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Abstract

We study the sample complexity of obtaining an
ϵ-optimal policy in Robust discounted Markov
Decision Processes (RMDPs), given only access
to a generative model of the nominal kernel.
This problem is widely studied in the non-robust
case, and it is known that any planning approach
applied to an empirical MDP estimated with
Õ(H

3|S||A|
ϵ2 ) samples provides an ϵ-optimal pol-

icy, which is minimax optimal. Results in the ro-
bust case are much more scarce. For sa- (resp s-)
rectangular uncertainty sets, until recently the best-
known sample complexity was Õ(H

4|S|2|A|
ϵ2 ) (resp.

Õ(H
4|S|2|A|2

ϵ2 )), for specific algorithms and when
the uncertainty set is based on the total variation
(TV), the KL or the Chi-square divergences. In this
paper, we consider uncertainty sets defined with
an Lp-ball (recovering the TV case), and study
the sample complexity of any planning algorithm
(with high accuracy guarantee on the solution) ap-
plied to an empirical RMDP estimated using the
generative model. In the general case, we prove
a sample complexity of Õ(H

4|S||A|
ϵ2 ) for both the

sa- and s-rectangular cases (improvements of |S|
and |S||A| respectively). When the size of the un-
certainty is small enough, we improve the sample
complexity to Õ(H

3|S||A|
ϵ2 ), recovering the lower-

bound for the non-robust case for the first time
and a robust lower-bound. Finally, we also intro-
duce simple and efficient algorithms for solving
the studied Lp robust MDPs.

1 INTRODUCTION

Reinforcement learning (RL) [Sutton and Barto, 2018], of-
ten modelled as learning and decision-making in a Markov

decision process (MDP), has attracted increasing interest
in recent years due to its remarkable success in practice. A
major goal of RL is to find a strategy or policy, based on
a collection of data samples, that can predict the expected
cumulative rewards in an MDP, without direct access to
a detailed description of the underlying model. However,
Mannor et al. [2004] showed that the policy and the value
function could sometimes be sensitive to estimation errors of
the reward and transition probabilities, meaning that a very
small perturbation of the reward and transition probabilities
could lead to a significant change in the value function.

Robust MDPs [Iyengar, 2005, Nilim and El Ghaoui, 2005]
(RMDPs) have been proposed to handle these problems by
letting the transition probability vary in an uncertainty (or
ambiguity) set. In this way, the solution of robust MDPs
is less sensitive to model estimation errors with a properly
chosen uncertainty set. An RMDP problem is usually for-
mulated as a max-min problem, where the objective is to
find the policy that maximizes the value function for the
worst possible model that lies within an uncertainty set
around a nominal model. Initially, RMPDs [Iyengar, 2005,
Nilim and El Ghaoui, 2005] were developed because the
solution of MDPs can be very sensitive to the model param-
eters [Zhao et al., 2019, Packer et al., 2018]. However, as
the solution of robust MDPs is NP-hard for general uncer-
tainty sets Nilim and El Ghaoui [2005], the uncertainty set
is usually assumed to be rectangular (meaning that it can
be decomposed as a product of uncertainty sets for each
state or state-action pair), which allows tractability Iyen-
gar [2005], Ho et al. [2021]. These two kinds of sets are
called respectively s- and sa-rectangular sets. A fundamen-
tal difference between them is that the greedy and optimal
policy in sa-rectangular robust MDPs is deterministic, as in
non-robust MDPs, but can be stochastic in the s-rectangular
case Wiesemann et al. [2013]. Compared to sa-rectangular
robust MDPs, s-rectangular robust MDPs are less restrictive
but much more difficult to handle. Under this rectangularity
assumption, many structural properties of MDPs remain
intact Iyengar [2005] and methods such as robust value it-
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eration, robust modified policy iteration, or partial robust
policy iteration Ho et al. [2021] can be used to solve them.
It is also known that the uncertainty in the reward can be
easily handled, while handling uncertainty in the transition
kernel is much more difficult Kumar et al. [2022], Derman
et al. [2021]. Finally, Deep Robust RL algorithms Pinto
et al. [2017], Clavier et al. [2022], Tanabe et al. [2022] have
been proposed to tackle the problem of Robust MDPS with
continuous state-action space.

In this work, we consider robust MDPs, with both sa- and
s-rectangular uncertainty sets, consisting of Lp-balls cen-
tered around the nominal model P0. We assume access to
a generative model, which can sample a next state from
any state-action pair from the nominal model. The ques-
tion we address is to know how many samples are required
to compute an ϵ-optimal policy. This classic abstraction,
which allows studying the sample complexity of planning
over a long horizon, is widely studied in the non-robust
setting Singh and Yee [1994], Sidford et al. [2018], Azar
et al. [2013], Agarwal et al. [2020], Li et al. [2020], Kozuno
et al. [2022], but much less in the robust setting [Yang et al.,
2021, Panaganti and Kalathil, 2022, Shi and Chi, 2022, Xu
et al., 2023, Shi et al., 2023]. We consider more specifically
model-based robust RL. We call the generative model the
same number of times for each state-action pair, to build a
maximum likelihood estimate of the nominal model, and
use any planning algorithm for robust MDPs (with high
accuracy guarantee on the solution) on this empirical model.
This setting will be discussed further later, but we insist right
away that it is especially meaningful in the robust setting, as
it is a good abstraction of sim2real. The research question
we address is:

How many samples are required for guaranteeing an ϵ-
optimal policy with high probability?

Our first contribution is to prove that for both s and sa-
rectangular sets based on Lp-balls, the sample complexity of
the proposed approach is Õ(H

4|S||A|
ϵ2 ), with H = (1−γ)−1

being the horizon term. Previous works [Yang et al., 2021,
Panaganti and Kalathil, 2022, Shi and Chi, 2022, Xu et al.,
2023] study different sets, based on the Kullback-Leibler
(KL) divergence, Chi-square divergence, and total varia-
tion (TV). We have the TV in common (L1-ball up to a
normalizing factor), and, in this case, we improve these
existing results by |S| for the sa-rectangular case, and by
|S||A| for the s-rectangular case, which is significant for
large state-action spaces. On the technical side, our results
build heavily upon the dual view of robust Bellman opera-
tors [Derman et al., 2021, Kumar et al., 2022]. However, we
deviate from this line of work by enforcing the uncertainty
set to belong to the simplex. This allows ensuring that the
robust operators are overly conservative while ensuring they
are γ-contractions, which is important for the theoretical
analysis. On the negative side, the algorithms they introduce
are no longer applicable, which calls for new algorithmic

design.

Our second contribution is to show that, if the uncertainty
set is small enough, then we have a sample complexity of
Õ(H

3|S||A|
ϵ2 ). This is a further improvement by H of the

previous bound, and it matches the known lower bound for
the non-robust case [Azar et al., 2013]. On the technical side,
it again builds upon the dual view of robust Bellman oper-
ators with the deviation mentioned above.[Derman et al.,
2021, Kumar et al., 2022]. In addition to that, it adapts two
proof techniques of the non-robust case: The total variance
technique of Azar et al. [2013] to reduce the dependency
to the horizon, and the absorbing MDP construction of
Agarwal et al. [2020] to allow for a wider range of valid
ϵ.As mentioned earlier,[Derman et al., 2021, Kumar et al.,
2022] algorithms are not applicable to the more realistic
uncertainty sets we consider.

Our third contribution is an algorithm DRVI LP (see Alg.
1, for Distributionally Robust Value Iteration for LP in
sarectangular case that solves exactly RMDPs in the case of
valid robust transition that belongs to the simplex contrary
to Kumar et al. [2022].

2 RELATED WORK

The question of sample complexity when having access to a
generative model has been widely studied in the non-robust
setting Singh and Yee [1994], Sidford et al. [2018], Azar
et al. [2013], Agarwal et al. [2020], Li et al. [2020], Kozuno
et al. [2022]. Notably, Azar et al. [2013] provide a lower-
bound of this sample complexity, Ω̃( |S||A|H3

ϵ2 ), and show
that (tabular) model-based RL reaches this lower-bound,
making it minimax optimal (up to polylog factors). This
bound relies on the so-called total variance technique, that
we adapt to the robust setting. However, their result is only
true for small enough ϵ, in the range (0,

√
H/|S|). This was

later improved to (0,
√
H) by Agarwal et al. [2020], thanks

to a novel absorbing MDP construction, that we also adapt
to the robust setting.

Closer to our contributions are the works that study the
sample complexity in the robust setting Yang et al. [2021],
Panaganti and Kalathil [2022], Xu et al. [2023], Shi and
Chi [2022]. The study of sample complexity of specific
algorithms (respectively either empirical robust value or
Robust Phased Value Learning) is studied by Panaganti and
Kalathil [2022], Xu et al. [2023], while our results apply
to any oracle planning (applied to the empirical model), as
long as it provides a solution with enough accuracy. We
consider both s- and sa-rectangular uncertainty sets, as
Yang et al. [2021], while Panaganti and Kalathil [2022], Xu
et al. [2023], Shi and Chi [2022] only consider the simpler
sa-rectangular sets. They all study either TV, KL or Chi-
square balls, while we study Lp-balls. Shi and Chi [2022]
improved the KL bound compared to Yang et al. [2021],
Panaganti and Kalathil [2022] in the sa rectangular case.



The framework of Xu et al. [2023] is slightly different as
they consider finite horizon which adds a factor H in all
bounds. All previous results are not minimax optimal in
terms of the horizon factor.

We rely more specifically on a simple optimization dual
expression of the minimization problem over models. As
such, we do not cover the KL and Chi-square cases, which
do not have such a simple form even if there can also be
written as simple scalar optimization problem. However, we
have in common with Yang et al. [2021], Panaganti and
Kalathil [2022] the total variation case, which corresponds
to a (scaled) L1-ball. For this case, we can compare our sam-
ple complexities. Without assumption on the size of the un-
certainty set, we improve the existing sample complexities
by |S| and |S||A| respectively (for sa- or s-rectangularity).
Also, our bounds have no dependency on the size of the
uncertainty set. Notice that as we consider a generic oracle
planning algorithm, our bounds apply to the algorithms they
consider in Panaganti and Kalathil [2022], Xu et al. [2023].
If we further assume that the uncertainty set is small enough,
then we improve the bound by an additional H factor, reach-
ing the minimax sample complexity of the non-robust case.
Table 1 summarizes the difference in sample complexity,
and we’ll discuss them again after stating our theorems.

Finally, the archival version of this contribution predates
the concurrent work of Shi et al. [2023] that studies the
sample complexity of RMDPs for TV and χ2 divergence.
In the very specific case of sa- rectangular for TV which in
this case coincides with L1 norm, Shi et al. [2023] retrieves
our upper bound which is minimax optimal in the regime
where the radius of the uncertainty set is small and improves
our result in the regime where the radius of the uncertainty
set is bigger than 1 − γ. However, our results hold more
generally for the s-rectangular case are still state-of-the-art
for s-rectangular case with p ≥ 1 and for sa−rectangular
with p > 1. Notice also that the proof techniques are very
different, and it is an interesting research direction to know
if their bound for the regime where the radius of the uncer-
tainty set is bigger than 1− γ or their lower-bound would
extend to the more general case studied here.

3 PRELIMINARIES

For finite sets S and A, we write respectively |S| and |A|
their cardinality. We write ∆A := {p : A → R | p(a) ≥
0,
∑

a∈A p(a) = 1} the simplex over A. For v ∈ RS the
classic Lq norm is ∥v∥qq =

∑
s v(s)

q . The unitary vector of
dimension |S| is denoted 1S . Finally, we denote Õ the O
notation up to logarithm factor.

3.1 MARKOV DECISION PROCESS

A Markov Decision Process (MDP) is defined by M =
(S,A, P,R, γ, µ) where S and A are the finite state and ac-
tion spaces, P : S × A → ∆S is the transition kernel,
R : S × A → [0, 1] is the reward function, µ ∈ ∆S
is the initial distribution over states and γ ∈ [0, 1) is
the discount factor. A stationary policy π : S → ∆A
maps states to probability distributions over actions. We
write Ps,a the vector P (·|s, a). We also define Pπ to be
the transition matrix on state-action pairs induced by a
policy π: Pπ

(s,a),(s′,a′) = P (s′ | s, a)π(a′ | s′). Slightly
abusing notations, for V ∈ RS , we define the vector
VarP (V ) ∈ RS×A as VarP (V )(s, a) := VarP (·|s,a)(V ),
so that VarP (V ) = P (V )2 − (PV )2 (with the square un-
derstood component-wise). Usually, the goal is to estimate
the value function defined as:

V π
P,R(s) := E

[ ∞∑
n=0

γnR (sn, an) | s0 = s, π, P

]
.

The value function V π
P,R for policy π, is the fixed point of

the Bellmen operator TP,R, defined as

T π
P,RV (s) =

∑
a

π(a|s)[R(s, a) + γ
∑
s′

P (s′|s, a)V (s′)].

We also define the optimal Bellman operator: T ∗
P,RV (s) =

maxπs∈∆A

(
T πs

P,RV
)
(s). Both optimal and classical Bell-

man operators are γ-contractions Sutton and Barto [2018].
This is why sequences {V π

n | n ≥ 0}, and {V ∗
n | n ≥ 0},

defined as

V π
n+1 := T π

P,RV
π
n and V ∗

n+1 := T ∗
P,RV

∗
n ,

converge linearly to V π
P,R and V ∗

P,R, respectively the value
function following π and the optimal value function. Finally,
we can define the Q-function,

Qπ
P,R(s, a) := E

[ ∞∑
n=0

γnR (sn, an) | s0 = s, a0 = a, π, P

]
.

The value function and Q-function are linked with the rela-
tion V π

P,R(s) = ⟨(πs, Q
π
P,R(s)⟩A. With these notations, we

can define Q-functions for transition probability transition
P following policy π such as

Qπ
P,R = R+γPV π

P,R = R+γPπQπ
P,R = (I − γPπ)

−1
R.

3.2 ROBUST MARKOV DECISION PROCESS

Once classical MDPs defined, we can define robust (optimal)
Bellman operators T π

U and T ∗
U ,

T π
U (s) := min

R,P∈U

(
T π
P,RV

)
(s)



Table 1: Sample Complexity of TV for s- or sa rectangular with β (see Def 3.2) the radius of uncertainty set (see also Tab. 2
in the appendix for a complete table with different norms)

Panaganti and Kalathil
[2022]

Yang et al. [2021] Our β ≥ 0 Our 1/(2Hγ) > β > 0 Shi et al. [2023]

sa-
rect.

Õ
(

|S|2|A|H4

ϵ2

)
Õ

(
|S|2|A|H4(2+β)2

ϵ2β2

)
Õ

(
|S||A|H4

ϵ2

)
Õ

(
|S||A|H3

ϵ2

)
Õ

(
|S||A|H2

ϵ2 min(1/H,β)

)
s-rect. × Õ

(
|S|2|A|2H4(2+β)2

ϵ2β2

)
Õ

(
|S||A|H4

ϵ2

)
Õ

(
|S||A|H3

ϵ2

)
×

(T ∗
U V ) (s) := max

πs∈∆A
min

R,P∈U

(
T πs

P,RV
)
(s),

where P and R belong to the uncertainty set U . The optimal
robust Bellman operator T ∗

U and robust Bellman operator
T π
U are γ-contraction maps for any policy π [Iyengar, 2005,

Thm. 3.2] if the adversarial kernel P ∈ ∆s to obtain a valid
transition kernel :

∥T ∗
U v − T ∗

U u∥∞ ≤ γ∥u− v∥∞,

∥T π
U v − T π

U u∥∞ ≤ γ∥u− v∥∞, ∀π.

Finally, for any initial values V π
0 , V ∗

0 , sequences defined as
V π
n+1 := T π

U V π
n and V ∗

n+1 := T ∗
U V ∗

n converge linearly
to their respective fixed points, that is V π

n → V π
U and

V ∗
n → V ∗

U . This makes robust value iteration an attrac-
tive method for solving robust MDPs. In order to obtain
tractable forms of RMDPs, one has to make assumptions
about the uncertainty sets and give them a rectangularity
structure Iyengar [2005]. In the following, we will use an
Lp norm as the distance between distributions. The s- and
sa-rectangular assumptions can be defined as follows, with
R0 and P0 being called the nominal reward and kernel.

Assumption 3.1. (sa-rectangularity) We define sa-
rectangular Lp-constrained uncertainty set as

Usa
p := (R0 +R)× (P0 + P) ,R = ×s∈S,a∈ARs,a,

P = ×s∈S,a∈APs,a,Rs,a = {rs,a ∈ R | |rs,a| ≤ αs,a}

Ps,a = {Ps,a : S → R |
∑
s′

Ps,a(s
′) = 0,

P0,s,a + Ps,a ≥ 0, ∥Ps,a∥p ≤ βs,a}

Assumption 3.2. (s-rectangularity) We define s-rectangular
Lp-constrained uncertainty set as

Us
p = (R0 +R)× (P0 + P) ,P = ×s∈SPs,

R = ×s∈SRs, Rs =
{
rs : A → R | ∥rs∥p ≤ αs

}
Ps = {Ps : S ×A → R |

∑
s′

Ps(s
′, a) = 0,

∀a ∈ A,Ps(., a) + P0,s ≥ 0, ∥Ps∥p ≤ βs}

We write β = sups,a βs,a for sa-rectangular assumptions
or β = sups βs for s-rectangular assumptions and with
the same manner α = sups,a αs,a. Moreover, we write

P ∈ P0,s,a for P = P0,s,a + P ′ with P ′ ∈ Ps,a and
P ∈ P0,s for P = Pπ

0,s + P ′ with P ′ ∈ Ps, Pπ
0,s(s

′) =∑
a π(a|s)P0,s,a(s

′) ∈ RS .

In comparison to sa-rectangular robust MDPs, s-rectangular
robust MDPs are less restrictive but much more difficult to
deal with. Using rectangular assumptions and constraints
defined with Lp-balls, it is possible to derive simple dual
forms for the (optimal) robust Bellman operators for the
minimization problem that involves the seminorm defined
below:

Definition 3.1 (Span seminorm [Puterman, 1990]). Let q
be such that it satisfies the Holder’s equality, i.e. 1

p +
1
q = 1.

Let q-variance or span-seminorm function spq(.) : S → R
and q-mean function ωq : S → R be defined as

spq(v) := min
ω∈R

∥v−ω1∥q, ωq(v) := argmin
ω∈R

∥v−ω1∥q.

One can think of those span-seminorms as semi-mean-
centered-norms. The main problem is that these quantities
represent the dispersion of a distribution around its mean,
and there are no order relations for this type of object. Semi-
norms appear in the (non-robust) RL community for other
reasons Puterman [1990], Scherrer [2013]. For p =1, 2 and
∞, a closed form can be derived, corresponding to median,
variance and range. This is not the case for arbitrary p but
span-seminorms can be efficiently computed in practice,
see Kumar et al. [2022]. Once span-seminorms defined, we
introduced the dual of the inner minimization problem.

Lemma 3.3 (Duality for sa rectangular case with Lp norm).
For any V ∈ RS , P0,s,a = P0(.|s, a) ∈ RS and µ ∈ RS

min
P∈P0,s,a

PV = max
µ≥0

P0,s,a(V − µ)− βs,aspq(V − µ)

Lemma 3.4 (Duality for s rectangular case.). Consider
the probability kernel Pπ

0,s = ΠπP0,s,a ∈ Rs with Ππ a
projection matrix associated with a given policy π such that
Pπ
0,s(s

′) =
∑

a π(a|s)P0,s,a(s
′) ∈ RS . For any V ∈ RS :

min
P∈P0,s

PV = max
µ≥0

Pπ
0,s(V − µ)− βs ∥πs∥q spq(V − µ)



Proofs car be found in Appendix B.5 ,3.4. These results
allow computing robust value and Q-functions. Close to
our work, Derman et al. [2021], Kumar et al. [2022] do not
assume that robust kernel belongs to the simplex and in that
sense, their formulation is a relaxation of the framework
of RMPDs. Using this relaxation, closed form of robust
Bellman operator can be obtained, see Th. 1 in Kumar et al.
[2022]. In our work, we assume a valid transition kernel
in the simplex (Ps,a ≥ 0 or Ps ≥ 0 for respectively sa−
or s− rectangular case.) that leads to dual form that has
not a closed form but which is a simple scalar optimization
problem. A complete discussion can be found in Appendix
A.2.

Finally, we denote robust Q function for sa− and s− rect-
angular respectively Qπ

sa and Qπ
s and we define them from

robust value function V π
sa, V π

s as :

V π
s (s) =

∑
a

π(a|s)Qπ
s (s, a), V

π
sa(s)

=
∑
a

π(a|s)Qπ
sa(s, a)

Lemma 3.5. For sa− and s− rectangular,

Qπ
sa(s, a) = r

(s,a)
Qπ

sa
+ γP0,s,aV

π
sa,

Qπ
s (s, a) = rsQπ

s
+ γP0,s,aV

π
s

with

r
(s,a)
Qπ

sa
= R0(s, a)− αs,a + γ min

P∈Ps,a

PV π
sa

rsQπ
s
= R0(s, a)−

( πs(a)

∥πs∥q

)q−1

αs + γ min
Pπ∈Ps

PπV π
s

Robust Q functions and dual forms of the robust Bellman
operators will be central to our analysis of the sample com-
plexity of model-based robust RL. They allow improving
the bound by a factor |S| or |S||A| compared to existing
results (Sec. 4). With additional technical subtleties, adapted
from the non-robust setting, and assuming the uncertainty
set is small enough, they even allow improving the bound
by a factor |S|H or |S||A|H (Sec. 5).

3.3 GENERATIVE MODEL FRAMEWORK

We consider the setting where we have access to a generative
model, or sampler, that gives us samples s′ ∼ P0(· | s, a),
from the nominal model and from arbitrary state-action
couples. Suppose we call our sampler N times on each
state-action pair (s, a). Let P̂ be our empirical model, the
maximum likelihood estimate of P0,

P̂ (s′ | s, a) = Ps,a(s
′) =

count(s′, s, a)

N
,

where count(s′, s, a) represents the number of times the
state-action pair (s, a) transitions to state s′. Moreover, we

define M̂ as the empirical RMDP identical to the original M
except that it uses P̂ instead of P0 for the transition kernel.
We denote by V̂ π and Q̂π the value functions of a policy π

in M̂ , and π̂⋆, Q̂⋆ and V̂ ⋆ denote the optimal policy and its
value functions in M̂ . It is assumed that the reward function
R0 is known and deterministic and therefore exactly iden-
tical in M and M̂ . Moreover, we write P ∈ P̂s,a for P =

P̂s,a + P ′ with P ′ ∈ Ps,a and P ∈ P̂s for P = P̂π
s + P ′

with P ′ ∈ Ps, P̂π
s (s

′) =
∑

a π(a|s)P̂s,a(s
′) ∈ RS .

Notice that our analysis would easily account for an esti-
mated reward (the hard part being handling the estimated
transition model). This generative model framework, when
we can only sample from the nominal kernel, is classic and
appears for both non-robust and robust MDPs [Agarwal
et al., 2020, Panaganti et al., 2022, Azar et al., 2013, Xu
et al., 2023]. In the robust case, it is especially relevant
as an abstraction of "sim-to-real", the simulator giving ac-
cess to the nominal kernel for learning a robust policy to
be deployed in the real world (assumed to belong to the
uncertainty set).

The question of how to solve RMDPs and the related compu-
tational complexity are complementary, but different from
Theorems 4.1and 5.1. Indeed, an important point that differ-
entiates us from [Panaganti and Kalathil, 2022] is the use
of a robust optimization oracle. In (model-based) sample
complexity analysis, the goal is to determine the smallest
sample size N such that a planner executed in M̂ yields a
near-optimal policy in the RMDP M . To decouple the sta-
tistical and computational aspects of planning with respect
to an approximate model M̂ , we will use an optimization
oracle that takes as input an (empirical) RMDP and returns
a policy π̂ that satisfies ∥Q̂∗ − Q̂π̂∥∞ ≤ ϵopt. Our final
bound will depend on ϵ, the error made from finite sample
complexity, and ϵopt . In practice, the error ϵopt is typically
decreasing at a linear speed of γk at the kth iteration of
the algorithm, as in classical MDPs because (optimal) Bell-
man operators are γ-contraction in both classic and robust
settings when robust kernel in assuming in the simplex.

The computational cost of RMDPs is addressed by Iyengar
[2005] but not in the Lp. Kumar et al. [2022] address this
question, in this case, using the regularized form of robust
MDPs obtained with relaxed hypothesis on the kernel (See
Appendix A.2). The conclusions of the latter are that Lp

robust MDPs are computationally as easy as non-robust
MDPs for regularized forms, at least for some choices
of p for their relaxation. However, in their analysis, the
use of γ-contraction of the Robust Bellman Operator is
needed, whereas this is not always the case for sufficiently
large β. Indeed, assuming robust kernel is not anymore in
the simplex, Robust Bellman Operator is not anymore a
γ-contraction but an ϵ−contraction for ϵ close to 1 and only
for a small range of β. (See Derman et al. [2021] Th. 5.1).
We address the question of solving RMPDs in the Lp case



with a valid robust kernel in Alg. 1 as it is required to obtain
an ϵops solution in our analysis.

4 SAMPLE COMPLEXITY WITH
Lp-BALLS

The aim of this section is to obtain an upper-bound on the
sample complexity of RMDPs. This result is true for sa-
and s-rectangular sets and for any Lp norm with p ≥ 1.

Theorem 4.1. Assume δ > 0, ϵ > 0 and β > 0. Let π̂ be
any ϵopt -optimal policy for M̂ , i.e. ∥Q̂π̂ − Q̂⋆∥∞ ≤ ϵopt .
With N calls to the sampler per state-action pair, such that
N ≥ Cγ2L′′

(1−γ)4ϵ2 , with L′′ = log(
32SAN∥1s∥q

δ(1−γ) )we obtain the
following guarantee for policy π̂,∥∥Q∗ −Qπ̂

∥∥
∞ ≤ ϵ+

3γϵopt
1− γ

with probability at least 1 − δ, where C is an absolute
constant. Finally, for Ntotal = N |S||A| and H = 1/(1−γ),
we get an overall complexity of

Ntotal = Õ
(
H4|S||A|

ϵ2

)
.

4.1 DISCUSSION

This result says that the policy π̂ computed by the planner on
the empirical RMDP M̂ will be (ϵopt+ϵ)-optimal in the orig-
inal RMDP M . As explained before, 1 planning algorithms
for RMDPs that guarantee arbitrary small ϵopt, such as ro-
bust value iteration considered by Panaganti and Kalathil
[2022]. It will also apply to future planners, as long as they
come with a convergence guarantee. The error term ϵ is con-
trolled by the number of samples: Ntot = Õ(H4|S||A|ϵ−2)
calls to the generative models allow guaranteeing an er-
ror ϵ. This is a gain in terms of sample complexity of |S|
compared to Panaganti and Kalathil [2022], for the sa-
rectangular assumption. Our bound also holds for both s-
and sa-rectangular uncertainty sets. Panaganti et al. [2022]
do not study the s-rectangular case, while Yang et al. [2021]
do, but have a worst dependency to |A| in this case. Their
bounds also have additional dependencies on the size of
the uncertainty set, which we do not have. We recall that
we do not cover the same cases, we do not analyze the KL
and Chi-Square robust set, while they do not analyze the Lp

robust set for p > 1. However, the above comparison holds
for the total variation case that we have in common (p = 1).
These bounds are clearly stated in Table 1. In the non-robust
setting, Azar et al. [2013] show that there exist MDPs where
the sample complexity is at least Ω̃

(
H3|A||S|

ϵ2

)
. Section 5

gives a new upper-bound in H3 which matches this lower-
bound for non-robust MDPs with an extra condition on the
range of β (the uncertainty set should be small enough).

4.2 SKETCH OF PROOF

This first proof is the simpler one, it relies notably on Ho-
effding’s concentration arguments. We provide a sketch, the
full proof can be found in Appendix B. The resulting bound
is not optimal in terms of the horizon H , but it also does not
impose any condition on the range of ϵ or β, contrary to the
(better) bound of Sec. 5. We would like to bound the supre-
mum norm of the difference between the optimal Q-function
and the one of the policy computed by the planner in the em-
pirical RMDP, according to the true RMDP, ∥Q∗ −Qπ̂∥∞.
Using a simple decomposition and the fact that π∗ is not
optimal in the empirical RMDP (Q̂π∗ ≤ Q̂∗ = Q̂π̂∗

), we
have that

Q∗ −Qπ̂ = Q∗ − Q̂∗ + Q̂∗ − Q̂π̂ + Q̂π̂ −Qπ̂.

As Q∗ − Q̂∗ ≤ Q∗ − Q̂π∗
, a triangle inequality yields

∥Q∗ −Qπ̂∥∞ ≤ ∥Q∗ − Q̂π∗
∥∞ + ∥Q̂∗ − Q̂π̂∥∞

+ ∥Q̂π̂ −Qπ̂∥∞.

The second term is easy to bound, by the assumption of the
planning oracle we have ∥Q̂∗−Q̂π̂∥∞ ≤ ϵopt. The two other
terms are similar in nature. They compare the Q-functions
of the same policy (either π∗ the optimal one of the original
RMDP, or π̂ the output of the planning algorithm) but for
different RMPDs, either the original one or the empirical
one. For bounding the remaining terms, we need to intro-
duce the following notation. For any set D and a vector
v, let define κD(v) = inf

{
u⊤v : u ∈ D

}
. This quantity

corresponds to the inf form of the robust Bellman operator.
The following lemma provides a data-dependent bound of
the two terms of interest.

Lemma 4.2. We have with Ps,a defined in Assumption 3.1
and P̂s,a the robust set centered around the empirical MDPs
that

∥Qπ̂ − Q̂π̂∥∞ ≤ γ

1− γ
max
s,a

|κP̂s,a
(V̂ π̂)− κP0,s,a

(V̂ π̂)|

∥Q∗ − Q̂π∗
∥∞ ≤ γ

1− γ
max
s,a

|κP̂s,a
(V ∗)− κP0,s,a(V

∗)|.

For proving these inequalities, we rely on fundamental
properties of the (robust) Bellman operator, such as γ-
contraction. This lemma is written for sa-rectangular as-
sumption but is also true for s-rectangular assumption, re-
placing notation of robust set Ps,a by Ps. Now, we need to
bound the resulting terms, which is done by the following
lemma.

Lemma 4.3. With probability at least 1− δ, we have

max
s,a

|κP̂s,a
(V̂ π̂)− κP0,s,a(V̂

π̂)|

≤ 10

(1− γ)

(√ L′′

2N
+

L′′|S|1/q ∥1S∥q (p− 1)

N

)
+ 2ϵopt.



with L′′ = log(
32SAN∥1∥q

δ(1−γ) )

Again, this also holds for s-rectangular sets. This inequality
relies on Hoeffding’s based concentration argument coupled
with absorbing MDPs of Agarwal et al. [2020] and smooth-
ness of the Lp norm. Putting everything together, we have
just shown that :

∥Q∗ −Qπ̂∥∞ ≤ 3γϵopt
1− γ

+
20γ

(1− γ)2

(√ L′′

2N
+

L′′|S|1/q ∥1S∥q (p− 1)

N

)
Solving in ϵ for the second term of the right-hand side gives
the stated result as the term proportional to 1/N is small
compared to the second one for sufficiently small ϵ.

5 TOWARD MINIMAX OPTIMAL
SAMPLE COMPLEXITY

Now, we provide a better bound in terms of the horizon H ,
reaching (up to log factors) the lower-bound in H3 for non-
robust MDPs. Recall β = sups,a βs,a for the sa-rectangular
assumption or β = sups βs for the s-rectangular assump-
tion. For the following result to hold, we need to assume
that the uncertainty set is small enough: we will require

β ≤ 1− γ

2γ|S|1/q
=

1

2(H − 1)|S|1/q
.

The following theorem is true for both sa- and s-rectangular
uncertainty sets, and for any Lp norm with p ≥ 1.

Theorem 5.1. let β0 ∈ (0, 1
2(H−1)|S|1/q ], for any κ > 0

and any ϵ0 ≤ κ
√
H it exists a Cβ0,ϵ0 > 0 independent of H

such that for any β ∈ (0, β0) and any ϵ ∈ (0, ϵ0), whenever
N the number of calls to the sampler per state-action pair
satisfies N ≥ Cβ0,ϵ0

Lγ2H3

ϵ2 where L = log(8|S||A|/((1−
γ)δ)), it holds that if π̂ is any ϵopt -optimal policy for M̂ ,
that is when ∥Q̂π̂ − Q̂⋆∥∞ ≤ ϵopt, then∥∥Q∗ −Qπ̂

∥∥
∞ ≤ ϵ+

8ϵopt

1− γ

with probability at least 1− δ.

So Ntotal = N |S||A| as an overall sample complexity

Õ
(
H3|S||A|

ϵ2

)
for any ϵ < ϵ0.

5.1 DISCUSSION

The constants of Theorem 5.1 are explicitly given in Ap-
pendix C. For instance, for β0 = 1

8(H−1) and ϵ0 =
√
16H ,

we have C = 1024, other choices being possible. Recall
that in the non-robust case, the lower-bound is Ω̃

(
H3|S||A|

ϵ2

)
Azar et al. [2013]. Our theorem states that any model-based
robust RL approach, in the generative model setting, with
an accurate enough planner applied to the empirical RMDP,
reaches this lower bound, up to log terms. As far as we know,
it is the first time that one shows that solving an RMDP in
this setting does not require more samples than solving a
non-robust MDP, provided that the uncertainty set is small
enough. Our bound on ϵ is similar to the one of Agarwal
et al. [2020] in the robust case with their range [0,

√
H),

we differ only by giving more flexibility in the choice of
the constant C. The best range of ϵ for non-robust MDPs
is (0, H) [Li et al., 2020], we let its extension to the robust
case for future work. So far, we discussed the lower-bound
for the non-robust case, that we reach. Indeed, non-robust
MDPs can be considered as a special case of MDPs with
β = 0. As far as we know, the only robust-specific lower-
bounds on the sample complexity have been proposed by
Yang et al. [2021]. They propose two lower-bounds account-
ing for the size of the uncertainty set, one for the Chi-square
case, and one for the total variation case, which coincide
with our Lp framework for p = 1 This bound is

Ω̃

(
|S||A|(1− γ)

ε2
min

{
1

(1− γ)4
,
1

β4

})
.

This lower bound has two cases, depending on the size of
the uncertainty set. If β ≤ (1 − γ) = 1/H , we retrieve
the non-robust lower bound Ω̃

(
|S||A|H3

ε2

)
. Therefore, for a

L1-ball, our upper-bound matches the lower-bound, and we
have proved that model-based robust RL in the generative
model setting is minimax optimal for any accurate enough
planner. Their condition for this bound, β ≤ 1/H , is close
to our condition, β < 1/(4(H − 1). This suggests that our
condition on β is not just a proof artifact. In the second
case, if β > 1− γ, the lower-bound is Ω̃

(
|S∥A|(1−γ)

ε2β4

)
. In

this case, our theorem does not hold, and we only currently
get a bound in H4 (see Sec. 4), which doesn’t match this
lower-bound.

In the case of TV , we know from posterior work Shi et al.
[2023] that it is possible to get a tighter bound in the regime
β > 1 − γ but in the case of LP norm, it is still an open
question. In the case where β is too large, the question arises
whether RMDPs are useful as long as there is little to control
when the transition kernel can be too arbitrary.

To sum up, to the best of our knowledge, with a small
enough uncertainty set, our work delivers the first-ever
minimax-optimal guarantee for RMDPs according to the
non-robust lower-bound for Lp-balls, and the first ever
minimax-optimal guarantee according to the robust lower-
bound for the total variation case for a sufficiently small
radius of the uncertainty set, which has been later on the
larger set of β by Shi et al. [2023]. ‘



5.2 SKETCH OF PROOF

The full proof is provided in Appendix C. As in Sec. 4.2,
we start from the inequality

∥Q∗ −Qπ̂∥∞ ≤ ∥Q∗ − Q̂π∗
∥∞ + ∥Q̂∗ − Q̂π̂∥∞

+ ∥Q̂π̂ −Qπ̂∥∞,

where the second term of the right-hand side can again be
readily bounded, ∥Q̂∗−Q̂π̂∥∞ ≤ ϵopt. To bound the remain-
ing two terms, if we want to obtain a tighter final bound,
the contracting property of the robust Bellman operator will
not be enough, we need a finer analysis. To achieve this,
we rely on the total variance technique introduced by Azar
et al. [2013] for the non-robust case, combined with the
absorbing MDP construction of Agarwal et al. [2020], also
for the non-robust case, which allows improving the range
of valid ϵ. The key underlying idea is to rely on a Bern-
stein concentration inequality rather than a Hoeffding one,
therefore considering the variance of the random variable
rather than its range, tightening the bound. Working with a
Bernstein inequality will require controlling the variance of
the return. A key result was provided by Azar et al. [2013],
that we extend to the robust setting,

∥∥∥(I − γPπ
0 )

−1
√

VarP0
(V π)

∥∥∥
∞

≤

√
2

(1− γ)3
. (1)

Naively bounding the left-hand side would provide a bound
in H2, while this (non-obvious) bound in

√
H3 is crucial for

obtaining on overall dependency in H3 in the end. Now, we
come back to the terms ∥Q∗ − Q̂π̂∗∥∞ and ∥Qπ̂ − Q̂π̂∥∞
that we have to bound. This bound should involve a term
proportional to (I − γPπ

0 )
−1 to leverage later Eq. (1). The

following lemma is inspired by Agarwal et al. [2020], and
its proof relies crucially on having a simple dual of robust
Bellman operator.

Lemma 5.2.

∥Qπ̂ − Q̂π̂∥∞ ≤γ∥(I − γP π̂
0 )

−1(P0 − P̂ )V̂ π̂∥∞

+
2γβ|S|1/q

1− γ
∥Qπ̂ − Q̂π̂∥∞.

We see that the term β appears in the bound. This comes
from the need to control the difference in penalization be-
tween seminorms of value functions, from a technical view-
point. Indeed, the terms 2γβ

1−γ ∥Q
π − Q̂π∥∞ (with π being

either π̂ or π∗) are not present in the non-robust version
of the bound, and are one of the main differences from the
derivation of Agarwal et al. [2020]. The first term of the
right-hand side of each bound ∥(I−γPπ

0 )
−1(P0−P̂ )V̂ π∥∞

(with π being either π̂ or π∗, again) will be upper-bounded
using a Bernstein argument, leveraging also Eq. (1). The
resulting lemma is the following.

Lemma 5.3. With probability at least 1− δ, we have∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

< (CN + Cβ)∥Qπ̂ − Q̂π̂∥∞

+ 4γ

√
L

N(1− γ)3
+

γ∆′
δ,N

1− γ
+

γϵopt
1− γ

(
2 +

√
8L

N

)
,

with Cβ = 2γβ|S|1/q
1−γ and CN = γ

1−γ

√
8L
N and where

∆′
δ,N =

√
cL
N + cL

(1−γ)N with L = log(8|S||A|/((1−γ)δ)).

For this result to be exploitable, we have to ensure that
CN + Cβ < 1, which leads to β ≤ 1−γ

2γ|S|1/q , and then
CN + Cβ < 1 leads to a constraint on N in Theorem 5.1.
Eventually, injecting the result of this last lemma in the
initial bound, keeping the dominant term in 1/

√
N and

solving for ϵ provides the stated result, cf Appendix C.

6 CONCLUSION

In this paper, we have studied the question of the sample
complexity of model-based robust reinforcement learning.
To decouple this from the problem of exploration, we have
considered the classic (in non-robust RL) generative model
setting, where a sampler can provide next-state samples
from the nominal kernel and from arbitrary state-action
couples. We focused our study more specifically on sa- and
s-rectangular uncertainty sets corresponding to Lp-balls
around the nominal.

Without any restriction on the size of uncertainty set (β), we
have shown that the sample complexity of the studied gen-
eral setting is Õ( |S||A|H4

ϵ2 ), already significantly improving
existing results [Yang et al., 2021, Panaganti and Kalathil,
2022]. Our bound holds for both the sa- and s-rectangular
cases, and improves existing results (for the total varia-
tion) by respectively |S| and |S||A|. By assuming a small
enough uncertainty set, and for a small enough ϵ, we further
improved this bound to Õ( |S||A|H3

ϵ2 ), adapting proof tech-
niques from the non-robust case [Azar et al., 2013, Agarwal
et al., 2020]. This is a significant improvement. Our bound
again holds for both the sa- and s- rectangular cases, it
matches the lower-bound for the non-robust case Azar et al.
[2013], and it matches the total variation lower-bound for
the robust case when the uncertainty set is small enough
[Yang et al., 2021]. We think this is an important step to-
wards minimax optimal robust reinforcement learning.

There are a number of natural perspectives, such as knowing
if we could extend our results to other kinds of uncertainty
sets, or to extend our last bound to larger uncertainty sets
(despite the fact that if the dynamics are too unpredictable,
there may be little left to be controlled). Our results build
heavily on the simple dual form of the robust Bellman op-
erator, which prevents us from considering, for the moment,



uncertainty sets based on the KL or Chi-square divergence.
Beyond their theoretical advantages, these simple dual forms
also provide practical and computationally efficient planning
algorithms. Therefore, another interesting research direction
would be to know if one could derive additional useful uncer-
tainty sets relying primarily on the regularization viewpoint.
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A OVERVIEW AND USEFUL INEQUALITIES

The appendix is organized as follows

• In Appendix A.1, a comprehensive table with state-of-the-art complexity for every distance.

• In Appendix A.2, we provide more details/explanations on the difference between our formulation on the one of Kumar
et al. [2022] and Derman et al. [2021].

• In Appendix A.3, we give more details about our algorithm :DRVI LP
• In Appendix A.4, we give some useful inequalities frequently used in the proofs.

• In Appendix B, we prove Theorem 4.1.

• In Appendix C, we prove Theorem 5.1.

Finally, the proofs for the s-rectangular and sa-rectangular cases are often very similar. If this is true, we will combine them
in a single proof with the two cases detailed when needed.

A.1 TABLE OF SAMPLE COMPLEXITY

Table 2: Sample Complexity for different metric and s- or sa rectangular assumptions with β the radius of uncertainty set,
H the horizon factor, ϵ the precicion, p̄, β0,p = (1− γ)/(2γ|S|1/q). the smallest positive state transition probability of the
nominal kernel visited by the optimal robust policy (see Yang et al. [2021]).

Panaganti and Kalathil [2022] Yang et al. [2021] Shi and Chi [2022] Our β ≥ 0 Our β0,p > β >
0

Shi et al. [2023] β >
1 − γ

Shi et al. [2023] 0 <
β < 1 − γ

TV
(sa)

Õ
(

|S|2|A|H4

ϵ2

)
Õ
(

|S|2|A|H4(2+β)2

ϵ2β2

)
× Õ

(
|S||A|H4

ϵ2

)
Õ
(

|S||A|H3

ϵ2

)
Õ
(

|S||A|H2

ϵ2β

)
Õ
(

|S||A|H3

ϵ2

)

TV
(s)

× Õ
(

|S|2|A|2H4(2+β)2

ϵ2β2

)
× Õ

(
|S||A|H4

ϵ2

)
Õ
(

|S||A|H3

ϵ2

)
× ×

Lp
(sa)

× × × Õ
(

|S||A|H4

ϵ2

)
Õ
(

|S||A|H3

ϵ2

)
× ×

Lp
(s)

× × × Õ
(

|S||A|H4

ϵ2

)
Õ
(

|S||A|H3

ϵ2

)
× ×

χ2

(sa)
Õ
(

|S|2|A|βH4

ϵ2

)
Õ
(

|S|2|A|(1+β)2H4

ε2(
√

1+β−1)2

)
× × × Õ

(
|S||A|βH4

ϵ2

)
Õ
(

|S||A|βH4

ϵ2

)

χ2

(s)
× Õ

(
|S|2|A3|(1+β)2H4

ε2(
√

1+β−1)2

)
× × × ×

KL
(sa)

Õ
(

|S|2|A| exp(H)H4

β2ε2

)
Õ
(

|S|2|A|H4

p̄2ϵ2β2

)
Õ
(

|S||A|H4

p̄ϵ2β4

)
× × × ×

KL
(s)

× Õ
(

|S|2|A|2H4

p̄2ϵ2β2

)
× × × × ×
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A.2 RELATION WITH THE WORK OF Kumar et al. [2022] AND Derman et al. [2021]

In the work of Derman et al. [2021] close forms for RMDPs with Lp norms are derived assuming the following uncertainty
set :

Assumption A.1. (sa-rectangularity in Derman et al. [2021])

Usa
p := (R0 +R)× (P0 + P) ,R = ×s∈S,a∈ARs,a,Rs,a =

{
rs,a ∈ R | ∥rs,a∥p ≤ αs,a

}
P = ×s∈S,a∈APs,aPs,a = {Ps,a : S → R, ∥Ps,a∥p ≤ βs,a}

Using these uncertainty sets leads to the following Bellman Operator :

Theorem A.2 (Derman et al. [2021]). The sa-rectangular Robust Bellman operator is equivalent to a regularized non-robust
Bellman operator: for rs,aV,π(s, a) = −

(
αs + γβs,a ∥V ∥q

)
+R0(s, a) as we have

T π
Usa

p
V (s) = ⟨πs, r

s,a
V,π(s, a) + γ

∑
s′

P0 (s
′ | s, a)V (s′)⟩A

Using this formulation, they get a closed form for the inner minimization problem and for the Robust Bellman Operator

The work Kumar et al. [2022] modifies the work of Derman et al. [2021] using Kernel that sum to 1,
∑

s′ Ps,a(s
′) = 0

in their definition, but using this uncertainty set, it is still possible to get a robust kernel out of the simplex. Using this
formulation, they also get a closed form for the inner minimization problem and for the Robust Bellman Operator.

Assumption A.3. (sa-rectangularity in Kumar et al. [2022])

Usa
p := (R0 +R)× (P0 + P) ,R = ×s∈S,a∈ARs,a,Rs,a =

{
rs,a ∈ R | ∥rs,a∥p ≤ αs,a

}
P = ×s∈S,a∈APs,aPs,a = {Ps,a : S → R |

∑
s′

Ps,a (s
′) = 0, ∥Ps,a∥p ≤ βs,a}

Using these uncertainty sets where robust Kernel may not belong anymore to the simplex as they do not assume P0+Ps,a ≥ 0.
This leads to the following Bellman Operator :

Theorem A.4 (Kumar et al. [2022]). The sa-rectangular Robust Bellman operator is equivalent to a regularized non-robust
Bellman operator: for rs,aV,π(s, a) = −

(
αs + γβs,aspq(V )

)
+R0(s, a), as we have

T π
Usa

p
V (s) = ⟨πs, r

s,a
V,π(s, a) + γ

∑
s′

P0 (s
′ | s, a)V (s′)⟩A

where spq(V ) in defined in Def. 3.1.These results are due to the following lemma.

Lemma A.5 ( Kumar et al. [2022]. Duality for the minimization problem for sa rectangular case with Lp norm without
simplex constrain).

inf
P :
∑

s′ P (s′)=0∥P−P̂s,a∥
p
≤βs,a

PV = P̂s,aV − βs,aspq(V )

Our analysis assumes the positivity of the kernel function, P0 +Ps ≥ 0 in s-rectangular or P0 +Ps,a ≥ 0 for sa-rectangular
case. Using this more realistic assumption, we can not obtain a closed form of the robust Bellman operator. However, we are
still able to compute a dual form for the inner minimization problem of RMDPs. With our definition of rectangularity in the
simplex:

Assumption A.6. (sa-rectangularity) We define sa-rectangular Lp-constrained uncertainty set as

Usa
p := (R0 +R)× (P0 + P) ,R = ×s∈S,a∈ARs,a,P = ×s∈S,a∈APs,a,Rs,a = {rs,a ∈ R | |rs,a| ≤ αs,a}

Ps,a = {Ps,a : S → R |
∑
s′

Ps,a(s
′) = 0, P0,s,a + Ps,a ≥ 0, , ∥Ps,a∥p ≤ βs,a}



and using κD(v) = inf
{
u⊤v : u ∈ D

}
., we obtain :

Lemma A.7 (Duality for the minimization problem for sa rectangular case with Lp norm).

κP̂s,a
(V ) = max

µ≥0
{P̂s,a(V − µ)− βs,aspq(V − µ)}

Proof can be found on Appendix B.5

Contrary to previous lemma in Kumar et al. [2022], there is an additional max operator in our dual formulation. Interestingly,
their formulation is a relaxation of our Lemmas 3.3 as their formulation does not assume the positivity of the kernel. Their
relaxation allows practical algorithms with close form, but still suffer from non-exact formulation of RMDPs with robust
Kernel that are not in the simplex.

One crucial point in our analysis is that Bellman Operator for RMDPs is a γ- contraction for robust kernel in the simplex for
any radius β (see Iyengar [2005]). For Kumar et al. [2022] and Derman et al. [2021] the range of β where their Robust
Bellman Operator is a contraction is smaller than 1−γ

γ|S|1/q (see Proposition 4 of Derman et al. [2021]) which is the range

where we have minimax optimality in our Theorem 5.1. For β > 1−γ
γ|S|1/q , there is no contraction anymore. In the following,

we will assume that robust kernels belong to the simplex to use γ-contraction in our proof of sample complexity and ensure
convergence of the following Distributionally Robust value Iteration for Lp norms for any β Algoritm 1.

A.3 MODEL BASED DRVI LP ALGORITHM

Algorithm 1: DRVI LP: Distributionally robust value iteration DRVI for LP norms with sa−rectangular assuptions

1 input: empirical nominal transition kernel P̂0; reward function r; uncertainty level β.
2 initialization: Q̂0(s, a) = 0, V̂0(s) = 0 for all (s, a) ∈ S ×A.
3 for t = 1, 2, · · · , T do
4 for ∀s ∈ S, a ∈ A do
5 Set Q̂t(s, a) according to (2) for sa−rectangular ;

6 for ∀s ∈ S do
7 Set V̂t(s) = maxa Q̂t(s, a);

8 output: Q̂T , V̂T and π̂ obeying π̂(s) = argmaxa Q̂T (s, a).

We propose Alg. 1 to solve robust MDPs in the case of LP norms using value Iteration with sa- rectangularity assumptions.
First, we can remark that directly solving classical RMDPs formulation is computationally costly as it requires an optimization
over an S-dimensional probability simplex at each iteration, especially when the dimension of the state space S is large.
However, using strong duality like Iyengar [2005] for the TV , one can also solve using the dual problem of this formulation.
The equivalence between the two formulations can be found in Lemma 3.3. Using the dual form, the optimization (3)
reduces to a 2-dimensional optimization problem that can be solved efficiently using any 2−dimensional convex solver if
there exists an analytic form of the span-semi norm. Then the iterates

{
Q̂t

}
t≥0

of DRVI for LP norms converge linearly to

the fixed point Q̂⋆, owing to the appealing γ-contraction property of robust MDPs in the simplex. From an initialization
Q̂0 = 0, the update rule at the t-th (t ≥ 1) iteration can be formulated as for sa-rectangular case as:

∀(s, a) ∈ S ×A : Q̂t(s, a) =r(s, a) + max
µ≥0

P̂ (V̂t−1 − µ)− βs,aspq(V̂t−1 − µ) (2)

=r(s, a) + max
αλ,ω

P̂
∈Aλ,ω

P̂

P̂[V̂t−1]αλ,ω

P̂

− βs,aspq([V̂t−1]αλ,ω

P̂

) (3)

where the variational family Aλ,ω

P̂
is a 2−dimensional variational family defined in (8). The specific form of the dual problem

depends on the choice of the norm. In the case of L1, L2, or L∞, span semi-norms involved in dual problems have closed
form (respectively equals to median, variance, or span), and equation 3 corresponds to a 2-D minimization problem.



But in general cases, one has to compute span-semi norms that can be easily computed using binary search solving∑
s

sign (v(s)− ωp(v)) |v(s)− ωp(v)|
1

p−1 = 0

to compute ωq and then setting the semi norm spq(v) = ∥v − ωq∥. Recall the q-variance function spq : S → R and q-mean
function ωq : S → R be defined as

spq(v) := min
ω∈R

∥v − ω1∥q, ωq(v) := argmin
ω∈R

∥v − ω1∥q.

See Kumar et al. [2022] for discussion about computing span semi norms. So in the general case, we can also compute the
maximum solving :

∀(s, a) ∈ S ×A : Q̂t(s, a) =r(s, a) + max
αλ,ω

P̂
∈Aλ,ω

P̂

P̂[V̂t−1]αλ,ω

P̂

− βs,a

∥∥∥[V̂t−1]αλ,ω

P̂

− w
∥∥∥
q
,

Using any 2−D convex optimization algorithm solves the problem as this problem is jointly concave in (λ,w) because
(λ,w) → −

∥∥∥[V̂t−1]αλ,ω

P̂

− w
∥∥∥
q

is concave using norm property and (λ,w) → P̂[V̂t−1]αλ,ω

P̂

also. Then the sum is concave.

Finally, in the sa-case we compute the best policy which is the greedy policy of the final Q-estimates Q̂T as the final policy
π̂:

∀s ∈ S : π̂(s) = argmax
a

Q̂T (s, a).

A.4 USEFUL INEQUALITIES AND NOTATIONS

Here we present some useful inequalities used frequently in the derivation. Consider any P a transition matrix and βs for s
rectangular uncertain sets or βsa for sa- uncertainty sets, then for I = (1, 1, ..., 1)⊤ :

(1− γP )−1 (γβs) I <
β

1− γ
I and (1− γP )−1I ≤ 1

1− γ
I (4)

∀q ∈ N∗, spq(.) ≤ 2 ∥.∥q < 2|S|1/q ∥.∥∞ , sp(.)∞ ≤ 2 ∥.∥∞ (5)

spq(.) ≤ 2 ∥.∥q ≤ 2 ∥.∥q (6)

Eq. (4) is true, taking the supremum norm of the left-hand side inequality. Eq. (5) and Eq. (6) come from properties of
norms, see Eq. (1) from Scherrer [2013].

Finally we denote the truncation operator for a vector α ∈ RS ,

[V ]α :=

{
α(s), if V (s) > α(s)

V (s), otherwise.

A.5 ROBUST BELLMAN OPERATOR AND ROBUST Q VALUES

This is proof of Lemma 3.5:

Lemma A.8. Robust Bellman Operator for sa− and s− rectangular are :

T π
Usa

p
V (s) =

∑
a

π(a|s)
(
− αs,a +R0(s, a) + γ

∑
s′

P0(s
′, s, a)v(s′) + γ min

P∈Ps,a

PV
)

T π
Us

p
V (s) = −∥πs∥q αs + γ min

Pπ∈Ps

PπV +
∑
a

π(a|s)
(
R0(s, a) + γP0(s

′|s, a)V (s′)
)



Proof. For sa-rectangular: by rectangularity

T π
Usa

p
V (s) =

∑
a

π(a|s)
(
− αs,a +R0(s, a) + γ min

P∈P0+Ps,a

PV
)

=
∑
a

π(a|s)
(
− αs,a +R0(s, a) + γ min

P∈Ps,a

PV + P0,s,aV
)

For s−rectangular case :

T π
Us

p
V (s) = min

Pπ∈Pπ
0 +Ps,

γPV + min
R∈Rπ

0+Rs

∑
a

π(a|s)R(s, a)

=
∑
a

π(a|s)R0(s, a) + min
R∈Rs

∑
a

π(a|s)R(s, a) +
∑
a

π(a|s)γ
∑
s′

P0(s
′|s, a)V (s′) + min

Pπ∈Ps,

γPπV

(a)
=
∑
a

π(a|s)
(
R0(s, a) +

∑
s′

P0(s
′|s, a)V (s′)

)
− αs ∥πs∥q + min

Pπ∈Ps

γPπV

where (a) comes from Holder’s inequality.

Lemma A.9. For sa− and s− rectangular,

Qπ
sa(s, a) = r

(s,a)
Qπ

sa
+ γP0,s,aV

π
sa,

Qπ
s (s, a) = rsQπ

s
+ γP0,s,aV

π
s

with

r
(s,a)
Qπ

sa
= R0(s, a)− αs,a + γ min

P∈Ps,a

PV π
sa

rsQπ
s
= R0(s, a)−

( πs(a)

∥πs∥q

)q−1

αs + γ min
Pπ∈Ps

PπV π
s )

Proof. The result comes directly as for sa-rectangular the following relations hold,

V π
sa(s) =

∑
a

π(a|s)Qπ
sa(s, a) and

and for s-rectangular case

V π
s (s) =

∑
a

π(a|s)Qπ
s (s, a).

Then using fixed point equation of Bellman operator: T π
Us

p
V π
s (s) = V π

s (s) or T π
Usa

p
V π
sa(s) = V π

sa(s) and previous Lemma
A.8 for the expression of T π

Us
p
V π
s (s), we can identify the robust Q values that give the result

B AN H4 BOUND FOR Lp-BALLS

To lighten notations, we remove subscript s in most places and denote for example V π instead of V π
s for s-rectangular sets.

Lemma B.1 (Decomposition of the bound).∥∥Q∗ −Qπ̂
∥∥
∞ ≤

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

+
∥∥∥Q̂π∗

− Q̂π̂
∥∥∥
∞

+
∥∥∥Q̂π̂ −Qπ̂

∥∥∥
∞



Proof.

0 ≤ Q∗ −Qπ̂ = Q∗ − Q̂∗︸︷︷︸
≥Q̂π∗

+Q̂∗ − Q̂π̂ + Q̂π̂ −Qπ̂

≤ Q∗ − Q̂π∗ + Q̂∗ − Q̂π̂ + Q̂π̂ −Qπ̂

⇒ ∥Q∗ −Qπ̂∥∞ ≤ ∥Q∗ − Q̂π∗∥∞ + ∥Q̂∗ − Q̂π̂∥∞ + ∥Q̂π̂ −Qπ̂∥∞

This decomposition is the starting point of our proofs for both Theorems 4.1 and 5.1. In this decomposition, the second
term satisfies ∥Q∗ − Q̂π∗∥∞ ≤ ϵopt by definition. This term goes to 0 exponentially fast as the robust Bellman operator is a
γ-contraction. The two last terms ∥Q∗ − Q̂π∗∥∞ and ∥Q̂π̂ −Qπ̂∥∞ need to be controlled using concentration inequalities
between the true MDP and the estimated one. To do so, we need concentration inequalities such as the following Lemma
B.2.

Lemma B.2 (Hoeffding’s inequality for V ). For any V ∈ R|S| with ∥V ∥∞ ≤ H , with probability at least 1− δ, we have

max
(s,a)

∣∣∣P0V − P̂V
∣∣∣ ≤ H

√
log(2|S∥A|/δ)

2N
.

Proof. For any (s, a) pair, assume a discrete random variable taking value V (i) with probability P0,s,a(i) for all i ∈
{1, 2, · · · , |S|}. Using Hoeffding’s inequality [Hoeffding, 1994] and ∥V ∥∞ ≤ H:

P
(
P0V − P̂V ≥ ε

)
≤ exp

(
−Nε2/(2H2)

)
and P

(
P̂V − P0V ≥ ε

)
≤ exp

(
−Nε2/(2H2)

)
.

Then, taking ε = H
√

2 log(2|S||A|/δ)
N , we get

P

(∣∣∣P0V − P̂V
∣∣∣ ≥ H

√
log(2|S||A|/δ)

N

)
≤ δ

|S||A|
.

Finally, using a union bound:

P

(
max
(s,a)

∣∣∣P0V − P̂V
∣∣∣ ≥ H

√
2 log(2|S||A|/δ)

N

)
≤
∑
s,a

P

(∣∣∣P0V − P̂V
∣∣∣ ≥ H

√
2 log(2|S∥A|/δ)

N

)
≤ δ.

This completes the concentration proof. Next we will look at the contraction argument of the robust Bellman operator.

Lemma B.3 (Contraction of infimum operator). For D = Ps,a or Ps, the function

∀s, a, v 7→ κD(v) = inf
{
u⊤v : u ∈ D

}
is 1-Lipchitz.

Proof. We have that

∀(s, a) ∈ S ×A, κPs,a
(V2)− κPs,a

(V1) = inf
p∈Ps,a

p⊤V2 − inf
p̃∈Ps,a

p̃⊤V1 = inf
p∈Ps,a

sup
p̃∈Ps,a

p⊤V2 − p̃⊤V1

≥ inf
p∈Ps,a

p⊤ (V2 − V1) = κPs,a (V2 − V1) .

Then ∀ε > 0, there exists Ps,a ∈ Ps,a such that

P⊤
s,a (V2 − V1)− ε ≤ κPs,a

(V2 − V1) .



Using those two properties,

κPs,a
(V1)− κPs,a

(V2) ≤ P⊤
s,a (V1 − V2) + ε ≤ ∥Ps,a∥1 ∥V1 − V2∥+ ε = ∥V1 − V2∥+ ε,

where we used the Holder’s inequality. Since ε is arbitrary small, we obtain, κPs,a
(V1) − κPs,a

(V2) ≤ ∥V1 − V2∥.
Exchanging the roles of V1 and V2 give the result.

The proof is similar for Ps.

Note that an immediate consequence is the already known γ- contraction of the robust Bellman operator.

Lemma B.4 (Upper-bounds of
∥∥∥Qπ̂ − Q̂π̂

∥∥∥
∞

and
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

).∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

≤ γ

1− γ
max
s,a

∣∣∣κP̂s,a
(V̂ π̂)− κP0,s,a

(V̂ π̂)
∣∣∣ ,∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

≤ γ

1− γ
max
s,a

∣∣∣κP̂s,a
(V ∗)− κP0,s,a(V

∗)
∣∣∣ .

Proof. For the first inequality, since we can rewrite the robust Q-function for any uncertainty sets on the dynamics as

Qπ̂ (s, a) = r − αs,a + γκP0,s,a

(
V π̂
)

(see Eq. (3.5)), or replacing αs,a by αs

(
π̂s(a)
∥π̂s∥q

)q−1

in the s- rectangular case:

Qπ̂ (s, a)− Q̂π̂ (s, a)
(a)
= γκP0,s,a

(
V π̂
)
− γκP̂s,a

(
V̂ π̂
)

= γ
(
κP0,s,a

(
V π̂
)
− κP0,s,a

(
V̂ π̂
))

+ γ
(
κP0,s,a

(
V̂ π̂
)
− κP̂s,a

(
V̂ π̂
))

with Ps,a defined in Assumption 3.1 and P̂s,a with the same definition but centered around the empirical MDP. Hence,
taking the supremum norm ∥.∥∞,∥∥∥Qπ̂ − Q̂π̂

∥∥∥
∞

= max
s,a

∣∣∣γ (κP0,s,a

(
V π̂
)
− κP0,s,a

(
V̂ π̂
))

+ γ
(
κP0,s,a

(
V̂ π̂
)
− κP̂s,a

(
V̂ π̂
))∣∣∣

(b)

≤ γ
∥∥∥V π̂ − V̂ π̂

∥∥∥
∞

+max
s,a

∣∣∣γ (κP0,s,a

(
V̂ π̂
)
− κP̂s,a

(
V̂ π̂
))∣∣∣

≤ γ
∥∥∥V π̂ − V̂ π̂

∥∥∥
∞

+ γmax
s,a

∣∣∣κP̂s,a
(V̂ π̂)− κP0,s,a

(V̂ π̂)
∣∣∣

(c)

≤ γ
∥∥∥Qπ̂ − Q̂π̂

∥∥∥
∞

+ γmax
s,a

∣∣∣κP̂s,a
(V̂ π̂)− κP0,s,a

(V̂ π̂)
∣∣∣ .

Line (a) comes from the rectangularity assumption, (b) uses the triangular inequality and the 1-contraction of the infimum in
Lemma B.3, (c) uses the fact that ∥V π − V̂ π∥∞ ≤ ∥Qπ − Q̂π∥∞ for any π. As 1− γ < 1, we get the first stated result.

One can note that the proof is true for any policy, so it is also true for both π̂ and π∗ which concludes the proof. This proof is
written for the sa-rectangular assumption, it is also true for the s-rectangular case with slightly different notations, replacing
D = P0,s,a by D = P0,s. Now we need to find new form for κ for both s and sa rectangular assumptions.

For the second claim, ∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

≤ γ

1− γ
max
s,a

∣∣∣κP̂s,a
(V ∗)− κP0,s,a

(V ∗)
∣∣∣ .

we are using a slightly different modification:

Q∗ (s, a)− Q̂π∗
(s, a)

(a)
= γκP0,s,a

(V ∗)− γκP̂s,a

(
V̂ π∗

)
= γκP0,s,a

(V ∗)− γκP0,s,a

(
V̂ π∗

)
+ γκP0,s,a

(
V̂ π∗

)
− γκP̂s,a

(
V̂ π∗

)
≤ γ

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

+max
s,a

∣∣∣κP̂s,a
(V ∗)− κP0,s,a

(V ∗)
∣∣∣

using the same arguments as in the first inequality. Solving gives the result.



We denote [V ]α as its clipped version by some non-negative vector α, namely,

[V ]α(s) :=

{
α(s), if V (s) > α(s),

V (s), otherwise.
(7)

Defining the gradient of P 7→ ∥P∥ as ∇∥P∥, λ > 0, a positive scalar and ω is the generalized mean defined as the argmin
in the definition of the span semi norm in Def.3.1, we derive two optimization lemmas.

Lemma B.5 (Duality for the minimization problem for sa rectangular case.). Denoting P̂ the vector P̂s,a or P0 for P0,s,a ,

κP̂s,a
(V̂ π̂) = max

µ≥0
{P̂(V̂ π̂ − µ)− βs,aspq(V̂

π̂ − µ)} = max
µλ,ω

P̂
∈Mλ,ω

P̂

{P̂(V̂ π̂ − µλ,ω

P̂
)− βs,aspq(V̂

π̂ − µλ,ω

P̂
)}

= max
αλ,ω

P̂
∈Aλ,ω

P̂

P̂[V̂ π̂]αλ,ω

P̂

− βs,aspq([V̂
π̂]αλ,ω

P̂

).

κP0,s,a
(V ∗) = max

µ≥0
{P0(V

∗ − µ)− βs,aspq(V
∗ − µ)} = max

µλ,ω
P0

∈µλ,ω
P0

{P0(V
∗ − µλ,ω

P0
)− βs,aspq(V

∗ − µλ,ω
P0

)}

= max
αλ,ω

P0
∈Aλ,ω

P0

P0[V
∗]αλ,ω

P0

− βs,aspq([V
∗]αλ,ω

P0

).

where

Aλ,ω
P = {αλ,ω

P : αλ,ω
P (s) = ω + λ|∇ ∥P∥ (s) : λ > 0, w > 0, P ∈ ∆(S), αλ,ω

P ∈
[
0,

1

1− γ

]S
} (8)

Mλ,ω
P = {µλ,ω

P = V − αλ,ω
P , λ, ω ∈ R+, P ∈ ∆(S), µ ∈ RS

+, µ
λ,ω
P =

[
0,

1

1− γ

]S
} (9)

(10)

and with [V ]α :=

{
α(s), if V (s) > α(s)

V (s), otherwise.

For L1 or TV , case , the vector αλ,ω
P reduces to a 1 dimensional scalar such as α ∈ [0, 1/(1− γ)].

Proof. First, we will show that

κP̂s,a
(V̂ π̂) = max

µ≥0
{P̂(V̂ π̂ − µ)− βs,aspq(V̂

π̂ − µ)}

The second equation of this lemma is the same as the first one, replacing the center of the ball constrain P̂s,a by P0,s,a and π̂
by π∗. By definition,

κP̂s,a
(V̂ π̂) = min

P∈∆s,∥P−P̂∥
p
≤βs,a

∑
s′

P (s′)V̂ π̂(s′) = P̂s,aV̂
π̂ + min

y,∥y∥p≤βs,a,1y=0,y≥−P̂

∑
s′

y(s′)V̂ π̂(s′)

where we use the change of variable y(s′) = P (s′)− P̂(s′). Then writing the Lagrangian we get for µ ∈ R|S|
+ ,γ ∈ R the

Lagrangian variables:

P̂V̂ π̂ + max
µ≥0,ν∈R

min
y:∥y∥p≤βs,a

−
∑
s′

µ(s)P̂(s′) +
∑
s′

(y(s′)(V̂ π̂(s′)− µ(s′)− ν) (11)

(a)
= P̂V̂ π̂ + max

µ≥0,ν∈R
−
∑
s′

µ(s′)P̂(s′)− βs,a

∥∥∥(V̂ π̂(s′)− µ(s′)− ν)
∥∥∥
q

(12)

(b)
= max

µ≥0
P̂(V̂ π̂ − µ)− βs,aspq(V̂

π̂ − µ) (13)



where (a) is true using the equality case of Holder’s inequality and (b) is the definition of the span semi-norm (see Def. 3.1).
The value that maximizes the inner maximization problem in 12 in ν is the q-mean (see Def. 3.1) by definition denoted ω.
Now the aim is to prove that

max
µ≥0

{P̂(V̂ π̂ − µ)− βs,aspq(V̂
π̂ − µ)} = max

µλ,ω

P̂
∈Mλ,ω

P̂

{P̂(V̂ π̂ − µλ,ω

P̂
)− βs,aspq(V̂

π̂ − µλ,ω

P̂
)}.

First, as the norm is differentiable (which true for Lp, p ≥ 2), we have that the equality (a) comes from the generalized
Holder’s inequality for arbitrary norms Yang [1991], namely, defining z = (V̂ π̂ − µ− ω), it satisfies

z = ∥z∥q ∇∥y∥p (14)

The quantity ν is replaced by the generalized mean for equality in (b) while (14) comes from Yang [1991]. Using
complementary slackness Karush [2013]we define B = {s ∈ S : µ(s) > 0}

∀s ∈ B : y∗(s) = −P̂ (s), (15)

which leads to the following equality by plugging the previous (15) in (14) and defining z∗ = V̂ π̂ − µ∗ − ω:

∀s ∈ B, z∗(s) = ∥z∗∥q ∇
∥∥∥P̂∥∥∥

p
(s) (16)

or

∀s ∈ B, V̂ π̂(s)− µ∗(s) = ω + λ∇
∥∥∥P̂∥∥∥

p
(s)=̂αλ,ω

P̂
(17)

by letting λ = ∥z∗∥q ∈ R+ . Note that for s ∈ B, ∇∥y∥p = ∇∥P∥p only depends on P (s) and not on other coordinates
due to definition of Lp norm.

We can remark that v − µ∗ is P dependent, but if P is known, the best µ∗ is only determined by one 2 dimensional
parameters λ = ∥v − µ∗ − ν∥q and ω ∈ R+. Moreover, when P̂ is fixed, the scalar ω is a constant is fully determined by P ,
v and µ∗. This is why the quantity defined αλ

P̂
varies through 2 parameter λ and ω. Given this observation, we can rewrite

the optimization problem as :

max
µ≥0

{P̂(V̂ π̂ − µ)− βs,aspq(V̂
π̂ − µ)} = max

µλ,ω

P̂
∈Mλ,ω

P̂

{P̂(V̂ π̂ − µλ,ω

P̂
)− βs,aspq(V̂

π̂ − µλ,ω

P̂
)} (18)

= max
αλ,ω

P̂
∈Aλ,ω

P̂

P̂[V̂ π̂]αλ,ω

P̂

− βs,aspq([V̂
π̂]αλ,ω

P̂

) (19)

where we defined the maximization problem on µ not in RS but at the optimal in the variational family denote Mλ,ω
P =

{µλ,ω
P = V̂ π̂ − αλ,ω

P , λ, ω ∈ R+, P ∈ ∆(S), µ ∈ RS
+, µ

λ,ω
P =

[
0, 1

1−γ

]S
}.

We can rewrite the optimization problem in terms of αP with

[V ]αλ,ω

P̂

(s) :=

{
αλ,ω

P̂
, if V (s) ≥ αλ,ω

P̂

V (s), otherwise.

Note that for TV or L1, this lemma holds, but the vector αλ,ω

P̂
reduces to a positive scalar denoted α which is equal to∥∥∥V̂ π̂ − µ∗

∥∥∥
∞

according to Iyengar [2005]. The thing which is of capital importance is that the second part of the equation

spq([V̂
π̂]α) does not depend on P̂.



Lemma B.6 (Duality for the minimization problem for s rectangular case.). Considering a projection matrix associated
with a given policy π such that Pπ

s (s
′) =

∑
a π(a|s)Ps,a(s

′) and denoting P̂π ∈ Rs the vector P̂π
s (.) or Pπ

0 for Pπ
0,s(.),

we have:

κP̂s
(V̂ π̂) =

∑
a

π̂(a|s) max
αλ,ω

P̂s,a
∈Aλ,ω

P̂s,a

((
P̂s,a[V̂

π̂]αλ,ω

P̂s,a

− βs ∥πs∥q spq([V̂
π̂]αλ,ω

P̂s,a

)
))

κP0,s
(V ∗) =

∑
a

π(a|s) max
αλ,ω

P0,s,a
∈Aλ,ω

P0,s,a

((
P0,s,a[V

∗]αλ,ω
P0,s,a

− βs ∥πs∥q spq([V
∗]αλ,ω

P0,s,a

)
))

)

with [V ]α(s) :=

{
α(s), if V (s) > α

V (s), otherwise.

Proof. The second equation is the same replacing the center of the ball constrain P̂π
s by Pπ

0 and π̂ by π∗. By definition,

κP̂s
(V̂ π̂)(s) = min

P π̂
s ∈(∆s),P π̂

s ∈P̂s

P π̂
s V̂

π̂(s)

(a)
=
∑
a

π̂(a|s)P̂s,aV̂
π̂ + min

∥βs,a∥p≤βs

∑
a

π̂(a|s) min
y,∥y∥p≤βs,a,1y=0,y≥−P̂

∑
s′

y(s′)V̂ π̂

where we use the change of variable y(s′) = Ps,a(s
′) − P̂s,a(s

′) in (a). Then we case use the previous lemma for sa
rectangular assumption, Lemma 3.3. Then,

min
∥βs,a∥p≤βs

∑
a

π̂(a|s) min
y,∥y∥p≤βs,a,1y=0,y≥−P̂s,a

∑
s′

y(s′)V̂ π̂ = min
∥βs,a∥p≤βs

∑
a

π̂(a|s)max
µ≥0

(
− P̂s,aµ− βs,aspq(V̂

π̂ − µ)
)

=
∑
a

max
µ≥0

(
π̂(a|s)(−P̂s,aµ)− max

∥βs,a∥p≤βs

∑
a

π̂(a|s)βs,aspq(V̂
π̂ − µ)

)

=
∑
a

max
µ≥0

(
π̂(a|s)(−P̂s,aµ)− βs ∥πs∥q spq(V̂

π̂ − µ)

)

we can exchange the min and the max as we get concave-convex problems in βs,a and µ , ([von Neumann, 1928]) in the
second line and using Holder’s inequality in the last line. Finally, we obtain:

κP̂s
(V̂ π̂) =

∑
a

max
µ≥0

(
π̂(a|s)(P̂s,a(V̂

π̂ − µ)− βs ∥πs∥q spq(V̂
π̂ − µ))

)
(a)
=
∑
a

π̂(a|s) max
αλ,ω

P̂s,a
∈Aλ,ω

P̂s,a

((
P̂s,a[V̂

π̂]αλ,ω

P̂s,a

− βs ∥πs∥q spq([V̂
π̂]αλ,ω

P̂s,a

)
))

)

where in (a) we use Lemma 3.3. Second claim is the same replacing V̂ π̂ by V ∗, π̂ by π∗ and P̂ by P0. Then we derive a new
decomposition of the difference the two minimum.



Lemma B.7. For s and sa rectangular assumptions,

∣∣∣κP̂s,a
(V̂ π̂)− κP0,s,a

(V̂ π̂)
∣∣∣ ≤ max

{
max
s,a

∣∣∣∣∣∣ max
µ∈µλ,ω

P0,s,a

(
P0,s,a − P̂0,s,a

)
(V̂ π̂ − µλ,ω

P0,s,a
)

∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(α

λ,ω
P ,V̂ π̂)

, (20)

max
s,a

∣∣∣∣∣∣ max
µλ,ω

P̂0,s,a
∈Mλ,ω

P̂0,s,a

(
P0,s,a − P̂0,s,a

)
(V̂ π̂ − µλ,ω

P̂0,s,a

)

∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(α

λ,ω

P̂
,V̂ π̂)

}
(21)

∣∣∣κP̂s
(V ∗)− κP0,s

(V ∗)
∣∣∣ ≤ max

{
max
s,a

∣∣∣∣∣∣ max
µ∈µλ,ω

P0,s,a

(
P0,s,a − P̂0,s,a

)
(V ∗ − µλ,ω

P0,s,a
)

∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(α

λ,ω
P ,V ∗)

, (22)

max
s,a

∣∣∣∣∣∣ max
µλ,ω

P̂0,s,a
∈Mλ,ω

P̂0,s,a

(
P0,s,a − P̂0,s,a

)
(V ∗ − µλ,ω

P̂0,s,a

)

∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(α

λ,ω

P̂
,V ∗)

}
(23)

Proof.

∣∣∣κP̂s,a
(V ∗)− κP0,s,a

(V ∗)
∣∣∣ (24)

=
∣∣∣ max
µλ,ω
P0,s,a

∈Mλ,ω
P0,s,a

{
P0,s,a(V

∗ − µ)− βs,a

(
spq((V

∗ − µ))
)}

− max
µλ,ω

P̂0,s,a
∈Mλ,ω

P̂0,s,a

{
P̂0,s,a(V

∗ − µλ,ω

P̂0,s,a

)− βs,a

(
spq((V

∗ − µλ,ω

P̂0,s,a

))

)} ∣∣∣
≤ max

{∣∣∣ max
µλ,ω
P0,s,a

∈Mλ,ω
P0,s,a

{
P0,s,a(V

∗ − µλ,ω
P0,s,a

)− βs,a

(
spq((V

∗ − µλ,ω
P0,s,a

))
)}

− max
µλ,ω
P0,s,a

∈Mλ,ω
P0,s,a

{
P̂0,s,a(V

∗ − µλ,ω
P0,s,a

)− βs,a

(
spq((V

∗ − µλ,ω
P0,s,a

))
)} ∣∣∣; (25)

∣∣∣ max
µλ,ω

P̂0,s,a
∈Mλ,ω

P̂0,s,a

{
P̂0,s,a(V

∗ − µλ,ω

P̂0,s,a

)− βs,a

(
spq((V

∗ − µλ,ω

P̂0,s,a

))

)}
(26)

− max
µλ,ω

P̂0,s,a
∈Mλ,ω

P̂0,s,a

{
P0,s,a(V

∗ − µλ,ω

P̂0,s,a

)− βs,a

(
spq((V

∗ − µλ,ω

P̂0,s,a

))

)} ∣∣∣}

≤ max
{ ∣∣∣∣∣∣ max

µ∈µλ,ω
P0,s,a

(
P0,s,a − P̂0,s,a

)
(V ∗ − µλ,ω

P0,s,a
)

∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(α

λ,ω
P ,V ∗)

,

∣∣∣∣∣∣ max
µλ,ω

P̂0,s,a
∈Mλ,ω

P̂0,s,a

(
P0,s,a − P̂0,s,a

)
(V ∗ − µλ,ω

P̂0,s,a

)

∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(α

λ,ω

P̂
,V ∗)

}
(27)

where in the first equality we use Lemma B.5. The final inequality is a consequence of the 1-Lipschitzness of the max
operator. Taking the supremum over s, a gives the result. Replacing V ∗ by V̂ π̂ gives the other inequality. The result for s



rectangular are the same as

∑
a

π(a|s)max
{ ∣∣∣∣∣∣ max

µ∈µλ,ω
P0,s,a

(
P0,s,a − P̂0,s,a

)
(V ∗ − µλ,ω

P0,s,a
)

∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(α

λ,ω
P ,V ∗)

,

∣∣∣∣∣∣ max
µλ,ω

P̂0,s,a
∈Mλ,ω

P̂0,s,a

(
P0,s,a − P̂0,s,a

)
(V ∗ − µλ,ω

P̂0,s,a

)

∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(α

λ,ω

P̂
,V ∗)

}

(28)

≤ max
{
max
s,a

∣∣∣∣∣∣ max
µ∈µλ,ω

P0,s,a

(
P0,s,a − P̂0,s,a

)
(V ∗ − µλ,ω

P0,s,a
)

∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(α

λ,ω
P ,V ∗)

,max
s,a

∣∣∣∣∣∣ max
µλ,ω

P̂0,s,a
∈Mλ,ω

P̂0,s,a

(
P0,s,a − P̂0,s,a

)
(V ∗ − µλ,ω

P̂0,s,a

)

∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(α

λ,ω

P̂
,V ∗)

}

(29)

Note that at this point, quantities for s and sa rectangular is the same as the part with span semi norms cancelled. Now, note
that the main problem is that we can not apply classical Hoeffding’s inequality as P̂ is dependent of data as V̂ π̂. We need
to decouple V̂ π̂ using s absorbing MDPS as in Agarwal et al. [2020] but using Hoeffding arguments. First, we will use a
concentration for V ∗.

Lemma B.8. For sa and s-rectangular, with probability 1− δ, it holds:

∣∣∣κP̂s,a
(V ∗)− κP0,s,a

(V ∗)
∣∣∣ ≤ 2

√
L

2N(1− γ)2
+

2L|S|1/q ∥1S∥q (p− 1)

N(1− γ)

with L = log(18 ∥1∥q SAN/δ)

Proof. First, we can use previous Lemma B.7∣∣∣κP̂s,a
(V ∗)− κP0,s,a

(V ∗)
∣∣∣ (30)

≤ max
{ ∣∣∣∣∣∣ max

µ∈µλ,ω
P0,s,a

(
P0,s,a − P̂0,s,a

)
(V ∗ − µλ,ω

P0,s,a
)

∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(α

λ,ω
P ,V ∗)

,

∣∣∣∣∣∣ max
µλ,ω

P̂0,s,a
∈Mλ,ω

P̂0,s,a

(
P0,s,a − P̂0,s,a

)
(V ∗ − µλ,ω

P̂0,s,a

)

∣∣∣∣∣∣︸ ︷︷ ︸
=:gs,a(α

λ,ω

P̂
,V ∗)

}
(31)

First, we control gs,a(α
λ,ω
P , V ∗). To do so, we use for a fixed αλ,ω

P and any vector V ∗ that is independent with P̂ 0, the
Hoeffding’s inequality, one has with probability at least 1− δ with sa-rectangular notations,

gs,a(α
λ,ω
P , V ∗) =

∣∣∣(P0,s,a − P̂0,s,a

)
[V ∗]αλ,ω

P

∣∣∣ ≤
√

log( 2δ )

(1− γ)22N
(32)

Once pointwise concentration derived, we will use uniform concentration to yield this lemma. First, union bound, is obtained
noticing that gs,a(α

λ,ω
P , V ∗) is 1-Lipschitz w.r.t. λ and ω as it is linear in λ and ω. Moreover, λ∗ = ∥V ∗ − µ∗ − ω∥q

obeying λ∗ ≤ ∥1∥q

1−γ . The quantity ω ∈ [0, 1/(1 − γ)] as it is always smaller that V ∗ by definition. We construct then a

2-dimensional a ε1-net Nε1 over λ∗ ∈ [0,
∥1∥q

1−γ ] and ω ∈ [0, 1/(1− γ)] whose size satisfies |Nε1 | ≤
(

3∥1∥q

ε1(1−γ)

)2
[Vershynin,

2017]. Using union bound and (32), it holds with probability at least 1− δ
SA that for all λ ∈ Nε1 ,

gs,a(α
λ
P , V

∗) ≤

√
2 log(

SA|Nε1
|

δ )

2N(1− γ)2
. (33)



Using the previous equation and also (27), it results in using notation log( 18SAN
δ ) = L,

gs,a(α
λ
P , V

∗)
(a)

≤ sup
αλ

P∈Nε1

∣∣∣(P0,s,a − P̂0,s,a

)
[V ∗]αλ

P

∣∣∣+ ε1

(b)

≤

√
log(

SA|Nε1
|

δ )

2(1− γ)2N
+ ε1 (34)

(c)

≤

√
log(

2SA|Nε1
|

δ )

2N(1− γ)2
+

log(
2SA|Nε1

|
δ )

3N(1− γ)

(d)

≤

√
L

2N(1− γ)2
+

L

3N(1− γ)

≤ 2

√
L

2(1− γ)2N
(35)

where (a) is because the optimal α∗ falls into the ε1-ball centered around some point inside Nε1 and gs,a(α
λ
P , V

∗) is

1-Lipschitz with regard to λ and ω, (b) is due to Eq. (33), (c) arises from taking ε1 =
log(

2SA|Nε1 |
δ )

3N(1−γ) , (d) is verified by

|Nε1 | ≤
(

3∥1∥q

ε1(1−γ)

)2
≤ 9N ∥1∥q and that variance of a ceiling function of a vector is smaller than the variance of non-ceiling

vector.

For Lp with p ≥ 2, contrary to the previous term, the second term gs,a(α
λ
P̂
, V ) is more difficult as we need concentration,

but there is an extra dependency in the data thought the parameter αλ
P̂

. Note that this term does not exist as α is a constant
for TV . We need to decouple this problem using absorbing MDPs. Then it leads to

gs,a(α
λ,ω

P̂
, V ∗) (36)

= | max
µλ,ω

P̂0,s,a
∈Mλ,ω

P̂0,s,a

(
P0,s,a − P̂0,s,a

)
(V ∗ − µλ,ω

P̂0,s,a

)| (37)

= | max
µ∈Mλ,ω

P̂0,s,a

(
P0,s,a − P̂0,s,a

)
(V ∗ − µλ,ω

P0,s,a
) +

(
P0,s,a − P̂0,s,a

)
(µλ,ω

P0,s,a
− µλ,ω

P̂0,s,a

)| (38)

≤ | max
µλ,ω
P0,s,a

∈Mλ,ω
P0,s,a

(
P0,s,a − P̂0,s,a

)
(V ∗ − µλ,ω

P0,s,a
) + max

µλ,ω

P̂0,s,a
∈Mλ,ω

P̂0,s,a

(
P0,s,a − P̂0,s,a

)
(µλ,ω

P0,s,a
− µλ,ω

P̂0,s,a

)| (39)

In the first equality, we add the term µλ,ω
P0,s,a

to retrieve the previous concentration problem, fixing P0,s,a and optimizing
λ, ω. In the second, we extend the max using triangular inequality. The first term in the last equality is exactly the term we
have controlled previously, while the second one needs more attention. We decouple the dependency of the data, and then
controlling the difference between the µ. Then using the characterization of the optimal µ from equation (17):(

P0,s,a − P̂0,s,a

)
(µλ,ω

P0,s,a
− µλ,ω

P̂0,s,a

) =
∑
s′

λ
(
P0,s,a(s

′)− P̂0,s,a(s
′)
)
(∇
∥∥P0,s,a

∥∥
p
(s′)−∇

∥∥∥P̂0,s,a(s
′)
∥∥∥
p
)

As the norm is C2 for p ≥ 2, using Mean value theorem, we know that

∥∥∥∥(∇∥∥P0,s,a

∥∥
p
−∇

∥∥∥P̂0,s,a

∥∥∥
p
)

∥∥∥∥
2

≤ sup
x∈∆(S)

∥∥∥∇2 ∥x∥p
∥∥∥
2

∥∥∥(P0,s,a − P̂0,s,a)
∥∥∥
2
.

For Lp = ∥x∥p norms, p ≥ 2, we have simple taking derivative twice:

∇2 ∥x∥p =
p− 1

Lp

(
Ap−2 − gpg

T
p

)



with

A = Diag

(
abs(x)

Lp

)
gp = Ap−2

(
x

Lp

)
.

and Lp the norm, where Diag is the diagonal matrix. However, as x ≤ Lp, A ≤ I , we get

H ≤ p− 1

∥x∥p
≤ (p− 1)|S|1/q (40)

where the 1/Lp is minimized for the uniform distribution. Then using Cauchy-Swartz inequality, it holds(
P0,s,a − P̂0,s,a

)
(µλ,ω

P0,s,a
− µλ,ω

P̂0,s,a

) ≤ (p− 1)λ|S|1/q
∥∥∥(P0,s,a − P̂0,s,a

)∥∥∥2
2
. (41)

Then the question is how to bound the quantity
∥∥∥(P0,s,a − P̂0,s,a

)∥∥∥2
2
. To do so, we will use Mac Diarmid inequality.

Definition B.1. Bounded difference property

A function f : X1 × . . .Xn → R satisfies the bounded difference property if for each i = 1, . . . , n the change of coordinate
from si to s′i may change the value of the function at most on ci

∀i ∈ [n] : sup
x′
i∈Xi

|f (x1, . . . , xi, . . . , xn)− f (x1, . . . , x
′
i, . . . , xn)| ≤ ci

In our case, we consider f (X1, . . . , Xn) = ∥
∑n

k=1 Xk∥2. Then we can notice that by triangle inequality for any x1, . . . , xn

and x′
k with Xi,s′ = P i

0,s,a(s
′)− P0,s,a(s

′) ( index i holds for index of sample generated from the generative model) that

f (x1, . . . , xk, . . . , xn) = ∥x1 + . . .+ xn∥2 ≤ ∥x1 + . . .+ xn − xk + x′
k∥2 + ∥xk − x′

k∥2
≤ f (x1, . . . , x

′
k, . . . , xn) + 2

Theorem B.9. (McDiarmid’s inequality). McDiarmid et al. [1989] Let f : X1 × . . .Xn → R be a function satisfying the
bounded difference property with bounds c1, . . . , cn. Consider independent random variables X1, . . . , Xn, Xi ∈ Xi for all
i. Then for any t > 0

P [f (X1, . . . , Xn)− E [f (X1, . . . , Xn)] ≥ t] ≤ exp

(
− 2t2∑n

i=1 c
2
i

)

Using McDiarmid’s inequality and union bound, we can bound the term as here∥∥∥(P0,s,a − P̂0,s,a

)∥∥∥2
2
− E[

∥∥∥(P0,s,a − P̂0,s,a

)∥∥∥2
2
] ≤ 2N log(|S||A|/δ))

N2

with probability 1− δ/(|S||A|). Moreover, the additional term can be bounded as follows:

E[
∥∥∥(P0,s,a − P̂0,s,a

)∥∥∥2
2
] = E[

∑
s′

(P0,s,a(s
′)− P0,s,a(s

′))2 = E[
∑
s′

(
1

N

N∑
i

Xi,s′)
2]

with Xi,s′ = P i
0,s,a(s

′)− P0,s,a(s
′) is one sample sampled from the generative model. Then



E[
∥∥∥(P0,s,a − P̂0,s,a

)∥∥∥2
2
] =

1

N2

∑
s′

Var(
N∑
i

Xi,s)
a
=

1

N2

N∑
i

∑
s′

Var(Xi,s)

=
1

N2

N∑
i

E(
∑
s′

X2
i,s) ≤

4

N

where (a) the last equality comes from the independence of the random variables and where the last inequality comes from
the fact the maximum of two elements in the simplex is bounded by 2. Finally, regrouping the two terms, we obtain with
probability 1− δ/(|S||A|):

∥∥∥(P0,s,a − P̂0,s,a

)∥∥∥2
2
≤ 2N log(|S||A|/(δ)))

N2
+

4

N
=

2 log(|S||A|/(δ)))
N

+
4

N

≤ 6 log(|S||A|/(δ))
N

=
L′

N

with L′ = 6 log(|S||A|/(δ)). Finally, plugging the previous equation in (41):

max
µ∈µλ

P̂0,s,a

(
P0,s,a − P̂0,s,a

)
(µλ

P0,s,a
− µ)| ≤ max

λ

∥∥∥(P0,s,a − P̂0,s,a

)∥∥∥2
2
S1/q(p− 1)λ.

This term can be easily controlled by taking the supremum over λ which is a 1 dimensional parameter. Then we can bound
λ ∈ [0, H ∥1S∥q]. Indeed,

λ∗ = ∥V ∗ − µ∗ − ω∥q ≤ ∥V ∗∥q ≤ H ∥1S∥q .

Finally, we obtain:

max
λ

∥∥∥(P0,s,a − P̂0,s,a

)∥∥∥2
2
S1/qλ ≤

L′|S|1/q ∥1S∥q (p− 1)

N(1− γ)
.

Regrouping all terms:

gs,a(α
λ
P̂
, V ∗) ≤ | max

µλ
P0,s,a

∈Mλ
P0,s,a

(
P0,s,a − P̂0,s,a

)
(V ∗ − µλ

P0,s,a
) + max

µλ
P̂0,s,a

∈Mλ
P̂0,s,a

(
P0,s,a − P̂0,s,a

)
(µλ

P0,s,a
− µλ

P̂0,s,a

)|

≤ 2

√
L

2N(1− γ)2
+

L′|S|1/q ∥1S∥q (p− 1)

N(1− γ)
≤ 2

√
L

2N(1− γ)2
+

2L|S|1/q ∥1S∥q (p− 1)

N(1− γ)
(42)

(43)

For the specific case of TV which is not C2 smooth, this lemma still holds as in (27), we only need to control one term
without the dependency on data in the supremum as αλ

P reduces to a scalar α which does not depend on P . Then extra
decomposition using smoothness of the norm is not needed, as the only remaining term in the max in (27) is the left hand
side term.

Lemma B.10 (s-absorbing MDPs for Hoeffding’s concentration Inequalities).

As in Agarwal paper Agarwal et al. [2020], we define for a state s and a scalar u, the MDP called Ms,u such that: Ms,u is
identical to M except that state s is absorbing in Ms,u, i.e. PMs,u

(s | s, a) = 1 for all a, and the reward at state s in Ms,u

is (1− γ)u. The remainder of the transition model and reward function are identical to those in M . In the following, we
will use V π

s,u to denote the value function V π
Ms,u

and correspondingly for Q and reward and transition functions to avoid
notational clutter. Then, we have that for all policies π :

V π
s,u(s) = u



because s is absorbing with reward (1− γ)u. For some state s, we will only consider the MDP Ms,u for u in a finite set Us

with

Us ⊂ [V ⋆(s)−∆δ,NV ⋆(s) + ∆δ,N ] .

with ∆δ,N := γ
(1−γ)2

(
2
√

L
2N +

2L|S|1/q∥1S∥q(p−1)

N

)
The set Us consists of evenly spaced elements in this interval, where

we set the size of |Us| appropriately later on. As before, we let M̂s,u denote the MDP that uses the empirical model P̂
instead of P , at all non-absorbing states and abbreviate the value functions in M̂s,u as V̂ π

s,u. Then we have for a fix a state s,
action a, a finite set Us, and δ ≥ 0, that for all u ∈ Us: with probability greater than 1− δ, it holds :

|(P̂s,a − P0,s,a)[V
π̂
u ]αλ,ω

P
| ≤ 1

(1− γ)

(
2

√
log(

18SAN |Us|∥1∥q

δ )

2N
+

2 log(
18SAN |Us|∥1∥q

δ )|S|1/q ∥1S∥q (p− 1)

N

)
(44)

This is exactly B.8 in equation (27) to the finite set Us as now V π̂
u and P̂s,a are now independent.

Lemma B.11 (Agarwal et al. [2020], Lemma 7). Let u∗ = V ⋆
M (s) and uπ = V π

M (s). We have

V ⋆
M = V ⋆

s,u⋆ , and for all policies π, V π
M = V π

Mπ
s,uπ

Proof can be found in Agarwal et al. [2020], Lemma 7.

Lemma B.12. For any u, u′, s and policy π:

∥∥Qπ
s,u −Qπ

s,u′

∥∥
∞ ≤ |u− u′|

Proof. To obtain the result in our robust MDP setting, we need a similar stability property like in Lemma 8 of Agarwal
et al. [2020], but for the robust value functions. It turns out that this a direct consequence of the property for classical MDP.
Agarwal in Agarwal et al. [2020] show equation 45 for classical MPDs, then we have for RMDPs:

|Qπ
Ms,u

(s, a)−Qπ
Ms,u′ (s, a)| ≤

1

1− γ
|u− u′| (45)

⇒| inf
M

Qπ
Ms,u

(s, a)− inf
M

Qπ
Ms,u

(s, a)| ≤ 1

1− γ
|u− u′| (46)

⇒| sup
π

inf
M

Qπ
Ms,u

(s, a)− sup
π

inf
M

Qπ
Ms,u

(s, a)| ≤ 1

1− γ
|u− u′|. (47)

which concludes the proof for RMDPs.

Lemma B.13 (Hoeffding’s Concentration for dependent variables). Removing s, a notations for kernels,

∣∣∣(P0 − P̂
)
· [V̂ ⋆]αλ,ω

P

∣∣∣ ≤ 1

(1− γ)

(
2

√
log(

18SAN |Us|∥1∥q

δ )

2N
+

2 log(
18SAN |Us|∥1∥q

δ )|S|1/q ∥1S∥q (p− 1)

N

)
(48)

+ 2 min
u∈Us

∣∣∣V̂ ⋆(s)− u
∣∣∣ (49)



Proof.∣∣∣(P0 − P̂
)
· [V̂ ⋆]αλ,ω

P

∣∣∣ = ∣∣∣(P0 − P̂
)
·
(
[V̂ ⋆]αλ,ω

P
− [V ⋆

s,u]αλ,ω
P

+ [V ⋆
s,u]αλ,ω

P

)∣∣∣ (50)

≤
∣∣∣(P0 − P̂

)
·
(
[V̂ ⋆]αλ,ω

P
− [V ⋆

s,u]αλ,ω
P

)∣∣∣+ ∣∣∣(P0 − P̂
)
·
(
[V ⋆

s,u]αλ,ω
P

)∣∣∣ (51)

(a)

≤ 1

(1− γ)

(
2

√
log(

18SAN |Us|∥1∥q

δ )

2N
+

2 log(
18SAN |Us|∥1∥q

δ )|S|1/q ∥1S∥q (p− 1)

N

)
(52)

+ 2
∥∥∥V̂ ⋆ − V ⋆

s,u

∥∥∥
∞

(53)

(b)

≤ 1

(1− γ)

(
2

√
log(

18SAN |Us|∥1∥q

δ )

2N
+

2 log(
18SAN |Us|∥1∥q

δ )|S|1/q ∥1S∥q (p− 1)

N

)
(54)

+ 2
∣∣∣V̂ ⋆(s)− u

∣∣∣ (55)

(56)

where (a) is 44 or Hoeffding’s inequality for s-absorbing MDPs. By Lemmas B.11 and B.12,∥∥∥[V̂ ⋆]αλ,ω
P

− [V ⋆
s,u]αλ,ω

P

∥∥∥
∞

≤
∥∥∥[V̂ ⋆ − V ⋆

s,u]αλ,ω
P

∥∥∥
∞

≤
∥∥∥V̂ ⋆ − V ⋆

s,u

∥∥∥
∞

=
∥∥∥V̂ ⋆

s,V̂ ⋆(s)
− V ⋆

s,u

∥∥∥
∞

≤
∣∣∣V̂ ⋆(s)− u

∣∣∣ .
which is point (b). The last min operator in the result comes from the fact that the previous equation holds for all u ∈ Us,
we take the best possible choice, which completes the proof of the first claim.

Lemma B.14 (Crude bound for Robust MDPs). This lemma is needed for next Lemma B.15 but the proof differs from the
classical MDP setting. For s and sa rectangular assumptions,

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

≤ ∆δ,N and
∥∥∥Q∗ − Q̂∗

∥∥∥
∞

≤ ∆δ,N with ∆δ,N =
γ

(1− γ)2

(
2

√
L

2N
+

2L|S|1/q ∥1S∥q (p− 1)

N

)
Proof. For the first claim :∥∥∥Qπ − Q̂π

∥∥∥
∞

= max
s,a

∣∣∣γ (κP0,s,a (V
π)− κP̂s,a

(V π)
)
+ γ

(
κP̂s,a

(V π)− κP̂s,a

(
V̂ π
))∣∣∣

(b)

≤ max
s,a

∣∣∣γ (κP0,s,a (V
π)− κP̂s,a

(V π)
)∣∣∣+ γ

∥∥∥V π − V̂ π
∥∥∥
∞

(b)

≤ γmax
s,a

∣∣∣κP̂s,a
(V π)− κP0,s,a(V

π)
∣∣∣+ γ

∥∥∥Qπ − Q̂π
∥∥∥
∞

.

where we use contraction of κ, lemma B.3 in (a) and
∥∥∥Qπ − Q̂π

∥∥∥
∞

≤
∥∥∥V π − V̂ π

∥∥∥
∞

in (c) for any π. Solving we get :∥∥∥Qπ − Q̂π
∥∥∥
∞

≤ γ

1− γ
max
s,a

∣∣∣κP̂s,a
(V π)− κP0,s,a

(V π)
∣∣∣

Then using Lemma B.7, we obtain :

∥∥∥Qπ − Q̂π
∥∥∥
∞

≤ γ

1− γ
max
s,a

∣∣∣κP̂s,a
(V π)− κP0,s,a

(V π)
∣∣∣

Taking π = π∗, V π∗
is independent of the data and we can use Lemma B.8. Finally, we have

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

≤ γ

1− γ

∥∥∥(P̂ − P0)V
π
∥∥∥
∞

≤ γ

1− γ

(
2

√
L

2N(1− γ)2
+

2L|S|1/q ∥1S∥q (p− 1)

N(1− γ)

)



For the second point, using s or sa rectangular assumptions,

∥∥∥Q∗ − Q̂∗
∥∥∥
∞

≤
∥∥∥T π∗

Usa
p
Q∗ − T̂ π̂∗

Usa
p
Q∗ + T̂ π̂∗

Usa
p
Q∗ − T̂ π̂∗

Usa
p
Q̂∗
∥∥∥
∞

≤
∥∥∥T π∗

Usa
p
Q∗ − T̂ π̂∗

Usa
p
Q∗
∥∥∥
∞

+
∥∥∥T̂ π̂∗

Usa
p
Q∗ − T̂ π̂∗

Usa
p
Q̂∗
∥∥∥
∞

(a)

≤
∥∥∥T π∗

Usa
p
Q∗ − T̂ π̂∗

Usa
p
Q∗
∥∥∥
∞

+ γ
∥∥∥Q∗ − Q̂∗

∥∥∥
∞

(b)

≤
∥∥∥κP̂s,a

(V ∗)− κP0,s,a
(V ∗)

∥∥∥
∞

+ γ
∥∥∥Q∗ − Q̂∗

∥∥∥
∞

Then using Lemma B.7, and solving we get :∥∥∥Q∗ − Q̂∗
∥∥∥
∞

γ

1− γ

∥∥∥κP̂s,a
(V ∗)− κP0,s,a

(V ∗)
∥∥∥
∞

Finally using Lemma B.8, we obtain

∥∥∥Q∗ − Q̂∗
∥∥∥
∞

≤ γ

(1− γ)2

(
2

√
L

2N
+

2L|S|1/q ∥1S∥q (p− 1)

N

)
which concludes the proof.

Lemma B.15 (Similar to Agarwal, Agarwal et al. [2020] lemma 9 but for RMPDs). With probability 1− δ, we have:

min
u∈Us

∣∣∣V̂ ⋆(s)− u
∣∣∣ ≤ 4γ

(
2

√
L

2N
+

2L|S|1/q ∥1S∥q (p− 1)

N

)
Proof. The proof can be found in Agarwal et al. [2020] and is similar for RMDs than for classical MPDs and consists
in choosing Us to be the evenly spaced elements in the interval

[
V ⋆(s)−∆δ/2,NV ⋆(s) + ∆δ/2,N

]
, then finally the

size of Us is chosen to be |Us| = 1
(1−γ)2 . Using lemma , with probability greater than 1 − δ/2, we have V̂ ⋆(s) ∈[

V ⋆(s)−∆δ/2,NV ⋆(s) + ∆δ/2,N

]
for all s according to Lemma B.14. This implies using that that V̂ π∗

will land in one of
|Us| − 1evenly sized sub-intervals of length 2∆δ/2,N :

min
u∈Us

∣∣∣V̂ ⋆(s)− u
∣∣∣ ≤ 2∆δ/2,N

|Us| − 1
=

2

|Us| − 1

γ

(1− γ)2

(
2

√
L

2N
+

2L|S|1/q ∥1S∥q
N

)
≤ 4γ

(
2

√
L

2N
+

2L|S|1/q ∥1S∥q (p− 1)

N

)

Lemma B.16 (Relation between concentration of robust and non-robust MDPs). With probability 1− δ, we get:

max
s,a

∣∣∣κP̂s,a
(V π̂)− κP0,s,a

(V π̂)
∣∣∣ ≤ 10

(1− γ)

(√ L′′

2N
+

L′′|S|1/q ∥1S∥q (p− 1)

N

)
+ 2ϵopt.

max
s,a

∣∣∣κP̂s,a
(V ∗)− κP0,s,a(V

∗)
∣∣∣ ≤ 10

(1− γ)

(√ L′′

2N
+

L′′|S|1/q ∥1S∥q (p− 1)

N

)
.

with L′′ = log(
32SAN∥1∥q

δ(1−γ) )

Proof. Using Lemma B.7, we directly have the first inequality equality part of the first statement:

max
s,a

∣∣∣κP̂s,a
(V̂ π̂)− κP0,s,a

(V̂ π̂)
∣∣∣

is bounded by either by



max
(s,a)

max
αλ,ω

P ∈Aλ,ω
P

∣∣∣(P0 − P̂
)
[V̂ π̂]αλ,ω

P

∣∣∣
or

max
(s,a)

max
αλ,ω

P̂
∈Aλ,ω

P̂

∣∣∣(P0 − P̂
)
[V̂ π̂]αλ,ω

P̂

∣∣∣ .
We know that in both cases that

max
(s,a)

∣∣∣(P0 − P̂
)
[V̂ π̂]αλ,ω

P

∣∣∣ ≤ max
(s,a)

|(P0 − P̂)([V̂ π̂]αλ,ω
P

− [V̂ ∗]αλ,ω
P

)|+max
(s,a)

|(P0 − P̂)[V̂ ∗]αλ,ω
P

|,

using |[V̂ π̂]αλ,ω
P

|−|[V̂ ∗]αλ,ω
P

| ≤ |([V̂ π̂−V̂ ∗]αλ,ω
P

)| ≤ |(V̂ π̂−V̂ ∗)| and combining Lemma B.13 and B.15, for |Us| = 1
(1−γ)2

, with probability 1− δ, we have :

|
(
P0 − P̂

)
[V̂ π̂]αλ,ω

P
| ≤4γ

(
2

√
L′′

2N
+

2LS1/q ∥1S∥q
N

)
+

1

(1− γ)

(
2

√
L′′

2N
+

2L′′S1/q ∥1S∥q
N

)
+ 2ϵopt.

≤ 10

(1− γ)

(√ L′′

2N
+

L′′|S|1/q ∥1S∥q (p− 1)

N

)
+ 2ϵopt.

The proof is exactly the same by replacing π̂ by π∗ but without the 2ϵopt , which gives the second stated result. Again, this
proof is written for the sa-rectangular assumption, it is also true for the s-rectangular case with slightly different notations,
replacing D = P0,s,a by D = P0,s.

These two inequalities are the core of our proof, as the closed form solution of the min problem in the robust setting only
depends on α, β and the current value function.

Theorem B.17. Suppose δ > 0, ϵ > 0 and β > 0, let π̂ be any ϵopt -optimal policy for M̂ , i.e.
∥∥∥Q̂π̂ − Q̂⋆

∥∥∥
∞

≤ ϵopt . If

N ≥ Cγ2L′′

(1− γ)4ϵ2
,

we get ∥∥Q∗ −Qπ̂
∥∥
∞ ≤ ϵ+

3γϵopt
1− γ

with probability at least 1− δ, where C is an absolute constant. Finally, for Ntotal = N |S||A| and H = 1/(1− γ), we get
an overall complexity of

Ntotal = Õ
(
H4|S||A|

ϵ2

)
.

Proof. ∥∥Q∗ −Qπ̂
∥∥
∞

(a)

≤
∥∥∥Q∗ − Q̂∗

∥∥∥
∞

+
∥∥∥Q̂∗ − Q̂π̂

∥∥∥
∞

+
∥∥∥Q̂π̂ −Qπ̂

∥∥∥
∞

(b)

≤ ϵopt +
γ

(1− γ)

(
max
s,a

∣∣∣κP̂s,a
(V ∗)− κPs,a

(V ∗)
∣∣∣+max

s,a

∣∣κPs,a

(
V π̂
)
− κPs,a

(
V π̂
)∣∣)

(c)

≤ 20γ

(1− γ)2

(√ L′′

2N
+

L′′|S|1/q ∥1S∥q (p− 1)

N

)
+ ϵopt +

2γϵopt
1− γ

≤ 20γ

(1− γ)2

(√ L′′

2N
+

L′′|S|1/q ∥1S∥q (p− 1)

N

)
+ ϵopt +

2γϵopt
1− γ

(d)

≤ ϵ+
3γϵopt
1− γ



Inequality (a) is due to Lemma B.1. Inequality (b) comes from Lemma B.4. Finally, inequality (c) comes from Lemma B.16
and inequality (d) from the form of N in the theorem. For N ≥ H4SA, the second term proportional to 1/N is very small
compared to the asymptotic term in 1/

√
N for small ϵ. Note that S1/q ∥1S∥q = |S| for L2 norm for example. This proof

holds for both s- and sa-rectangular assumptions.

C TOWARDS MINIMAX OPTIMAL BOUNDS

We start from the same decomposition as the proof of Theorem 4.1 proved in Lemma B.1:

∥∥Q∗ −Qπ̂
∥∥
∞ ≤

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

+
∥∥∥Q̂π∗

− Q̂π̂
∥∥∥
∞

+
∥∥∥Q̂π̂ −Qπ̂

∥∥∥
∞

.

However, we need tighter concentration arguments for this proof.

In the following, we will frequently use the fact that, for any policy π, written below for the s-rectangular case (a similar
expression can be obtained for the sa-rectangular case, adapting the regularized reward),

Recall, the fix point equation for Qπ can be written as :

Qπ = (I − γPπ
0 )

−1
(R0 − αs

(
πs/ ∥πs∥q

)q−1

+ γ inf
Pπ∈Ps

PπV π) (57)

It will be applied notably to π̂ and π∗ (recall that Q∗ = Qπ∗
), in the RMDP but also in the empirical one.

Lemma C.1. For s-rectangular we have

(I − γPπ
0 )

−1
rs
Q̂π

s
−
(
I − γP̂π

)−1

rs
Q̂π

s

(a)
= (I − γPπ

0 )
−1
((

I − γP̂π
)
− (I − γPπ

0 )
)
Q̂π

s

= γ (I − γPπ
0 )

−1
(
Pπ
0 − P̂π

)
Q̂π

s

= γ (I − γPπ
0 )

−1
(P0 − P̂ )V̂ π

s

and for optimal policy

(
I − γPπ∗

0

)−1

rs
Q̂π∗

s
−
(
I − γP̂π∗

)−1

rs
Q̂π∗

s
= γ

(
I − γPπ∗

0

)−1

(P0 − P̂ )V̂ π∗

s (58)(
I − γP π̂

0

)−1
rs
Q̂π̂

s
−
(
I − γP̂ π̂

)−1

rs
Q̂π̂

s
= γ

(
I − γP π̂

0

)−1
(P0 − P̂ )V̂ π̂

s (59)

The solution is a bit different as rs
Q̂π

s

is the regularized form of the Lp optimization problem with simplex constraints which

correspond to rs
Q̂π

s

= R0 −
(

π∗
s

∥π∗
s∥q

)q−1

αs + γ infPπ∈Ps P
πV̂ π or for sa case : r(s,a)

Q̂π
sa

= R0 − αsa + γ infPπ∈Ps P
πV̂ π

Indeed, even without close form, we can write the problem with an expectation over the nominal and the infimum problem.

Lemma C.2 (Upper bound on Q∗ − Q̂π∗
and on Qπ̂ − Q̂π̂ , all Q values are now with robust under simplex constraints.).

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

≤γ
∥∥∥(I − γPπ∗

0 )−1(P0 − P̂ )V̂ π∗
∥∥∥
∞

+
2γβ|S|1/q

1− γ

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞∥∥∥Qπ̂ − Q̂π̂

∥∥∥
∞

≤γ
∥∥∥(I − γP π̂

0

)−1
(P0 − P̂ )V̂ π̂

∥∥∥
∞

+
2γβ|S|1/q

1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞



Proof.

Q∗ − Q̂π∗

=
(
I − γPπ∗

0

)−1

(R0 −
( π∗

s

∥π∗
s∥q

)q−1

αs + inf
Pπ∈Ps

PπV ∗)

−
(
I − γP̂π∗

)−1

(R0 −
( π∗

s

∥π∗
s∥q

)q−1

αs + inf
Pπ∈Ps

PπV̂ π∗
)

=
(
I − γPπ∗

0

)−1

(R0 −
( π∗

s

∥π∗
s∥q

)q−1

αs + γ inf
Pπ∈Ps

PπV ∗)

−
(
I − γPπ∗

0

)−1

(R0 −
( π∗

s

∥π∗
s∥q

)q−1

αs + γ inf
Pπ∈Ps

PπV̂ π∗
)

+
(
I − γPπ∗

0

)−1

(R0 −
( π∗

s

∥π∗
s∥q

)q−1

αs + γ inf
Pπ∈Ps

PπV̂ π∗
)

−
(
I − γP̂π∗

)−1

(R0 −
( π∗

s

∥π∗
s∥q

)q−1

αs + γ inf
Pπ∈Ps

PπV̂ π∗
)

(a)
=γ

(
I − γPπ∗

0

)−1

(P0 − P̂ )V̂ π∗
+
(
I − γPπ∗

0

)−1

γ

(
inf

Pπ∈Ps

PπV ∗ − inf
Pπ∈Ps

PπV̂ π∗
)

where in (a) we use previous Lemma C.1.

Hence, taking the supremum norm ∥.∥∞,∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

=∥∥∥∥γ (I − γPπ∗

0

)−1

(P0 − P̂ )V̂ π∗
+
(
I − γPπ∗

0

)−1

γ

(
inf

Pπ∈Ps

PπV ∗ − inf
Pπ∈Ps

PπV̂ π∗
)∥∥∥∥

∞
(b)

≤
∥∥∥∥γ (I − γPπ∗

0

)−1

(P0 − P̂ )V̂ π∗
∥∥∥∥
∞

+

∥∥∥∥(I − γPπ∗

0

)−1

γ

(
inf

Pπ∈Ps

PπV ∗ − inf
Pπ∈Ps

PπV̂ π∗
)∥∥∥∥

∞
(c)

≤
∥∥∥∥γ (I − γPπ∗

0

)−1

(P0 − P̂ )V̂ π∗
∥∥∥∥
∞

+
γ

1− γ
| inf
Pπ∈Ps

PπV ∗ − inf
Pπ∈Ps

PπV̂ π∗
|

(d)

≤
∥∥∥∥γ (I − γPπ∗

0

)−1

(P0 − P̂ )V̂ π∗
∥∥∥∥
∞

+
γ

1− γ
sup

Pπ∈Ps

Pπ | V ∗ − V̂ π∗
|

(e)

≤
∥∥∥∥γ (I − γPπ∗

0

)−1

(P0 − P̂ )V̂ π∗
∥∥∥∥
∞

+
γ

1− γ
sup

P :∥P∥p≤βs,
∑

s P (s)=0

P | V ∗ − V̂ π∗
|

(f)

≤
∥∥∥∥γ (I − γPπ∗

0

)−1

(P0 − P̂ )V̂ π∗
∥∥∥∥
∞

− γ

1− γ
inf

P :∥P∥p≤βs,
∑

s P (s)=0
−P | V ∗ − V̂ π∗

|

(g)

≤
∥∥∥∥γ (I − γPπ∗

0

)−1

(P0 − P̂ )V̂ π∗
∥∥∥∥
∞

+
γβ|S|1/q

1− γ
spq,π∗(Q∗ − Q̂π∗

)

(h)

≤
∥∥∥∥γ (I − γPπ∗

0

)−1

(P0 − P̂ )V̂ π∗
∥∥∥∥
∞

+
2γβ|S|1/q

1− γ

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

where (b) is the triangular inequality, (c) Eq. (4), (d) is the triangular inequality for seminorms, (d) is |infA f − infA g| ≤
supA |f − g|., (e) is a relaxation (f) is the relation between sup and inf, (g) is lemma 1 of Kumar et al. [2022]), (h) is
inequality for seminorms and norms (5).

For brevity in the remaining analysis, let us define the shorthand:

L = log(8|S||A|/((1− γ)δ)).

Recall, slightly abusing the notation, for V ∈ RS , we define the vector VarP (V ) ∈ RS×A as VarP (V ) = P (V )2 − (PV )2.



Lemma C.3 (Agarwal et al. [2020], Lemma 9). With probability greater than 1− δ,∣∣∣(P0 − P̂ )V̂ ⋆
∣∣∣ ≤√8L

N

√
VarP0

(
V̂ ⋆
)
+∆′

δ,N I∣∣∣(P0 − P̂ )V̂ π⋆
∣∣∣ ≤√8L

N

√
VarP0

(
V̂ π⋆

)
+∆′

δ,N I

where ∆′
δ,N =

√
cL

N
+

cL

(1− γ)N
and c is a universal constant smaller than 16.

Proof. The proof of Agarwal et al. [2020] holds for classical MDP but can be adapted to the robust setting using all lemmas
proved for the bound in H4 previously. Lemma B.11,B.12 ,B.14,B.15,45 are needed but the main difference is that we are
using Berstein’s inequality and not Hoeffding’s inequality. The idea is first, as in the previous proof, to apply Berstein’s
inequality to independent variables using s absorbing MDPs then using Lemma B.15.

Proof. Similar to Agarwal et al. [2020], we first show that∣∣∣(P0 − P̂
)
· V̂ ⋆

∣∣∣ ≤√2 log (4 |Us| /δ)
N

√
VarP0

(
V̂ ⋆
)

+ min
u∈Us

∣∣∣V̂ ⋆(s)− u
∣∣∣(1 +√2 log (4 |Us| /δ)

N

)
+

2 log (4 |Us| /δ)
(1− γ)3N∣∣∣(P0 − P̂

)
· V̂ π⋆

∣∣∣ ≤√2 log (4 |Us| /δ)
N

√
VarP0

(
V̂ π⋆

)
+ min

u∈Us

∣∣∣V̂ π⋆

(s)− u
∣∣∣(1 +√2 log (4 |Us| /δ)

N

)
+

2 log (4 |Us| /δ)
(1− γ)3N

First, with probability greater than 1− δ, we have that for all u ∈ Us.∣∣∣(P0 − P̂
)
· V̂ ⋆

∣∣∣ = ∣∣∣(P0 − P̂
)
·
(
V̂ ⋆ − V ⋆

s,u + V ⋆
s,u

)∣∣∣
(a)

≤
∣∣∣(P0 − P̂

)
·
(
V̂ ⋆ − V ⋆

s,u

)∣∣∣+ ∣∣∣(P0 − P̂
)
·
(
V ⋆
s,u

)∣∣∣
(b)

≤
∥∥∥V̂ ⋆ − V ⋆

s,u

∥∥∥
∞

+

√
2 log (4 |Us| /δ)

N

√
VarP0

(
V ⋆
s,u

)
+

2 log (4 |Us| /δ)
(1− γ)3N

(c)
=
∥∥∥V̂ ⋆ − V ⋆

s,u

∥∥∥
∞

+

√
2 log (4 |Us| /δ)

N

√
VarP0

(
V̂ ⋆ − V ⋆

s,u − V̂ ⋆
)
+

2 log (4 |Us| /δ)
(1− γ)3N

(d)

≤
∥∥∥V̂ ⋆ − V ⋆

M̂s,u

∥∥∥
∞

(
1 +

√
2 log (4 |Us| /δ)

N

)
+

√
2 log (4 |Us| /δ)

N

√
VarP0

(
V̂ ⋆
)
+

2 log (4 |Us| /δ)
(1− γ)3N

using the triangle inequality in (a), (b) classical Berstein’s inequality, (d) for variance and Lemmas B.11 and B.12 such as∥∥∥V̂ ⋆ − V ⋆
s,u

∥∥∥
∞

=
∥∥∥V̂ ⋆

s,V̂ ⋆(s)
− V ⋆

s,u

∥∥∥
∞

≤
∣∣∣V̂ ⋆(s)− u

∣∣∣ .
It is true for u ∈ Us, so we take the best possible choice, which completes the proof of the first claim. The proof of the
second claim is similar. Then using Lemma B.15 gives the final concentration theorem.

Lemma C.4 (Azar et al. [2013], Lemma 7). This is an adaptation of Azar et al. [2013] to RMDPs. For any policy π,∥∥∥(I − γPπ
0 )

−1
√

VarP0
(V π)

∥∥∥
∞

≤

√
2

(1− γ)3
,

where P0 is the nominal transition model of M .



Proof. This proof is exactly the same for Robust and non robust MDPs, as it uses only standard computations such as the
Jensen inequality and no robust form which are specific to this problem. The main difference is that we are doing the proof
on the nominal of our robust set P0, considering the regularized robust Bellman operator and associated regularized reward
functions.

Azar et al. [2013] introduce the variance of the sum of discounted rewards starting at state-action (s, a),

Σπ(s, a) := E[|
∑
t≥0

γtR0(st, at)−Qπ(s, a)|2|s0 = s, a0 = a],

and we defined the same variance for robust MDPs using robust rewards r(s,a)Qπ
sa

and rsQπ
s

and using robust Q-function instead
of classical Q-function in the definition of Σ. Then, in their Lemma 6 they show that, for any π:

Σπ = VarP0
(V π) + γ2Pπ

0 Σ
π,

which is, in fact, a Bellman equation for the variance. The proof is exactly the same for RMDPs considering our robust
reward r

(s,a)
Qπ

sa
or rsQπ

s
and not classical R0. Note that this is thanks to the regularized form of robust RMDPs. Finally, Lemma

C.4 is the same as their Lemma 7 considering robust rewards. This lemma is usually called the total variance lemma. This
completes the proof.

Lemma C.5. The following upper bound holds with probability 1− δ:

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

< (CN + Cβ)
∥∥∥Qπ̂ − Q̂π̂

∥∥∥
∞

+ γ4

√
L

N(1− γ)3
+

γ∆′
δ,N

1− γ
+

γϵopt
1− γ

(
2 +

√
8L

N

)
(60)

with CN = γ
1−γ

√
8L
N and Cβ = 2γβ|S|1/q

1−γ .



Proof.∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

(a)

≤ γ

∥∥∥∥(I − γP π̂
0

)−1

(P0 − P̂ )V̂ π̂

∥∥∥∥
∞

+
2γβ|S|1/q

1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

(b)

≤ γ

∥∥∥∥(I − γP π̂
)−1

(P0 − P̂ )V̂ ⋆

∥∥∥∥
∞

+ γ
∥∥∥(I − γPπ

0 )
−1

(P0 − P̂ )
(
V̂ π̂ − V̂ ⋆

)∥∥∥
∞

+
2γβ|S|1/q

1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

(c)

≤ γ

∥∥∥∥(I − γP π̂
0

)−1

(P0 − P̂ )V̂ ⋆

∥∥∥∥
∞

+
2γϵopt
1− γ

+
2γβ|S|1/q

1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

(d)

≤ γ

∥∥∥∥(I − γP π̂
0

)−1 ∣∣∣(P0 − P̂ )V̂ ⋆
∣∣∣∥∥∥∥

∞
+

2γϵopt
1− γ

+
2γβ|S|1/q

1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

(e)

≤ γ

√
8L

N

∥∥∥∥∥(I − γP π̂
0

)−1
√
VarP0

(
V̂ ⋆
)∥∥∥∥∥

∞

+ 2
γ∆′

δ,N

1− γ
+

2γϵopt
1− γ

+
2γβ|S|1/q

1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

(f)

≤ γ

√
8L

N

∥∥∥∥∥(I − γP π̂
0

)−1
(√

VarP0
(V π̂) +

√
VarP0

(
V π̂ − V̂ π̂

)
+

√
VarP0

(
V̂ π̂ − V̂ ⋆

))∥∥∥∥∥
∞

+
γ∆′

δ,N

1− γ
+

2γϵopt
1− γ

+
2γβ

1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

(g)

≤ γ

√
8L

N


√

2

(1− γ)3
+

√∥∥∥V π̂ − V̂ π̂
∥∥∥2
∞

1− γ
+

2ϵopt
1− γ

+
γ∆′

δ,N

1− γ
+

2γϵopt
1− γ

+
2γβ

1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

(h)

≤ γ

√
8L

N

√ 2

(1− γ)3
+

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

1− γ
+

2ϵopt
1− γ

+
γ∆′

δ,N

1− γ
+

2γϵopt
1− γ

+
2γβ|S|1/q

1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

= γ

√
8L

N

√ 2

(1− γ)3
+

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

1− γ

+
γ∆′

δ,N

1− γ
+

γϵopt
1− γ

(
2 +

√
8L

N

)
+

2γβ|S|1/q

1− γ

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

= (CN + Cβ)
∥∥∥Qπ̂ − Q̂π̂

∥∥∥
∞

+ 4γ

√
L

N(1− γ)3
+

γ∆′
δ,N

1− γ
+

γϵopt
1− γ

(
2 +

√
8L

N

)

with CN = γ
1−γ

√
8L
N and Cβ = 2γβ|S|1/q

1−γ .

We have that (a) is true by Lemma C.2, (b) is by the triangular inequality using V̂ π̂ = V̂ π̂ + V̂ ⋆ − V̂ ⋆, (c) is from the
definition of ϵopt and Eq. (4), (d) is by positivity of the classic horizon inverse matrix, that is (I−γP )−1 =

∑
t>0 γ

tP t > 0,
(e) is by Lemma C.3, (f) is by the triangular inequality for the variance (which is, in fact, a seminorm) and decomposing
V̂ ⋆ = V̂ ⋆ + V̂ π̂ − V̂ π̂ + V π̂ − V π̂, (g) is by Lemma C.4, uses the definition of ϵopt and takes the sup over (s, a) of the
variance in the second term, and eventually (h) is because we have that ∥V π − V̂ π∥∞ ≤ ∥Qπ − Q̂π∥∞ for any π.

Lemma C.6. The following upper bound holds with probability 1− δ:

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

< (CN + Cβ)
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

+ γ4

√
L

N(1− γ)3
+

γ∆′
δ,N

1− γ
. (61)

with CN = γ
1−γ

√
8L
N and Cβ = 2γβ|S|1/q

1−γ .



Proof. ∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

(a)

≤ γ

∥∥∥∥(I − γPπ∗

0

)−1

(P0 − P̂ )V̂ π∗
∥∥∥∥
∞

+
2γβ|S|1/q

1− γ

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

(b)

≤ γ

∥∥∥∥(I − γPπ∗

0

)−1 ∣∣∣(P0 − P̂ )V̂ π∗
∣∣∣∥∥∥∥

∞
+

2γβ|S|1/q

1− γ

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

(c)

≤ γ

√
8L

N

∥∥∥∥∥(I − γPπ∗

0

)−1
√
VarP0

(
V̂ π∗

)∥∥∥∥∥
∞

+ 2
γ∆′

δ,N

1− γ
+

2γβ|S|1/q

1− γ

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

(d)

≤ γ

√
8L

N

∥∥∥∥∥(I − γPπ∗

0

)−1
(√

VarP0
(V ∗) +

√
VarP0

(
V ∗ − V̂ π∗

))∥∥∥∥∥
∞

+
γ∆′

δ,N

1− γ
+

2γβ|S|1/q

1− γ

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

(e)

≤ γ

√
8L

N


√

2

(1− γ)3
+

√∥∥∥V ∗ − V̂ π∗
∥∥∥2
∞

1− γ

+
γ∆′

δ,N

1− γ
+

2γβ|S|1/q

1− γ

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

≤ γ

√
8L

N

√ 2

(1− γ)3
+

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

1− γ

+
γ∆′

δ,N

1− γ
+

2γβ|S|1/q

1− γ

∥∥∥Q∗ − Q̂π∗
∥∥∥
∞

= (CN + Cβ)
∥∥∥Q∗ − Q̂π∗

∥∥∥
∞

+ 4γ

√
L

N(1− γ)3
+

γ∆′
δ,N

1− γ

with CN = γ
1−γ

√
8L
N and Cβ = 2γβ|S|1/q

1−γ .

We have that (a) is true by Lemma C.2, (b) is by the positivity of the classic horizon inverse matrix, (c) is by Lemma (C.3),
(d) is by the triangular inequality for the variance (which is a seminorm), (e) is by Lemma C.4 and taking the sup over (s, a)
of the variance in the second term, and eventually (h) is because ∥V π − V̂ π∥∞ ≤ ∥Qπ − Q̂π∥∞ for any π.

As the event on which ∆′
δ,N is the same in the two previous Lemma C.5 and Lemma C.6, we can obtain the following.

Theorem C.7. For 0 < Cβ ≤ 1/2 and 0 < CN + Cβ < 1, with probability 1− δ, we get:

∥∥Q∗ −Qπ̂
∥∥
∞ <

1

1− (CN + Cβ)

(
8γ

√
L

N(1− γ)3
+

2γ∆′
δ,N

1− γ
+

γϵopt
1− γ

(
2 +

√
8L

N

))
+ ϵopt.

Proof. This result is obtained by combining the two previous Lemmas C.5 and C.6 and passing the term in (CN + Cβ) to
the left-hand side.

Note that Cβ + CN < 1 implies Cβ = 2γβ|S|1/q
1−γ < 1 and hence β < 1−γ

2γ|S|1/q . Now we need to pick CN < 1 − Cβ . Let
CN ≤ 1− Cβ − η, for any 0 < η < 1− Cβ the previous inequality becomes

∥∥Q∗ −Qπ̂
∥∥
∞ <

8

η
γ

√
L

N(1− γ)3
+

2γ∆′
δ,N

η(1− γ)
+

γϵopt
η(1− γ)

(
2 +

√
8L

N

)
+ ϵopt.

As ∆′
δ,N =

√
cL
N + cL

(1−γ)N , the term in 1/
√
N is given by 8γ

√
LH3/2

η
√
N

(
1 + 1/4

√
c/H

)
and is smaller than ϵ whenever

N ≥
64γ2LH3(1 + 1/4

√
c/H)2

η2ϵ2
.



We will use c < 16 and H ≥ 1 and use the stronger constraint

N ≥ 256γ2LH3

η2ϵ2
.

Along the same line, the term in 1/N is 2γcLH2

ηN which is smaller than ϵ whenever

N ≥ 2γcLH2

ϵ
.

Now, CN < 1− η − Cβ means
γ

1− γ

√
8L

N
< 1− η − Cβ

hence

N >
8Lγ2H2

(1− η − Cβ)2
.

We deduce that whenever

N ≥ max

(
256γ2LH3

η2ϵ2
,
2γcLH2

ϵ
,

8Lγ2H2

(1− η − Cβ)2

)
=

256γ2LH3

η2
max

(
1

ϵ2
,

cη

128Hγϵ
,

η2

64H(1− η − Cβ)2

)
the error is smaller than 2ϵ up to the ϵopt terms.

This bounds reduces to

N ≥ Cγ2LH3

ϵ2

with C = 256/η2 if

ϵ ≤ min

(
128H

η
,
√
64H

1− η − Cβ

η

)
.

Note that ϵ ∈ [0, H) and η < 1 so that the previous condition simplifies to

ϵ ≤
√
64H

1− η − Cβ

η
= ϵ0.

If we want to obtain an arbitrary ϵ0, it suffices thus to take η arbitrarily small leading to the constant C = 256/η2 to be
arbitrarily large.

Note that if ϵ0 ≥ O(H1/2+δ) then 1/η > O(Hδ) which adds a H2δ factor to the bound on N .

However, for any κ
√
H and for any Cβ , it exists an η independent of H so that ϵ0 = 8

√
H

1−η−Cβ

η = κ
√
H , hence the

result stated in Theorem 5.1.

Now, as L = log(8|S||A|/((1− γ)δ)), the previous condition can be summarized by

Ntotal = N |S||A| = Õ
(
H3|S||A|

ϵ2

)
provided ϵ < ϵ0.

Finally, taking β0 = 1−γ
8γ which gives Cβ = 1/4 and η = 1/2 so that CN ≤ 1/4, we obtain C = 1024 and ϵ0 =

√
16H .
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