
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUTONOMY-AWARE CLUSTERING: WHEN LOCAL DE-
CISIONS SUPERSEDE GLOBAL PRESCRIPTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Clustering arises in a wide range of problem formulations, yet most existing ap-
proaches assume that the entities under clustering are passive and strictly conform
to their assigned groups. In reality, entities often exhibit local autonomy, overrid-
ing prescribed associations in ways not fully captured by feature representations.
Such autonomy can substantially reshape clustering outcomes—altering cluster
compositions, geometry, and cardinality—with significant downstream effects on
inference and decision-making. We introduce autonomy-aware clustering, a re-
inforcement (RL) learning framework that learns and accounts for the influence
of local autonomy without requiring prior knowledge of its form. Our approach
integrates RL with a deterministic annealing (DA) procedure, where, to determine
underlying clusters, DA naturally promotes exploration in early stages of anneal-
ing and transitions to exploitation later. We also show that the annealing proce-
dure exhibits phase transitions that enable design of efficient annealing schedules.
To further enhance adaptability, we propose the Adaptive Distance Estimation
Network (ADEN), a transformer-based attention model that learns dependencies
between entities and cluster representatives within the RL loop, accommodates
variable-sized inputs and outputs, and enables knowledge transfer across diverse
problem instances. Empirical results show that our framework closely aligns with
underlying data dynamics: even without explicit autonomy models, it achieves so-
lutions close to the ground truth (gap ∼3–4%), whereas ignoring autonomy leads
to substantially larger gaps (∼35–40%).

1 INTRODUCTION

Clustering, the task of grouping similar entities, underpins a wide range of applications and method-
ological pursuits, including computer vision, genomics, matrix factorization, and data mining
(Karim et al., 2021; Singh & Singh, 2024; Basiri et al., 2025). This process helps reveal the un-
derlying structure of the data and provides insights that can inform decision-making. Formally,
given a set I of N entities, clustering aims to partition them into K clusters by solving

min
{µ(j|i)},{Cj}

N∑
i=1

ρ(i)

K∑
j=1

µ(j|i)∆(i, Cj), subject to
K∑
j=1

µ(j|i) = 1 ∀ 1 ≤ i ≤ N, (P1)

where Cj denotes the jth cluster, and µ(j|i) ∈ {0, 1} indicates membership of ith entity in the jth

cluster Cj (µ(j|i) = 1 if i ∈ Cj , and 0 otherwise). The constraint
∑K

j=1 µ(j|i) = 1 enforces
exclusivity — each entity belongs exactly to one cluster. The cost function ∆(i, Cj) measures the
dissimilarity between entity i and those in cluster Cj , typically defined in terms of feature vectors
X = {xi}Ni=1, where xi ∈ Rd represents the attributes of the entity i. The search space of partitions
grows combinatorially with N and K, making clustering a computationally challenging problem.

Clustering is also closely related to resource allocation problems, such as facility location, data
quantization, and graph aggregation (Rose, 1998; Xu et al., 2014). In these problems, the objective
is to assign K resources to the entities in I so that the resources adequately service the entities.
This can be viewed as a special case of the clustering problem. For example, the facility location
problem can be formulated as min{µ(j|i)},{yj}

∑N
i=1

∑K
j=1 µ(j|i) d(xi, yj), where xi and yj denote

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) (b) (c) (d)

Figure 1: (a) Dataset, (b) No local autonomy - yj’s at cluster centroid, (c) p(k|j, i) = 0.25, all yj’s
at the centroid of the dataset, and (d) p(k|j, i) = 0.083 if k ̸= j and p(k|j, i) = 0.75, yj’s shifted
towards the centroid of the dataset

the feature vectors of the ith client entity and the jth resource facility, respectively. Resource allo-
cation problems can thus be interpreted as clustering tasks in which the dissimilarity function takes
the form ∆(i, Cj) = d(xi, yj), with each yj serving as the feature vector of the representative point
(or cluster center) of cluster Cj . Existing techniques in the literature typically treat the entities as
passive, meaning that they strictly follow the assignments dictated by the policy µ. However, in
many real-world settings, entities exhibit some degree of autonomy, allowing them to override the
prescribed assignment and behave as active rather than passive entities. For instance, in decentral-
ized sensing, distributed sensors (entities) are grouped into clusters, each of which communicates its
data to an assigned processing unit (resource). Individual sensors, however, may exercise autonomy
and transmit their data to a processing unit associated to a different cluster. Such deviations can
result from several factors in the network such as signal interference, congestion at the processing
unit, energy constraints, or intentional redundancy (Rusu et al., 2018; Yadav & Ujjwal, 2021).

In this work, we introduce the class of autonomy-aware clustering problems, where an entity’s clus-
ter membership is determined by two complementary factors: (i) a global assignment policy µ(·|i),
which prescribes the jth cluster for the ith entity when µ(j|i) = 1, and (ii) a local autonomy term
p(k|j, i) ∈ [0, 1], which probabilistically reassigns the ith entity to the kth cluster given the pre-
scription j ∼ µ(·|i). Existing clustering methods can be seen as a degenerate special case where
p(k|j, i) = 1 if k = j and 0 otherwise, strictly enforcing the policy-prescribed assignment without
any autonomy. The local autonomy term p(k|j, i) encodes latent behavioral tendencies of entities
that are either not captured at all or only partially reflected in the feature vector xi ∈ Rd. For ex-
ample, in decentralized sensing case, xi may include attributes such as sensor location, recorded
data, and current battery charge, but it does not capture network uncertainties such as interference,
congestion, or path loss — which are instead reflected through p(k|j, i). Similarly, in recommender
systems, a user’s feature vector xi may represent demographic or historical preferences, yet sponta-
neous choices, mood, or context-dependent behavior are better captured through the local autonomy.
This leads to an important observation: while it is often straightforward to construct feature vectors
from available information, quantifying local autonomy is considerably more challenging. In prac-
tice, this autonomy — driven by an entity’s latent behavior — is rarely known explicitly, and this
hidden nature constitutes one of the key challenges for autonomy-aware clustering.

The introduction of local autonomy impacts clustering solutions in multiple ways, including altering
cluster assignments, cluster sizes and shapes, and the representative feature vectors of cluster centers
yj ∈ Rd. For illustration, consider the dataset shown in Figure 1(a). Figures 1(b)-(d) depict clus-
tering solutions for different levels of local autonomy. In Figure 1(b), there is no autonomy, and the
cluster centers yj exactly coincide with the respective cluster centroids. In Figure 1(c), the entities
have full autonomy: each entity associates itself to each of the four clusters with equal probability,
p(k|j, i) = 0.25 for all i, j, k. Consequently, all cluster centers {yj} collapse to the centroid of
the entire dataset. For intermediate levels of autonomy, the cluster centers yj tend to shift toward
the global centroid, increasing accessibility to entities not assigned to them under the policy µ. For
example, in Figure 1(d), p(k|j, i) = 0.75 if k = j and p(k|j, i) = 0.083 otherwise. The algorithm
used to generate these solutions is described in Section 3.

Changes in clustering solutions due to local autonomy can significantly affect downstream infer-
ence and decision-making. For instance, in decentralized sensing, the cluster center determines the
location of the processing unit; with local autonomy, the center is no longer the centroid of the en-
tities assigned to the cluster, but shifts toward the centroid of the entire dataset (see Figure 1(d)).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Similarly, in recommender systems, cluster centers are used to characterize user preference profiles,
and shifts induced by local autonomy may lead to different insights for designing new products.
Ignoring autonomy, therefore, risks producing misleading conclusions from clustering outcomes.

One of the key contributions of this work is the development of a framework that captures the
effect of local autonomy on clustering solutions. The framework is presented in two stages. We
first consider the case where the autonomy models are known. Here, we build upon the Maximum
Entropy Principle (MEP)–based Deterministic Annealing (DA) algorithm for data clustering (Rose,
1991), which has proven itself to be effective in addressing major challenges such as combinatorial
complexity, non-convexity, poor local minima, and sensitivity to initialization. Our reformulation of
DA with local autonomy models inherits these advantages. In particular, our modified DA algorithm
maintains soft assignment distributions π(j|i) ∈ [0, 1], where the annealing parameter β controls
the entropy (or “softness”) of the assignments. Reformulating the problem in terms of these soft
distributions yields explicit solutions for π(j|i) at each β, thereby significantly reducing problem
complexity. The annealing process, in which these relaxed problems are solved successively as β
increases, helps avoid shallow minima and reduces sensitivity to initialization. A key feature of DA
is its phase transition behavior: cluster centers yj remain stable over ranges of β and tend to change
significantly only at certain critical values. This property enables efficient annealing schedules in
which β is increased exponentially.

We then turn to the more practical case where autonomy models are unknown. In this setting, we
view clustering as a Markov Decision Process (MDP) with unit horizon: the state space consists
of the data points {xi} and cluster centers {yj}, the action space corresponds to the set of clusters
{Cj}, local autonomy defines the transition probabilities, the instantaneous cost reflects the cluster-
association cost, and the policy µ(j|i) specifies the action at each state i. This formulation allows us
to leverage reinforcement learning (RL), which can determine cluster assignments without explicit
knowledge of the transition probabilities. Accordingly, we propose an RL-based framework that
jointly learns both the assignment policy µ and the cluster representatives yj , effectively tracking
the solutions from the known-model case. We develop algorithms for both scenarios: when the lo-
cal autonomy model p(k|j, i) is independent of the decision variables yj , and when it depends on
them. A further contribution of this work is the Adaptive Distance Estimation Network (ADEN),
an attention-based deep model built on a transformer backbone (Vaswani et al., 2017). ADEN en-
ables model-free learning by leveraging the attention mechanism to capture dependencies between
entity properties xi and cluster representatives yj — dependencies that subsequently determine the
assignment policy. Its flexibility in handling inputs and outputs of varying sizes facilitates knowl-
edge transfer across diverse problem instances. Crucially, ADEN takes in the entire set of cluster
representatives as input, which is essential to address the scenario where the local autonomy dis-
tribution p(k|j, i) depends on all yj . Such global dependencies are common in applications such
as decentralized sensing and recommender systems. The proposed ADEN architecture also allows
exploiting hardware parallelism for large-scale datasets.

Empirical evaluations were conducted on a suite of synthetic scenarios where autonomy distribu-
tions were governed by scenario parameters, as well as on a decentralized sensing application using
the UDT19 London Traffic dataset (Loder et al., 2019), where the problem is posed as optimal
UAV placement to maximize coverage of roadside sensors. These studies show that our frame-
work produces solutions that closely reflect the underlying data dynamics: even without explicit
autonomy models, the performance of our method on average remains within ∼ 3 − 4% of model-
based solutions. Interestingly, on some instances of the large-scale decentralized sensing problem,
our proposed learning-based algorithm achieves up to a 10% improvement over the case where the
local autonomy model is explicitly known, underscoring its inherent capacity to escape poor min-
ima. Note that, the reinforcement learning foundation of our framework equips it with the ability
to operate in an online manner, where solutions are not only computed once but can be progres-
sively improved as more information becomes available. This capability is particularly attractive for
real-world applications, where data are generated dynamically and the entities have local autonomy.

2 RELATED WORK

Probabilistic model-based clustering has been widely studied in classical machine learning and
applied to diverse domains including image segmentation and topic modeling (Deng & Han,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2018). Fundamental approaches include mixture models such as Gaussian Mixture Models
(GMM) and Bernoulli Mixture Models (BMM) (McLachlan & Basford, 1988; McLachlan &
Peel, 2000; Figueiredo & Jain, 2002; Zhang et al., 2021), as well as algorithms like Expectation-
Maximization (EM) (McLachlan & Krishnan, 2008), probabilistic topic models (Hofmann, 2013)
and offline/online Deterministic Annealing (Rose, 1998; Mavridis & Baras, 2022). In such frame-
works, data points are not deterministically assigned to clusters; instead, they have soft assignments
πj|i ∈ [0, 1], with

∑
j πj|i = 1 for each data point i. These soft assignments naturally accommodate

stochasticity in cluster assignment at the level of policy, but they do not capture the local autonomy
of the agents where they actively choose or reject assignments.

A line of theoretical work in (Harris et al., 2019; Brubach et al., 2024; Negahbani & Chakrabarty,
2021) have formulated clustering directly under stochastic assignment policy and developed approx-
imation algorithms with provable guarantees. For example, (Harris et al., 2019) defines a probability
distribution, termed as “k-lottery,” over possible sets of K centers rather than deterministically se-
lecting a fixed set. The users however, are still passive recipients of assignments, highlighting a gap
between these approaches and applications where agents may autonomously accept or reject assign-
ments. In parallel, researchers have cast clustering as a reinforcement learning (RL) problem. One
of the earliest examples is Reinforcement Clustering (RC) (Likas, 1999) where each data point’s
(assumed passive) assignment to a cluster is treated as an action and the distortion/error acts as the
reward signal. More recent work in (Li et al., 2022; Gowda et al., 2022; Zhu et al., 2025), provide
a deep reinforcement learning variant of the approach presented in (Likas, 1999).

This line of work also connects to clustering in environments where human behavior introduces
uncertainty. For instance, (Banerjee & Veltri, 2024; Ji et al., 2023) highlight how policies assign
individuals to behavioral “clusters,” yet real-world deviations due to human unpredictability and in-
formation asymmetry necessitate probabilistic post-adjustments. Similarly, The Ethical Algorithm
(Kearns & Roth, 2019) discusses fairness-aware clustering and allocation under uncertainty, under-
scoring challenges when algorithmic groupings diverge from intended impact.

Unlike prior works, our framework allows stochasticity not only in the cluster-assignment policy but
also in the behavior of the entities themselves conditioned on the prescribed cluster. In fact, we ex-
plicitly accounts for the latter in the underlying optimization problem that we pose. Building on the
DA framework-where the annealing parameter governs the softness of the assignment policy—we
introduce a notion of local autonomy: for each entity, a probability distribution governs the realized
action conditioned on the assigned policy action. To our knowledge, incorporating such entity-level
autonomy into clustering is novel and opens a promising direction for applications where policy
adaptation to locally stochastic behavior is essential.

3 PROBLEM FORMULATION AND SOLUTION METHODOLOGY

In this article, we modify the classical clustering (resource allocation) problem (P1) to include local
autonomy. Let xi ∈ X ⊆ Rd denote the feature vector of the i-th entity, with relative weight ρ(i)
such that

∑N
i=1 ρ(i) = 1. In the autonomy-aware setting, each entity i may override its prescribed

cluster assignment. Specifically, if entity i is assigned to cluster Cj , it may instead select cluster
Ck with probability p(k|j, i). The objective is to determine a set of representative feature vectors
Y := {yj}Kj=1, corresponding to cluster centers, together with binary association variables µ(j|i) ∈
{0, 1}, which indicate the assignment of entity i to cluster Cj , such that the cumulative expected
cost of assignment is minimized:

min
{µ(j|i)},{yj}

D :=

N∑
i=1

ρ(i)

K∑
j=1

µ(j|i)
K∑

k=1

p(k|j, i) d(xi, yk), subject to µ ∈ Λ, (P2)

where Λ = {µ : µ(j|i) ∈ {0, 1} ∀i, j,
∑K

j=1 µ(j|i) = 1 ∀i} denotes the set of feasible assignment

policies as in (P1). We further define davg(xi, yj) :=
∑K

k=1 p(k|j, i) d(xi, yk) as the average cost
of associating the ith entity to the jth cluster.

To address the autonomy-aware clustering problem, we adapt the maximum entropy principle
(MEP)-based deterministic annealing (DA) algorithm, originally developed for the classical for-
mulation (P1). Instead of solving Problem (P2) directly, we introduce a family of parameterized

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

problems (P(β)), which are solved sequentially for an increasing sequence of annealing parameters
{βk}. At each stage, the solution of (P(βk−1)) is used to initialize (P(βk)), and the sequence is
constructed such that the limiting solution of (P(∞)) provides a high-quality approximation to (P2).

In (P(β)) the binary assignment policy µ(j|i) ∈ {0, 1} is relaxed to π(j|i), which takes values
in the interval [0, 1]. This relaxation enables soft rather than binary associations, and π(·|i) can
be interpreted probabilistically as a distribution over cluster assignments for the ith entity. The
parameterized problem is then formulated as

min
{π(j|i)},Y

F = D − 1
βH subject to π ∈ Λβ , (P(β))

where D :=

N∑
i=1

ρ(i)

K∑
j=1

π(j|i)
K∑

k=1

p(k|j, i) d(xi, yk), H := −
N∑
i=1

ρ(i)

K∑
j=1

π(j|i) log π(j|i),

denote the relaxed distortion term (corresponding to (P2)) and the conditional entropy of the assign-
ment distribution p(yj |xi) = π(j|i), respectively. The feasible set is defined as Λβ := {π : π(j|i) ∈
[0, 1] ∀i, j,

∑
j π(j|i) = 1 ∀i}, which is the natural relaxation of the feasible set Λ in (P1) and (P2).

The entropy term serves two purposes: (i) it reduces sensitivity to initialization, and (ii) it helps avoid
poor local minima. When β is small, the entropy term dominates, encouraging high-entropy (near-
uniform) assignments. In this regime, cluster centers {yj} are estimated using information from
the entire dataset, producing more global solutions. As β increases, the influence of the distortion
term grows, gradually sharpening the assignments towards deterministic clustering. This contrasts
with algorithms such as k-means, where cluster centers depend only on local memberships and are
therefore highly sensitive to initialization.

For each fixed β, the cost function F is convex with respect to the policy variables π(j|i) (al-
though it is not jointly convex in both {yj} and {π(j|i)}). The optimal assignment policy
can therefore be obtained in closed form. Specifically, consider the unconstrained Lagrangian
F ′ = F +

∑N
i=1 νi

(∑K
j=1 π(j|i)− 1

)
, where νi are the multipliers enforcing the normalization of

π(·|i). Setting ∂F ′

∂π(j|i) = 0 yields the Gibbs distribution:

πβ
Y (j|i) = softmaxj

(
− β davg(xi, yj)

)
=

exp{−β davg(xi, yj)}∑K
ℓ=1 exp{−β davg(xi, yℓ)}

, (1)

where davg(xi, yj) :=
∑K

k=1 p(k|j, i) d(xi, yk) represents the average cost of assigning entity i to
cluster j under autonomy-aware reassignments. The Gibbs distribution (1) assigns higher probability
to clusters with smaller average costs. The parameter β acts as an annealing factor controlling
the sharpness of assignments: when β is small, πβ

Y (j|i) approaches a uniform distribution over
clusters (high entropy), encouraging exploration; as β → ∞, assignments become increasingly
deterministic, converging toward the hard clustering of Problem (P2).

Substituting the Gibbs distribution into (P(β)) eliminates the policy variables and yields the free
energy F as a function of the cluster representatives Y = [y⊤1 y⊤2 . . . y⊤K]⊤ ∈ RKd:

min
Y

F (Y) = − 1

β

N∑
i=1

ρ(i) log

(
K∑
j=1

exp
{
− β davg(xi, yj)

})
. (P̂(β))

The cluster representatives {yℓ} are obtained by minimizing (P̂(β)), either by solving ∂F
∂Y = 0 or

via a descent method (Luenberger et al., 1984). For the commonly used squared Euclidean cost
d(xi, yk) = ∥xi − yk∥22, the optimality condition yields the update rule:

yℓ =

∑N
i=1

∑K
j=1 ρ(i) p(ℓ|j, i)π

β
Y (j|i)xi∑N

i=1

∑K
j=1 ρ(i) p(ℓ|j, i)π

β
Y (j|i)

, ∀ 1 ≤ ℓ ≤ K. (2)

Equations (1) and (2) are therefore coupled and must be solved iteratively at each β. Algorithm 1
summarizes the procedure for computing these solutions under the assumptions that the autonomy
probabilities p(k|j, i) are known and independent of Y ; here the cost function is squared Euclidean

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1: Autonomy-aware clustering - when local autonomy is known explicitly

Input: βmin, βmax, τ , K, {xi}Ni=1, ρ(i), and p(k|j, i) for all 1 ≤ j, k ≤ K and 1 ≤ i ≤ N ;
Output: Assignment policy π, and cluster representatives {yℓ}Kℓ=1

Initialize: β = βmin, πY (j|i) = 1
K
∀ i, j, and {yℓ}Kℓ=1 using (2).

while β ≤ βmax do
while until convergence do

Compute {πY (j|i)} in (1), {yℓ} in (2)
β ← τβ; set yℓ ← yℓ + ϵnoise (to escape saddle) ∀ ℓ

(though the approach generalizes to other dissimilarity notions and cases where p(k|j, i) depends
on Y). In Section (4), we develop a framework for determining clustering solutions when the local
autonomy is unknown (and possibly dependent on Y) — the more common scenario in practice.

Remark. (1) reinforces that annealing promotes insensitivity to initialization: for small β, π(j|i) ≈
1/K, producing nearly uniform assignments, while increasing β gradually emphasizes the distortion
term D in (P(β)), breaking uniformity. In the limit β → ∞, πβ

Y collapses to hard assignments,
recovering the solution of (P2). This annealing induces a homotopy from the convex surrogate −H
to the original non-convex objective D, a feature of maximum-entropy methods (Rose, 1998; Xu
et al., 2014) that helps avoid poor local minima (Srivastava & Salapaka, 2020; 2021).

We analyze Algorithm 1 by separating the inner-loop and outer-loop convergence. In the inner
loop, the coupled equations (1) and (2) can be solved via fixed-point iterations. These iterations
can be interpreted as gradient descent steps, which ensures convergence under mild conditions. We
formalize this as follows:

Theorem 1 (Inner-Loop Convergence). The fixed-point iteration defined by (1) and (2) is equiva-
lent to gradient descent iteration of the form

Y (t+ 1) = Y (t)− 1

2

(
P̂Y (t)
πρ

)−1∇F (Y (t)), (3)

where P̂Y (t)
πρ = P

Y (t)
πρ ⊗Id, Id is the d×d identity,⊗ is the Kronecker product, and PY (t)

πρ ∈ RK×K is
diagonal with [P

Y (t)
πρ]ℓℓ = p

Y (t)
πρ (ℓ) :=

∑
i,j ρ(i)πY (t)(j|i) p(ℓ|j, i), representing the effective mass

of cluster ℓ. The iterations (3) converge to a stationary point under the following mild assumptions:

(i) Non-degenerate clusters: There exists c > 0 such that pY (t)
πρ (ℓ) ≥ c for all ℓ; i.e., every cluster

has non-zero mass. This is trivially satisfied for πβ
Y in (1) at β <∞.

(ii) No abrupt shift in cluster mass: Let Yr(t + 1) = Y (t) − r
2

(
P̂

Y (t)
πρ

)−1∇F (Y (t)), r ∈ (0, 1]

be the relaxed updates. Then the cluster mass change is bounded: maxr∈(0,1] p
Yr(t+1)
πρ (ℓ) <

4 p
Y (t)
πρ (ℓ), ∀ℓ, i.e., no cluster’s mass increases by a factor of 4 in a single update.

If these assumptions do not hold, there exist adaptive step-sizes σt such that Y (t + 1) = Y (t) −
σt∇F (Y (t)) still converges to a stationary point.

Proof: See Appendix A for details, including a modification of Algorithm 1 with adaptive step sizes
that ensures convergence to a stationary point when assumptions are violated.

For the outer-loop (β) iterations, we highlight an important feature that motivates fast (geometric)
annealing schedules. At β ≈ 0, the Lagrangian F is dominated by the convex term −H , and the
fixed-point iterations in Algorithm 1 converge to a global minimum. As β increases, the algorithm
tracks the minimizer of F (Y) until reaching a critical value βcr, where the fixed point ceases to
be a (local) minimum. Simulations show that the cluster representatives yℓ change significantly at
βcr, a phenomenon referred to as a phase transition, analogous to annealing processes in statistical
physics. Between successive critical points, Y = {yℓ} remains nearly constant. The following
theorems quantify βcr and bound the change of Y between phase transitions, enabling the design of
efficient annealing schedules in Algorithm 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 2 (Phase Transitions). The critical value of the annealing parameter at which the fixed
point of (1) and (2) is no longer a minimum is

βcr =
1

2λmax

((
P̂Y
πρ

)− 1
2∆
(
P̂Y
πρ

)− 1
2

) , where ∆ =

N∑
i=1

(K∑
j=1

P ij
A ziz

⊤
i P

ij − ρ(i)P iziz
⊤
i P

i
)

(4)

is a Kd×Kd matrix, λmax(·) denotes the maximum eigenvalue, P̂Y
πρ

is positive definite as defined
in (3), and P ij

A , zi, P
i are matrices determined by πY , Y , X , and {p(k|j, i)}.

Proof: See Appendix B.
Theorem 3 (Insensitivity in-between phase transitions). Let β be sufficiently far from a critical
value βcr. Specifically, let δ > 0 satisfy λmin

(
Id − 2β

(
PY
πρ

)−1/2
∆
(
PY
πρ

)−1/2
)
≥ δ, where λmin(·)

is the minimum eigenvalue. Then, the cluster representatives evolve according to
∥∥∥dY

dβ

∥∥∥ ≤ N
√
KRΩ

eβδ ,

whereRΩ is the diameter of the space Ω containing X . In particular, the sensitivity of Y to β decays
as O(1/(βδ)), becoming smaller the farther β is from βcr.

Proof: See Appendix C. The above theorems are stated for the squared Euclidean cost d(xi, yk) =
∥xi − yk∥22; similar results may be derived for other distance functions with suitable modifications.

Annealing Schedule in Algorithm 1: Theorems 2 and 3 show that significant changes in Y occur
only at critical points βcr, while Y remains nearly constant between successive critical points. This
motivates an annealing schedule that steps from one βcr to the next. Since exact computation of
βcr can be expensive, a practical alternative is a geometric schedule β ← τβ, τ > 1, which is
computationally efficient. While Theorem 3 provides a conservative bound for small β, simulations
indicate that Y changes little for β far from βcr (see Appendix D for details).

4 REINFORCEMENT-BASED METHOD FOR AUTONOMY-AWARE CLUSTERING

To account for the local autonomy when it is not known explicitly, we develop a reinforcement-
based method to learn the assignment policy πβ

Y (j|i), as well as the representative vectors {yℓ}.
Structurally, our proposed learning algorithm parallels Algorithm 1, with the key difference that in
the inner while loop (executed at fixed β), explicit expressions (or updates) of πβ

Y (j|i) and {yℓ} are
replaced with their learning counterparts. We can distinguish between two learning paradigms for
autonomy-aware clustering, each motivated by a different reinforcement learning framework: (C1)
whenX contains a tractable number of data points, d(xi, yk) is available in closed form, and p(l|j, i)
is independent of yℓ; and (C2) when the dataset is large (N ≫ 1), d(xi, yk) is not available in closed
form, or the local autonomy depends on yℓ.

In (C1), we can estimate the policy πβ
Y in (1) by learning davg(xi, yj) through straightforward Q-

learning–style stochastic iterative updates (Sutton & Barto, 2018), followed by stochastic gradient
descent (SGD) iterations to update the cluster representatives yℓ; see Appendix E for details. Here,
we expound on the learning framework for the case (C2), which is more general, and subsumes (C1).
In this learning framework, we learn a function approximator dθ(xi, yj) to estimate the average cost
davg(xi, yj). Note that here the Q-learning type tabular method to estimate davg(xi, yj) would fail
to scale (N ≫ 1), and SGD iterations would not be possible due to either the missing closed form
of d(xi, yk), or the dependence of p(k|j, i) on {yℓ} (or both) — preventing the computation of
stochastic gradients. We learn the parameteric function approximator dθ(xi, yj) similar to several
deep RL frameworks (Mnih et al., 2015). In particular, we determine θ such that it minimizes

L(θ) = Ei∼ρ,j∼πθ
k∼p

[
(d(xi, yk)− dθ(xi, yj))2

]
, where πθ(j|i) =

e−βdθ(xi,yj)∑K
j′=1 e

−βdθ(xi,yj′)
. (5)

In practice, L(θ) is approximated using sampled mini-batches and optimized to obtain θ. We then
substitute the average cost davg(xi, yj) with its closed-form approximator dθ(xi, yj) in F (Y) in
(P̂(β)), and update the representatives {yℓ} using a descent method. See Algorithm 2 for details. In
Appendix F, we present the detailed description and architecture of Adaptive Distance Estimation
Network (ADEN), our proposed attention-based deep neural approximator for davg(xi, yj).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 2: Deep autonomy-aware clustering algorithm.
Input: data points X = {xi}Ni=1, number of clusters K, annealing parameters βmin, βmax, τ > 1,

number of samples L, number of epochs Td, Ty , learning rates ηd, ηy , number of batches B, batch size
S, Exponential Moving Average (EMA) factor λ ∈ (0, 1), perturbation spread σ ≪ 1

Output: trained NNθ , optimized cluster representatives Y , and assignment policy πθ

Initialize: β ← βmin; θ ← Xavier initialization; Y ← 1
N

∑
i xi +N (0, σ2); d̄0(i, j) = 0 ∀ i, j

while β ≤ βmax do
for t = 1 to Td do

Sample mini-batches {Ib}Bb=1, Ib = {iq : 1 ≤ q ≤ S, iq ∼ ρ}; Ỹb ← Y +N (0, σ2)

forward pass NNθ to obtain predicted distances D̄θ(Xb, Ỹb) for all mini-batches
for each i ∈ Ib (in parallel) do

j ∼ ϵ-greedy(πθ(· | i)) with πθ(j|i) in (5)

draw L̂ samples kℓ ∼ p(k|j, i); compute the empirical mean d̂t(i, j) =
1

L̂

∑L̂
ℓ=1 d

(
i, kℓ

)
update the estimate d̄t(i, j)← λ d̄t−1(i, j) + (1− λ) d̂t(i, j); setMb ←Mb ∪ (i, j)

update θ with one AdamW step on: L(θ) = 1
B

∑B
b=1

∑
(i,j)∈Mb

[
d̄t(i, j)− dθ(xi, ỹj)

]2.

for t = 1 to Ty do
Substitute davg(xi, yj) in F (Y) in (P̂(β)) with dθ(xi, yj); perform Y ← Y − ηy∇Y F (Y)

β ← τβ

5 SIMULATIONS

To evaluate how well our framework accounts for local autonomy, we test it on the synthetic dataset
in Figure 1(a), designing scenarios with varying autonomy levels. In some cases, the autonomy
p(k|j, i) explicitly depends on the parameters X and Y; in others, it is independent. These settings
capture realistic behaviors where an entity i may reject its prescribed cluster j and instead join
another k ̸= j. Here we choose the local autonomy model such that, with probability 1 − κ,
the entity i accepts its prescribed cluster j; otherwise, with probability κ, it chooses an alternative
cluster k ̸= j according to a softmax distribution, p(k|j, i) = κ exp[−ck(j,i)/T]∑

t ̸=j exp[−ct(j,i)/T] , where the

cost ck(j, i) = ζ d(yj , yk) + γ d(xi, yk) balances cluster–cluster distance (ζ) and cluster–entity
distance (γ). Here, κ controls override frequency, and T regulates randomness (uniform as T →∞,
deterministic as T → 0). Varying {κ, T, ζ, γ} yields diverse autonomy scenarios that affect both
cluster locations {yℓ} and the central-planner policy πβ

Y . Full hyperparameters of ADEN in different
scenarios appear in Appendix G.

We compare Algorithm 1 (ground truth), Algorithm 2 (ADEN-based), and a baseline that ignores
autonomy. Table 1 reports objective gaps relative to ground truth, for the dataset in figure 1. The
ADEN-based algorithm incurs only modest error: median 3.12%, mean 3.42%, with deviations
from 1.40% (small κ) to 8.03% (intermediate κ). By contrast, ignoring autonomy produces severe
degradation: median 30.84%, mean 36.26%, and up to 100.20%. Performance in this baseline
worsens as κ increases, while the performance of the ADEN-based algorithm is independent of
it and can be further improved through hyperparameter tuning, underscoring its robustness across
varying autonomy levels.

As a second illustrative example, we consider decentralized sensing in urban traffic monitoring. Us-
ing the UDT19 London Traffic dataset (Loder et al., 2019), which provides geocoordinates of road-
side traffic sensors across Greater London, we pose a facility-location problem: determine optimal
UAV positions to maximize coverage of the sensor network. In practice, sensors may occasionally
fail to transmit data to their assigned UAV due to network uncertainties such as packet loss or con-
gestion (Psannis, 2016). When this occurs, a sensor forwards its measurements to a different UAV,
with higher probability for UAVs in adjacent clusters—naturally introducing local autonomy.

We model this behavior using the same transition distribution p(k|j, i) described earlier, setting
γ = 0, ζ = 1, and varying κ ∈ {0.1, 0.5} and T ∈ {0.1, 0.01}. The temperature T controls
the sharpness of the softmax: lower values create a strong preference for selecting nearby UAVs
whenever the assigned policy cannot be satisfied, while the two κ values represent low and high
rates of network faults. Figure 2 reports the solutions obtained by ADEN (Algorithm 2).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: D gap (%) of the ADEN versus the setting that ignores local autonomy p(k|j, i), relative to
the ground truth (Algorithm 1) across scenarios where p(k|j, i) depends on Y .

κ γ ζ T ADEN Ignored
0.1 0 1 0.01 2.11 10.73
0.1 0 1 100 2.08 6.67
0.1 0.5 1 0.01 1.87 10.01
0.2 0 1 0.01 3.01 25.80
0.2 0 1 100 1.79 15.08
0.2 0.5 1 0.01 1.50 24.90
0.2 0.5 1 100 1.40 15.06
0.3 0 1 0.01 4.80 44.62
0.3 0 1 100 3.25 24.71

κ γ ζ T ADEN Ignored
0.3 0.5 1 0.01 7.02 43.56
0.3 0.5 1 100 3.24 24.69
0.4 0 1 0.01 8.03 68.89
0.4 0 1 100 3.36 35.92
0.4 0.5 1 0.01 3.47 67.63
0.4 0.5 1 100 2.68 35.89
0.5 0 1 100 5.66 49.21
0.5 0.5 1 0.01 1.72 100.20
0.5 0.5 1 100 4.66 49.17

(a) κ = 0.1, T = 0.1 (b) κ = 0.5, T = 0.1 (c) κ = 0.1, T = 0.01 (d) κ = 0.5, T = 0.01

Figure 2: Clustering of the UDT19 dataset under parameterized autonomy for varying κ. UAVs are
indicated by colored stars, and sensor (denoted by ∗) colors denote their associated UAV.

The results demonstrate a consistent pattern. Increasing κ causes the UAV (cluster) representatives
to move closer together (closer to the centroid of the entire dataset), reflecting stronger cross-cluster
autonomy ((Figure 2(b),2(d))). Whereas, in case of low κ, the UAVs are fairly spread out (Figure
2(a),2(c)). This intuitive outcome is accurately captured by our learned model (ADEN) in both
temperature regimes.

Notably, when κ = 0.1, T = 0.1, ADEN matches the performance of the model-based baseline
(ground truth), and for κ = 0.5, T = 0.1 it achieves approximately a 10% improvement over the
ground truth, despite the absence of an explicit autonomy model. These results underscore the ability
of our approach to remain competitive with, and in some cases surpass, model-aware methods while
scaling to large, high-dimensional decentralized sensing problems.

The case T = 0.01 is particularly challenging: the distribution p(k|j, i) becomes sharply peaked,
and the large number of entities and clusters add to this challenge. Even in this setting, our model-
free solution attains average optimality gaps of only 18.37% and 24.82% for κ = 0.1 and κ = 0.5,
respectively, relative to a model-based oracle. These gaps can be further reduced through standard
hyperparameter tuning and extended training. Finally, we emphasize that Algorithm 2, being rooted
in a reinforcement learning framework, can be naturally deployed in an online setting where it
continuously learns and refines the solution.

REPRODUCIBILITY STATEMENT

1. For all the theorems presented in this work, the complete details of the underlying assump-
tions (if any) and the full proofs are provided in the Appendix, with appropriate references
made in the main text.

2. The codes were executed on a GPU Cluster, specifically utilizing the ghx4 partition. This
system is comprised of NVIDIA Grace Hopper Superchip nodes, each equipped with an
NVIDIA H100 GPU and a Grace CPU. The node provided 16 CPU cores and 1 GPU, with
a total of 64 GB of memory allocated for the job.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

3. The random seeds / hyperparameter settings for all the simulations in Section 5 are provided
in the Appendix G.

4. For the simulations reported in Section 5, the corresponding datasets and implementation
codes are included in the supplementary material. Also, the code and data will be made
publicly available on Github once review is completed.

5. Similarly, for the simulations described in Appendix D, the relevant dataset (data point lo-
cations and their autonomy levels) is also included in the same supplementary material. The
code to reproduce the plots here are straightforward and based on Algorithm 1. The inputs
involved are βmin = 10−3, βmax = 103, τ = 0.99, ρ(i) = 1

N , ϵnoise ∼ (10−4)N (0, 1).

REFERENCES

Sanchayan Banerjee and Giuseppe A Veltri. Harnessing pluralism in behavioral public policy re-
quires insights from computational social science. Frontiers in Behavioral Economics, 3:1503793,
2024.

Salar Basiri, Alisina Bayati, and Srinivasa Salapaka. Orthogonal nonnegative matrix factorization
with sparsity constraints, 2025. URL https://arxiv.org/abs/2210.02672.

Vivek S Borkar and Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint,
volume 100. Springer, 2008.

Brian Brubach, Nathaniel Grammel, David G. Harris, Aravind Srinivasan, Leonidas Tsepenekas,
and Anil Vullikanti. Stochastic optimization and learning for two-stage supplier problems. ACM
Trans. Probab. Mach. Learn., 1(1), December 2024. doi: 10.1145/3604619. URL https:
//doi.org/10.1145/3604619.

Hongbo Deng and Jiawei Han. Probabilistic models for clustering. In Data Clustering, pp. 61–86.
Chapman and Hall/CRC, 2018.

Mario A. T. Figueiredo and Anil K. Jain. Unsupervised learning of finite mixture models. IEEE
Transactions on pattern analysis and machine intelligence, 24(3):381–396, 2002.

Shreyank N Gowda, Laura Sevilla-Lara, Frank Keller, and Marcus Rohrbach. Claster: clustering
with reinforcement learning for zero-shot action recognition. In European conference on com-
puter vision, pp. 187–203. Springer, 2022.

David G Harris, Shi Li, Thomas Pensyl, Aravind Srinivasan, and Khoa Trinh. Approximation algo-
rithms for stochastic clustering. Journal of Machine Learning Research, 20(153):1–33, 2019.

Thomas Hofmann. Probabilistic latent semantic analysis. arXiv preprint arXiv:1301.6705, 2013.

Jiaming Ji, Tianyi Qiu, Boyuan Chen, Borong Zhang, Hantao Lou, Kaile Wang, Yawen Duan,
Zhonghao He, Jiayi Zhou, Zhaowei Zhang, et al. Ai alignment: A comprehensive survey. arXiv
preprint arXiv:2310.19852, 2023.

Md Rezaul Karim, Oya Beyan, Achille Zappa, Ivan G Costa, Dietrich Rebholz-Schuhmann, Michael
Cochez, and Stefan Decker. Deep learning-based clustering approaches for bioinformatics. Brief-
ings in bioinformatics, 22(1):393–415, 2021.

Michael Kearns and Aaron Roth. The Ethical Algorithm: The Science of Socially Aware Algorithm
Design. Oxford University Press, Inc., USA, 2019. ISBN 0190948205.

Peng Li, Jing Gao, Jianing Zhang, Shan Jin, and Zhikui Chen. Deep reinforcement clustering. IEEE
Transactions on Multimedia, 25:8183–8193, 2022.

Aristidis Likas. A reinforcement learning approach to online clustering. Neural computation, 11(8):
1915–1932, 1999.

Allister Loder, Lukas Ambühl, Monica Menendez, and Kay W Axhausen. Understanding traffic
capacity of urban networks. Sci. Rep., 9(1):16283, November 2019.

10

https://arxiv.org/abs/2210.02672
https://doi.org/10.1145/3604619
https://doi.org/10.1145/3604619

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

David G Luenberger, Yinyu Ye, et al. Linear and nonlinear programming, volume 2. Springer,
1984.

Christos N Mavridis and John S Baras. Online deterministic annealing for classification and clus-
tering. IEEE Transactions on Neural Networks and Learning Systems, 34(10):7125–7134, 2022.

Geoffrey J McLachlan and Kaye E Basford. Mixture models. inference and applications to cluster-
ing. Statistics: textbooks and monographs, 1988.

Geoffrey J McLachlan and Thriyambakam Krishnan. The EM algorithm and extensions. John Wiley
& Sons, 2008.

Geoffrey J McLachlan and David Peel. Finite mixture models. John Wiley & Sons, 2000.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Maryam Negahbani and Deeparnab Chakrabarty. Better algorithms for individually fair k-clustering.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, volume 34, pp. 13340–13351. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/6f221fcb5c504fe96789df252123770b-Paper.pdf.

Kostas E Psannis. Hevc in wireless environments. Journal of Real-Time Image Processing, 12(2):
509–516, 2016.

Kenneth Rose. Deterministic annealing, clustering, and optimization. PhD thesis, California Insti-
tute of Technology, 1991.

Kenneth Rose. Deterministic annealing for clustering, compression, classification, regression, and
related optimization problems. Proceedings of the IEEE, 86(11):2210–2239, 1998.

Cristian Rusu, John Thompson, and Neil M. Robertson. Sensor scheduling with time, energy, and
communication constraints. IEEE Transactions on Signal Processing, 66(2):528–539, 2018. doi:
10.1109/TSP.2017.2773429.

Jaswinder Singh and Damanpreet Singh. A comprehensive review of clustering techniques in
artificial intelligence for knowledge discovery: Taxonomy, challenges, applications and fu-
ture prospects. Advanced Engineering Informatics, 62:102799, 2024. ISSN 1474-0346. doi:
https://doi.org/10.1016/j.aei.2024.102799. URL https://www.sciencedirect.com/
science/article/pii/S1474034624004476.

Amber Srivastava and Srinivasa M Salapaka. Simultaneous facility location and path optimization in
static and dynamic networks. IEEE Transactions on Control of Network Systems, pp. 1–1, 2020.

Amber Srivastava and Srinivasa M Salapaka. Parameterized mdps and reinforcement learning prob-
lems—a maximum entropy principle-based framework. IEEE Transactions on Cybernetics, 52
(9):9339–9351, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yunwen Xu, Srinivasa M Salapaka, and Carolyn L Beck. Aggregation of graph models and markov
chains by deterministic annealing. IEEE Transactions on Automatic Control, 59(10):2807–2812,
2014.

Saneh Lata Yadav and RL Ujjwal. Mitigating congestion in wireless sensor networks through clus-
tering and queue assistance: a survey. Journal of Intelligent Manufacturing, 32(8):2083–2098,
2021.

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/6f221fcb5c504fe96789df252123770b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/6f221fcb5c504fe96789df252123770b-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S1474034624004476
https://www.sciencedirect.com/science/article/pii/S1474034624004476

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yi Zhang, Miaomiao Li, Siwei Wang, Sisi Dai, Lei Luo, En Zhu, Huiying Xu, Xinzhong Zhu,
Chaoyun Yao, and Haoran Zhou. Gaussian mixture model clustering with incomplete data. ACM
Trans. Multimedia Comput. Commun. Appl., 17(1s), March 2021. ISSN 1551-6857. doi: 10.
1145/3408318. URL https://doi.org/10.1145/3408318.

Jiawei Zhu, Xuegang Wu, and Liu Yang. Edge-constraint based multi-scale contrastive learning for
image deep clustering. Digital Signal Processing, 163:105180, 2025. ISSN 1051-2004. doi:
https://doi.org/10.1016/j.dsp.2025.105180. URL https://www.sciencedirect.com/
science/article/pii/S1051200425002027.

12

https://doi.org/10.1145/3408318
https://www.sciencedirect.com/science/article/pii/S1051200425002027
https://www.sciencedirect.com/science/article/pii/S1051200425002027

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A CONVERGENCE PROOF

A.1 CASE A: WHEN THE ASSUMPTIONS IN THEOREM 1 HOLD TRUE

Parts of the proof below require hessian of F (Y) in (P̂(β)), which is computed in the Appendix B.
We refer to the relevant equations from Appendix B wherever required.

We have the following assumptions:

(i) Non-degenerate clusters - there exists c > 0 such that pY (t)
πρ (l) ≥ c for all l. In other words,

each cluster is a of non-zero mass. Note that this is trivially true for πβ
Y in (1) at β <∞.

(ii) No abrupt shift in cluster mass - let Yr(t + 1) = Y (t) − r
2

(
P̂

Y (t)
πρ

)−1∇F (Y (t)) be the
relaxed update of the iteration in (3), where r ∈ (0, 1]. Then the change in cluster mass
from t and t + 1 is upper bounded. In particular, maxr∈(0,1] p

Yr(t+1)
πρ (ℓ) < 4p

Y (t)
πρ (ℓ) for

all ℓ, i.e., the ℓth cluster mass at t+1 does not increase by more than 4 times of that at t for
all possible values of r ∈ (0, 1].

Consider fixed point iterations in the inner-loop of the Algorithm 1. Substituting the policy πβ
Y (j|i)

in (1) into the expression for the representative features yℓ in (2) results into

yℓ =

∑N
i=1

∑K
j=1 ρ(i)p(l|j, i)

exp{−βdavg(xi,yj)}∑K
j′=1

exp{−βdavg(xi,yj′)}
xi∑N

i=1

∑K
j=1 ρ(i)p(l|j, i)

exp{−βdavg(xi,yj)}∑K
j′=1

exp{−βdavg(xi,yj′)}

. (6)

Thus, one pass over the equations in (1) and (2) is analogous to the iteration

yℓ(t+ 1) =

∑N
i=1

∑K
j=1 ρ(i)p(l|j, i)

exp{−βdavg(xi,yj(t))}∑K
j′=1

exp{−βdavg(xi,yj′ (t))}
xi∑N

i=1

∑K
j=1 ρ(i)p(l|j, i)

exp{−βdavg(xi,yj(t))}∑K
j′=1

exp{−βdavg(xi,yj′ (t))}

∀ l, (7)

⇒ yℓ(t+ 1)pY (t)
πρ

(l) =

N∑
i=1

K∑
j=1

ρ(i)p(l|j, i)πβ
Y (t)(j|i)xi, where (8)

πβ
Y (t)(j|i) =

exp{−βdavg(xi,yj(t))}∑K
j′=1

exp{−βdavg(xi,yj′ (t))}
and pY (t)

πρ (l) =
∑N

i=1 ρ(i)
∑K

j=1 p(l|j, i)π
β
Y (t)(j|i). Sub-

tracting pY (t)
πρ (l)yℓ(t) from both sides of the equation (8), we obtain(

yℓ(t+ 1)− yℓ(t)
)
pY (t)
πρ

(l) = −
N∑
i=1

K∑
j=1

ρ(i)p(l|j, i)πβ
Y (t)(j|i)

(
yℓ(t)− xi

)
(9)

⇒
(
yℓ(t+ 1)− yℓ(t)

)
pY (t)
πρ

(l) = −∂F (Y (t))

∂yℓ
, (10)

which in the stacked vector notation can be re-written as

Y (t+ 1) = Y (t)− 1

2

(
P̂Y (t)
πρ

)−1∇F (Y (t)) =: Y (t) + S(t). (11)

Here, P̂Y (t)
πρ = PY

πρ
(t)⊗Id, Id is a d×d Identity matrix,⊗ denotes the Kronecker product, PY (t)

πρ ∈
RK×K is a positive definite diagonal matrix with

[
P

Y (t)
πρ

]
ll

= p
Y (t)
πρ (l) ≥ c > 0, ∇F (Y (t)) =[

dF (Y (t))
dy1

⊤
, · · · , dF (Y (t))

dyK

⊤]⊤
∈ RKd. At every time instant t, we define

L(Y (t)) := sup
r∈[0,1]

λmax

((
P̂Y (t)
πρ

)−1/2∇2F (Y (t) + rS(t))
(
PY (t)
πρ

)−1/2
)
, (12)

Let Yr(t + 1) := Y (t) + rS(t), and g(r) := F (Yr(t + 1)). Then g′(r) = ∇F (Yr(t +
1))⊤S(t), g′′(r) = S(t)⊤∇2F (Yr(t + 1))⊤S(t). To avoid notational clutter, let Mt :=(
P̂

Y (t)
πρ

)−1/2∇2F (Yr(t+ 1))
(
P

Y (t)
πρ

)−1/2
. Then

g′′(r) =
((
P̂Y (t)
πρ

)1/2
S(t)

)⊤
Mt

((
P̂Y (t)
πρ

)1/2
S(t)

)
(13)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

⇒ g′′(r) ≤ λmax

(
Mt

)(
S(t)⊤

(
P̂Y (t)
πρ

)
S(t)

)
(14)

⇒ g′′(r) ≤ λmax

(
Mt

)∥∥S∥∥2
P

Y (t)
πρ
≤ L(Y (t))

∥∥S(t)∥∥2
P

Y (t)
πρ

(15)

Integrating both sides we obtain

g(1) = g(0) + g′(0) +

∫ 1

0

(1− t)g′′(t)dt (16)

⇒ F (Y (t+ 1)) ≤ F (Y (t)) +∇F (Y (t))⊤S(t) + L(Y (t))∥S(t)∥2
P

Y (t)
πρ

∫ 1

0

(1− t)dt (17)

⇒ F (Y (t+ 1)) ≤ F (Y (t)) +∇F (Y (t))⊤S(t) +
1

2
L(Y (t))∥S∥2

P
Y (t)
πρ

(18)

Substituting S(t) = − 1
2

(
P̂

Y (t)
πρ

)−1∇F (Y (t)) in (18), we get:

F (Y (t+ 1)) ≤ F (Y (t))− 1

2
∇F (Y (t))⊤

(
PY (t)
πρ

)−1∇F (Y (t))

+
1

8
L(Y (t))

(
∇F (Y (t))⊤

(
PY (t)
πρ

)−1)∇F (Y (t))
)

(19)

⇒
(1
2
− 1

8
L(Y (t))

)
∥∇F (Y (t))∥(

P
Y (t)
πρ

)−1 ≤ F (Y (t))− F (Y (t+ 1)) (20)

Telescopic summation over all t ∈ {0, 1, . . . , T} gives us

T∑
t=0

νt∥∇F (Y (t))∥(
P

Y (t)
πρ

)−1 ≤ F (Y (0))− F (Y (T)), where νt =
1

2
− 1

8
L(Y (t)) (21)

⇒
T∑

t=0

νt∥∇F (Y (t))∥(
P

Y (t)
πρ

)−1 ≤ F (Y (0))− Fmin <∞ (22)

There always exists a minimum Fmin such that F (Y (T)) ≥ Fmin for all Y ; note that for 0 < β <

∞, the Log-Sum-Exponential function F (Y (T)) in (P̂(β)) is always lower bounded. Thus, if νt > 0
∀ t, then, as T →∞, ∥∇F (Y (T))∥(

P
Y (T)
πρ

)−1 → 0.

The condition νt > 0 holds true if L(Y (t)) < 4. We have from (49) in Appendix B that

∇2F (Yr(t+ 1)) = P̂Yr(t+1)
πρ

− 2β

N∑
i=1

(
K∑
j=1

P ij
A ziz

⊤
i P

ij − ρ(i)P iziz
⊤
i P

i

)
︸ ︷︷ ︸

=∆

, (23)

where P̂Yr(t+1)
πρ is positive definite by definition in Appendix B, and the matrix ∆ is positive semi-

definite too under the definition of the matrices P ij
A , z,P

ij , P i detailed in Appendix B. Actually, the
latter follows from the fact that for any Ψ = [ψ⊤

1 . . . ψ
⊤
K]⊤ ∈ RKd, Ψ⊤∆Ψ =

∑N
i=1 ρ(i)δi, where

δi =

K∑
j=1

πβ
Y (j|i)

(K∑
k=1

p(k|j, i)[yk − xi]⊤ψk

)2
−
(K∑

j,k=1

πβ
Y (j|i)p(k|j, i)[yk − xi]

⊤ψk

)2
. (24)

Note that δi ≥ 0, because variance of
(∑K

k=1 p(k|j, i)[yk − xi]⊤ψk

)
computed with respect to the

distribution πβ
Y (·|i) is always non-negative. Thus, we can say that ∇2F (Yr(t+ 1)) ⪯ P

Yr(t+1)
πρ , in

other words PYr(t+1)
πρ −∇2F (Yr(t+ 1)) is positive semi-definite. Thus, we have that

λmax

((
P̂Y (t)
πρ

)−1/2∇2F (Yr(t+ 1))
(
PY (t)
πρ

)−1/2
)
≤ λmax

((
P̂Y (t)
πρ

)−1
P̂Yr(t+1)
πρ

)
(25)

⇒ L(Y (t)) ≤ max
r∈[0,1]

λmax

((
P̂Y (t)
πρ

)−1
P̂Yr(t+1)
πρ

)
= max

r∈[0,1]
max

1≤l≤K

p
Yr(t+1)
πρ (l)

p
Y (t)
πρ (l)

. (26)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Under the assumption that for any cluster, its mass does not drastically change, i.e.,
pYr(t+1)
πρ

p
Y (t)
πρ

< 4

for all r ∈ (0, 1], we obtain that L(Y (t)) < 4. Thus νt > 0, and ∥∇F (Y (T))∥(
P

Y (T)
πρ

)−1 → 0 as

T →∞. This is equivalent to ∇F (Y (T))→ 0, which implies that the iterations (11) converge to a
stationary point.

A.2 CASE B: WHEN THE ASSUMPTIONS IN THEOREM 1 DO NOT HOLD

Here, we replace the gradient descent steps in (3) with descent steps of the form

Y (t+ 1) = Y (t)− σt∇F (Y (t)) =: Y (t) + σtS(t), (27)

where the step-size σt is designed using Armijo’s rule (Luenberger et al., 1984). More precisely, we
follow the following steps:

1. Let m = 0, σm,t = s, ϱ ∈ (0, 1), ξ ∈ (0, 1) be Armijo’s parameter.

2. Check if

F
(
Y (t)− σm,t∇F (Y (t))

)
− F

(
Y (t)

)
≤ −ϱσm,t∥∇F (Y (t))∥22 (28)

3. If yes: σt ← σm,t and exit. If not: σm+1,t = ξσm,t, m← m+ 1. Go to step 2.

Note that if the above steps terminate, then we obtain a step size σt that enables descent F
(
Y (t)−

σt∇F (Y (t))
)
≤ F

(
Y (t)

)
. We next show that for the free-energy function F (Y) in (P̂(β)) the

above steps always converge. In other words, we show that there always exists a σt such that
F
(
Y (t)− σt∇F (Y (t))

)
≤ F

(
Y (t)

)
.

Lσ(Y (t)) := sup
r∈[0,1]

λmax

(
∇2F (Y (t) + rσtS(t))

)
(29)

Let Y t
r,σ = Y (t) + rσtS(t), h(r) := F (Y t

r,σ). Then, h′(r) = σt∇F (Y t
r,σ)

⊤S(t), h′′(r) =

σ2
tS(t)

⊤∇2F (Y t
r,σ)S(t). To avoid notational clutter, let M̂t := ∇2F (Y (t) + rσtS(t)). Then

h′′(r) = σ2
t

(
S(t)

)⊤
M̂t

(
S(t)

)
(30)

⇒ h′′(r) ≤ σ2
t λmax

(
M̂t

)(
S(t)⊤S(t)

)
(31)

⇒ h′′(r) ≤ σ2
t λmax

(
M̂t

)∥∥S(t)∥∥2
2
≤ σ2

tLσ(Y (t))
∥∥S(t)∥∥2

2
(32)

Integrating both sides we obtain

h(1) = h(0) + h′(0) +

∫ 1

0

(1− t)h′′(t)dt (33)

⇒ F (Y (t) + σtS(t)) ≤ F (Y (t)) + σt∇F (Y (t))⊤S(t) + σ2
t

1

2
Lσ(Y (t))∥S(t)∥22 (34)

Setting step-size at σm,t in (34), we obtain

F
(
Y (t)− σm,t∇F (Y (t))

)
− F (Y (t)) ≤ σm,t∇F (Y (t))⊤S(t) +

σ2
m,t

2
Lσ(Y (t))∥S(t)∥22 (35)

The Armijo’s condition in (28) will be true if

σm,t∇F (Y (t))⊤S(t) +
σ2
m,t

2
Lσ(Y (t))∥S(t)∥22 ≤ −ϱσm,t∥∇F (Y (t))∥22 (36)

Substituting S(t) = −∇F (Y (t)), we obtain

−∥∇F (Y (t))∥22 +
σm,t

2
Lσ(Y (t))∥∇F (Y (t))∥22 ≤ −ϱ∥∇F (Y (t))∥22 (37)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 3: Autonomy-aware clustering — when assumptions in Theorem 1 fail

Input: βmin, βmax, τ , K, X , ρ(i), p(k|j, i) ∀ i, j, k, and Armijo’s parameters s, ϱ ∈ (0, 1), ξ ∈ (0, 1);
Output: Assignment policy π, and cluster representatives {yℓ}Kℓ=1

Initialize: β = βmin, πβ
Y (j|i) = 1

K
∀ i, j, and {yℓ}Kℓ=1 using (2).

while β ≤ βmax do
while until convergence do

m = 0; σm,t = s; while True do
if F (Y (t)− σm,t∇F (Y (t)))− F (Y (t)) ≤ −ϱσm,t∥∇F (Y (t))∥22 then

σt ← σm,t; break;
else

σm+1,t ← ξσm,t; m← m+ 1

Y (t+ 1)← Y (t)− σt∇F (Y (t)); t← t+ 1;
β ← τβ; set yℓ ← yℓ + ϵnoise (to escape saddle) ∀ ℓ

⇒ −1 + σm,t

2
Lσ(Y (t)) ≤ −ϱ ⇒ σm,t ≤

2

Lσ(Y (t))

(
1− ϱ

)
(38)

⇒ σ0,tξ
m ≤ 2

Lσ(Y (t))

(
1− ϱ

)
(39)

Since ξ < 1, there exist a finite number of iterations m beyond which the above inequality will be
true. In other words, Armijo’s condition in (28) will be satisfied. Thus, resulting into an appropriate
step size σt. See Algorithm 3 for details.

B PHASE TRANSITION AND CRITICAL ANNEALING PARAMETER

B.1 HESSIAN COMPUTATION

We define the following matrices:

1. P̂ ij ∈ RK×K is a diagonal matrix, such that [P̂ ij]kk = p(k|j, i), P ij = P̂ ij ⊗ Id, where
Id is a d× d identity matrix,

2. P i =
∑K

j=1 π
β
Y (j|i)P ij ,

3. zi = Y −Xi ∈ RKd, where Y =
[
y⊤1 y⊤2 . . . y⊤K

]⊤
, Xi = 1Kd ⊗ xi, and ⊗ denotes the

Kronecker product.

4. P̂ ij
A ∈ RK×K is a diagonal matrix;

[
P̂ ij
A

]
kk

= ρ(i)πβ
Y (j|i)p(k|j, i), P

ij
A = P̂ ij

A ⊗ Id ∈
RKd×Kd,

5. PY
πρ
∈ RK×K is a diagonal matrix such that

[
PY
πρ

]
kk

=
∑N

i=1

∑K
j=1 ρ(i)π

β
Y (j|i)p(k|j, i),

and P̂Y
πρ

= PY
πρ
⊗ Id ∈ RKd×Kd. Note that, under the Gibbs’ distribution of πY in (1),[

PY
πρ

]
kk
> 0 for β <∞, thus making P̂Y

πρ
and PY

πρ
positive definite matrices.

Phase transitions occur when the cluster representatives {yℓ} in (2), given by ∂F
∂yℓ

= 0, are no longer

the local minima. In other words, ∂F (Y)
∂Y = 0, where Y = [y⊤1 , . . . , y

⊤
K]⊤ but, there exist some

perturbation direction Ψ = [ψ⊤
1 , . . . , ψ

⊤
K]⊤ ∈ RKd such that the HessianH(Y, π,Ψ, β) =

d2F (Y + ϵΨ)

dϵ2

∣∣∣∣∣
ϵ=0

= Ψ⊤

[
P̂Y
πρ
− 2β

(
N∑
i=1

K∑
j=1

P ij
A ziz

⊤
i P

ij −
N∑
i=1

ρ(i)P iziz
⊤
i P

i

)]
Ψ, (40)

is no longer positive definite.

Computing the Hessian in (40) d2F (Y+ϵΨ)
dϵ2

∣∣∣
ϵ=0

=

=

N∑
i=1

ρ(i)

K∑
j=1

πβ
Y (j|i)

[
K∑

k=1

p(k|j, i)ψ⊤
k ψk − 2β

(K∑
k=1

p(k|j, i)[yk − xi]⊤ψk

)2]
(41)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

+ 2β

N∑
i=1

ρ(i)

[
K∑

j,k=1

πβ
Y (j|i)p(k|j, i)[yk − xi]

⊤ψk

]2
(42)

=

N∑
i=1

ρ(i)

[
K∑
j=1

πβ
Y (j|i)Ψ

⊤[P ij − 2βP ijziz
⊤
i P

ij
]
Ψ (43)

+ 2β

[
K∑

j,k=1

πβ
Y (j|i)p(k|j, i)[yk − xi]

⊤ψk

]2]
(44)

= Ψ⊤

[
P̂Y
πρ
− 2β

N∑
i=1

K∑
j=1

P ij
A ziz

⊤
i P

ij

]
Ψ+ 2β

N∑
i=1

ρ(i)

[
K∑

j,k=1

πβ
Y (j|i)p(k|j, i)[yk − xi]

⊤ψk

]2
(45)

= Ψ⊤

[
P̂Y
πρ
− 2β

N∑
i=1

K∑
j=1

P ij
A ziz

⊤
i P

ij

]
Ψ+ 2β

N∑
i=1

ρ(i)

[
K∑
j=1

πβ
Y (j|i)z

⊤
i P

ijΨ

]2
(46)

= Ψ⊤

P̂Y
πρ
− 2β

N∑
i=1

K∑
j=1

P ij
A ziz

⊤
i P

ij

Ψ+ 2β

N∑
i=1

ρ(i)
[
z⊤i P

iΨ
]2

(47)

= Ψ⊤

[
P̂Y
πρ
− 2β

N∑
i=1

K∑
j=1

P ij
A ziz

⊤
i P

ij

]
Ψ+ 2βΨ⊤

[
N∑
i=1

ρ(i)
[
P iziz

⊤
i P

i
]]

Ψ (48)

= Ψ⊤

[
P̂Y
πρ
− 2β

(
N∑
i=1

K∑
j=1

P ij
A ziz

⊤
i P

ij −
N∑
i=1

ρ(i)P iziz
⊤
i P

i

)]
Ψ (49)

B.2 βCR - CRITICAL ANNEALING PARAMETER VALUE

The Hessian can be re-written as
H(Y, π,Ψ, β) =

Ψ⊤(P̂Y
πρ
)

1
2

[
I − 2β(P̂Y

πρ
)−

1
2

(
N∑
i=1

K∑
j=1

P ij
A ziz

⊤
i P

ij −
N∑
i=1

ρ(i)P iziz
⊤
i P

i

)
(P̂Y

πρ
)−

1
2

]
(P̂Y

πρ
)

1
2Ψ.

As evident from the above expression and the fact that β gets annealed from a small value to a large

value, the critical βcr at which Hessian loses rank is given by
1

2λmax

(
(P̂Y

πρ
)−

1
2∆(P̂Y

πρ
)−

1
2

) .

C SENSITIVITY OF Y TO THE ANNEALING PARAMETER β

Consider the expression of the cluster representatives yℓ in (2). We re-write this expression as

yℓ =

∑N
i=1 p

Y
πρ
(l, i)xi

pYπρ
(l)

,

where pYπρ
(l, i) =

∑K
j=1 ρ(i)π

β
Y (j|i)p(l|j, i) and pYπρ

(l) =
∑N

i=1 p
Y
πρ
(l, i). We have that

dyℓ
dβ

=
1

pYπρ
(l)

N∑
i=1

dpYπρ
(l, i)xi

dβ
− 1

pYπρ
(l)2

N∑
i=1

pYπρ
(l, i)xi

dpYπρ
(l)

dβ
, (50)

where
dpπY

ρ
(l, i)

dβ
=
∑K

j=1 ρ(i)p(l|j, i)
dπβ

Y (j|i)
dβ

, where πβ
Y (j|i) is the Gibbs’ distribution in (1).

We obtain that

dπβ
Y (j|i)
dβ

= −πβ
Y (j|i)

[
davg(xi, yj) + 2β

K∑
k=1

p(k|j, i)(yk − xi)⊤
dyk
dβ

]

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

+ πβ
Y (j|i)

M∑
j′=1

πβ
Y (j

′|i)
[
davg(xi, yj′) + 2β

K∑
k=1

p(k|j′, i)(yk − xi)⊤
dyk
dβ

]
(51)

Substituting (51) in (50), and algebraically simplifying, we obtain

dyℓ
dβ

=
1

pYπρ
(l)

N∑
i=1

K∑
j=1

ρ(i)p(l|j, i)πβ
Y (j|i)davg(xi, yj)

(
yℓ − xi

)
+

2β

pYπρ
(l)

N∑
i=1

K∑
j=1

ρ(i)p(l|j, i)πβ
Y (j|i)

K∑
k=1

p(k|j, i)(yk − xi)⊤
dyk
dβ

(
yℓ − xi

)
− 1

pYπρ
(l)

N∑
i=1

K∑
j=1

ρ(i)p(l|j, i)πβ
Y (j|i)

K∑
j′=1

πβ
Y (j

′|i)davg(xi, yj′)
(
yℓ − xi

)
− 2β

pYπρ
(l)

N∑
i=1

K∑
j=1

ρ(i)p(l|j, i)πβ
Y (j|i)

K∑
j′=1

πβ
Y (j

′|i)
K∑

k=1

p(k|j′, i)(yk − xi)⊤
dyk
dβ

(yℓ − xi) (52)

Multiplying (52) by pπρ
(l)dyℓ

dβ

⊤
on both the sides and summing up over all l, we obtain:

T1 :=

K∑
l=1

pYπρ
(l)
dyℓ
dβ

⊤ dyℓ
dβ

=

N∑
i=1

K∑
j,l=1

ρ(i)p(l|j, i)πβ
Y (j|i)davg(xi, yj)

dyℓ
dβ

⊤
(yℓ − xi)

+ 2β

N∑
i=1

K∑
j=1

ρ(i)πβ
Y (j|i)

[
K∑

k=1

p(k|j, i)dyk
dβ

⊤
(yk − xi)

]2
︸ ︷︷ ︸

T2

−
N∑
i=1

K∑
l=1

pYπρ
(l, i)

K∑
j′=1

πβ
Y (j

′|i)davg(xi, yj′)
dyℓ
dβ

⊤
(yℓ − xi)

− 2β

N∑
i=1

ρ(i)

[
K∑
j=1

πβ
Y (j|i)

K∑
k=1

p(k|j, i)dyk
dβ

⊤
(yk − xi)

]2
︸ ︷︷ ︸

T3

, (53)

which when re-arranged gives

T1 − T2 + T3 =

N∑
i=1

K∑
j,l,j′=1

ρ(i)p(l|j, i)πβ
Y (j|i)π

β
Y (j

′|i)
[
davg(xi, yj)− davg(xi, yj′)

]dyℓ
dβ

⊤
(yℓ − xi)︸ ︷︷ ︸

=:T4

. (54)

Now, we’ll bound some of the terms in the expression T4. Note that, from the expression in (1),
πβ
Y (j|i) ≤ exp

{
− β

(
davg(xi, yj)− davg(xi, yj′)

)}
, which implies

πβ
Y (j|i)

(
davg(xi, yj)− davg(xi, yj′)

)
(55)

≤
(
davg(xi, yj)− davg(xi, yj′)

)
e

{
−β
(
davg(xi,yj)−davg(xi,yj′)

)}
≤ e−1

β
, (56)

where the last inequality follows from the fact that xe−βx ≤ e−1

β
for β > 0. Substituting this bound

in (54), we obtain

T4 ≤
e−1

β

N∑
i=1

K∑
j,l,j′=1

ρ(i)p(l|j, i)πβ
Y (j|i)π

β
Y (j

′|i)dyℓ
dβ

⊤
(yℓ − xi) (57)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

=
e−1

β

N∑
i=1

K∑
l=1

pYπρ
(l, i)

dyℓ
dβ

⊤
(yℓ − xi) ≤

e−1

β

N∑
i=1

K∑
l=1

∥∥∥dyℓ
dβ

∥∥∥RΩ, (58)

where RΩ quantifies the size of the domain Ω (for instance, radius of the smallest sphere containing
all the data points {xi}). Further note from expression (42) that T1 − T2 + T3 is essentially the

HessianH(Y, π,Ψ, β) where the perturbation Ψ =

[
dy1
dβ

⊤
. . .

dyK
dβ

⊤
]⊤

. Thus, we have that

⇒
K∑
l=1

dyℓ
dβ

⊤ ∂2F

∂y2ℓ

dyℓ
dβ
≤ e−1

β
NRΩ

K∑
l=1

∥∥∥dyℓ
dβ

∥∥∥ (59)

⇒
K∑
l=1

λmin

(∂2F
∂y2ℓ

)∥∥∥dyℓ
dβ

∥∥∥2 ≤ e−1

β
NRΩ

K∑
l=1

∥∥∥dyℓ
dβ

∥∥∥ (60)

⇒
K∑
l=1

δ
∥∥∥dyℓ
dβ

∥∥∥2 ≤ e−1

β
NRΩ

K∑
l=1

∥∥∥dyℓ
dβ

∥∥∥, (61)

where δ = minl
[
λmin

(
∂2F
∂y2

ℓ

)]
, and λmin(·) is the minimum eigenvalue. Note that

∑K
l=1

∥∥dyℓ

dβ

∥∥ ≤
√
K
∥∥dY

dβ

∥∥ by Cauchy-Schwarz inequality, where∥∥∥dY
dβ

∥∥∥ =

√∥∥∥dy1
dβ

∥∥∥2 + . . .+
∥∥∥dyK
dβ

∥∥∥2. (62)

Thus, from (61) we have that

δ
∥∥∥dY
dβ

∥∥∥2 ≤ e−1

β
NRΩ

√
K
∥∥∥dY
dβ

∥∥∥ (63)

⇒
∥∥∥dY
dβ

∥∥∥ ≤ e−1

βδ
NRΩ

√
K (64)

D CHANGE IN Y VERSUS β AND CRITICAL TEMPERATURES

Here we illustrate how Y changes drastically near critical βcr, and remains largely unchanged be-
tween two consecutive βcr. Figure 3(a) illustrates the dataset that we consider for this illustration.
It contains 3200 data points, and we divide it into K = 16 clusters, i.e., 16 cluster representatives
{yℓ}. Each data point has local autonomy, such that it honors the prescribed cluster 15 out 16 times,
and remaining times it overrides the prescription and uniformly associates with the remaining 15
clusters. Figure 3(b) plots ∥∆Y (β)∥ versus β. Note that change in Y remains largely zero except at
3 instances at which critical βcr was attained. Initially all the representatives {yℓ} are coincident, i.e.,
all have the same feature vector values. At first βcr, 4 distinct representative feature vectors value
are formed, where each unique representative feature vector value is shared by 4 representatives.
At the second βcr each of the previous 4 unique representative vector values give rise to 2 unique
representative vector value — making a total of 8 unique representative feature values at this point.
Here, each unique representative feature vector value is shared by 2 representatives in {yl}. At the
third βcr each of the previous 8 unique representative vectors give rise to 2 unique representative
vector values — making a total of unique 16 representative vectors. See the .mp4 file ”Submission-
WithPT.mp4” (where plot title in every frame shows 1

β) submitted as supplementary material for a
clearer understanding.

E REINFORCEMENT-BASED LEARNING FOR CASE (C1)

Case (C1) - When X contains a tractable number of data points, d(xi, yk) is available in closed
form, and p(l|j, i) is independent of yℓ.

Learning πβ
Y (S1): Our mechanism to learn the assignment policy πβ

Y in (1) is akin to that of
learning the control policy in reinforcement learning (RL) frameworks (Sutton & Barto, 2018).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 3: (a)Dataset, (b) Change in Y versus β demonstrates phenomenon of phase transitions

Let qt(xi, yj) be the estimate of the average cost davg(xi, yj) at a time instant t, and πt(j|i) =

softmaxj(−βqt(xi, yj)) be the estimate of the policy πβ
Y . At every t, we sample a data point

i ∼ ρ(·) and its prescribed cluster j ∼ πt(·|i). The data point associates itself to the cluster
k ∼ p(·|j, i) incurring a cost d(xi, yk). We perform the following stochastic iteration to asyn-
chronously update qt(xi, yj):

qt+1(xi, yj) = (1− ϵt,ij)qt(xi, yj) + ϵt,ijd(xi, yk), (65)

and qt+1(xi′ , yj′) = qt(xi′ , yj′) for all (i′, j′) ̸= (i, j). These iterations, under the Robbins-
Monro step-size conditions

∑
t ϵt,ij = ∞, and

∑
t ϵ

2
t,ij < ∞ ∀ i, j, converge to the expected

cost davg(xi, yj), and provide an estimate π̂β
Y of the policy in (1). See (Borkar & Borkar, 2008) for

proof.

Learning {yℓ} (S2): When the cost function d(xi, yk) is known in the closed form and the local
autonomy is not dependent on {yℓ}, a straightforward way to learn the cluster representatives is
via stochastic gradient descent (SGD). For instance, when d(xi, yk) = ∥xi − yk∥22 we execute the
following SGD iterations

yℓ(t+ 1) = yℓ(t)− αt

(1

|S|
∑

(i,j,k)∈S

(
yℓ(t)− xi

)
δℓk

)
, (66)

where the mini-batch S = {(i, j, k) : i ∼ ρ, j ∼ π̂β
Y , k ∼ p}, and π̂β

Y is the policy learnt in (S1).

F ADEN ARCHITECTURE

Given a set of data points X and representatives Y , our attention-based deep neural network NNθ

outputs the expected entity–cluster distance tensor

D̄θ(X ,Y) ∈ R|X |×|Y|
+ ,

where [D̄θ(X ,Y)]ij = dθ(xi, yj). The design of NNθ allows inputs of variable sizes (|X | and
|Y|), enabling efficient transfer learning across problem instances without retraining from scratch.
By training dθ(xi, yj) to approximate a target distance function davg(xi, yj), the model implicitly
encodes the influence of local autonomy p(· | j, i) on the full set of cluster representatives {yℓ},
when such dependencies exist. This design ensures that gradients with respect to the cluster repre-
sentatives are accurately propagated, allowing end-to-end optimization of both entity assignments
and cluster representatives.

See Figure 4 for an architecture of our proposed Adaptive Distance Estimation Network (ADEN)
that incorporates an internal Adaptive Distance Block (ADB). We employ a deep encoder to estimate
autonomy-aware entity–cluster distances. Suppose there are B mini-batch of data, each containing
S samples and all the K clusters. We usually take S ≪ N to avoid computational overhead. The
inputs are the data tensor X ∈ RB×S×d and the cluster tensor Y ∈ RB×K×d. Both are first
projected into a hidden space of dimension dh via

X̂ = FX(X), Ŷ = FY (Y),

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Schematics of ADEN Architecture. (b) ADB Module Used inside ADEN.

Figure 4: Overall Deep Architecture to predict autonomy-aware distances.

Table 2: Hyperparameters used for different scenarios.

Parameter Value
Seed 0
Hidden dim (dh) 64
Feed Forward dim (dFF) 128
ADB Layers (L) 4
Attention Heads 8
Batch Size (B) 32
Samples in Batch (S) 128
Learning Rate (ηd) 10−4

AdamW Weight Decay 10−5

Perturbation spread (σ) 0.01
Sampling size (L̂) 16
EMA Filter rate (λ) 0.95
Epochs Y (Ty) 100
Learning Rate Y (ηy) 10−4

βmin 10
τ 1.1
Hyperparameters with different values:
Epochs ADEN (Td) Fig. 1 Dataset: 1000 — Decentralized Sensing Fig 2: 2000
βmax Fig. 1 Dataset: 50,000 — Decentralized Sensing Fig 2: 10,000

where FX ,FY : Rd → Rdh are learnable linear layers. Next, we apply L layers of ADB encoding
to X̂ to obtain contextualized embeddings EL ∈ RB×S×dh (see Figure 4(b)):

Uℓ = LN
(
MHA

(
Eℓ−1, Ŷ, Ŷ

)
+Eℓ−1

)
, (67)

Eℓ = LN
(
Ŵ(Uℓ) +Uℓ

)
, ℓ = 1, . . . , L, (68)

where E0 = X̂, MHA denotes standard multi-head attention (query, key, value), LN is layer nor-
malization, and Ŵ : Rdh→Rdff→Rdh is a feed-forward module with expansion–contraction linear
layers (dff ≫ dh) and GeLU activation. To form pairwise entity–cluster features, we broadcast the
final point embeddings EL ∈ RB×S×dh and the cluster embeddings Ŷ ∈ RB×K×dh across the
cluster and entity dimensions, respectively:

Ẽ = EL[:, :, newaxis, :] ∈ RB×S×K×dh , Ỹ = Ŷ[:, newaxis, :, :] ∈ RB×S×K×dh .

We then pairwise-combine these representations by channel-wise stacking,

Z̄ = [Ẽ∥Ỹ] ∈ RB×S×K×2dh ,

where [·∥·] denotes feature-wise concatenation for each entity–cluster pair. A shared feed-forward
“distance head”Wz : R2dh → R then predicts autonomy-aware deviations:

D̄ = ReLU
(
θzWz(Z̄) + D̄0

)
,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

where θz is a learnable scalar, and D̄0 is the baseline distance between X,Y. We define

D̄0 =
(
X[:, :, newaxis, :]−Y[:, newaxis, :, :]

)⊙2
1

as the batched, pairwise squared Euclidean distance between X and Y, where ⊙2 denotes element-
wise squaring and 1 ∈ Rd is a vector of ones. Dropout layers within both the ADB blocks and the
distance head mitigate overfitting. This design ensures permutation invariance across clusters, since
Wz is applied identically to every entity–cluster pair.

G ADEN TRAINING HYPERPARAMETERS

Table 2 provides the hyperparameters used for ADEN network in various simulations.

H SIMULATIONS WITH LOCAL AUTONOMY

We evaluate our method on the dataset shown in Fig. 1 under a controlled form of local autonomy.
Specifically, each entity i accepts its prescribed cluster j with probability 1− κ; with probability κ
it selects an alternative cluster k ̸= j according to

p(k | j, i) = κ
exp[−ck(j, i)/T]∑
t̸=j exp[−ct(j, i)/T]

.

Here the cost ck(j, i) = ζ d(yj , yk)+γ d(xi, yk). We vary the parameters {κ, γ, ζ, T} to study their
influence on clustering outcomes. The results are shown in Fig. 5. In the visualizations, the color of
each entity reflects its mixture of representative assignments, computed as a linear combination of
representative colors weighted by πY (j | i).
When κ is small (Fig. 5(a1)-(a2)), cluster representatives remain close to their assigned entities.
As κ increases, deviations grow (Fig. 5(a3)-(d4)): the temperature T controls the randomness of
alternative selections—higher T pulls all representatives toward a common location (Fig. 5(c1)-
(c2)), whereas lower T draws each representative toward the nearest entities (Fig. 5(a1) and 5(b1)).
In the high-κ regime (Fig. 5(d1)-(d4)), small T produces pronounced shifts in which representatives
migrate to the closest clusters, yielding nontrivial configurations (Fig. 5(d1), 5(d3), and 5(d4)). Note
how the representative on top of a cluster is not of the same colour as the data points in that cluster
— highlighting the non-trivial configurations under high κ = 0.9. The parameters γ and ζ further
modulate assignment patterns, altering how entities distribute across representatives.

I USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we made limited use of OpenAI’s ChatGPT. Specifically, ChatGPT
was employed to improve grammar, clarity, and readability of the text. On rare occasions, it was
also used to aid in literature discovery; however, all references and citations included in the paper
were independently verified and sourced directly from Google Scholar.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a1) {0.1,0,1,0.001} (a2) {0.1,0.5,1,1} (a3) {0.3,0,0.5,0.001} (a4) {0.3,0,0.5,100}

(b1) {0.3,0,1,0.001} (b2) {0.3,0,1,1} (b3) {0.3,0.5,0.5,1} (b4) {0.5,0,0.5,0.001}

(c1) {0.5,0,1,100} (c2) {0.7,0,0.5,100} (c3) {0.7,0,1,0.001} (c4) {0.7,0,1,0.01}

(d1) {0.9,0,0.5,0.01} (d2) {0.9,0,0.5,1} (d3) {0.9,0,1,0.01} (d4) {0.9,0.5,1,0.01}

Figure 5: 4×4 grid of benchmark images. Each subcaption shows the tuple {κ, γ, ζ, T} in that order.

23

	Introduction
	Related Work
	Problem Formulation and Solution Methodology
	Reinforcement-based method for Autonomy-aware clustering
	Simulations
	Convergence Proof
	Case A: When the assumptions in Theorem 1 hold true
	Case B: When the assumptions in Theorem 1 do not hold

	Phase Transition and Critical annealing parameter
	Hessian Computation
	cr - Critical annealing parameter value

	Sensitivity of Y to the annealing parameter
	Change in Y versus and Critical Temperatures
	Reinforcement-based learning for Case (C1)
	ADEN Architecture
	ADEN Training Hyperparameters
	Simulations with Local Autonomy
	Use of Large Language Models

