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ABSTRACT

The increasing prevalence of large-scale models, both in vision and language
domains, presents significant challenges in terms of memory and resource con-
sumption. While model pruning is an effective method for compressing models
to alleviate these constraints, existing techniques either require extensive fine-
tuning, which is resource-intensive, or perform well only at low sparsity levels
(10%−50%), failing at high sparsity levels (50%−90%). To address these issues,
this paper introduces LAMP to mitigate the drawbacks associated with traditional
pruning methods, namely high resource consumption in methods that require ex-
tensive fine-tuning, and poor performance at high sparsity levels in methods that
do not. It reduces memory overhead and alleviates performance degradation at
high sparsity. Experimental results demonstrate that LAMP achieves slightly bet-
ter performance than SparseGPT at low sparsity levels and significantly better at
high sparsity levels in both language and vision models, without significantly in-
creasing memory consumption when compared to SparseGPT.

1 INTRODUCTION

Since the seminal works by (Vaswani et al., 2017) on the Transformer architecture and (Dosovit-
skiy et al., 2020) on the Vision Transformer, there has been substantial progress in both vision and
language models leveraging the foundational Transformer structure. In language modeling, model
series such as OPT (Zhang et al., 2022) and Llama (Touvron et al., 2023a;b) have harnessed the
Transformer architecture to construct large language models that deliver outstanding performance.
Similarly, significant vision models like Segment anything model (SAM) (Kirillov et al., 2023) have
employed the Vision Transformer to develop robust image representations, demonstrating excellent
performances in tasks such as segmentation, classification, and various downstream applications (Ke
et al., 2024; Wu et al., 2023).

These models are remarkably large in scale. For instance, the largest OPT model contains 175
billion parameters, while the latest Llama v3 (Llama Team, 2024) model boasts up to 405 billion
parameters. The largest SAM model has 636 million parameters, which, although significantly
smaller, still poses deployment challenges in certain scenarios. To facilitate the deployment of these
large-scale models, model compression techniques are often employed to reduce their size, enabling
them to meet hardware constraints.

Pruning is a critical model compression technique, often categorized into multi-shot and one-shot
methods based on pruning frequency. Traditional iterative pruning methods, based on the Lottery
Ticket Hypothesis (Frankle & Carbin, 2018), involve an iterative prune-and-finetune process to grad-
ually identify a sparse subnetwork that performs comparably to the original model, thereby reducing
the number of model parameters. Classic methods like magnitude pruning (Han et al., 2015b) and
more recent approaches such as LLM-Pruner (Ma et al., 2023), which utilizes block pruning with
LoRA (Hu et al., 2021) fine-tuning, adhere to this hypothesis. However, for large models, global
fine-tuning is resource-intensive, demanding significant GPU memory. Although LLM-Pruner re-
duces memory requirements using LoRA, it still requires storage for intermediate results and gra-
dients, while methods like LLM Surgeon (van der Ouderaa et al., 2023), despite avoiding global
fine-tuning, also demand substantial memory and time due to the use of second-order derivatives.
In contrast, one-shot pruning methods have gained traction by minimizing memory usage during
fine-tuning. SparseGPT (Frantar & Alistarh, 2023) avoids global fine-tuning by compensating for
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precision within each basic layer, thus accelerating the pruning process. Wanda (Sun et al., 2024)
further simplifies this by eliminating compensation altogether, using a unique significance score to
achieve performance comparable to SparseGPT without the need for fine-tuning.

However, both SparseGPT and Wanda have notable limitations. (i) While these methods perform
well at lower sparsity levels (10%-50%) when pruning large language models, their effectiveness
significantly declines at higher sparsity levels (50%-90%). (ii) SparseGPT and Wanda show poor
performance on vision models. Wanda, in particular, relies on priors that are specific to language
models, making it even less effective than SparseGPT for vision tasks.

compensate

(a)
(b)

Figure 1: Comparison between our proposed method
LAMP and conventional pruning methods. (a) illustrates a
standard pruning approach, where all blocks are pruned si-
multaneously. (b) demonstrates our method. After pruning
one block, the subsequent block adjusts to compensate for the
error introduced by the pruning of the previous block.

Regarding these issues, in this pa-
per, we propose LAMP, a large
model pruning method that is ap-
plicable to both vision and lan-
guage models. It improves perfor-
mance at both low and high sparsity
levels in pruning large language
and vision models, without increas-
ing GPU memory usage and prun-
ing time. Specifically, we design
a sliding window-based inter-block
error compensation method based
on the principle of error propaga-
tion. As illustrated in Fig. 1, af-
ter pruning each block, the sub-
sequent block compensates for the
pruning-induced errors of the pre-
vious block before pruning itself.
This approach ensures that errors
introduced during pruning are com-
pensated for in the next block, pre-
venting error propagation to deeper
layers and avoiding the need for full-model fine-tuning during the pruning process. We highlight
our contributions as follows:

1. We introduce the concept of inter-block error compensation, demonstrating that this ap-
proach can enhance the performance of one-shot pruning methods with limited computa-
tional resources.

2. Building on this concept, we further design a sliding window-based inter-block error com-
pensation strategy. After pruning each layer, we use the next unpruned layer to compensate
for the errors induced by pruning the current layer. It improves post-pruning model perfor-
mance in both language and vision models.

3. Extensive experiments on the OPT series of large language models and the SAM series
of vision models show that our method significantly enhances post-pruning model perfor-
mance without increasing the GPU memory consumption.

2 RELATED WORK

2.1 TRANSFORMER ARCHITECTURE

Since its introduction (Vaswani et al., 2017), Transformer architecture has become the cornerstone
of language models due to its superior performance in language tasks. Following the development
of GPT (Radford et al., 2018), researchers have built increasingly large models using Transformer
as primary building blocks. The Transformer has also proven effective in vision tasks. For exam-
ple, SAM (Kirillov et al., 2023), which is based on the Vision Transformer, particularly excels in
segmentation and serves as a foundational model for various downstream tasks (Wu et al., 2023;
Mazurowski et al., 2023; Quan et al., 2024).
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Both language and vision models utilize a backbone composed of multiple Transformer blocks. The
majority of parameters in these models are concentrated within their respective backbones. These
Transformer blocks consist of multi-head self-attention and feed-forward neural networks with two
linear layers. Multi-head self-attention is generally considered more critical than the feed-forward
network.

2.2 LARGE MODEL PRUNING

Prior to the advent of large models, the development of pruning methods primarily aimed to enhance
model performance at target sparsity levels, leading to many highly effective techniques. Pruning
methods can be categorized by granularity into structured and unstructured pruning. Specifically,
unstructured pruning (Han et al., 2015b) modifies individual weights, generally achieving better per-
formance but requiring a sparse engine for inference acceleration on GPUs. In contrast, structured
pruning (Liu et al., 2017) operates on regular blocks of weights, allowing direct inference accel-
eration on GPUs, although it does not match the performance of unstructured pruning. Currently,
popular pruning methods are typically iterative (Frankle & Carbin, 2018). These methods iteratively
prune a portion of the weights, followed by global fine-tuning to restore performance, repeating
this cycle until the target sparsity is achieved. While iterative pruning improves the performance of
pruned models, it requires multiple rounds of fine-tuning, resulting in longer pruning times. Some
research has also focused on one-shot pruning methods (Han et al., 2015a; Lee et al., 2018). These
methods usually offer faster pruning and some do not require fine-tuning the entire model, thus sav-
ing significant memory costs. However, one-shot pruning methods typically do not achieve the same
performance as iterative pruning methods.

With the emergence of large models, the computational and memory costs of global fine-tuning made
iterative pruning methods prohibitively expensive. However, some approaches have combined itera-
tive pruning with LoRA to apply this technique to large models (Ma et al., 2023; Zhang et al., 2023).
Additionally, the speed and lower computational resource requirements of one-shot pruning meth-
ods have led to the development of several such techniques for large models, notably SparseGPT
and Wanda. SparseGPT (Frantar & Alistarh, 2023) is a one-shot rapid pruning method belonging to
Optimal Brain Surgeon (Hassibi & Stork, 1992) family. It independently analyzes each basic layer
of the model, formulates the pruning problem as a constrained optimization problem, and solves the
pruned weight values using the Lagrange multiplier method. SparseGPT builds on the OBS foun-
dation by leveraging the property of Cholesky decomposition to efficiently obtain different orders
of Hessian matrices, significantly accelerating the pruning process and reducing memory usage. Es-
sentially, SparseGPT consist of two parts: pruning and compensation, which are integrated during
the Lagrange multiplier method’s solution process. However, SparseGPT compensates for prun-
ing errors by adjusting unpruned weights within each basic layer, without considering inter-block
weight interactions. Wanda (Sun et al., 2024), another pruning method, is faster than SparseGPT. It
introduces a strong prior for language models, assuming that weight importance is related to both
the absolute value of the weight and the corresponding output. Wanda designs an importance metric
that achieves good results without compensating for pruning losses. However, subsequent studies
Williams & Aletras (2023) suggest that while Wanda performs well in many cases, it can occasion-
ally fall short compared to SparseGPT, and its performance in vision models is particularly lacking,
where its strong priors may lead to suboptimal results.

3 METHOD

Our primary objective is to develop an efficient pruning method for large models, including both
vision and language models. This method should be executable within a reasonable time frame,
even under limited computational and memory resources. Additionally, it should sustain robust
performance at high sparsity levels. To achieve this, we have carefully balanced the need for high
performance with the imperative to minimize memory and time overhead. In this paper, we introduce
LAMP, a pruning strategy that effectively mitigates performance degradation at high sparsity levels
and facilitates rapid pruning in memory-constrained environments. The following sections detail
our method through four key aspects: Theoretical Foundations, Progressive Block Pruning, Sparsity
Rearrangement, and Chunked Intermediate Storage.
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Figure 2: Overview of the proposed method. (a) progressive block pruning for sequential block
pruning and compensation; (b) basic structure of a transformer block (showing only weight-intensive
and essential layers); (c) illustration of the chunked intermediate storage.

3.1 PROGRESSIVE BLOCK PRUNING

As discussed in the introduction, traditional pruning methods typically require global fine-tuning to
compensate for pruning-induced errors, necessitating the entire model to be loaded into memory.
If full-precision fine-tuning is used, additional memory is needed to store full-precision gradients,
resulting in a memory demand of at least twice the model’s size, often more. While methods like
SparseGPT avoid full-model fine-tuning, significantly reducing memory usage, they only compen-
sate for errors within individual blocks and overlook inter-block interactions. Given that blocks
function as nested entities, where earlier blocks influence subsequent ones, ignoring these inter-
actions can lead to error accumulation. This issue may be negligible at low sparsity but becomes
critical at high sparsity, leading to rapid performance degradation, as confirmed by our experiments.

To address this, we propose Progressive Block Pruning, which enhances inter-block error compen-
sation by building upon SparseGPT. As depicted in Fig. 2(a), Progressive Block Pruning leverages
the modular structure of large models, processing each block sequentially using a sliding window
approach. Initially, the sliding window contains two blocks. Since the operations are consistent after
each slide, we explain the method using the first two blocks.

In Fig. 2(a), the sliding window moves from left to right with a window length encompassing two
blocks. Initially, the window contains B1 and B2. Pruning is first applied to B1, followed by
compensating for the pruning-induced error in B1 using B2. The detailed calculation procedure for
this compensation is outlined in Algorithm 1, as follows: The input data from the calibration set
passes through the position encoding module, producing an intermediate result, z0, which is then
duplicated to create z0

′
. At this stage, the feature flow splits into two streams: the “standard stream”

and the “error stream.” Before pruning B1, z0
′

passes through B1, producing an unbiased output,
z1

′
. SparseGPT is then applied to prune B1, and z0 passes through the pruned B1, resulting in a

biased output, z2. Subsequently, z1
′

passes through the unpruned B1, yielding an unbiased output,
z2

′
. Here, z1 serves as both the output of the pruned B1 and the input to B2. Since z1 is biased,

the output from B1 will also be biased, whereas the desired output is z2
′
. Therefore, z2

′
serves as

the target for z1, forming a labeled feature dataset (z1, z2
′
). To align output of B1 with z2

′
, we

adjust B1’s parameters by training it on this feature dataset, reducing the output bias. Finally, the
sliding window advances by one block, and the process is repeated: prune the first block and adjust
the parameters of the second block using the newly formed feature dataset.A brief derivation of the
proposed method is provided in Appendix A for further details.

As above, Progressive Block Pruning progresses sequentially along the model’s backbone, process-
ing one block at a time. It only requires a single block to be loaded into memory at a given moment.
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As each block is loaded into memory and pruned, the previous block is unloaded before the next
block is loaded. This approach significantly reduces memory usage during the pruning and compen-
sation process.

3.2 SPARSITY REARRANGEMENT

Algorithm 1 Progressive Block Pruning
Input: Backbone of large model {Bi}n

i=1, i-th block Bi,
Pruning function Prune (module, hyperparameters),
Calibration dataset xj , Position embedding block PE, Update
function Update (module, (sample, label)), Sparsity s,
Sparsity Rearrangement parameter α, β
Output: Pruned backbone {Bi}n

i=1

1: z0 = PE ({xj})
2: z0′

j = z0
j // Copy embeddings

3: z1′
j = B0

(
z0′
j

)
// Preparation

4: for i in 1 to n − 1 do
5: Bi = Prune(Bi, (s, α, β))

6: zi
j = Bi

(
zi−1
j

)
// Forward Propagation

7: zi+1′
j = Bi+1

(
zi′
j

)
8: Bi+1 = Update

(
Bi+1, z1

j , z
2′
j

)
9: end for
10: Bn = Prune(Bn, (s, α, β))

11: return Pruned backbone {Bi}n
i=1

In many pruning methods, the sparsity of differ-
ent parts of the model can be adaptively determined
through specific rules. However, since our method is
based on a sliding window approach for progressive
pruning, it is difficult to obtain information about the
blocks that are outside the current window. If we at-
tempt to acquire global information, we would either
incur significant I/O overhead from loading model
segments sequentially or face high memory usage
from loading the entire model at once. Some meth-
ods even evaluate importance based on gradients,
which can add further demands on gradient storage.

To avoid these issues, fast pruning methods like
SparseGPT or Wanda typically assign the same spar-
sity level uniformly across all parts of the model,
equivalent to the target sparsity. However, this ap-
proach is clearly suboptimal. Certain prior knowl-
edge can be leveraged to adjust the sparsity distribu-
tion, thereby avoiding these problems while improv-
ing performance.

3.2.1 INTER-BLOCK SPARSITY REARRANGEMENT

Progressive Block Pruning fine-tunes Bi+1 to compensate for the pruning-induced errors in Bi.
However, when pruning the last block, Bn, there is no Bn+1 available to compensate for the errors
in Bn. Therefore, assigning the same number of pruned weights to each block is not optimal.
Instead, the pruning distribution should be adjusted across different blocks. To maintain the global
target sparsity, we rearrange the sparsity between blocks as follows:

PBn = |θn| × s× α, (1)

PBj = |θj | × s+
|θn| × s× (1− α)

n− 1
(2)

where j = 1, . . . , n − 1, θj denotes the parameters in Bj , |θ| denotes the number of weights in a
single block, and α is a super-parameter that redistributes a portion of the pruned weights from the
last block evenly across all preceding blocks.

3.2.2 INTRA-BLOCK SPARSITY REARRANGEMENT

As shown in Fig. 2(b), the majority of the parameters within a Transformer block are contributed by
the matrices depicted, which are clearly hierarchical. Therefore, a block can essentially be viewed
as a nested function: the QKV matrices represent the innermost function, while the second fully
connected layer (fc2) represents the outermost function. According to the conclusions drawn in the
Theoretical Foundations section, if the same sparsity level is applied uniformly across all layers,
the errors introduced by the QKV matrices, which are further from the output of Bi, will be more
challenging to compensate for in Bi+1. On the other hand, fc2 is closer to the output of Bi, making
its errors easier to compensate for in Bi+1. Additionally, inspired by previous works, earlier layers
tend to converge first (Chen et al., 2023), and faster convergence often leads to better generalization
performance (Hardt et al., 2016). Therefore, the sparsity distribution should be rearranged by reduc-
ing the sparsity of the QKV matrices and increasing the sparsity of fc2. To ensure that the global
target sparsity remains unchanged, we rearrange the sparsity according to the following rule:

Pt = s× |W i
t | × (1− β), t ∈ {Q,K, V }. (3)

5
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Pfc2 = s× |W i
fc2|+ s× |W i

fc2| × β. (4)

where Pt represents the number of pruned weights, |W | denotes the total number of weights in a
single layer, and β is a super-parameter that needs to be adjusted.

3.3 CHUNKED INTERMEDIATE STORAGE

Proposed method requires the intermediate results of each sample after passing through each block.
Since the storage space required for these intermediate results is significantly larger than the space
occupied by the samples themselves, simply storing them in GPU memory, as done in typical train-
ing processes, would consume a considerable amount of memory. Given that GPU memory is a more
valuable resource than system memory, this approach would lead to significant memory wastage. To
address this issue, we employ Chunked Intermediate Storage to reduce memory usage during the
pruning process.

As in Fig. 2(c), all intermediate results are stored in system memory, and they are only loaded into
GPU memory when needed for processing through a block. For instance, While the GPU processes
Bi and zij , the CPU simultaneously loads zij+1 into GPU memory and releasing it from system
memory. After zij is processed and get zi+1

j , it will be transferred from GPU memory back to
system memory. This way, only two intermediate results and one block are kept in GPU memory at
any given time, minimizing memory usage without affecting the speed of forward pass.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To evaluate the effectiveness of our method, we focus on models with 7 billion parameters or fewer,
as these are the most commonly used in research and resource-constrained scenarios. Pruning these
models is also the most feasible on a single consumer-grade GPU. Specifically, we validate our
approach using the OPT-125M/1.3B/2.7B/6.7B and Llama 2-7B language models from Hugging
Face, as well as the SAM-B/L/H vision models provided by Meta. All experiments were conducted
on a single NVIDIA RTX 3090 GPU with 24GB of memory.

For the hyperparameter settings of LAMP, learning rate is adjusted according to the sparsity level, as
different sparsity levels introduce varying amounts of error. α and β are tuned based on the training
dynamics.

For calibration data, the language model calibration dataset follows the approach of SparseGPT,
using 128 segments of 2048 tokens, randomly sampled from C4 dataset (Raffel et al., 2020). Simi-
larly, the vision model calibration dataset consists of 128 images, randomly sampled from the second
compressed file of the SA-1B dataset (Kirillov et al., 2023) provided by Meta.

To comprehensively evaluate the performance of pruned models, we validate OPT using the
Wikitext-v2 (Merity et al., 2016) and PTB datasets (Marcus et al., 1994) from Hugging Face, with
perplexity (PPL) as the evaluation metric. We also evaluate the pruned Llama 2-7B model using ac-
curacy on seven Zero-Shot tasks: BoolQ (Clark et al., 2019), RTE (Wang, 2018), HellaSwag (Zellers
et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC Easy and Challenge (Clark et al., 2018),
and OpenbookQA (Mihaylov et al., 2018), following the experimental setup introduced by Sun et al.
(2024) in their work on Wanda. This allows for a more task-specific evaluation of the pruned model’s
generalization capabilities. For SAM, we validate the performance using the fourth compressed file
of the SA-1B dataset as well as the COCO dataset (Lin et al., 2014), employing Intersection over
Union (IoU) as the primary metric for visual models.

4.2 UNSTRUCTURED PRUNING

Language Models. In Table 1 and Table 2, we report the perplexity performance of the OPT series
models on Wikitext and PTB datasets after pruning to various sparsity levels using our method and
other baseline approaches. Our method demonstrates superior performance over baselines even at
lower sparsity levels, and as sparsity increases, the performance gap widens in favor of our approach.
Additionally, as model size decreases, the advantage of our method over the baselines becomes even
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more pronounced. Table 3 also presents results in comparing the performances of our proposed
method against those of baselines on the Llama 2-7B model at 50% and 70% sparsity levels. Our
method consistently outperforms all baseline approaches at both sparsity levels, achieving the best
results across all tasks. These findings highlight the effectiveness of the inter-block error compen-
sation pruning method introduced in this paper, particularly under high-sparsity conditions, across
different model scales, and for various model architectures.
Table 1: Perplexity performances of pruned OPT models of different scales at various sparsity levels.
The models are calibrated on a subset of the C4 and evaluated on full Wikitext-v2.

Method Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Magnitude

125M

28.25 29.65 34.51 54.60 193.4 920.0 3806 4890 6614
SparseGPT 27.88 27.98 28.86 30.56 37.02 59.55 220.9 2378 4666
Wanda 27.48 27.76 28.11 30.67 38.92 75.17 328.2 1918 4609
LAMP (ours) 27.37 27.87 28.66 29.66 33.90 45.78 65.20 270.4 1612

Magnitude

1.3B

14.72 15.62 24.74 388.0 1713 9392 9443 16344 28871
SparseGPT 14.67 14.75 15.16 16.49 17.50 22.08 51.75 752.4 6797
Wanda 14.63 14.69 15.01 15.89 18.41 26.55 99.53 2258 16868
LAMP (ours) 14.59 14.60 14.67 15.04 16.49 21.17 36.78 117.1 1099

Magnitude

2.7B

12.59 13.13 15.58 30.32 265.2 3604 7251 9614 16668
SparseGPT 12.32 12.39 12.66 12.66 13.46 16.04 26.92 138.4 5818
Wanda 12.23 12.26 12.36 12.86 14.21 19.83 387.9 5905 16527
LAMP (ours) 12.22 12.25 12.34 12.62 13.32 15.77 21.79 54.67 764.2

Magnitude

6.7B

10.92 11.27 12.53 31.89 968.7 12639 16975 25591 5297
SparseGPT 10.83 10.76 10.75 10.96 11.59 13.48 20.48 96.25 11938
Wanda 10.73 10.63 10.64 10.96 11.98 15.19 159.2 3954 16076
LAMP (ours) 10.56 10.58 10.59 10.85 11.27 13.03 17.82 44.69 1469

Table 2: Perplexity performancse of pruned OPT models of different scales at various sparsity levels.
The models are calibrated on a subset of the C4 and evaluated on PTB.

Method Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Magnitude

125M

39.97 43.25 49.97 82.69 276.2 1146 3430 4124 5382
SparseGPT 39.43 40.36 42.71 45.24 55.78 88.44 259.6 2919 5374
Wanda 39.05 39.83 41.43 44.41 57.59 109.7 399.7 2214 4474
LAMP (ours) 39.12 39.13 40.96 43.47 49.41 64.10 88.85 336.3 3075

Magnitude

1.3B

20.66 21.51 39.89 823.5 3171 9499 8467 17283 33126
SparseGPT 20.34 20.64 21.50 23.17 25.47 33.48 76.91 531.8 7515
Wanda 20.38 20.70 21.41 23.25 28.00 43.95 135.3 1809 12025
LAMP (ours) 20.13 20.41 21.11 22.19 24.68 32.19 54.33 148.8 3094

Magnitude

2.7B

18.38 19.06 22.96 46.36 262.6 3207 7276 9575 12178
SparseGPT 18.15 18.50 18.98 18.98 20.44 24.67 42.75 146.0 6107
Wanda 17.97 18.04 18.32 19.25 21.86 33.44 450.8 5462 21039
LAMP (ours) 17.97 18.02 18.29 18.86 20.05 22.92 35.17 71.91 2357

Magnitude

6.7B

16.18 16.70 18.52 48.85 613.4 9379 9973 15742 4260
SparseGPT 15.77 15.81 15.92 16.28 17.43 20.23 31.86 105.0 8320
Wanda 15.76 15.77 15.94 16.43 17.92 23.61 211.3 3024 14998
LAMP (ours) 15.76 15.74 15.94 16.22 17.30 20.07 28.04 64.18 2549

Vision Models. In Tables 4 and Table 5, we report IoU performance of SAM at varying sparsity
levels on SA-1B and COCO datasets with single-point interaction. Following experimental setup,
SAMs are pruned with only 128 images random sampled from SA-1B as calibration data. The
experiments first verify that SparseGPT indeed achieves strong IoU performance on visual models
under low sparsity conditions, outperforming both Magnitude and Wanda. As Wanda is based on
strong priors from language models, its underperformance compared to SparseGPT on visual models
is within our expectations. Lastly, the method proposed in this paper outperforms all baselines and
exhibits a similar trend observed in language model experiments: the higher the sparsity, the greater
the advantage of our method over the baseline methods. This demonstrates that the proposed method
is not only effective for language models but also remains effective for visual models.
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Table 3: Zero-shot performance (Accuracy, %) of Llama 2-7B pruned by different method on various
tasks at sparsity of 50% and 70%.

Method Strategy BQ RTE HS WG ARC-e ARC-c OBQA Mean

Dense 0 77.74 63.18 57.10 68.98 76.26 43.43 31.40 59.73

Magnitude

50%

62.94 57.04 49.12 63.38 64.06 34.64 26.80 51.14
SparseGPT 76.33 55.96 52.89 68.98 72.01 38.23 28.40 56.11
Wanda 76.42 53.43 52.45 68.67 72.22 39.33 31.00 56.22
LAMP (ours) 76.50 57.04 53.03 69.11 72.39 40.44 31.00 56.96

Magnitude

70%

37.95 53.07 25.93 49.25 27.82 22.87 17.00 33.41
SparseGPT 64.65 53.79 33.45 58.64 43.31 21.67 17.00 41.79
Wanda 48.47 52.71 27.97 49.64 30.81 18.60 12.20 34.34
LAMP (ours) 67.71 55.23 41.45 60.22 55.56 27.05 21.40 46.94

Table 4: Instance segmentation performance of SAM models (IoU, %) at various sparsity using
single-point interaction on SA-1B. The models are calibrated on a subset of 128 images sampled
from SA-1B.

Method Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Magnitude

SAM-H

74.80 74.57 73.87 72.26 69.45 61.51 28.22 2.65 1.70
SparseGPT 74.81 74.77 74.60 74.20 73.30 71.15 65.69 50.97 18.15
Wanda 74.82 74.76 74.35 73.60 71.65 67.65 53.00 21.84 1.20
LAMP (ours) 74.82 74.78 74.66 74.60 74.42 73.82 72.85 69.73 57.60

Magnitude

SAM-L

74.81 74.59 73.93 72.28 69.18 62.56 45.52 9.92 4.52
SparseGPT 74.84 74.77 74.61 74.13 73.20 70.70 64.45 45.48 7.37
Wanda 74.86 74.78 74.62 74.05 72.51 68.28 55.13 22.81 1.31
LAMP (ours) 74.85 74.79 74.69 74.55 74.27 73.64 72.26 68.17 53.68

Magnitude

SAM-B

72.69 72.56 71.99 70.36 67.38 60.87 46.01 25.53 1.51
SparseGPT 72.72 72.67 72.50 72.08 71.11 68.68 63.02 47.49 18.81
Wanda 72.71 72.64 72.33 71.45 69.44 64.35 50.29 28.16 2.18
LAMP (ours) 72.72 72.69 72.56 72.28 71.85 71.06 69.33 64.78 51.82

4.3 SEMI-STRUCTURE PRUNING AND QUANTIZATION

On certain specialized hardware, such as specific NVIDIA GPUs or other custom-designed com-
puting architectures, the combination of pruning and quantization can further accelerate inference
while maintaining an acceptable performance degradation. To explore this, we conduct tests using
a joint compression strategy that combines pruning and quantization. Specifically, we focus on the
combination of 2:4 and 4:8 semi-structured sparsity with 3-bit and 4-bit quantization. Since Wanda
does not support quantization, we exclude it from experiments involving quantization and instead
compared our approach against SparseGPT. As shown in the Table in Appendix B, our proposed
method achieves the best performances, among all comparison method.

4.4 SPARSITY REARRANGEMENT

To validate the Sparsity Rearrangement method based on priors, as proposed in the Method section,
we conducted experiments on both Inter-Block Sparsity Rearrangement and Intra-Block Sparsity
Rearrangement.

Inter-Block Sparsity Rearrangement. In Fig. 3 and Fig. 4, we present the performance of OPT-
125M and SAM-B pruned by LAMP with different α. For clarity in visual presentation, we con-
ducted experiments with 70% sparsity on OPT-125M and 90% sparsity on SAM-B. We observed
that in the language model, α had the greatest impact on the performance of OPT-125M on the PTB
dataset, and adjusting α further improved the model’s performance on non-calibration datasets. On
vision models, the influence of α on performance was similar on both datasets, with adjustments
to α enhancing the overall performance of the visual model. Overall, appropriate tuning of α can
further improve the performance of pruned models. Based on experiments, we conclude that α typi-
cally yields optimal results within the range of [0.6, 0.75] for language models, and within [0.8, 0.9]
for vision model.
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Table 5: Instance segmentation performance of SAM models (IoU, %) at various sparsity using
single-point interaction on COCO.

Method Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Magnitude

SAM-H

71.12 71.11 70.86 70.61 69.37 63.60 32.68 7.88 7.21
SparseGPT 71.11 71.18 70.98 70.93 70.42 69.52 66.70 56.82 27.57
Wanda 71.17 71.01 70.98 70.73 69.63 66.05 53.45 22.83 5.51
LAMP (ours) 71.14 71.18 71.12 70.98 70.81 70.24 69.43 66.69 58.41

Magnitude

SAM-L

70.56 70.51 70.27 69.53 68.08 62.66 49.12 20.66 18.12
SparseGPT 70.55 70.53 70.43 70.04 69.61 68.21 64.42 48.35 11.30
Wanda 70.56 70.58 70.45 69.91 68.65 65.56 54.67 19.89 6.38
LAMP (ours) 70.55 70.58 70.58 70.37 69.91 69.51 68.14 65.42 56.92

Magnitude

SAM-B

66.84 67.06 67.06 66.67 65.29 62.28 53.61 40.86 7.48
SparseGPT 67.09 67.02 66.98 66.76 66.17 65.00 62.03 52.46 28.51
Wanda 66.94 66.97 67.04 66.47 65.38 62.31 53.58 39.32 7.89
LAMP (ours) 67.10 67.06 67.04 66.83 66.45 66.07 64.51 62.40 54.50
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Figure 3: Perplexity performance of pruned
OPT-125M with different α.
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Figure 4: Instance segmentation performance
(IoU, %) of SAM-B with different α.

Intra-Block Sparsity Rearrangement. In Fig. 5, we illustrate the impact of different β on the
language model, using the 70% sparsity model of OPT-125M as an example. We observed that in
the language model, adjusting β can further reduce the model’s perplexity. Unlike α, β not only
improves the model’s performance on non-calibration datasets but also enhances its performance on
calibration datasets. Overall, appropriately adjusting β can further improve the performance of the
pruned model. The optimal value for β typically falls within the range of [0.6×(1−s), 0.8×(1−s)],
where s denotes sparsity. In Fig. 6, we exemplify the effects of varying β on the visual model,
specifically using the 90% sparsity model of SAM-B. Our findings indicate that the influence of β
on the visual model is minimal; both on calibration and non-calibration datasets, adjustments to β
yield only marginal improvements in the model’s performance.
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Figure 5: Perplexity performance of OPT-125M
with different β.
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Figure 6: Instance segmentation performance
(IoU, %) of SAM-B with different β.
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4.5 CALIBRATION SET SIZE

Although our experiments follow the settings of SparseGPT and Wanda, using 128 randomly se-
lected samples for pruning both language and vision models, Fig. 7 and Fig. 8 show the impact of
calibration set size on our method’s performance. Fig. 1 presents results on the OPT-125M language
model at 70% sparsity, while Fig. 2 shows results for the SAM-B vision model at 90% sparsity. In
both cases, increasing the sample size beyond 128 offers minimal performance gains while signifi-
cantly increasing GPU memory usage. Thus, like SparseGPT and Wanda, 128 samples remain the
optimal choice.
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Figure 7: Perplexity performance of OPT-125M
with different calibration set size.
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Figure 8: Instance segmentation performance
(IoU, %) of SAM-B with different calibration
set size.

4.6 GPU MEMORY CONSUMPTION

Table 6: GPU Memory Consumption Com-
parison

Method GPU Memory Consumption

SparseGPT 8.3 GB
Wanda 21 GB
LAMP (ours) 7.8 GB

In Table 6, we report the GPU memory consump-
tion of SparseGPT, Wanda, and our method when
pruning the OPT-6.7B. For large model pruning al-
gorithms, GPU memory consumption directly deter-
mines whether the method can be executed on de-
vices with lower memory capacity and with lower
cost. Our analysis indicates that the additional GPU
memory usage in SparseGPT and Wanda, compared
to the proposed method, primarily comes from stor-
ing intermediate results. However, the results show that, because of chunked intermediate storage,
our method, even though it involves partial model training, has lower GPU memory consumption
than both SparseGPT and Wanda. Note that we only use mixed-precision fine-tuning, without em-
ploying low-rank adaptation methods. If combined with efficient fine-tuning techniques such as
LoRA, the GPU memory consumption could be further reduced. This advantage enables the prun-
ing of larger models on consumer-grade GPUs.

5 CONCLUSION

In this paper, we propose an efficient pruning method, LAMP, which is effective for both vision and
language models while consuming limited GPU memory. The LAMP method fine-tunes each block
individually by compensating for the inter-block errors introduced by pruning, then rearranges the
sparsity distribution based on the prior knowledge of the Transformer structure and pruning method.
Additionally, system memory is utilized to offload the GPU memory burden of storing intermedi-
ate results. The proposed method significantly improves the performance of models pruned at high
sparsity levels without increasing GPU memory consumption. We validate the LAMP’s effective-
ness across vision and language models of varying scales, achieving state-of-the-art performance in
both domains.
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A THEORETICAL FOUNDATIONS

Large models are typically hierarchical and can be effectively viewed as a complex nested function:

F (xi; θ) = fn (. . . fj (. . . f1 (x; θ1) . . . ; θj) . . . ; θn) , (5)

where x is the input sample, fj represents the mapping function of Block Bj and θ denotes the func-
tion parameters. Pruning a block effectively introduces a perturbation ∆θ to that block’s parameters.
Taking Bj as an example, when pruning is applied such that θj = θj +∆θ, the error introduced by
this perturbation propagates from the output of Bj through to the final Block, leading to a deviation
in the global model output:

∆Yj ≈
∂F

∂fj
· ∂fj
∂θj

·∆θj =

 n∏
i=j+1

∂fi
∂zi−1

 · ∂z
j

∂θj
·∆θj , (6)

where ∂zj represents the output of Bj , in the model, and ∆Yj denotes the change in the model
output caused by pruning Bj . From this equation, we observe that the closer the pruned block is
to the model’s output (i.e., the further back in the model), the more directly the pruning affects the
output. Conversely, the further the pruned block is from the output, the more difficult it becomes to
control the resulting error. However, we can select a subsequent Block Bk after Bj to compensate
for the changes introduced by pruning. If we adjust the parameters of Bk, its effect on the model
output is similarly given by:

∆Yk =

(
n∏

i=k+1

∂fk
∂zk−1

)
· ∂z

k

∂θk
·∆θk. (7)

By setting ∆Yj +∆Yk = 0, we can derive:

∆θk = −

(∏n
i=j+1

∂fi
∂zi−1

)
· ∂fj
∂θj

·∆θj(∏n
i=k+1

∂fi
∂zi−1

)
· ∂fk
∂θk

. (8)

From Eq. (8), we can observe that the closer Bk is to Bj , the more direct the relationship between
their parameters. Specifically, if k = j + 1, then

∏k
i=j+1

∂fi
∂zi−1 =

∂fj+1

∂zj , making the compensation
more direct and easier to control.

However, the above compensation method requires access to the model’s output, which can be
both memory-intensive and time-consuming. Therefore, Progressive Block Pruning adopts a partial
compensation approach. During error compensation, we directly use the MSE loss of zk, the output
of Bk, as the compensation loss. This can be expressed as:

Lk(θk) =
1

2m

m∑
i=1

∥z′k(θ′k)− zk(θk)∥2. (9)

The global optimization objective for the model is:

Lglobal =
1

2m

m∑
i=1

∥F ′(xi)− F (xi)∥2. (10)

The optimization directions of Eq. (9) and Eq. (10) are aligned because, when we take the derivatives
of these two equations, we obtain:

∂Lk(θk)

∂∆θk
=

1

m

m∑
i=1

(
∆z′k(xi) ·

∂zk

∂θk

)
, (11)

∂Lglobal

∂∆θk
=

1

m

m∑
i=1

(
∂F

∂zk
·∆z′k(xi) ·

∂zk

∂θk
· ∂F
∂zk

)
. (12)

The signs of these derivatives are the same, indicating that the optimization directions are consistent.
Therefore, we can use Lk to implicitly optimize Lglobal.

Based on the above theoretical analysis, we can draw the following three conclusions:

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• The error introduced by pruning can be compensated for by adjusting subsequent blocks in
the model.

• The closer the compensating block is to the pruned block, the more direct the relationship
between their parameters.

• Local MSE can be used to implicitly optimize the global MSE.

B SEMI-STRUCTURE PRUNING AND QUANTIZATION

In Section 4.3 of the main text, we discussed the experiments conducted on both language mod-
els and vision models using a joint pruning-quantization compression strategy. Specifically, we
applied four distinct compression strategies to the OPT, Llama 2-7B, and SAM models: 2:4 and
4:8 semi-structured pruning, as well as a combination of semi-structured pruning with 3-bit and
4-bit quantization. In Table 7, we present the performance of different methods on the OPT series
models under various model compression strategies. Our method outperforms the baselines in both
semi-structured pruning and the combined pruning-quantization compression strategy. Similarly, in
Tables 8 and 9, we report the results of identical experiments conducted on the Llama 2-7B and
SAM series vision models, respectively, where we observed consistent improvements.

Table 7: Perplexity performance of pruned OPT models at various compression strategies.

OPT-125M OPT-1.3B OPT-2.7B OPT-6.7B

Method Strategy Wikitext PTB Wikitext PTB Wikitext PTB Wikitext PTB

SparseGPT 2:4 59.35 93.04 23.87 38.09 17.11 26.98 14.15 21.54
Wanda 2:4 80.01 111.97 28.20 43.37 21.18 34.55 15.90 25.09
LAMP (ours) 2:4 46.90 67.56 22.03 33.95 16.39 25.31 14.04 21.19

SparseGPT 4:8 43.90 71.99 20.21 31.36 15.00 23.05 12.49 18.86
Wanda 4:8 53.18 79.02 22.17 34.56 16.79 26.13 13.55 20.19
LAMP (ours) 4:8 39.91 59.34 19.15 30.41 14.88 22.88 12.38 18.53

SparseGPT 2:4+int3 122.33 196.44 40.58 64.53 24.70 41.06 20.07 31.91
LAMP (ours) 2:4+int3 74.07 114.93 27.88 46.14 19.57 30.28 18.38 26.82

SparseGPT 2:4+int4 70.88 107.39 25.96 41.69 18.56 30.68 15.24 23.01
LAMP (ours) 2:4+int4 51.24 75.39 23.49 34.42 17.05 27.04 15.10 22.54

SparseGPT 4:8+int3 84.02 120.16 32.41 49.27 20.24 32.99 17.08 26.36
LAMP (ours) 4:8+int3 59.67 86.01 24.73 40.19 17.89 26.80 16.16 24.30

SparseGPT 4:8+int4 50.58 80.97 23.32 34.38 15.74 24.76 13.44 19.72
LAMP (ours) 4:8+int4 42.03 60.60 20.86 31.58 15.33 23.80 13.24 19.49
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Table 8: Zero-shot Performance (Accuracy, %) of Llama 2-7B Model under various compression
strategies.

Method Strategy BQ RTE HS WG ARC-e ARC-c OBQA Mean

SparseGPT 2:4 68.07 58.84 43.38 65.59 64.18 31.91 24.80 50.97
Wanda 2:4 68.13 53.43 41.42 62.43 63.13 30.63 23.80 49.00
LAMP (ours) 2:4 69.72 58.84 46.75 64.48 66.04 33.70 26.20 52.25

SparseGPT 4:8 71.07 54.87 48.35 67.80 68.69 34.47 27.20 53.21
Wanda 4:8 73.00 53.79 47.03 66.93 67.47 34.22 27.00 52.78
LAMP (ours) 4:8 73.12 58.12 50.13 64.88 68.90 36.01 28.00 54.16

SparseGPT 2:4+int3 64.65 55.23 38.58 59.04 55.47 25.34 19.40 45.39
LAMP (ours) 2:4+int3 66.82 54.15 43.36 60.77 59.55 28.67 21.00 47.76

SparseGPT 2:4+int4 66.73 54.15 42.34 65.19 61.74 28.92 23.80 48.98
LAMP (ours) 2:4+int4 70.46 56.68 46.22 62.90 64.81 30.63 22.80 50.64

SparseGPT 4:8+int3 68.59 53.43 42.12 62.35 60.10 29.10 21.60 48.18
LAMP (ours) 4:8+int3 68.38 54.87 43.54 62.85 63.38 32.34 22.40 49.68

SparseGPT 4:8+int4 69.27 54.15 46.58 66.06 67.55 34.39 27.20 52.17
LAMP (ours) 4:8+int4 72.29 61.01 48.86 62.75 66.88 33.87 28.00 53.38

Table 9: Instance segmentation performance of SAM models (IoU, %) at various compression strate-
gies using single-point interaction on SA-1B and COCO.

SAM-B SAM-L SAM-H

Method Strategy COCO SA-1B COCO SA-1B COCO SA-1B

SparseGPT 2:4 62.80 67.59 65.01 69.07 67.02 69.62
Wanda 2:4 60.59 62.06 62.37 65.84 64.68 66.36
LaMP(ours) 2:4 64.95 71.30 67.83 73.56 69.09 73.64

SparseGPT 4:8 63.93 69.69 66.56 71.27 67.98 71.41
Wanda 4:8 62.62 66.05 65.02 69.75 66.80 69.55
LaMP(ours) 4:8 65.37 71.72 68.17 73.86 69.44 74.03

SparseGPT 2:4+int3 62.09 64.77 63.45 65.67 66.39 67.85
LaMP(ours) 2:4+int3 64.47 69.71 67.13 72.60 68.75 73.26

SparseGPT 2:4+int4 62.66 66.76 64.78 68.69 66.81 69.44
LaMP(ours) 2:4+int4 64.89 70.64 67.64 73.09 69.02 73.72

SparseGPT 4:8+int3 63.02 67.27 64.74 68.02 67.25 69.69
LaMP(ours) 4:8+int3 64.84 69.86 67.68 73.28 69.10 73.35

SparseGPT 4:8+int4 63.77 68.98 66.04 70.31 67.87 71.05
LaMP(ours) 4:8+int4 65.24 70.98 68.02 73.82 69.34 73.78
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