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Abstract

Different outdoor illumination conditions drastically alter the appearance of ur-
ban scenes, and they can harm the performance of image-based robot perception
systems if not seen during training. Camera simulation provides a cost-effective
solution to create a large dataset of images captured under different lighting condi-
tions. Towards this goal, we propose LightSim, a neural lighting camera simulation
system that enables diverse, realistic, and controllable data generation. LightSim
automatically builds lighting-aware digital twins at scale from collected raw sensor
data and decomposes the scene into dynamic actors and static background with
accurate geometry, appearance, and estimated scene lighting. These digital twins
enable actor insertion, modification, removal, and rendering from a new viewpoint,
all in a lighting-aware manner. LightSim then combines physically-based and
learnable deferred rendering to perform realistic relighting of modified scenes,
such as altering the sun location and modifying the shadows or changing the sun
brightness, producing spatially- and temporally-consistent camera videos. Our
experiments show that LightSim generates more realistic relighting results than
prior work. Importantly, training perception models on data generated by Light-
Sim can significantly improve their performance. Our project page is available at
https://waabi.ai/lightsim/.

1 Introduction

Humans can perceive their surroundings under different lighting conditions, such as identifying traffic
participants while driving on a dimly lit road or under mild sun glare. Unfortunately, modern camera-
based perception systems, such as those in self-driving vehicles (SDVs), are not as robust [52, 32].
They typically only perform well in the canonical setting they were trained in, and their performance
drops significantly under different unseen scenarios, such as in low-light conditions [52, 59, 32]. To
reduce distribution shift, we could collect data under various lighting conditions for each area in
which we want to deploy the SDVs, generating a diverse dataset on which to train the perception
system. Unfortunately, this is not scalable as it is too expensive and time-consuming.

Simulation is a cost-effective alternative for generating large-scale data with diverse lighting. To be
effective, a simulator should be realistic, controllable, and diverse. Realistic simulation of camera data
enables generalization to the real world. Controllable actor placement and lighting allow the simulator
to generate the desired training scenarios. Diverse backgrounds, actor assets, and lighting conditions
allow simulation to cover the full real-world distribution. While existing game-engine-based self-
driving simulators such as CARLA [18, 68] are controllable, they provide a limited number of
manually designed assets and lighting conditions. Perception systems trained on this data generalize
poorly to the real world [26, 1, 61].
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Figure 1: LightSim builds digital twins from large-scale data with lighting variations and gener-
ates high-fidelity simulation videos. Top: LightSim produces realistic scene relighting and shadow
editing videos. Bottom: We generate a safety-critical scenario with two vehicles cutting in and
perform lighting-aware camera simulation. See Appendix E and project page for more examples.

To build a more realistic, scalable, and diverse simulator, we instead propose reconstructing “digital
twins” of the real world at scale from a moving platform equipped with LiDAR and cameras.
By reconstructing the geometry and appearance of the actors and static backgrounds to create
composable neural assets, as well as estimating the scene lighting, the digital twins can provide a rich
asset library for simulation. Existing methods for building digital twins and data-driven simulators
[2, 40, 89, 73, 57] bake the lighting into the scene, making simulation under new lighting conditions
impossible. In contrast, we create lighting-aware digital twins, which enable actor insertion, removal,
modification, and rendering from new viewpoints with accurate illumination, shadows, occlusion,
and temporal consistency. Moreover, by estimating the scene lighting, we can use the digital twins
for relighting.

Given a digital twin, we must relight the scene to a target novel lighting condition. This is, however, a
challenging task. Prior image-based synthesis methods [4, 5] perform relighting via 2D style transfer
techniques, but they typically lack human-interpretable controllability, are not temporally or spatially
consistent, and can have artifacts. Inverse neural rendering methods [82, 49, 39, 83] aim to decompose
the scene into geometry, materials and lighting, which allows for relighting through physically-based
rendering [7, 30]. However, the ill-posed nature of lighting estimation and intrinsic decomposition
makes it challenging to fully disentangle each aspect accurately, resulting in unrealistic relit images.
Both approaches, while successful on synthetic scenes or outdoor landmarks [51] with dense data
captured under many lighting conditions, have difficulty performing well on large outdoor scenes.
This is primarily due to the scarcity of real-world scenes captured under different lighting conditions.
Moreover, most prior works perform relighting on static scenes and have not demonstrated realistic
relighting for dynamic scenes where both the actors and the camera viewpoint are changing, resulting
in inter-object lighting effects that are challenging to simulate.

In this paper, we present LightSim, a novel lighting simulation system for urban driving scenes that
generates diverse, controllable, and realistic camera data. To achieve diversity, LightSim reconstructs
lighting-aware digital twins from real-world sensor data, creating a large library of assets and lighting
environment maps for simulation. LightSim then leverages physically-based rendering to enable
controllable simulation of the dynamic scene, allowing for arbitrary actor placement, SDV location,
and novel lighting conditions. To improve realism, we further enhance the physically-based renderer
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with an image-based neural deferred renderer to perform relighting, enabling data-driven learning to
overcome geometry artifacts and ambiguity in the decomposition due to not having perfect knowledge
of the scene and sensor configuration. To overcome the lack of real-world scenes captured under
different lighting conditions, we train our neural deferred renderer on a mixture of real and synthetic
data generated with physically-based rendering on our reconstructed digital twins.

We demonstrate the effectiveness of our approach on PandaSet [87], which contains more than 100
real-world self-driving scenes covering 20 unique kilometers. LightSim significantly outperforms
the state of the art, producing high-quality photorealistic driving videos under a wide range of
lighting conditions. We then showcase several capabilties of LightSim, such as its ability to create
high-fidelity and lighting-aware actor insertion, scene relighting, and shadow editing (Fig. 1). We
demonstrate that by training camera perception models with LightSim-generated data, we can achieve
significant performance improvements, making the models more robust to lighting variation. We
believe LightSim is an important step towards enhancing the safety of self-driving development and
deployment.

2 Related Work

Outdoor lighting estimation: As a first step for lighting simulation, lighting estimation aims to
recover the 360◦ HDR light field from observed images for photo-realistic virtual object insertion [20,
28, 19, 27, 37, 96, 67, 71, 101, 82, 78, 74, 83]. Existing works generally use neural networks to
predict various lighting representations, such as environment maps [71, 101, 78, 82, 74, 83], spherical
lobes [8, 43], light probes [37], and sky models [28, 27, 96], from a single image. For outdoor
scenes, handling the high dynamic range caused by the presence of the sun is a significant challenge.
Moreover, due to the scarcity of real-world datasets and the ill-posed nature of lighting estimation [82,
74], it is challenging to precisely predict peak intensity and sun location from a single limited field-
of-view low-dynamic range (LDR) image. To mitigate these issues, SOLDNet [101, 74] enhances the
diversity of material and lighting conditions with synthetic data and introduces a disentangled global
and local lighting latent representation to handle spatially-varying effects. NLFE [82] uses hybrid sky
dome / light volume and introduces adversarial training to improve realism with differentiable actor
insertion. In contrast, our work fully leverages the sensory data available in a self-driving setting (i.e.,
multi-camera images, LiDAR, and GPS) to accurately recover spatially-varying environment maps.

Inverse rendering with lighting: Another way to obtain lighting representations is through joint
geometry, material, and lighting optimization with inverse rendering [67, 42, 84, 55, 79, 23, 49,
91, 64, 39, 41, 92, 83]. However, since optimization is conducted on a single scene and material
decomposition is the primary goal, the optimized lighting representations are usually not generalizable
and do not work well for relighting [67, 55, 23]. Inspired by the success of NeRF in high-fidelity
3D reconstruction, some works use volume rendering to recover material and lighting given image
collections under different lighting conditions [64, 49, 39], but they are limited in realism and
cannot generalize to unseen scenes. Most recently, FEGR [83], independent and concurrent to our
work, proposes a hybrid framework to recover scene geometry, material and HDR lighting of urban
scenes from posed camera images. It demonstrates realistic lighting simulation (actor insertion,
shadow editing, and scene relighting) for static scenes. However, due to imperfect geometry and
material/lighting decomposition, relighting in driving scenes introduces several noticeable artifacts,
including unrealistic scene color, blurry rendering results that miss high-frequency details, obvious
mesh boundaries on trees and buildings, and unnatural sky regions when using other HDR maps. In
contrast, LightSim learns on many driving scenes and performs photorealistic enhanced deferred
shading to produce more realistic relighting videos for dynamic scenes.

Camera simulation for robotics: There is extensive work on developing simulated environments
for safer and faster robot development [33, 86, 53, 17, 75, 38, 15, 29, 17, 35, 9, 13]. Two major
lines of work in sensor simulation for self-driving include graphics-based [18, 68] and data-driven
simulation [80, 66, 50, 88]. Graphics-based simulators like CARLA [18] and AirSim [68] are fast
and controllable, but they face limitations in scaling and diversity due to costly manual efforts in asset
building and scenario creation. Moreover, these approaches can generate unrealistic sensor data that
have a large domain gap for autonomy [26, 85]. Data-driven approaches leverage computer vision
techniques and real-world data to build simulators for self driving [34, 3, 2, 81, 40]. Unfortunately,
existing works tend to fall short of realism, struggle with visual artifacts and domain gap [34, 3, 2, 81,
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Figure 2: Overview of LightSim. Given sensor observations of the scene, we first perform neural
scene reconstruction and lighting estimation to build lighting-aware digital twins (left). Given a target
lighting, we then perform both physically-based and neural deferred rendering to simulate realistic
driving videos under diverse lighting conditions (right).

40], and lack comprehensive control in synthesizing novel views [12, 82, 79, 90, 72]. Most recent
works [57, 36, 77, 89, 46] use neural radiance fields to build digital twins and represent background
scenes and agents as MLPs, enabling photorealistic rendering and controllable simulation across a
single snippet. However, these works bake lighting and shadows into the radiance field and therefore
cannot conduct actor insertion under various lighting conditions or scene-level lighting simulation. In
contrast, LightSim builds lighting-aware digital twins for more controllable camera simulation.

3 Building Lighting-Aware Digital Twins of the Real World

The goal of this paper is to create a diverse, controllable, and realistic simulator that can generate
camera data of scenes at scale under diverse lighting conditions. Towards this goal, LightSim first
reconstructs lighting-aware digital twins from camera and LiDAR data collected by a moving platform.
The digital twin comprises the geometry and appearance of the static background and dynamic actors
obtained through neural rendering (Sec. 3.1), as well as the estimated scene lighting (Sec. 3.2). We
carefully build this representation to allow full controllability of the scene, including modifying actor
placement or SDV position, adding and removing actors in a lighting-aware manner for accurate
shadows and occlusion, and modifying lighting conditions, such as changing the sun’s location or
intensity. In Sec. 3.3, we then describe how we perform learning on sensor data to build the digital
twin and estimate lighting. In Sec. 4, we describe how we perform realistic scene relighting with the
digital twin to generate the final temporally consistent video.

3.1 Neural Scene Reconstruction

Inspired by [89, 77, 57], we learn the scene geometry and base texture via neural fields. We design our
neural field F : x 7→ (s,kd) to map a 3D location x to a signed distance s ∈ R and view-independent
diffuse color kd ∈ R3. We decompose the driving scene into a static background B and a set of
dynamic actors {Ai}Mi=1 and map multi-resolution spatial feature grids [54] using two MLP networks:
one for the static scene and one for the dynamic actors. This compositional representation allows
for 3D-aware actor insertion, removal, or manipulation within the background. From our learned
neural field, we use marching cubes [47] and quadric mesh decimation [21] to extract simplified
textured meshesM for the scene. For simplicity, we specify base materials [10] for all the assets
and defer material learning to future work. Please see Appendix A.1 for details. Given the desired
lighting conditions, we can render our reconstructed scene in a physically-based renderer to model
object-light interactions.

3.2 Neural Lighting Estimation

In addition to extracting geometry and appearance, we estimate the scene lighting (Fig. 3, left). We
use a high-dynamic-range (HDR) panoramic sky dome E to represent the light from the sun and
the sky. This representation well models the major light sources of outdoor daytime scenes and is
compatible with rendering engines [7, 30]. Unfortunately, estimating the HDR sky dome from sensor
data is challenging, as most cameras on SDVs have limited field-of-view (FoV) and do not capture the
full sky. Additionally, camera data are typically stored with low dynamic range (LDR) in self-driving
datasets, i.e., intensities are represented with 8-bits. To overcome these challenges, we first leverage
multi-camera data and our extracted geometry to estimate an incomplete panorama LDR image that
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Figure 3: LightSim modules. Left: neural lighting estimation. Right: neural deferred rendering.

captures scene context and available sky observations. We then apply an inpainting network to fill in
missing sky regions. Then, we utilize a sky dome estimator network that lifts the LDR panorama
image to an HDR sky dome and fuses it with GPS data to obtain accurate sun direction and intensity.
Unlike prior works that estimate scene lighting from a single limited-FoV LDR image [82, 94, 74],
our work leverages multi-sensor data for more accurate estimation. We now describe these steps (as
shown in Fig. 3, left) in detail.

Panorama reconstruction: Given K images I = {Ii}Ki=1 captured by multiple cameras triggered
close in time and their corresponding camera poses P = {Pi}Ki=1, we first render the corresponding
depth maps D = {Di}Ki=1 from extracted geometryM: Di = ψ(M,Pi), where ψ is the depth
rendering function and Pi ∈ R3×4 is the camera projection matrix (a composition of camera intrinsics
and extrinsics). We set the depth values for the sky region to infinity. For each camera pixel (u′, v′),
we use the rendered depth and projection matrix to estimate 3D world coordinates, then apply an
equirectangular projectionE to determine its intensity contribution to panorama pixel (u, v), resulting
in Ipano:

Ipano = Θ (I,D,P) = E
(
π−1(I,D,P)

)
, (1)

where Θ is the pixel-wise transformation that maps the RGB of limited field-of-view (FoV) images
I at coordinate (u′, v′) to the (u, v) pixel of the panorama. For areas with overlap, we average all
source pixels that are projected to the same panorama (u, v). In the self-driving domain, the stitched
panorama Ipano usually covers a 360◦ horizontal FoV, but the vertical FoV is limited and cannot fully
cover the sky region. Therefore, we leverage an inpainting network [93] to complete Ipano, creating a
full-coverage (360◦ × 180◦) panorama image.

Generating HDR sky domes: For realistic rendering, an HDR sky dome should have accurate sun
placement and intensity, as well as sky appearance. Following [96, 82], we learn an encoder-decoder
sky dome estimator network that lifts the incomplete LDR panorama to HDR, while also leveraging
GPS and time of day for more accurate sun direction. The encoder first maps the LDR panorama
image to a low-dimensional representation to capture the key attributes of the sky dome, including
a sky appearance latent zsky ∈ Rd, peak sun intensity fint, and sun direction fdir. By explicitly
encoding sun intensity and direction, we enable more human-interpretable control of the lighting
conditions and more accurate lighting estimation. The decoder network processes this representation
and outputs the HDR sky dome E as follows:

E = HDRdecoder (zsky, [fint, fdir]) ,where zsky, fint, fdir = LDRencoder(L). (2)
When GPS and time of day are available, we replace the encoder-estimated direction with the
GPS-derived sun direction for more precise sun placement. Please see Appendix A.1 for details.

3.3 Learning

We now describe the learning process to extract static scenes and dynamic actor textured meshes, as
well as training the inpainting network and sky dome estimator.

Optimizing neural urban scenes: We jointly optimize feature grids and MLP headers {fs, fkd
}

to reconstruct the observed sensor data via volume rendering. This includes a photometric loss on
the rendered image, a depth loss on the rendered LiDAR point cloud, and a regularizer, as follows:
Lscene = Lrgb + λlidarLlidar + λregLreg. Specifically, we have

Lrgb =
1

|Rimg|
∑

r∈Rimg

∥∥∥C(r)− Ĉ(r)
∥∥∥

2
, Llidar =

1

|Rlidar|
∑

r∈Rlidar

∥∥∥D(r)− D̂(r)
∥∥∥

2
. (3)
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Here,R represents the set of camera or LiDAR rays. C(r) is the observed color for ray r, and Ĉ(r) is
the predicted color. D(r) is the observed depth for ray r, and D̂(r) is the predicted depth in the range
view. To encourage smooth geometry, we also regularize the SDF to satisfy the Eikonal equation and
have free space away from the LiDAR observations [89].

Training panorama inpainting: We train a panorama inpainting network to fill the unobserved
regions for stitched panorama Ipano. We adopt the DeepFill-v2 [93] network and train on the Holic-
ity [100] dataset, which contains 6k panorama images. During training, we first generate a camera
visibility mask using limited-FoV camera intrinsics to generate an incomplete panorama image. The
masked panorama is then fed into the network and supervised with the full panorama. Following [93],
we use the hinge GAN loss as the objective function for the generator and discriminator.

Training sky dome estimator: We train a sky dome estimator network on collected HDR sky
images from HDRMaps [24]. The HDRs are randomly distorted (including random exposure scaling,
horizontal rotation, and flipping) and then tone-mapped to form LDR-HDR pairs (L,E) pairs.
Following [82], we apply teacher forcing randomly and employ the L1 angular loss, L1 peak intensity,
and L2 HDR reconstruction loss in the log space during training.

4 Neural Lighting Simulation of Dynamic Urban Scenes

As is, our lighting-aware digital twin reconstructs the original scenario. Our goal now is to enable
controllable camera simulation. To be controllable, the scene representation should not only replicate
the original scene but also handle changes in dynamic actor behavior and allow for insertion of
synthetic rare objects, such as construction cones, that are challenging to find in real data alone. This
enables diverse creation of unseen scenes. As our representation is compositional, we can add and
remove actors, modify the locations and trajectories of existing actors, change the SDV position,
and perform neural rendering on the modified scene to generate new camera video in a spatially-
and temporally-consistent manner. Using our estimated lighting, we can also use a physically-based
renderer to seamlessly composite synthetic assets, such as CAD models [76], into the scene in a
3D- and lighting-aware manner. These scene edits result in an “augmented reality” representation
M′,Esrc and source image I′src. We now describe how we perform realistic scene relighting (Fig. 3
right) to generate new relit videos for improving camera-based perception systems.

Given the augmented reality representation {M′,Esrc, I′src}, we can perform physically-based ren-
dering under a novel lighting condition Etgt to generate a relit rendered video. The rendered images
faithfully capture scene relighting effects, such as changes in shadows or overall scene illumination.
However, due to imperfect geometry and noise in material/lighting decomposition, the rendering
results lack realism (e.g., they may contain blurriness, unrealistic surface reflections and boundary
artifacts). To mitigate this, we propose a photo-realism enhanced neural deferred rendering paradigm.
Deferred rendering [16, 65] splits the rendering process into multiple stages (i.e., rendering geometry
before lighting, then composing the two). Inspired by recent work [58, 61, 98], we use an image
synthesis network that takes the source image and pre-computed buffers of lighting-relevant data
generated by the rendering engine to produce the final relit image. We also provide the network the
environment maps for enhanced lighting context and formulate a novel paired-data training scheme
by leveraging the digital twins to generate synthetic paired images.

Generate lighting-relevant data with physically-based rendering: To perform neural deferred
rendering, we place the static background and dynamic actor textured meshesM in a physically-
based renderer [7] and pre-compute the rendering buffers Ibuffer ∈ Rh×w×8, including position,
depth, normal and ambient occlusion for each frame. Additionally, given an environment map E and
material maps, the physically-based renderer performs ray-tracing to generate the rendered image
Irender|E. We omit E in the following for simplicity. To model shadow removal and insertion, we
also generate a shadow ratio map S = Irender/̃Irender, where Ĩrender is the rendered image without
rendering shadow visibility rays, for both the source and target environment light maps Esrc,Etgt.

We then use a 2D U-Net [63] that takes the source image Isrc, render buffers Ibuffer, and shadow ratio
maps {Ssrc,Stgt}, conditioned on the source and target HDR sky domes {Esrc,Etgt}. This network
outputs the rendered image Itgt under the target lighting conditions as follows:

Itgt = RelitNet
(
[Isrc, Ibuffer,S

src,Stgt], [Esrc,Etgt]
)
. (4)
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Figure 4: Qualitative comparison of scene relighting. For the first and third rows, the real images
(other PandaSet snippets) under target lighting conditions are provided for better reference.

This enables us to edit the scene, perform scene relighting, and generate a sequence of images under
target lighting as the scene evolves to produce simulated camera videos. The simulation is spatially
and temporally consistent since our method is physically-based and grounded by 3D digital twins.

Learning: To ensure that our rendering network maintains controllable lighting and is realistic, we
train it with a combination of synthetic and real-world data. We take advantage of the fact that our
digital twin reconstructions are derived from real-world data, and that our physically-based renderer
can generate paired data of different source and target lightings of the same scene. This enables two
main data pairs for training the network to learn the relighting task with enhanced realism. For the
first data pair, we train our network to map Irender|Esrc → Irender|Etgt , the physically-based rendered
images under the source and target lighting. With the second data pair, we improve realism by training
the network to map Irender|Esrc → Ireal, mapping any relit synthetic scene to its original real world
image given its estimated environment map as the target lighting. During training, we also encourage
self-consistency by ensuring that, given an input image with identical source and target lighting, the
model recovers the original image. The training objective consists of a photometric loss (Lcolor), a
perceptual loss (Llpips), and an edge-based content-preserving loss (Ledge):

Lrelight =
1

N

N∑
i=1

(∥∥∥Itgti − Îtgti

∥∥∥
2︸ ︷︷ ︸

Lcolor

+λlpips

M∑
j=1

∥∥∥V j(Itgti )− V j(Îtgti )
∥∥∥
2︸ ︷︷ ︸

Llpips

+λedge

∥∥∥∇Itgti −∇Î
tgt
i

∥∥∥
2︸ ︷︷ ︸

Lreg

)
, (5)

where N is the number of training images and Itgt/Îtgt are the observed/synthesized label image and
predicted image under the target lighting, respectively. V j denotes the j-th layer of a pre-trained
VGG network [97], and ∇I is the image gradient approximated by Sobel-Feldman operator [70].

5 Experiments

We showcase LightSim’s capabilities on public self-driving data, which contains a rich collection
of sensor data of dynamic urban scenes. We first introduce our experiment setting, then compare
LightSim against state-of-the-art (SoTA) scene-relighting methods and ablate our design choices.
We then show that our method can generate realistic driving videos with added actors and modified
trajectories under diverse lighting conditions. Finally, we show that using LightSim to augment
training data can significantly improve 3D object detection.

5.1 Experimental Setup

Datasets: We evaluate our method primarily on the public real-world driving dataset PandaSet [87],
which contains 103 urban scenes captured in San Francisco, each with a duration of 8 seconds
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Method FID ↓ KID (×103) ↓
Self-OSR [94] 124.8 107.1± 4.3
NeRF-OSR [64] 143.9 94.0± 7.5
Color Transfer [60] 85.4 29.5± 4.3
EPE [61] 93.0 56.0± 5.0
Ours 87.1 30.4± 4.0

Table 1: Perceptual quality evaluation.

Model mAP (%)

Real 32.1
Real + Color aug. [44] 33.8 (+1.7)

Real + Sim (Self-OSR) 30.3 (−1.8)
Real + Sim (EPE) 32.5 (+0.4)
Real + Sim (Color Transfer) 35.1 (+3.0)
Real + Sim (Ours) 36.6 (+4.5)

Table 2: Data augmentation with
simulated lighting variations.

without Rendering Buffers without Content-preserving Loss without Sim-Real Training Ours Ours (zoom-in)

Figure 5: Ablation study on neural deferred rendering. Artifacts highlighted with different colors.

(80 frames, sampled at 10hz) acquired by six cameras (1920× 1080) and a 360◦ 64-beam LiDAR.
To showcase generalizability, we also demonstrate our approach on ten dynamic scenes from the
nuScenes [11] dataset. These driving datasets are challenging as the urban street scenes are un-
bounded; large-scale (> 300 m× 80 m); have complex geometry, materials, lighting, and occlusion;
and are captured in a single drive-by pass (forward camera motion).

Baselines: We compare our model with several SoTA scene-relighting methods. We consider
several inverse-rendering approaches [94, 64], an image-based color-transfer approach [60], and a
physics-informed image-synthesis approach [61]. Self-OSR [94] is an image-based inverse-rendering
approach that uses generative adversarial networks (GANs) to decompose the image into albedo,
normal, shadow, and lighting. NeRF-OSR [64] performs physically-based inverse rendering using
neural radiance fields. Color Transfer [60] utilizes histogram-based color matching to harmonize
color appearance between images. Enhancing Photorealism Enhancement (EPE) [61] enhances the
realism of synthetic images using intermediate rendering buffers and GANs. EPE uses the rendered
image Irender|Etgt and G-buffer data generated by our digital twins to predict the relit image.

5.2 Neural Lighting Simulation

Comparison to SoTA: We report scene relighting results on PandaSet in Table 1. Since the ground
truth is unavailable, we use FID [25] and KID [6] to measure the realism and diversity of relit images.
For each approach, we evaluate on 1,380 images with 23 lighting variations and report FID/KID
scores. 11 of the target lighting variations are estimated from real PandaSet data, while the remaining
twelve are outdoor HDRs sourced from HDRMaps [24]. See Appendix C.1 for more details.

Compared to Self-OSR, NeRF-OSR and EPE, LightSim achieves better performance on FID, which
indicates that our relit images are more realistic and contain fewer visual artifacts when employed
as inputs by ML models. We also show qualitative results in Fig. 4 together with source and
target lighting HDRs (Row 1 and 3: relighting with estimated lighting conditions of other PandaSet
snippets, Row 2 and 4: third-party HDRs). While Color Transfer achieves the best FID, visually
we can see that it only adjusts the global color histogram and does not perform physically-accurate
directional lighting (e.g., no newly cast shadows). Self-OSR estimates the source and target lighting
as spherical harmonics, but since it must reason about 3D geometry and shadows using only a
single image, it produces noticeable artifacts. NeRF-OSR has difficulty with conducting reasonable
intrinsic decomposition (e.g., geometry, shadows) and thus cannot perform realistic and accurate
scene relighting. EPE incorporates the simulated lighting effects from our digital twins and further
enhances realism, but there are obvious artifacts due to blurry texture, broken geometry, and unrealistic
hallucinations. In contrast, LightSim produces more reliable and higher-fidelity relighting results
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Figure 6: Lighting-aware multi-camera simulation. Inserted actors highlighted with boxes.
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Figure 7: Lighting-aware camera simulation of novel scenarios.

under diverse lighting conditions. See Appendix E.1 for more results. In Appendix E.4, we also
evaluate LightSim’s lighting estimation compared to SoTA and demonstrate improved performance.

Downstream perception training: We now investigate if realistic lighting simulation can help
improve the performance of downstream perception tasks under unseen lighting conditions. We
consider a SoTA camera-based birds-eye-view (BEV) detection model BEVFormer [44]. Specifically,
we train on 68 snippets collected in the city and evaluate on 35 snippets in a suburban area, since these
two collections are exposed to different lighting conditions. We generate three lighting variations
for data augmentation. One lighting condition comes from the estimated sky dome for log-084
(captured along the El Camino Real in California), and the other two are real-world cloudy and
sunny HDRs. We omit comparison to NeRF-OSR as its computational cost makes it challenging to
render at scale. Table 2 demonstrates that LightSim augmentation yields a significant performance
improvement (+4.5 AP) compared to baseline augmentations, which either provide smaller benefits
or harm the detection performance.

Ablation Study: Fig. 5 showcases the importance of several key components in training our
neural deferred rendering module. Pre-computed rendering buffers help the network predict more
accurate lighting effects. The edge-based content-preserving loss results in a higher-fidelity rendering
that retains fine-grained details from the source image. Training the network to relight synthetic
rendered images to the original real image with its estimated lighting enhances the photorealism of
the simulated results. Please see more ablations in Appendix E.2.

Realistic and controllable camera simulation: LightSim recovers more accurate HDR sky domes
compared to prior SoTA works, resulting in more realistic actor insertion (Fig. 6). LightSim inserts
the new actors seamlessly and can model lighting effects such as cast shadows for the actors and
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Figure 9: Physically based rendered images (Irender|Esrc, Irender|Etgt) and relighting results.

static scene, all in a 3D-aware manner for consistency across cameras. Our simulation system also
performs realistic, temporally-consistent and lighting-aware scene editing to generate immersive
experiences for evaluation. In Fig. 7, we start from the original scenario and perform scene editing
by removing all dynamic actors and inserting traffic cones, barriers, and three vehicle actors in the
crossroads. Then, we apply scene relighting to change the scene illumination to sunny, cloudy, etc.
In Fig. 1, we show another example where we modify the existing real-world data to generate a
challenging scenario with two cut-in vehicles.

Generalization study on nuScenes: We now showcase LightSim’s ability to generalize to driving
scenes in nuScenes [11]. We build lighting-aware digital twins for each scene, then apply a neural
deferred rendering model pre-trained on PandaSet. LightSim transfers well and performs scene
relighting robustly (see Fig. 8). See Appendix E.6 for more examples.

6 Limitations

LightSim assumes several simplifications when building lighting-aware digital twins, including
approximate diffuse-only reconstruction, separate lighting prediction, and fixed base materials. This
results in imperfect intrinsic decomposition and sim-to-real discrepancies (see Fig. 9). One major
failure case we notice is that LightSim cannot seamlessly remove shadows, particularly in bright,
sunny conditions where the original images exhibit distinct cast shadows (see Fig. A26). This is
because the shadows are mostly baked during neural scene reconstruction, thus producing flawed
synthetic data that confuses the neural deferred rendering module. We believe those problems
can be addressed through better intrinsic decomposition with priors and joint material/lighting
learning [83, 64]. Moreover, LightSim cannot handle nighttime local lighting sources such as street
lights, traffic lights and vehicle lights. Finally, faster rendering techniques can be incorporated to
enhance LightSim’s efficiency [69, 56].

7 Conclusion

In this paper, we aimed to build a lighting-aware camera simulation system to improve robot
perception. Towards this goal, we presented LightSim, which builds lighting-aware digital twins from
real-world data; modifies them to create new scenes with different actor layouts, SDV viewpoints, and
lighting conditions; and performs scene relighting to enable diverse, realistic, and controllable camera
simulation that produces spatially- and temporally-consistent videos. We demonstrated LightSim’s
capabilities to generate new scenarios with camera video and leveraged LightSim to significantly
improve object detection performance. We plan to further enhance our simulator by incorporating
material model decomposition, local light source estimation, and weather simulation.
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Appendix

This appendix details our method, implementation, experimental designs, additional quantitative
and qualitative results, limitations, utilized resources, and broader implications. We first detail how
we build the lighting-aware digital twins from real-world data (Sec. A.1), then show the network
architecture and training details for neural lighting simulation (Sec. A.2). In Sec. B, we provide
details on baseline implementations and how we adapt them to our scene-relighting setting. Next,
we provide the experimental details for perceptual quality evaluation and downstream detection
training in Sec. C. We then report perception quality evaluation at a larger scale with more qualitative
comparison with baselines (Sec. E.1) and detailed detection metrics for detection training (Sec. E.3).
We demonstrate that our lighting estimation module yields more accurate sun prediction (Sec. E.4)
and show additional scene relighting, shadow editing and controllable camera simulation results
(Sec. E.5). Finally, we discuss limitations and future work (Sec. F), licenses of assets (Sec. H),
computational resources used in this work (Sec. G), and broader impact (Sec. I).

A LightSim Implementation Details

A.1 Building Lighting-Aware Digital Twins of the Real-World

Neural Scene Reconstruction: We first perform neural rendering to reconstruct the driving scene
using both front-facing camera images and 360◦ spinning LiDAR point clouds. We use a modified
version of UniSim [89], a neural sensor simulator, to perform neural rendering to learn the asset
representations. Unisim [89] incorporates the LiDAR information to perform efficient ray-marching
and adopts a signed distance function (SDF) representation to accurately model the scene geometry.
To ensure a smooth zero level set, the SDF representation is regularized using Eikonal loss [22]
and occupancy loss. To capture the view-independent base color kd, we make adjustments to the
appearance MLP by taking only grid features as input and omitting the view direction term; all other
configurations remain consistent with [89].

After learning the neural representation, we employ Marching Cubes [47] to extract the mesh from
the learned SDF volume. Finally, we obtain the vertex base color kd by querying the appearance
head at the vertex location. We adopt base Blender PBR materials [10] for simplicity. Specifically,
we use a Principled BSDF with vertex color as the base color. We set materials for dynamic assets
and background separately.
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Figure A10: Network architecture of the neural lighting estimation module. Red and blue boxes
denote the sky encoders and HDR sky dome decoder respectively.

Neural Lighting Estimation: We leverage multi-camera data and our extracted geometry to esti-
mate an incomplete panorama LDR image that captures scene context and the available observations
of the sky. We then apply an inpainting network to fill in missing sky regions. Finally, we leverage a
sky dome estimator network that lifts the LDR panorama image to an HDR sky dome and fuses it
with GPS data to obtain accurate sun direction and intensity. To inpaint the panorama image from the
stitched multi-camera image, we use the code of the inpainting network DeepFillv2.1 The network is

1https://github.com/zhaoyuzhi/deepfillv2

17

https://github.com/zhaoyuzhi/deepfillv2


unchanged from its implementation on Github, and it is trained using the hinge loss. Holicity’s LDR
panoramas are used for training. Each panorama in the training set is first masked using an intrinsics
mask – a random mask of observed pixels from a PandaSet log. Distortions are then applied to the
mask, including random scaling and the addition of noise. The masked panorama is then fed into the
network and supervised with the unedited Holicity panorama.

Sky dome estimator architecture: After receiving the full LDR output from the inpainting net-
work, the sky dome estimator network converts the incomplete LDR panorama to HDR. This is
achieved by employing GPS and time of day to improve the accuracy of sun direction estimation.
To produce an LDR sky dome, only the top half of the panorama is used, as the bottom half does
not contribute to global lighting from the sky. The network uses an encoder-decoder architecture, as
shown in Fig. A10. The input consists of the LR panorama and the positional encoding map, which
is an equirectangular projection that stores a unit vector pointing towards each pixel direction. The
positional encoding is concatenated channel-wise with the LDR panorama. Three separate encoders
with the same architecture are utilized to estimate the peak direction fdir and intensity of the sun fint,
as well as the latent of the sky zsky ∈ R64. To encode the predicted sun peak intensity fint and peak
direction fdir, five intermediate representations with the same size as the input LDR are explicitly
encoded. The sky decoder is an U-Net which takes the encoded predicted sun peak intensity fint and
peak direction fdir and fuses them with the sky latent vector to produce the HDR sky dome.

Training details: We train the sky dome estimator using 400 HDRs sourced from HDRMaps [24].
Accurately predicting the peak intensity fint and direction fdir is of utmost importance for achieving
realistic rendering. Nevertheless, due to the inherently ill-posed nature of this problem, it is chal-
lenging to predict these parameters precisely, especially for cloudy skies. Therefore, we propose a
dual-encoder architecture, with one encoder trained on HDRs with a clearly visible sun and another
trained on all HDR images to capture peak intensity and sky latent more robustly. We empirically
find that this works better than using a single encoder trained on all HDR images. The model takes
around 12 hours to train with a single RTX A5000.

A.2 Neural Lighting Simulation of Dynamic Urban Scenes

Building augmented reality representation: Given our compositional neural radiance fields, we
can remove actors (Fig. 7), add actors (Fig. A23), modify actor trajectories (Fig. 1 and Fig. A23),
and perform neural rendering on the modified scene to generate new camera video in a spatially-
and temporally-consistent manner. Using our estimated lighting representation, we can also insert
synthetic assets such as CAD models [76] into the scenes and composite them with real images in
a 3D- and lighting-aware manner (Fig. 1, 7, A23). These scene edits lead to an “augmented reality
representation”M′,Esrc and source image I′src. We further explain the details of creating augmented
reality representations for all the examples we have created in this paper. In Fig. 1, we insert a new
CAD vehicle, barriers, and traffic cones and modify the trajectory of the white car. In Fig. 7, we insert
three new CAD vehicles (black, white, gray) and construction items and remove all existing dynamic
vehicles. In Fig. A23 (top example), we modify the trajectory of the original white vehicle and insert
construction items. In Fig. A23 (bottom example), we remove all existing dynamic actors (pedestrians
and vehicles), insert three dynamic actors from another sequence 016 with new trajectories, and
insert construction items.

Neural deferred rendering architecture: The neural deferred rendering architecture is depicted in
Fig. A11. It is an image-to-image network adapted from U-Net [63] that consists of four components:
image encoder, lighting encoder, latent fuser, and rendering decoder. The inputs to the image
encoder comprise a source RGB image Isrc, rendering buffers Ibuffer (ambient occlusion, normal,
depth, and position), and source/target shadow ratio maps {Ssrc,Stgt}; each of these components has
3 channels. In the latent fuser, the output of the image encoder is run through a 2D convolution layer,
then a linear layer that compresses the input into a latent vector. The image latent and two lighting
latent vectors (source and target) are concatenated and upsampled. Finally, the rendering decoder
upsamples the fused latent vectors and produces the final relit image Îtgt ∈ RH×W×3.

Learning details: We train the relighting network using a weighted sum of the photometric loss
(Lcolor), perceptual loss (Llpips), and edge-based content preserving loss (Ledge), as described in

18



D
ow

n

D
ow

n

D
ow

n

D
ow

n

U
p

U
p

U
p

U
p

C
onv2D

C
onv2D

C
onv

C
onv

M
axP

ool

C
onv

C
onv

2X
 U

p

 C
oncat

Target 
Lighting feat

U
p

U
p

Linear 

C
onv

Linear 
Linear 

Linear 

C
oncat

Image 
feature

Source 
lighting feat

D
ow

n

D
ow

n

D
ow

n

D
ow

n

D
ow

n

Lighting Encoder

Decoder

Latent Fuser

Image Encoder

Figure A11: Network architecture of the neural deferred rendering module. Green, red, orange,
and blue boxes denote the image encoder, lighting encoder, latent fuser and rendering decoder,
respectively.

section 4 of the main paper: Lrelight = 1
N

∑N
i=1 (Lcolor + λlpipsLlpips + λedgeLedge) , where λlpips

is set to 1 and λedge to 400. Our model is trained on pairs of PandaSet [87] scenes, lit withNHDR = 20
HDRs: ten estimated from PandaSet scenes using our neural lighting estimation module, and ten
obtained from the HDRMaps dataset [24]. We apply random intensity and offset changes to the
HDRs as data augmentation.

B Implementation Details for Baselines

For each approach, we evaluate on 1,380 images, applying 23 lighting variations to 15 PandaSet
scenes with 4 frames per scene, and report FID/KID scores. To test the diversity and controllability
of each method, 11 of the target lighting variations are estimated from real PandaSet data, while the
remaining 12 are outdoor HDRs sourced from HDRMaps [24].

B.1 Self-supervised Outdoor Scene Relighting (Self-OSR)

Self-OSR [94] is an image-based inverse-rendering method that utilizes InverseRenderNet [95] to
decompose an image into albedo, normal, shadow, and lighting. Subsequently, it employs two
generative adversarial networks (GANs) for neural rendering and sky hallucination, based on the
predicted lighting. We use the official pre-trained models2 and perform inference under novel lighting
conditions. If the target lighting originates from PandaSet logs, the model is first applied to a
single front-camera image (first frame) to recover the lighting parameters ∈ R9×3, using an order-2
spherical harmonics model. For outdoor HDRs sourced from HDRMaps, the HDR environment maps
are converted into spherical harmonics. The sky masks for PandaSet images are estimated using
PSPNet [99].

B.2 NeRF for Outdoor Scene Relighting (NeRF-OSR)

We use the official code from NeRF-OSR3 and make several modifications to improve its performance
on the PandaSet dataset. Since the self-driving scenes in the PandaSet dataset are usually larger
than the front-facing scenarios on the NeRF-OSR dataset, more space needs to be sampled, which
presents a challenge. To overcome this, we use LiDAR points as a guide to sample the points

2https://github.com/YeeU/relightingNet
3https://github.com/r00tman/NeRF-OSR
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for camera rays by aggregating LiDaR points and creating a surfel mesh. Then, we sample only
the points close to the surface ±50cm for each camera ray. By doing so, we significantly reduce
the number of sampled points to eight in the coarse and fine stages. Without these modifications,
NeRF-OSR demonstrates slower convergence rates and struggles to learn reasonable geometry for
relighting. Since our inference HDRs (from PandaSet or HDRMaps) differ greatly from NeRF-OSR
environment maps (indicating inaccurate scene decomposition by the model), directly applying the
environment maps to the scene leads to significant artifacts. Therefore, we retrieve the nearest HDR
in the NeRF-OSR dataset during inference for better perceptual quality. For training, we follow the
original code base for all other settings. Training one log on NeRF-OSR usually takes 15 hours on 4
T4 GPUs.

B.3 Color Transfer

Color Transfer [60] uses image statistics in (L∗, a∗, b∗) space to adjust the color appearance between
images. We adopt the public Python implementation4 for our experiments. If the target lighting
originates from PandaSet logs, we use the single front-camera image as the target image for color
transfer. For outdoor HDRs sourced from HDRMaps, we use the rendered synthetic images (using
LightSim digital twins) Irender|Etgt as the target image, as it produces much better performance
compared to transferring with the LDR environment map. The latter results in worse performance
since the source environment map and target limited-FoV images are in different content spaces.

B.4 Enhancing Photorealism Enhancement (EPE)

EPE [61] was designed to enhance the realism of synthetic images (e.g., GTA-5 [62] to
CityScapes [14]) using intermediate rendering buffers and GANs. We adapt EPE to handle lighting
simulation with our established lighting-aware digital twins. Specifically, EPE uses the rendered
image Irender|Etgt and rendering buffers Ibuffer generated by our digital twins to predict the relit
image. Note that EPE uses the same training data as LightSim, with 20 HDR variations. It also
takes all PandaSet front-camera images (103 logs) as the referenced real data. We adopt the official
implementation5 and follow the instructions to compute robust label maps, crop the images, match
the crops (5 nearest neighbours) and obtain 459k sim-real pairs. We train the EPE model until
convergence for 60M iterations on one single RTX A5000 for around six days.

C LightSim Experiment Details

C.1 Perceptual Quality Evaluation

Following [61, 12, 89], we report Fréchet Inception Distance [25] (FID) and Kernel Inception
Distance [25] (KID) to measure perceptual quality since ground truth data are not available. Due
to NeRF-OSR’s large computational cost, we select 15 sequences {001, 002, 011, 021, 023,
024, 027, 028, 029, 030, 032, 033, 035, 040, 053} for quantitative evaluation in the
main paper. We also provide Table A3 for larger-scale evaluation (NeRF-OSR excluded), in which 47
sequences (all city logs in PandaSet excluding the night logs and 004 where the SDV is stationary)
are used for evaluation. The 47 sequences are {001, 002, 003, 004, 005, 006, 008, 011,
012, 013, 014, 015, 016, 017, 018, 019, 020, 021, 023, 024, 027, 028, 029,
030, 032, 033, 034, 035, 037, 038, 039, 040, 041, 042, 043, 044, 045, 046,
047, 048, 050, 051, 052, 053, 054, 055, 056, 139}.

For each sequence, we select four frames {6, 12, 18, 24} and simulate 23 lighting variations (see
Fig. A12). Note that in 23 lighting variations, 20 HDRs (10 estimated HDRs from PandaSet, 10 real
HDRs sourced from HDRMaps) are used for data generation to train the LightSim models, while
3 HDRs are unseen and only used during inference. Unless stated otherwise, we use all 8240 real
PandaSet images as the reference dataset.

4https://github.com/jrosebr1/color_transfer
5https://github.com/isl-org/PhotorealismEnhancement
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   A: 10 training PandaSet HDRs         B: 10 training HDRMaps HDRs          C: 3 unseen inference HDRs

Figure A12: 23 HDR sky domes used for perceptual quality evaluation.

C.2 Downstream Perception Training

To investigate if realistic lighting simulation can improve the performance of downstream perception
tasks under unseen lighting conditions, we conduct experiments on PandaSet using the SoTA
camera-based 3D vehicle detection model BEVFormer [44]. We use train on 68 snippets collected in
the city and evaluate on 35 snippets in a suburban area, since these two collections are independent
and exposed to different lighting conditions. Specifically, the sequences {080, 084, 085, 086,
088, 089, 090, 091, 092, 093, 094, 095, 097, 098, 099, 100, 101, 102, 103,
104, 105, 106, 109, 110, 112, 113, 115, 116, 117, 119, 120, 122, 123, 124,
158} are selected for the validation set, and the remaining sequences are used for training. For the
experiments, we use all 80 frames for training and evaluation. We report the average precision (AP)
at different IoU thresholds: 0.1, 0.3, and 0.5. The mean average precision (mAP) is calculated as
mAP = (AP@0.1 + AP@0.3 + AP@0.5)/3.0.

As shown in Table 2, the integration of LightSim synthetic simulation significantly enhances the
performance of monocular detection compared to training with other basic augmentation methods.
Further exploration on sufficiently utilizing the simulated data, such as actor behavior simulation or
actor insertion, is left to future work.

BEVFormer Implementation Details: We use the official repository6 for training and evaluating
our model on PandaSet. We focus on single-frame monocular vehicle detection using the front
camera, disregarding actors outside the camera’s field of view. The models are trained within vehicle
frames using the FLU convention (x: forward, y: left, z: up), with the region of interest defined
as x ∈ [0, 80 m], y ∈ [−40 m, 40 m], z ∈ [−2 m, 6 m]. Given memory constraints, we adopt the
BEVFormer-small architecture7 with a batch size of two per GPU. Models were trained for five
epochs using the AdamW optimizer [48], coupled with the cosine learning rate schedule.8 Training
each model took approximately six hours on 2× RTX A5000 GPUs. We report the best validation
performance across all data augmentation approaches, as models can begin to overfit in the final
training stage.

C.3 Generalization on nuScenes

To evaluate the generalizability of our model, we train the model on PandaSet [87] and evaluate
the pre-trained model on nuScenes [11]. The nuScenes [11] dataset contains 1000 driving scenes
collected in Boston and Singapore, each with a duration of ≈ 20 seconds (≈ 40 frames, sampled at

6https://github.com/fundamentalvision/BEVFormer
7https://github.com/fundamentalvision/BEVFormer/blob/master/projects/configs/

bevformer/bevformer_small.py
8https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.

CosineAnnealingLR.html
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2 Hz) acquired by six cameras (Basler acA1600-60gc), one spinning LiDAR (Velodyne HDL32E),
and five long-range RADAR (Continental ARS 408-21) sensors. We curate 10 urban scenes from
nuScenes [11] characterized by dense traffic and interesting scenarios.

We incorporate front-facing camera and spinning LiDAR and run the neural scene reconstruction
module (Section 3.1) to extract the manipulable digital twins for each scene. Then, we utilize the
neural lighting estimation module (Section 3.2) to recover the HDR sky domes. This enables us to
generate new scenarios and produce the rendering buffers Ibuffer (Eqn. 4 in the main paper) for scene
relighting.

D Additional Discussions

Challenges of inverse rendering on urban scenes: LightSim assumes several simplifications
when building lighting-aware digital twins, including approximate diffuse-only reconstruction, sepa-
rate lighting prediction, and fixed base materials. Those result in imperfect intrinsic decomposition
and sim/real discrepancies. Recent concurrent works such as FEGR [83] and UrbanIR [45] make
steps towards better decomposition, but it is still a challenging open problem to recover perfect
decomposition of materials and light sources for large urban scenes. As shown in Fig. A13 (top right),
the recovered materials bear little semblance to semantic regions in the original scene. These recent
relighting works [61, 64, 83, 45] also have shadows baked into the recovered albedo (Fig. A13 left).

We remark that our novelty lies in leveraging neural deferred rendering to overcome the limitations of
purely physically-based rendering when the decomposition is imperfect. This allows us to generate
better relighting results than prior works that have imperfect decompositions. It is an exciting future
direction to incorporate better intrinsic decomposition along with neural deferred rendering for
improved relighting.

Prediction-based vs. optimization-based lighting: We explain our design choices in the follow-
ing two aspects. (a) We use a feed-forward network for lighting estimation, which is more efficient
and can benefit from learning on a larger dataset. In contrast, the optimization paradigm is more
expensive, requiring per-scene optimization, but has the potential to recover more accurate scene light-
ing from partial observations. (b) The ill-posed nature of lighting estimation and extreme intensity
range make inverse rendering challenging for outdoor scenes [83]. Optimization of the environment
map requires a differentiable renderer and high-quality geometry/material to achieve good results.
The existing/concurrent state-of-the-art works [64, 83] cannot solve the problem accurately, as shown
in Fig. A13 bottom right.

UrbanIR Albedo

Baked shadow

FEGR Albedo

Baked shadow Decomposed Material

NeRF-OSR (top) & Self-OSR (bottom) Albedo

Baked shadow FEGR Material

NeRF-OSR Env. Map FEGR Env. Map

Figure A13: Challenges of inverse rendering on urban scenes for existing works.

Temporal consistency for neural deferred shading: While we do not guarantee temporal consis-
tency, LightSim can produce temporally-consistent lighting simulation videos in most cases. We
believe this temporal consistency comes from temporally- and multi-view-consistent inputs during
inference (real image, G-buffers), as well as our combination of simulation and real paired relighting
data during training. Explicitly enforcing temporal consistency is an interesting direction for future
work.

Random shadowed triangles when relighting due to mesh artifacts: We noticed that random
shadowed triangles are common in the Irender|Esrc due to non-smooth extracted meshes. This is more
obvious for the nuScenes dataset where the LiDAR is sparser (32-beam) and the capture frequency is
lower (2Hz); for this dataset, we notice many holes and random shadowed triangles. However, thanks
to our image-based neural deferred rendering pass trained with mixed sim-real data, our relighting
network takes the original image and modifies the lighting, which removes many of those artifacts in
the final relit images. We show two nuScenes examples in Fig. A14.
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Original RGB

NormalRerendered RGB

Relit Image1 Relit Image2

Original RGB

NormalRerendered RGB

Relit Image1 Relit Image2

Figure A14: Random shadowed triangles are removed after neural deferred rendering.

E Additional Experiments and Analysis

We provide additional results and analysis for scene relighting, ablation studies, downstream training,
and lighting estimation. We then showcase more simulation examples using LightSim.

E.1 Additional Perception Quality Evaluation

Due to the large computational cost of NeRF-OSR [64], we select 15 PandaSet sequences for
perceptual quality evaluation in Table 1. Here, we supplement the evaluation at larger scale (47
sequences in total) in Table A3. LightSim achieves perceptual quality (FID and KID) on par with
Color Transfer, while the latter approach only adjusts the color histogram and cannot simulate intricate
lighting effects properly. Self-OSR and EPE suffer from noticeable artifacts, resulting in significantly
worse perception quality and a larger sim-real domain gap.

Method FID ↓ KID (×103) ↓
Self-OSR [94] 97.3 89.7± 11.5
Color Transfer [60] 50.1 18.0± 4.5
EPE [61] 79.6 50.0± 9.1
Ours 52.3 16.0± 4.6

Table A3: Additional perceptual quality evaluation on 47 sequences.
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Source Image &Target HDR Color Transfer EPESelf-OSR NeRF-OSR Ours

Figure A15: Qualitative comparison against SoTA approaches in scene relighting.

We also provide more qualitative comparisons against SoTA scene relighting approaches in Fig. A15.
For each scene, we showcase two different lighting conditions with the inset target HDRs in the
leftmost column. We show more scene relighting results of LightSim in Fig. A16 and Fig. A17. We
also show results in Fig. A18, where we rotate the HDR skydome and render the shadows at different
sun locations, demonstrating controllable outdoor illumination and realistic simulated results. Please
refer to the project page for video examples.
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Figure A16: Qualitative examples of scene relighting for LightSim (Part 1).
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Figure A17: Qualitative examples of scene relighting for LightSim (Part 2).
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Figure A18: Qualitative examples of scene relighting with shadows edited.
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E.2 Additional Ablation Study

We provide a more thorough ablation study on the important components of the neural deferred
rendering module. The perception quality metrics and additional qualitative examples are provided in
Table A4 and Fig. A19.

#ID Data Pairs Rendering Buffers Edge loss FID ↓ KID (×103) ↓sim-real identity Ibuffer {Ssrc,Stgt} Ledge

0 7 60.9 31.1± 4.0
1 7 62.5 32.7± 4.0
2 7 50.5 21.4± 4.1
3 7 49.8 23.1± 5.0
4 7 109.8 88.7± 7.3
5 200 67.1 40.9± 4.9
6 800 57.3 31.8± 4.3

Ours 3 3 3 3 400 55.4 27.6± 3.7

Table A4: Ablation studies on LightSim components. For clarity, we only mark the differences
between our final model and other configurations. Blank components indicate that the setting is
identical to our final model.

Ours (                        )

A

B

A

B

A

B

A B A B A B

A B A B A B

A

B

A

B

A

B

w/o sim-real pairs w/o identity pairs Ours

w/o rendering buffers w/o shadow maps Ours

Figure A19: Additional ablation study on neural deferred rendering. LightSim can simulate intricate
lighting effects (highlights, shadows) while maintaining realism.
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We choose sequence 001 for the quantitative evaluation (FID/KID scores), and all 80 front-camera
images are used as the reference dataset. To sufficiently measure rendering quality, we generate
3× 80 relit images using the three unseen HDRs in Fig. A12. We also generate 72 relit images (first
frame) with shadows edited using the first unseen HDR. Then, to test generalization to unknown
lighting conditions, we pick the first frame and generate 92 relit images using other real HDR maps.
Therefore, for each model configuration, there are 404 simulated images used in total for perceptual
quality evaluation. We set kid_subset_size=10 for this experiment.

As shown in Table A4 and Fig. A19, sim-real and identity data pairs provide useful regularization
for the neural deferred rendering module by reducing visual artifacts caused by imperfect geometry.
Removing those data pairs leads to less realistic simulation results and worse FID/KID scores. On the
other hand, the rendering buffers and shadow maps play an important role in realistically simulating
intricate lighting effects such as highlights and shadows. We observe unrealistic color and missing
cast shadows if pre-computed buffers Ibuffer and shadow maps {Ssrc,Stgt} are removed. Note that
the KID/FID metrics are lower when removing rendering buffers since the reference dataset does
not include the real data under new lighting conditions; this cannot be interpreted as better visual
quality. Finally, we ablate the content-preserving loss Ledge and find that a proper loss weight helps
the model reduce synthetic mesh-like artifacts (compared to λedge = 0) while properly simulating
new lighting effects (compared to λedge = 800).

E.3 Additional Object Detection Metrics

We report detailed detection metrics for perception training with different data augmentation ap-
proaches for better reference. Specifically, we report the average precision (AP) at different IoU
thresholds: 0.1, 0.3, and 0.5. As shown in Table A5, using LightSim-simulated data yields the best
performance improvements. Color Transfer and standard color augmentation [44] are also effective
ways to promote the performance of autonomy model under novel lighting conditions. In contrast,
Self-OSR and EPE either harm the detection performance or bring marginal gains due to noticeable
visual artifacts that cause sim-real domain gap between training and validation.

Model mAP (%) AP@0.1 AP@0.3 AP@0.5

Real 32.1 51.2 29.5 15.7
Real + Color aug. [44] 33.8 (+1.7) 53.9 31.0 16.4

Real + Sim (Self-OSR) 30.3 (−1.8) 45.6 29.4 16.0
Real + Sim (EPE) 32.5 (+0.4) 50.2 30.6 16.7
Real + Sim (Color Transfer) 35.1 (+3.0) 55.3 32.3 17.6
Real + Sim (Ours) 36.6 (+4.5) 57.1 33.8 19.0

Table A5: Data augmentation with simulated lighting variations.

E.4 Comparison with SoTA Lighting Estimation works

We further compare our neural lighting estimation module with the SoTA lighting estimation ap-
proaches SOLDNet [74] and NLFE [82]. Table A6 shows the lighting estimation results on PandaSet,
where the GPS-calculated sun position is used as reference in error computation. For SOLDNet,
we use the official pre-trained model to run inference on limited field-of-view (FoV) front-camera
images. For NLFE, we re-implement the sky dome estimation branch without differentiable actor
insertion and local volume lighting since the public implementation is unavailable. We also compare
a variation of NLFE (named NLFE∗) that takes our completed LDR panorama image L as input.
For a fair comparison, LightSim uses the predicted sun position during the encoding procedure. For
NLFE and LightSim, the sky dome estimators take the sun intensity and direction explicitly to enable
more human-interpretable lighting control. Therefore, we also evaluate the decoding consistency
error (log-scale for sun intensity and degree for sun direction). The average metrics are reported on
all PandaSet sequences with night logs excluded.

As shown in Table A6, LightSim recovers more accurate HDR sky domes compared to prior SoTA
works, with the lowest angular error. It also produces lower decoding error compared to NLFE.
Interestingly, we also find that using more camera data (panorama vs limited-FoV image) significantly
enhances NLFE’s estimation performance and reduces decoding errors. This verifies our idea of
leveraging real-world data sufficiently to build the lighting-aware digital twins.
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Method Input Angular Error ↓ Decoding Error ↓
Intensity Angle

SOLDNet [74] Limited-FoV 69.98◦ – –
NLFE [82] Limited-FoV 78.29◦ 2.68 12.15◦
NLFE∗ [82] Panorama 47.39◦ 2.27 8.53◦
Ours (no GPS) Panorama 20.01◦ 1.25 1.78◦

Table A6: Comparisons of sky dome estimation on PandaSet. As reference, our model with GPS
leads to 3.78◦ angular error in sun direction prediction and 1.64◦ decoding error.

Fig. A20 shows more lighting estimation examples on PandaSet, including stitched partial panorama
images Ipano, completed LDR panorama L, and HDR sky domes E. LightSim leverages GPS and
time data to get the approximate sun location, enabling recovery of the sun in predicted HDRs even if
not observed in partial panorama images Ipano, and the surrounding observed sky and scene context
can still be used to approximately estimate the sun intensity.

LDR panorama HDR Sky domepartial panorama LDR panorama HDR Sky domepartial panorama 

sunset noonday 

Figure A20: More lighting estimation results on PandaSet.

We further compare virtual actor insertion against SOLDNet and NLFE in Figure A21 on PandaSet
sequence 001. We highlight two regions {A,B} for comparison to showcase the importance of
accurate sun intensity and location prediction, as well as the capability to model inter-object lighting
effects. For SOLD-Net and NLFE, we use Poisson surface reconstruction (PSR) [31] to obtain the
ground mesh as the plane for virtual actor insertion. Specifically, we first only keep the ground points
using semantic segmentation labels, estimate per-point normals from the 200 nearest neighbors within
20cm, and orientate the normals upwards. Then, we conduct PSR with octree depth set as 12 and
remove the 2% lowest density vertices.

Original

A
B B

A

B

A

B

A

SOLD-Net

B

A

NLFE* (Panorama) Ours

Figure A21: Qualitative comparison of lighting-aware virtual object insertion.

For SOLD-Net, the inserted vehicle looks too bright, with hard shadows cast differently from the other
actors since the predicted sun intensity is too strong and the sun direction is not correctly inferred.
NLFE estimates the sun intensity and direction more reasonably by consuming our completed
LDR panorama image. However, it cannot simulate the shadow cast by the original actor onto the
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inserted green vehicle due to the lack of 3D digital twins. In contrast, LightSim can perform virtual
actor insertion with inter-object lighting effects simulated accurately thanks to the accurate lighting
estimation and 3D world modelling.

In Fig. A22, we show additional lighting-aware actor insertion examples on another PandaSet
sequence 024, where the sun is visible in the front camera. LightSim inserts the new actors seamlessly
and can model lighting effects such as inter-object shadow effects (between real and virtual objects).

Real Camera Simulation with LightSim Real vs Sim

A
B B

A

B
A B

A

A B

A

B

A B

A

B

Figure A22: Additional lighting-aware actor insertion examples with LightSim.

E.5 Additional Camera Simulation Examples

Combining all these capabilities results in a controllable, diverse, and realistic camera simulation
with LightSim. In Fig. A23, we show additional camera simulation examples similar to Fig. 1 and
Fig. 7 in the main paper. We show the original scenario in the first block. In the second block, we
show simulated scene variations with an actor cutting into the SDV’s lane, along with inserted traffic
barriers, resulting in a completely new scenario with generated video data under multiple lighting
conditions. In the third block, we show another example where we add inserted barriers and replace
all the scene actors with a completely new set of actors reconstructed from another scene. The actors
are seamlessly inserted into the scenario with the new target lighting. Please refer to the project page
for video examples.
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Figure A23: Additional controllable camera simulation examples.

E.6 Additional Qualitative Results on nuScenes

We further showcase LightSim’s ability to generalize to driving scenes in nuScenes. We provide
more qualitative scene relighting results in Fig. A24 and Fig. A25. Specifically, we select ten diverse
scenarios that involve traffic participants such as vehicles, pedestrians and construction items. The
sequence IDs are 011, 135, 154, 158, 159, 273, 274, 355, 544, 763. As described in
Sec. C.3, we conduct neural scene reconstruction and lighting estimation (pre-trained on PandaSet) to
build the lighting-aware digital twins. Then, we apply the neural deferred rendering model pre-trained
on PandaSet to obtain the relit images. Although the nuScenes sensor data are much more sparse
compared to PandaSet (32-beam LiDAR, 2Hz sampling rate), LightSim still produces reasonable
scene relighting results, indicating good generalization and robustness. Please refer to the project
page for video examples.

Occasionally, we observe noticeable black holes (e.g., on log 355 and 763) in the relit images. This
is because the reconstructed meshes are low-quality (non-watertight ground, broken geometry) due
to sparse LiDAR supervision and mis-calibration. While the neural deferred rendering module is
designed to mitigate this issue, it cannot handle large geometry errors perfectly. Stronger smoothness
regularization during the neural scene reconstruction step can potentially improve the model’s
performance.
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Original Sim 1 Sim 2 Sim 3

Log 011

Log 135

Log 154

Log 158

Log 159

Figure A24: Generalization to nuScenes (Part 1).
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Original Sim 1 Sim 2 Sim 3
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Log 274

Log 355

Log 544

Log 763

Figure A25: Generalization to nuScenes (Part 2).
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F Limitations and Future Works

While LightSim can simulate diverse outdoor lighting conditions, there are several areas where it
could benefit from further improvements. First, LightSim cannot seamlessly remove shadows, as
shown in Fig. A26, particularly in bright, sunny conditions where the original images exhibit distinct
cast shadows. This is because the shadows are mostly baked during neural scene reconstruction
(see view-independent reconstruction in Fig. A27), producing flawed synthetic data that confuses
the neural deferred rendering module. Moreover, we specify fixed materials [10] and predict sky
domes that are not ideal for different urban scenes and may cause real-sim discrepancies as shown in
Fig. 9. Those issues can potentially be addressed by better intrinsic decomposition with priors and
joint material/lighting learning [83, 64]. More discussions for inverse rendering on urban scenes are
provided in Sec D.

Second, LightSim uses an HDR sky dome to model the major light sources for outdoor daytime scenes.
Therefore, LightSim cannot handle nighttime local lighting sources such as street lights, traffic lights,
and vehicle lights. A potential solution is to leverage semantic knowledge and create local lighting
sources (e.g., point/area lights [56] or volumetric local lighting [82]). Moreover, our experiments
also focus on camera simulation for perception models, and we may investigate the performance
of downstream planning tasks in future works. Lastly, our current system implementation relies on
the Blender Cycles rendering engine [7], which is slow to render complex lighting effects. Faster
rendering techniques can be incorporated to further enhance the efficiency of LightSim [69, 56].

Apart from the further method improvements mentioned above, it is important to collect extensive
data from real-world urban scenes under diverse lighting conditions (e.g., repeating the same driving
route under varying lighting conditions). Such data collection aids in minimizing the ambiguity
inherent in intrinsic decomposition. Moreover, it paves the way for multi-log training with authentic
data by providing a larger set of real-real pairs for lighting training.

Sun Glare

Strong Direction Light

0° 90° 180° 270°

baked shadow

lens flare

baked shadow

building

car

Source

Target

Source = Target

Figure A26: Failure cases with strong directional lighting. The neural deferred rendering network
cannot fully remove the baked shadows (top row) and other sensor effects (e.g., lens flare – bottom
row). We use green and red arrows to highlight areas where LightSim performs well and not well.

Original RGB Diffuse Recon.

Original RGB Diffuse Recon. Original RGB Diffuse Recon.

Original RGB Diffuse Recon.

Figure A27: View-independent reconstruction results for LightSim. Shadows are baked at this
stage, which are then mitigated by neural deferred rendering. The relighting failure cases for the last
example are shown in Fig. A26.

In Fig. A26, we highlight two examples of LightSim applied to scenes with strong directional lighting
and high sun intensity. Each row shows the shadow editing/relighting results under four different sun
angles of the target environment map. In the top row, LightSim cannot fully remove source shadows

35



in bright and sunny conditions due to the baked shadows in the view-independent reconstruction.
Moreover, due to inaccurate HDR peak intensity estimation, the brightness of cast shadows cannot
match the original images well. In the bottom row, we depict a source image with high sun intensity
and glare relit to a new target lighting. It is challenging to remove the sun glare and alter the over-
exposed regions in this setting, but we can still apply some relighting effects to the cars and buildings
in the scene (see arrows).

G Computation Resources

In this project, we ran the experiments primarily on NVIDIA Tesla T4s provided by Amazon Web
Services (AWS). For prototype development and small-scale experiments, we used local workstations
with RTX A5000s. Overall, this work used approximately 8,000 GPU hours (a rough estimation
based on internal GPU usage reports), of which 3,000 were used for the final experiments and the rest
for exploration and concept verification during the early stages of the research project. We provide a
rough estimation of GPU hours used for the final experiments in Table A7, where we convert one
A5000 hour to two T4 hours approximately.

Experiment T4 Hours Comments
Table 1 (perceptual quality validation) 1850 LightSim (100), NeRF-OSR (1500), EPE (150)
Table 2 (downstream training) 150 6× models, each takes 25 GPU hours
Table A4 (lighting estimation) 40 15h NLFE, 25h LightSim
Fig. 5 & Table A2 (ablations) 400 50h each model
Fig. 8 (nuScenes) 40 20h for digital twins, 20h for relighting
Others (data generation & demos) 510 500h lighting data generation + 10h demos

Table A7: Summary of GPU hours used for the final experiments.

H Licenses of Assets

We summarize the licenses and terms of use for all assets (datasets, software, code, pre-trained
models) in Table A8.

Assets License URL
Blender 3.5.0 [7] GNU General Public License (GPL) https://www.blender.org/
HDRMaps [24] Royalty-Free9 https://hdrmaps.com/
HoliCity [100] Non-commercial purpose10 https://holicity.io/
TurboSquid 3D Models Royalty-Free11 https://www.turbosquid.com12

PandaSet [87] CC BY 4.013 https://scale.com/open-av-datasets/pandaset
nuScenes [11] Non-commercial (CC BY-NC-SA 4.0)14 https://www.nuscenes.org/

SOLDNet [74] Apache License 2.0 https://github.com/ChemJeff/SOLD-Net/
EPE [61] MIT License https://github.com/isl-org/PhotorealismEnhancement
Self-OSR [61] Apache License 2.0 https://github.com/YeeU/relightingNet
NeRF-OSR [64] Non-commercial purpose15 https://github.com/r00tman/NeRF-OSR
Color Transfer [60] MIT License https://github.com/jrosebr1/color_transfer

Table A8: Summary of the licenses of assets.

I Broader Impact

LightSim offers enhancements in camera-based robotic perception, applicable to various domains
such as self-driving vehicles. Its ability to generate controllable camera simulation videos (e.g., actor
insertion, removal, modification, and rendering from new viewpoints) and adapt to varying outdoor
lighting conditions can potentially improve the reliability and safety of intelligent robots for a broad
range of environmental conditions. Additionally, LightSim’s capacity to create lighting-aware digital
twins can improve realism in digital entertainment applications such as augmented reality or virtual
reality. However, as with any technology, the responsible use of LightSim is important. Privacy
concerns may arise when creating digital twins of real-world locations. We also caution that our
system might produce unstable performance or unintended consequences under different datasets,
especially when the sensory data are very sparse and noisy.
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