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Figure 1. We propose InterScene, a novel method that generates physically plausible long-term motion sequences in 3D indoor scenes.

Our approach enables physics-based characters to exhibit natural interaction-involved behaviors, such as sitting down (gray), getting up

(blue), and walking while avoiding obstacles (pink).

Abstract

We present a physics-based character control frame-

work for synthesizing human-scene interactions. Recent ad-

vances adopt physics simulation to mitigate artifacts pro-

duced by data-driven kinematic approaches. However, ex-

isting physics-based methods mainly focus on single-object

environments, resulting in limited applicability in realistic

3D scenes with multi-objects. To address such challenges,

we propose a framework that enables physically simulated

characters to perform long-term interaction tasks in di-

verse, cluttered, and unseen 3D scenes. The key idea is

to decouple human-scene interactions into two fundamen-

tal processes, Interacting and Navigating, which motivates

us to construct two reusable Controllers, namely InterCon
and NavCon. Specifically, InterCon uses two complemen-

tary policies to enable characters to enter or leave the inter-

acting state with a particular object (e.g., sitting on a chair

or getting up). To realize navigation in cluttered environ-
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ments, we introduce NavCon, where a trajectory following

policy enables characters to track pre-planned collision-

free paths. Benefiting from the divide and conquer strat-

egy, we can train all policies in simple environments and

directly apply them in complex multi-object scenes through

coordination from a rule-based scheduler. Video and code

are available at https://liangpan99.github.io/InterScene/.

1. Introduction

Creating virtual humans with various motion patterns in

daily living scenarios remains a fundamental undertak-

ing within computer vision and graphics. While previous

kinematics-based works [7, 12, 14, 23, 28, 30, 37, 38, 47,

49] have achieved long-term human motion generation in

3D indoor scenes, their models are challenging to avoid

inherently physical artifacts like penetration, floating, and

foot sliding. Recent physics-based works [1, 8] began lever-

aging physics simulation and motion control techniques to

enhance the physical realism of generated results. However,

their frameworks remain constrained to simulated environ-

ments containing one isolated object since the policy trained

with reinforcement learning (RL) has limited modeling ca-

pacity and thus results in gaps in synthesizing long-term se-
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quences in complex multi-object scenes.

To bridge the gaps, our work endeavors to enable phys-

ically simulated characters to perform long-term interac-

tion tasks in diverse, cluttered, and unseen 3D scenes. The

key insight of our framework is to construct two reusable

controllers, i.e., InterCon and NavCon, for learning com-

prehensive motor skills referring to the fundamental pro-

cesses in human-scene interactions. InterCon learns skills

that require environmental affordances, such as sitting on

a chair and rising from seated positions. NavCon consid-

ers environmental constraints to control characters’ loco-

motion following collision-free paths. The strengths lie in

1) our framework decouples long-term interaction tasks into

a scheduling problem of two controllers; 2) both controllers

can be trained in relatively simple environments without re-

lying on costly 3D scene data; 3) trained controllers can

directly generalize to complex multi-object scenes without

additional training.

Although existing works [1, 8] presented controllers for

executing interaction tasks, they cannot be applied in multi-

object scenarios due to incomplete interaction modeling. To

address this issue, our InterCon employs two complemen-

tary control policies to learn complete interaction skills.

Different from previous works [1, 8], InterCon not only

involves reaching and interacting with the object but also

includes leaving the interacting object. As illustrated in

Fig 1 (left), leveraging the two policies guarantees InterCon

is a closed-loop controller that realizes interactions with

multiple objects. In cluttered environments with obstacles

like Fig 1 (right), we introduce NavCon to enable charac-

ters to navigate and avoid obstacles. InterCon and NavCon

provide complete interaction skills, including sitting, get-

ting up, and obstacle-free trajectory following. Thus, we

can leverage a finite state machine to schedule the two con-

trollers, allowing characters to perform long-term interac-

tion tasks in complex 3D scenes without additional training.

We train all policies by goal-conditioned reinforcement

learning and adversarial motion priors (AMP) [26]. It

is challenging to train InterCon stably because the policy

needs to coordinate the character’s fine-grained movement

in relation to the object, and the reward is sparse. Previ-

ous work [8] conditions the discriminator on the scene con-

text to construct a dense reward. In this work, we propose

interaction early termination to achieve stable training via

balancing data distribution in training samples. To ensure

that our InterCon can generalize to unseen objects, various

objects with diverse shapes are required for the training [8].

However, the get-up policy relies on various seated poses

in plausible contact with objects (e.g., without floating and

penetration), which is difficult to obtain. To tackle this is-

sue, we introduce seated pose sampling, where a trained sit

policy will generate plausible sitting poses without incur-

ring additional costs of motion capture.

In summary, our main contributions are:

1. We propose a system that enables physically simulated

characters to perform long-term interaction tasks in di-

verse, cluttered, and unseen 3D scenes.

2. We propose two reusable controllers for modeling inter-

action and navigation to decouple challenging human-

scene interactions.

3. We leverage a rule-based scheduler that enables users

to create human-scene interactions through intuitive in-

structions without additional training.

2. Related Work

Human-Scene Interaction Creating virtual characters ca-

pable of interacting with surrounding environments is

widely explored in computer vision and graphics. One of

the streams of methods is to build data-driven kinematic

models leveraging large-scale motion capture datasets [21].

Phase-based neural networks [10, 30–32] are widely used

in generating natural and realistic human motions. Holden

et al. [10] propose PFNNs to produce motions where char-

acters adapt to uneven terrain. Strake et al. [30] extend the

idea of phase variables to generate motions in human-scene

interaction scenarios such as sitting on chairs and carry-

ing boxes. Strake et al. [31] propose a local motion phase

based model for synthesizing contact-rich interactions. An

alternative approach uses generative models like conditional

variance autoencoder (cVAE) and motion diffusion model

(MDM) [15, 35, 43, 50] to model human-scene interaction

behaviors. Wang et al. [37] present a hierarchical genera-

tive framework to synthesize long-term 3D motion condi-

tioning on the 3D scene structure. Hassan et al. [7] present

a stochastic scene-aware motion generation framework us-

ing two cVAE models for learning target goal position and

human motion manifolds. Wang et al. [38] present a frame-

work to synthesize diverse scene-aware human motions.

Taheri et al. [33] and Wu et al. [40] design similar frame-

works to generate whole-body interaction motions. Most

recent works adopt reinforcement learning (RL) to develop

control policies for motion generation. MotionVAE [16] is

a most representative work that proposes a new paradigm

for motion generation based on RL and generative models.

Zhang et al. [48] extend MotionVAE to synthesize diverse

digital humans in 3D scenes. Zhao et al. [49] present in-

teraction and locomotion policies to synthesize human mo-

tions in 3D indoor scenes. Lee et al. [14] also use reinforce-

ment learning and motion matching to solve the locomotion,

action, and manipulation task in 3D scenes. In this work, we

aim to synthesize 3D motions of interacting with everyday

indoor objects (e.g., chairs, sofas, and stools). Most rele-

vant previous works are phase-based neural networks [30],

cVAE-based generative models [7, 37, 38], and RL-based

methods [14, 49].
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Figure 2. System overview. Given a multi-object 3D scene, our goal is to synthesize long-term motion sequences by controlling a

physics-based character to perform a series of scene interaction tasks. First, our system employs an interaction controller to provide two

primary actions, i.e., sitting down and getting up. Second, we introduce a navigation controller to acquire another action, i.e., collision-free

trajectory following. Finally, a rule-based action scheduler is exploited to obtain outputs by organizing reusable low-level actions according

to user-designed instructions.

Physics-based Character Control Physics-based meth-

ods focus on developing motion control techniques to an-

imate characters in physics simulators [22, 36]. In re-

cent years, various motion imitation (or motion track-

ing) based methods have been established to enable sim-

ulated characters to imitate diverse, challenging, and nat-

ural motor skills. Liu et al. [18, 19] propose sampling-

based methods equipped with Covariance Matrix Adap-

tation (CMA) [5]. DeepMimic [24] adopts deep rein-

forcement learning (DRL) to train policy neural networks.

Model-based methods [4, 39, 44] use supervised learning

to train policies efficiently. Tracking-based methods have

trained control policies to animate simulated characters for

carrying box [1, 42], sports [17, 45], learning skills from

videos [11, 25, 46]. However, motion tracking needs refer-

ence motions to implement an imitation objective. It can

be challenging to obtain desired reference motions when

policies are applied to perform new tasks that require di-

verse skills. Recently, Peng et al. [26] introduce Genera-

tive Adversarial Imitation Learning (GAIL) [9] to the char-

acter animation field and present Adversarial Motion Pri-

ors (AMP) [26]. AMP replaces the complex tracking-based

objectives with a motion discriminator trained on large un-

structured datasets. AMP-based works have achieved im-

pressive results in both motion imitation and motion gen-

eration. A series of papers [2, 13, 27, 34] use AMP to

learn latent skill embeddings from large motion datasets

and then train a high-level policy to reuse the embeddings

to solve downstream tasks. Luo et al. [20] propose a mo-

tion imitator that can track a large-scale motion sequences.

Rempe et al. [29] build a pedestrian animation system us-

ing controllers trained with AMP to generate pedestrian lo-

comotion. InterPhys [8] first extends the AMP framework

to human-scene interaction tasks, such as sitting on chairs,

lying on sofas, and carrying boxes. UniHSI [41] involves

Large Language Models to drive simulated characters to

perform scene interactions. In this work, we focus on syn-

thesizing long-term interactions in cluttered 3D scenes.

3. Method

3.1. Preliminaries

Motion Synthesis Paradigm We achieve motion synthesis

through physics-based character control. To train policies

that enable characters to perform tasks in a life-like manner,

we leverage the goal-conditioned RL framework of Adver-

sarial Motion Priors (AMP) [26]. At each time step t, the

policy π(at|st, gt) predicts an action at based on the char-

acter state st and the task-specific goal state gt. Applied that

action, the environment transitions to the next state st+1

based on its dynamics p(st+1|st, at). Then it receives a

scalar reward rt computed by r = wGrG+wSrS , where rG

is a task reward designed using human knowledge, and rS

is a naturalness reward modeled by a motion discriminator.

The policy is trained to maximize the expected discounted

return J(π) = Ep(τ |π)
[∑T−1

t=0 γtrt

]
, where T is the hori-

zontal length and γ ∈ [0, 1] defines the discount factor.
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Character Model and State Representation The charac-

ter has 15 rigid bodies, 12 movable internal joints, and 28
DoF actuators. We exploit proportional derivative (PD) con-

trollers to convert the action a ∈ R
28 into torques to actuate

the internal joints. The root joint is not controllable. The

character state s ∈ R
223 input to the policy network is in

the maximal coordinate system, including:

• Root height srh ∈ R
1

• Root rotation srr ∈ R
6

• Root linear velocity srv ∈ R
3

• Root angular velocity sra ∈ R
3

• Positions of other bodies sjp ∈ R
14×3

• Rotations of other bodies sjr ∈ R
14×6

• Linear velocities of other bodies sjv ∈ R
14×3

• Angular velocities of other bodies sja ∈ R
14×3

The height and rotation of the root are recorded in the world

coordinate frame, and other terms are recorded in the char-

acter’s local coordinate frame. We use 6D rotation represen-

tations [51]. The state input to the discriminator s ∈ R
125

is in the reduced coordinate system. Please refer to our pub-

licly released code for more details.

Location Task As illustrated in Fig 2, our system contains

three control policies: sit policy πs, get-up policy πg , and

trajectory following policy πf . Although they are trained

for different scene interaction tasks, i.e., sitting on chairs,

getting up from seated states, and following trajectories, we

can implement the policy training in a generic location task.

The task objective is for the character to move its root to a

target location. For instance, the target location can be for-

mulated as a point on a chair seat that we expect the char-

acter to sit on or a point in a trajectory that the character

should approach. Then, we carefully design the task set-

tings for training each policy. In the subsequent Sec 3.3 and

Sec 3.4, we will describe them in detail. Besides, we can de-

tect whether a task is completed by measuring the distance

between the root and target location, which the rule-based

action scheduler uses to perform action transition.

3.2. System Overview

As illustrated in Fig 2, our complete system integrates two

reusable controllers, i.e., Interaction Controller (InterCon)

and Navigation Controller (NavCon), serving as low-level

executors, and a Rule-based Action Scheduler, serving as

a high-level planner to schedule two executors to synthe-

size human motions according to user instructions. Inter-

Con consists of two control policies: sit policy πs and get-

up policy πg . Each policy is conditioned on the target object

features gobjt and the target location gtart of the character’s

root. NavCon contains a trajectory following policy πf con-

ditioned on the target trajectory features gtrajt . These input

conditions can be seen as explicit control signals.

We use the cluttered 3D scene W shown in Fig 2, which

Figure 3. Seated poses sampled from the reference dataset (upper

row) and generated by pre-trained sit policy (lower row).

contains three interactable objects W = {w1, w2, w3}, as

an example to describe the workflow of using our system

to generate long-term interactions. Based on three control

policies, we provide users with three reusable actions: sit-

ting down ks, getting up kg , and trajectory following kf . To

synthesize human motions described by “A man first sits on

the 1st chair, then sits on the 2nd chair, and finally rests on

the sofa”, the user needs to construct the following instruc-

tion:

I = {(ks, w1),

(kg, w1), (kf , h1), (ks, w2),

(kg, w2), (kf , h2), (ks, w3)},
(1)

where (ks/kg, w) denotes that the character performs the

action ks to sit on the object w or performs the action kg to

get up from the object w, and (kf , h) denotes that the char-

acter walks along an obstacle-free trajectory h that can be

either generated by the A* path planning algorithm [6] or

defined by the user. The rule-based action scheduler trans-

lates this instruction into a sequence of explicit control sig-

nals and then schedules low-level policies to execute the in-

struction. It is also responsible for performing action tran-

sitions. For instance, an action will be terminated when the

overlapping time between the character’s root and its cur-

rent target outperforms a fixed time.

1501



3.3. Interaction Controller

Given a target object wi ∈ W , our InterCon aims to en-

able characters to enter or leave the interacting state with

the object. Previous methods [1, 8] mainly focus on devel-

oping the former ability for the character, overlooking the

latter’s importance for long-term interaction tasks. By in-

corporating a new skill of getting up, the controller allows

the character to transition from a seated state to a standing

state, which provides an opportunity to perform the next

new interaction task.

Task-specific Goal State As illustrated in Fig 2, we con-

struct InterCon using two separate policies. They share

the same character state st, task-specific goal state gt =
{gobjt , gtart }, and network structure. We input the target ob-

ject’s features gobjt ∈ R
3+6+2+24 that contain the object’s

position and rotation, the horizontal vector of its facing di-

rection, and 8 vertices of its bounding box to the policy to

enable it to be aware of the target object state. We also fol-

low [8] to condition the discriminator on the object state

gobjt , which is crucial for policy to effectively learn how to

coordinate the movement of a character concerning the tar-

get. In addition, we add explicit target location gtart ∈ R
3

into the goal features gt. All these goal features are recorded

in the character’s local frame. The target location of the sit

task is generated before training and placed 10 cm above the

center of the top surface of the object seat. The target loca-

tion of the get-up task is computing online according to the

states of feet bodies. Please refer to our publicly released

code for more details.

Motion and Object Datasets We use 111 motion se-

quences from the SAMP dataset [7] containing multiple

behaviors (walking, sitting, and getting up) and diverse

human-object configurations. We manually split the mo-

tion dataset into two subsets used to train the sit and get-up

policies, respectively. To construct the object dataset, we

select 40 straight chairs, 40 low stools, and 40 sofas from

the 3D-Front object dataset [3] and randomly divide 30 as

the training set and 10 as the testing set. We coarsely fit ob-

jects to human motions since we condition the discriminator

on the object state.

Initialization At the beginning of each episode, we need

to initialize them appropriately to facilitate the training

process. For the sit task, we utilize Reference State Init

(RSI) [24] to sample interaction states from the previously

fitted dataset randomly. As shown in Fig 3, partial frames

in a seated state will penetrate with objects, which will hurt

physics simulation. Therefore, we pass these frames dur-

ing RSI. We also follow [8] to encourage the character to

execute the sit task from a wide range of initial config-

urations by randomizing the position and rotation of ob-

jects. For the get-up task, we should start training from
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Figure 4. The process for training the sit and get-up policies
consists of three steps. 1) Sit Policy Training: Inspired by [8], we

first extend the standard AMP framework with several improve-

ments to train a robust sit policy. 2) Seated Pose Sampling:
We tackle the issue of lacking high-quality seated human poses

adapted to various object shapes by using the pre-trained sit policy

to generate numerous seated poses randomly. 3) Get-up Policy
Training: We adopt a similar method to train the get-up policy.

At the beginning of each training episode, the character will be

initialized to a seated state sampled from the previously synthe-

sized database.

seated states. However, it is difficult to obtain reasonable

states from reference. Moreover, constructing an accurately

aligned dataset is also costly. Thus, we build a synthetic

database, illustrated in Fig 3, consisting of plenty of seated

poses with high-quality contact. It will be further discussed

in subsequent paragraphs.

Reset and Early Termination An episode terminates af-

ter a fixed episode length or when early termination condi-

tions have been triggered. The episode length is set to 10

seconds. We use fall detection as a basic condition. In or-

der to improve sampling efficiency, we introduce interaction

early termination (IET). IET triggers when the accumulative

overlapping time between the character’s root xroot
t and the

target location gtart exceeds a fixed threshold. Such a simple

mechanism can effectively assist the RL training process.
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Training Scheme of Two Policies The training process is

detailed in Fig 4. There is a dependency graph among the

sitting and getting up behaviors. We need to initialize the

character to a plausible seated state at the beginning of each

episode to train the get-up policy. However, collecting such

a diverse set of initial states is hard and costly. Thus, our

training scheme starts upstream in the dependency graph to

train a sit policy first. Subsequently, we directly employ it

to perform seated pose sampling to obtain high-quality in-

teraction states with no floating and penetration. We collect

300 poses for each training object. In total, we generate

300 × 90 poses to form a synthetic database. A snapshot

of partial data is shown in Fig 3. Then, we train the get-up

policy from scratch and keep most of the settings. Such a

database is the key to successfully training the get-up pol-

icy.

Task Rewards Given a target location gtart and a target ve-

locity gvelt = 1.5m/s, the task reward for sit is defined as:

rGt =

{
0.7 rneart + 0.3 rfart ,

∥∥x∗t − xroot
t

∥∥2 > 0.5

0.7 rneart + 0.3, otherwise
(2)

rfart = exp
(− 2.0

∥∥gvelt − d∗t · ẋroot
t

∥∥2 ) (3)

rneart = exp
(− 10.0

∥∥gtart − xroot
t

∥∥2 ) (4)

where xroot
t is the position of character’s root, ẋroot

t is the

linear velocity of character’s root, x∗t is the position of the

object, d∗t is a horizontal unit vector pointing from xroot
t to

x∗t , a·b represents vector dot product. We only use the rneart

as the task reward for the get-up task.

3.4. Navigation Controller

While InterCon has been able to generate long-term in-

teractions, it cannot avoid obstacles. To learn a necessary

skill in cluttered environments, i.e., collision-free naviga-

tion, we introduce NavCon to our system, which contains

a trajectory following policy πf (at|st, gtrajt ) [29] and off-

the-shelf path planning algorithms, as shown in Fig 2. In-

corporating a module for obtaining collision-free locomo-

tion has been widely used in previous works [7, 38, 49].

However, kinematics-based methods produce artifacts like

foot skating and penetration. Physics-based Pacer [29] can

generate physically plausible gaits and contacts. In this

work, we apply this technique in the character-scene inter-

action field to solve the navigation problem.

Task-specific Goal State We construct the goal features us-

ing a short future path gtrajt ∈ R
10×2 consisting of a se-

quence of 2D target positions of the character’s root for the

next 1.0 seconds sampled at 0.1s intervals.

Motion and Trajectory Datasets We use ∼ 200 sequences

from the AMASS dataset [21]. Target trajectories used for

Method Success Rate (%) Execution Time (s) Error (mm)
Chao et al. [1] 17.0 – –

AMP [26] 87.5 4.0 36.5
InterPhys [8] 93.7 3.7 90.0

Ours 98.8 2.5 36.8

Table 1. Comparisons with physics-based methods on sit task.

IET Step Success Rate (%) Execution Time (s) Error (mm)
30 98.8 2.5 36.8

60 93.9 3.1 34.9
90 92.3 3.3 36.3

× 87.5 4.0 36.5

Table 2. Metrics of sit policies trained with various early termina-

tion settings. × means that the model is trained without IET.

Figure 5. Performance curves of sit policies trained with various

early termination settings. Colored regions denote the fluctuation

range over 3 models.

training are procedurally generated. A complete trajectory

τ = {pτ0 , ..., pτT−1, p
τ
T } is modeled as a set of 2D points

with a fixed 0.1 seconds time interval. At each simulation

time step t, we query 10 points {pτt , ..., pτt+9} in the future

1.0 seconds from the complete trajectory τ by interpolating.

Other Settings We terminate the training episode when the

character falls or deviates too far from the established tra-

jectory. Characters are initialized using RSI. Trajectories

will be re-generated when environments reset. The task re-

ward rGt measures how far away the root xroot
t is on the

horizontal plane from the desired location pτt ∈ τ :

rGt = exp
(− 2.0

∥∥xroot
t − pτt

∥∥2 ). (5)

4. Experiment
4.1. Individual Tasks

The interaction controller has two policies responsible for

performing sit and get-up tasks. We first quantitatively

demonstrate the effectiveness of each policy in its corre-

sponding task. Then, we conduct ablation studies on the
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Figure 6. Our complete system successfully generates long-term motion sequences in three challenging 3D indoor scenes.

interaction early termination (IET). All experimental results

are collected in single-object environments in which the ob-

ject is randomly sampled from the object testing set. We fol-

low [8] to comprehensively evaluate the task performance

by measuring success rate, execution time, and error. A

trial will be determined to be successful if the Euclidean

distance between the character’s root and its target location

is less than 20 cm. To mitigate randomness, we train 3 mod-

els initialized with different random seeds and evaluate each

model using 4096 trials for each experiment setting. Thus,

all metrics are averaged over 3× 4096 trials.

Sit Task Table 1 summarizes the quantitative comparisons

between our sit policy and existing physics-based methods.

We use AMP [26] as baseline to train a policy where IET is

not employed, and the discriminator’s obs does not include

object states. Compared with InterPhys [8], our training

involves more detailed object information and a new termi-

nation strategy (the IET step parameter is set to 30). During

testing, the object is placed [1, 5] m away from the charac-

ter with a random orientation. Experimental results show

that our method achieves a high success rate of 98.8% and

significantly outperforms others. Using IET can focus the

distribution of samples collected during RL training on ap-

proaching the object and sitting down. We demonstrate that

IET can improve performance effectively.

Get-up Task We first use a pre-trained sit policy to collect

300 seated states of a given testing object. These states con-

tain various facing directions and body poses. When testing,

the character is initialized to a random seated state. Our

get-up policy can achieve a success rate of 94.6%, which

demonstrates its effectiveness.

Ablation Studies on IET For a more in-depth analysis of

the impact of IET, we construct 4 variants equipped with

various early termination settings, including w/o IET and
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3D Scene Plan 0 Plan 1 Plan 2
0 92.1 99.2 82.0

1 98.4 88.2 90.6

2 57.0 71.8 57.8

Table 3. Success rate metrics of the complete system in final ap-

plication environments. Each synthesis plan is tested by 128 trials.

w/ IET with varied step parameters. Metrics in Table 2 sug-

gest that task performance gradually improves as the step

parameter decreases. Fig 5 also illustrates that using a small

step parameter can effectively reduce the fluctuation margin

to stabilize the training process.

4.2. Long-term Motion Synthesis

The ultimate goal of this work is to synthesize long-term

motions involving multiple actions in diverse and cluttered

3D scenes. We quantitatively and qualitatively evaluate the

effectiveness of our complete system in multi-object envi-

ronments. 3 synthetic scenes are constructed using unseen

objects from the 3D-Front dataset [3]. Each scene is pop-

ulated with 5 ∼ 6 interactable objects and some obstacles.

For each scene, we design 3 plans manually, each of which

contains a sequence of actions for the character to perform.

Experimental Results As shown in Fig 6, our complete

system can successfully synthesize desired long-term mo-

tions. It validates the proposed divide and conquer idea that

the policies trained in simple environments can generalize

to unseen complex 3D scenes. We also provide quantita-

tive metrics of success rate for all plans in Table 3, which

shows that performance is unstable and highly relevant to

the complexity of the scene and plan.

Ablation Studies on NavCon Our system relies on Nav-

Con to avoid obstacles. We validate its importance by qual-

itatively comparing motions generated by the complete sys-

tem and a variant without NavCon. As illustrated in Fig 7,

given the same target, the former can successfully control

the character to interact with the object. The latter gets the

character stuck by obstacles because InterCon tends to fol-

low the shortest path to the target.

5. Limitations and Future Work
This work aims to design a physics-based animation sys-

tem to synthesize motions in complex 3D scenes and lets

the system come true. However, many valuable problems

remain that should be investigated in future work. Firstly,

since the system is built on AMP, policies are prone to

master a small subset of behaviors depicted in the motion

dataset. To tackle this issue, we can explore how to in-

troduce conditional generation capabilities [2, 27] into the

system to improve skill diversity. Secondly, the system can-

not handle with abnormal situations that would occur when

Figure 7. Comparisons of the complete system (gray) and a variant

without NavCon (green). Blue rectangles denote target objects.

executing tasks in complex scenes. For example, NavCon

tracks a pre-planned and fixed path. Due to tracking errors,

it is inevitable for the character to deviate from the path and

collide with obstacles. This is also the main reason why the

performance is unstable in Table 3. Creating a closed-loop

system with periodic re-planning features will be necessary

to improve the robustness. Thirdly, our policy only observes

the state of the isolated target object and is unaware of the

surroundings. Future work should explore incorporating

more global representations of the cluttered environment.

In addition, the real world has more complex environments,

such as dynamic scenes, uneven terrains, multi-floor build-

ings, and narrow spaces, which are not considered in this

work. It would be exciting to create autonomous agents liv-

ing in a physically simulated environment with the above

characteristics.

6. Conclusion

In this paper, we presented a physics-based animation sys-

tem to synthesize long-term human motions in diverse, clut-

tered, and unseen 3D scenes. This is achieved by jointly

using two reusable controllers, i.e., InterCon and NavCon,

as well as a rule-based action scheduler, to decompose the

human-scene interactions. We introduced some training

techniques to train the policies of InterCon successfully. We

qualitatively and quantitatively evaluated our complete sys-

tem’s long-term motion generation ability. Our physically

simulated characters realistically and naturally presented in-

teraction and locomotion behaviors.

1505



References
[1] Yu-Wei Chao, Jimei Yang, Weifeng Chen, and Jia Deng.

Learning to sit: Synthesizing human-chair interactions via

hierarchical control. In Proceedings of the AAAI Conference

on Artificial Intelligence, pages 5887–5895, 2021. 1, 2, 3, 5,

6

[2] Zhiyang Dou, Xuelin Chen, Qingnan Fan, Taku Komura,

and Wenping Wang. C· ase: Learning conditional adversar-

ial skill embeddings for physics-based characters. In SIG-

GRAPH Asia 2023 Conference Papers, pages 1–11, 2023. 3,

8

[3] Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming

Wang, Cao Li, Qixun Zeng, Chengyue Sun, Rongfei Jia, Bin-

qiang Zhao, et al. 3d-front: 3d furnished rooms with layouts

and semantics. In Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, pages 10933–10942,

2021. 5, 8

[4] Levi Fussell, Kevin Bergamin, and Daniel Holden. Super-

track: Motion tracking for physically simulated characters

using supervised learning. ACM Transactions on Graphics

(TOG), 40(6):1–13, 2021. 3

[5] Nikolaus Hansen. The cma evolution strategy: a comparing

review. Towards a new evolutionary computation: Advances

in the estimation of distribution algorithms, pages 75–102,

2006. 3

[6] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal

basis for the heuristic determination of minimum cost paths.

IEEE transactions on Systems Science and Cybernetics, 4

(2):100–107, 1968. 4

[7] Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun

Saito, Jimei Yang, Yi Zhou, and Michael J Black. Stochas-

tic scene-aware motion prediction. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pages 11374–11384, 2021. 1, 2, 5, 6

[8] Mohamed Hassan, Yunrong Guo, Tingwu Wang, Michael

Black, Sanja Fidler, and Xue Bin Peng. Synthesizing phys-

ical character-scene interactions. In ACM SIGGRAPH 2023

Conference Proceedings, New York, NY, USA, 2023. Asso-

ciation for Computing Machinery. 1, 2, 3, 5, 6, 7

[9] Jonathan Ho and Stefano Ermon. Generative adversarial im-

itation learning. In Proceedings of the 30th International

Conference on Neural Information Processing Systems, page

4572–4580, Red Hook, NY, USA, 2016. Curran Associates

Inc. 3

[10] Daniel Holden, Taku Komura, and Jun Saito. Phase-

functioned neural networks for character control. ACM

Transactions on Graphics (TOG), 36(4):1–13, 2017. 2

[11] Buzhen Huang, Liang Pan, Yuan Yang, Jingyi Ju, and Yan-

gang Wang. Neural mocon: Neural motion control for

physically plausible human motion. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, 2022. 3

[12] Siyuan Huang, Zan Wang, Puhao Li, Baoxiong Jia, Tengyu

Liu, Yixin Zhu, Wei Liang, and Song-Chun Zhu. Diffusion-

based generation, optimization, and planning in 3d scenes.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 16750–16761, 2023.

1

[13] Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin

Peng. Padl: Language-directed physics-based character con-

trol. In SIGGRAPH Asia 2022 Conference Papers, pages

1–9, 2022. 3

[14] Jiye Lee and Hanbyul Joo. Locomotion-action-

manipulation: Synthesizing human-scene interactions

in complex 3d environments. In Proceedings of the

IEEE/CVF International Conference on Computer Vision

(ICCV), pages 9663–9674, 2023. 1, 2

[15] Jiaman Li, Jiajun Wu, and C Karen Liu. Object motion

guided human motion synthesis. ACM Transactions on

Graphics (TOG), 42(6):1–11, 2023. 2

[16] Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van

De Panne. Character controllers using motion vaes. ACM

Transactions on Graphics (TOG), 39(4):40–1, 2020. 2

[17] Libin Liu and Jessica Hodgins. Learning basketball dribbling

skills using trajectory optimization and deep reinforcement

learning. ACM Trans. Graph., 37(4), 2018. 3

[18] Libin Liu, KangKang Yin, Michiel Van de Panne, Tianjia

Shao, and Weiwei Xu. Sampling-based contact-rich mo-

tion control. In ACM SIGGRAPH 2010 papers, pages 1–10.

2010. 3

[19] Libin Liu, KangKang Yin, and Baining Guo. Improving

sampling-based motion control. In Computer Graphics Fo-

rum, pages 415–423. Wiley Online Library, 2015. 3

[20] Zhengyi Luo, Jinkun Cao, Alexander Winkler, Kris Kitani,

and Weipeng Xu. Perpetual humanoid control for real-time

simulated avatars. arXiv preprint arXiv:2305.06456, 2023.

3

[21] Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Ger-

ard Pons-Moll, and Michael J Black. Amass: Archive

of motion capture as surface shapes. In Proceedings of

the IEEE/CVF international conference on computer vision,

pages 5442–5451, 2019. 2, 6

[22] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo,

Michelle Lu, Kier Storey, Miles Macklin, David Hoeller,

Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac

gym: High performance gpu-based physics simulation for

robot learning. arXiv preprint arXiv:2108.10470, 2021. 3

[23] Aymen Mir, Xavier Puig, Angjoo Kanazawa, and Gerard

Pons-Moll. Generating continual human motion in diverse

3d scenes. In International Conference on 3D Vision (3DV),

2024. 1

[24] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel

Van de Panne. Deepmimic: Example-guided deep reinforce-

ment learning of physics-based character skills. ACM Trans-

actions On Graphics (TOG), 37(4):1–14, 2018. 3, 5

[25] Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter

Abbeel, and Sergey Levine. Sfv: reinforcement learning

of physical skills from videos. ACM Trans. Graph., 37(6),

2018. 3

[26] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and

Angjoo Kanazawa. Amp: Adversarial motion priors for styl-

ized physics-based character control. ACM Transactions on

Graphics (ToG), 40(4):1–20, 2021. 2, 3, 6, 7

1506



[27] Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine,

and Sanja Fidler. Ase: Large-scale reusable adversarial

skill embeddings for physically simulated characters. ACM

Transactions On Graphics (TOG), 41(4):1–17, 2022. 3, 8

[28] Huaijin Pi, Sida Peng, Minghui Yang, Xiaowei Zhou, and

Hujun Bao. Hierarchical generation of human-object inter-

actions with diffusion probabilistic models. In Proceedings

of the IEEE/CVF International Conference on Computer Vi-

sion, pages 15061–15073, 2023. 1

[29] Davis Rempe, Zhengyi Luo, Xue Bin Peng, Ye Yuan, Kris

Kitani, Karsten Kreis, Sanja Fidler, and Or Litany. Trace and

pace: Controllable pedestrian animation via guided trajec-

tory diffusion. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 13756–

13766, 2023. 3, 6

[30] Sebastian Starke, He Zhang, Taku Komura, and Jun Saito.

Neural state machine for character-scene interactions. ACM

Trans. Graph., 38(6):209–1, 2019. 1, 2

[31] Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Za-

man. Local motion phases for learning multi-contact charac-

ter movements. ACM Transactions on Graphics (TOG), 39

(4):54–1, 2020. 2

[32] Sebastian Starke, Ian Mason, and Taku Komura. Deepphase:

Periodic autoencoders for learning motion phase manifolds.

ACM Transactions on Graphics (TOG), 41(4):1–13, 2022. 2

[33] Omid Taheri, Vasileios Choutas, Michael J Black, and Dim-

itrios Tzionas. Goal: Generating 4d whole-body motion for

hand-object grasping. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

13263–13273, 2022. 2

[34] Chen Tessler, Yoni Kasten, Yunrong Guo, Shie Mannor, Gal

Chechik, and Xue Bin Peng. Calm: Conditional adversarial

latent models for directable virtual characters. In ACM SIG-

GRAPH 2023 Conference Proceedings, pages 1–9, 2023. 3

[35] Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir,

Daniel Cohen-Or, and Amit H Bermano. Human motion dif-

fusion model. arXiv preprint arXiv:2209.14916, 2022. 2

[36] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A

physics engine for model-based control. In 2012 IEEE/RSJ

international conference on intelligent robots and systems,

pages 5026–5033. IEEE, 2012. 3

[37] Jiashun Wang, Huazhe Xu, Jingwei Xu, Sifei Liu, and Xiao-

long Wang. Synthesizing long-term 3d human motion and in-

teraction in 3d scenes. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

9401–9411, 2021. 1, 2

[38] Jingbo Wang, Yu Rong, Jingyuan Liu, Sijie Yan, Dahua Lin,

and Bo Dai. Towards diverse and natural scene-aware 3d

human motion synthesis. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 20460–20469, 2022. 1, 2, 6

[39] Jungdam Won, Deepak Gopinath, and Jessica Hodgins.

Physics-based character controllers using conditional vaes.

ACM Transactions on Graphics (TOG), 41(4):1–12, 2022. 3

[40] Yan Wu, Jiahao Wang, Yan Zhang, Siwei Zhang, Otmar

Hilliges, Fisher Yu, and Siyu Tang. Saga: Stochastic whole-

body grasping with contact. In European Conference on

Computer Vision, pages 257–274. Springer, 2022. 2

[41] Zeqi Xiao, Tai Wang, Jingbo Wang, Jinkun Cao, Bo Dai,

Dahua Lin, and Jiangmiao Pang. Unified human-scene inter-

action via prompted chain-of-contacts. Arxiv, 2023. 3

[42] Zhaoming Xie, Jonathan Tseng, Sebastian Starke, Michiel

van de Panne, and C Karen Liu. Hierarchical planning

and control for box loco-manipulation. arXiv preprint

arXiv:2306.09532, 2023. 3

[43] Sirui Xu, Zhengyuan Li, Yu-Xiong Wang, and Liang-Yan

Gui. Interdiff: Generating 3d human-object interactions

with physics-informed diffusion. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pages 14928–14940, 2023. 2

[44] Heyuan Yao, Zhenhua Song, Baoquan Chen, and Libin Liu.

Controlvae: Model-based learning of generative controllers

for physics-based characters. ACM Transactions on Graph-

ics (TOG), 41(6):1–16, 2022. 3

[45] Zhiqi Yin, Zeshi Yang, Michiel Van De Panne, and

Kangkang Yin. Discovering diverse athletic jumping strate-

gies. ACM Trans. Graph., 40(4), 2021. 3

[46] Haotian Zhang, Ye Yuan, Viktor Makoviychuk, Yunrong

Guo, Sanja Fidler, Xue Bin Peng, and Kayvon Fatahalian.

Learning physically simulated tennis skills from broadcast

videos. ACM Trans. Graph., 42(4), 2023. 3

[47] Xiaohan Zhang, Bharat Lal Bhatnagar, Sebastian Starke,

Vladimir Guzov, and Gerard Pons-Moll. Couch: Towards

controllable human-chair interactions. In European Confer-

ence on Computer Vision, pages 518–535. Springer, 2022.

1

[48] Yan Zhang and Siyu Tang. The wanderings of odysseus

in 3d scenes. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 20481–

20491, 2022. 2

[49] Kaifeng Zhao, Yan Zhang, Shaofei Wang, Thabo Beeler, and

Siyu Tang. Synthesizing diverse human motions in 3d indoor

scenes. In Proceedings of the IEEE/CVF International Con-

ference on Computer Vision (ICCV), pages 14738–14749,

2023. 1, 2, 6

[50] Wenyang Zhou, Zhiyang Dou, Zeyu Cao, Zhouyingcheng

Liao, Jingbo Wang, Wenjia Wang, Yuan Liu, Taku Komura,

Wenping Wang, and Lingjie Liu. Emdm: Efficient mo-

tion diffusion model for fast, high-quality motion generation.

arXiv preprint arXiv:2312.02256, 2023. 2

[51] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and

Hao Li. On the continuity of rotation representations in neu-

ral networks. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 5745–

5753, 2019. 4

1507


