaling α 8
Max Seq. Len. 128 512 512 128 512 512 512 128
Weight decay 0.1

RoBERTalarge
LoRA

Batch Size 8 8 4 8 4 4 8 4
Epochs 10 10 20 20 20 20 20 10
Learning Rate 3E-4 4E-4 3E-4 3E-4 2E-4 3E-4 4E-4 3E-4
Matrices and r rq = rv = 8
Scaling α 8
Max Seq. Len. 128 512 512 128 512 512 512 128
Weight decay 0.1

Table 13: The hyperparameters we used for RoBERTa on the GLUE benchmark.
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Task E2E WebNLG DART

Training

Optimizer AdamW
Weight Decay 0.01 0.01 0.0
Dropout Prob 0.1 0.1 0.0
Batch Size 8
# Epoch 5
Warmup Steps 500
Learning Rate Schedule Linear
Label Smooth 0.1 0.1 0.0
Learning Rate (I+) 0.0002
Learning Rate (Iπ) 0.0001
Matrices and r rq = rv = 4
Scaling α (I+) 32
Scaling α (Iπ) 8

Inference

Beam Size 10/15 10 10
Length Penalty 0.9 0.8 0.8
no repeat ngram size 4

Table 14: The hyperparameters for GPT-2 M LoRMA on E2E, WebNLG and DART.
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