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ABSTRACT

Clustering arises in a wide range of problem formulations, yet most existing ap-
proaches assume that the entities under clustering are passive and strictly conform
to their assigned groups. In reality, entities often exhibit local autonomy, overrid-
ing prescribed associations in ways not fully captured by feature representations.
Such autonomy can substantially reshape clustering outcomes—altering cluster
compositions, geometry, and cardinality—with significant downstream effects on
inference and decision-making. We introduce autonomy-aware clustering, a re-
inforcement (RL) learning framework that learns and accounts for the influence
of local autonomy without requiring prior knowledge of its form. Our approach
integrates RL with a deterministic annealing (DA) procedure, where, to determine
underlying clusters, DA naturally promotes exploration in early stages of anneal-
ing and transitions to exploitation later. We also show that the annealing proce-
dure exhibits phase transitions that enable design of efficient annealing schedules.
To further enhance adaptability, we propose the Adaptive Distance Estimation
Network (ADEN), a transformer-based attention model that learns dependencies
between entities and cluster representatives within the RL loop, accommodates
variable-sized inputs and outputs, and enables knowledge transfer across diverse
problem instances. Empirical results show that our framework closely aligns with
underlying data dynamics: even without explicit autonomy models, it achieves so-
lutions close to the ground truth (gap ∼3–4%), whereas ignoring autonomy leads
to substantially larger gaps (∼35–40%).

1 INTRODUCTION

Clustering, the task of grouping similar entities, underpins a wide range of applications and method-
ological pursuits, including computer vision, genomics, matrix factorization, and data mining
(Karim et al., 2021; Singh & Singh, 2024; Basiri et al., 2025). This process helps reveal the un-
derlying structure of the data and provides insights that can inform decision-making. Formally,
given a set I of N entities, clustering aims to partition them into K clusters by solving

min
{µ(j|i)},{Cj}

N∑
i=1

ρ(i)

K∑
j=1

µ(j|i)∆(i, Cj), subject to
K∑
j=1

µ(j|i) = 1 ∀ 1 ≤ i ≤ N, (P1)

where Cj denotes the jth cluster, and µ(j|i) ∈ {0, 1} indicates membership of ith entity in the jth

cluster Cj (µ(j|i) = 1 if i ∈ Cj , and 0 otherwise). The constraint
∑K

j=1 µ(j|i) = 1 enforces
exclusivity — each entity belongs exactly to one cluster. The cost function ∆(i, Cj) measures the
dissimilarity between entity i and those in cluster Cj , typically defined in terms of feature vectors
X = {xi}Ni=1, where xi ∈ Rd represents the attributes of the entity i. The search space of partitions
grows combinatorially with N and K, making clustering a computationally challenging problem.

Clustering is also closely related to resource allocation problems, such as facility location, data
quantization, and graph aggregation (Rose, 1998; Xu et al., 2014). In these problems, the objective
is to assign K resources to the entities in I so that the resources adequately service the entities.
This can be viewed as a special case of the clustering problem. For example, the facility location
problem can be formulated as min{µ(j|i)},{yj}

∑N
i=1

∑K
j=1 µ(j|i) d(xi, yj), where xi and yj denote

1
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(a) (b) (c) (d)

Figure 1: (a) Dataset, (b) No local autonomy - yj’s at cluster centroid, (c) p(k|j, i) = 0.25, all yj’s
at the centroid of the dataset, and (d) p(k|j, i) = 0.083 if k ̸= j and p(k|j, i) = 0.75, yj’s shifted
towards the centroid of the dataset

the feature vectors of the ith client entity and the jth resource facility, respectively. Resource allo-
cation problems can thus be interpreted as clustering tasks in which the dissimilarity function takes
the form ∆(i, Cj) = d(xi, yj), with each yj serving as the feature vector of the representative point
(or cluster center) of cluster Cj . Existing techniques in the literature typically treat the entities as
passive, meaning that they strictly follow the assignments dictated by the policy µ. However, in
many real-world settings, entities exhibit some degree of autonomy, allowing them to override the
prescribed assignment and behave as active rather than passive entities. For instance, in decentral-
ized sensing, distributed sensors (entities) are grouped into clusters, each of which communicates its
data to an assigned processing unit (resource). Individual sensors, however, may exercise autonomy
and transmit their data to a processing unit associated to a different cluster. Such deviations can
result from several factors in the network such as signal interference, congestion at the processing
unit, energy constraints, or intentional redundancy (Rusu et al., 2018; Yadav & Ujjwal, 2021).

In this work, we introduce the class of autonomy-aware clustering problems, where an entity’s clus-
ter membership is determined by two complementary factors: (i) a global assignment policy µ(·|i),
which prescribes the jth cluster for the ith entity when µ(j|i) = 1, and (ii) a local autonomy term
p(k|j, i) ∈ [0, 1], which probabilistically reassigns the ith entity to the kth cluster given the pre-
scription j ∼ µ(·|i). Existing clustering methods can be seen as a degenerate special case where
p(k|j, i) = 1 if k = j and 0 otherwise, strictly enforcing the policy-prescribed assignment without
any autonomy. The local autonomy term p(k|j, i) encodes latent behavioral tendencies of entities
that are either not captured at all or only partially reflected in the feature vector xi ∈ Rd. For ex-
ample, in decentralized sensing case, xi may include attributes such as sensor location, recorded
data, and current battery charge, but it does not capture network uncertainties such as interference,
congestion, or path loss — which are instead reflected through p(k|j, i). Similarly, in recommender
systems, a user’s feature vector xi may represent demographic or historical preferences, yet sponta-
neous choices, mood, or context-dependent behavior are better captured through the local autonomy.
This leads to an important observation: while it is often straightforward to construct feature vectors
from available information, quantifying local autonomy is considerably more challenging. In prac-
tice, this autonomy — driven by an entity’s latent behavior — is rarely known explicitly, and this
hidden nature constitutes one of the key challenges for autonomy-aware clustering.

The introduction of local autonomy impacts clustering solutions in multiple ways, including altering
cluster assignments, cluster sizes and shapes, and the representative feature vectors of cluster centers
yj ∈ Rd. For illustration, consider the dataset shown in Figure 1(a). Figures 1(b)-(d) depict clus-
tering solutions for different levels of local autonomy. In Figure 1(b), there is no autonomy, and the
cluster centers yj exactly coincide with the respective cluster centroids. In Figure 1(c), the entities
have full autonomy: each entity associates itself to each of the four clusters with equal probability,
p(k|j, i) = 0.25 for all i, j, k. Consequently, all cluster centers {yj} collapse to the centroid of
the entire dataset. For intermediate levels of autonomy, the cluster centers yj tend to shift toward
the global centroid, increasing accessibility to entities not assigned to them under the policy µ. For
example, in Figure 1(d), p(k|j, i) = 0.75 if k = j and p(k|j, i) = 0.083 otherwise. The algorithm
used to generate these solutions is described in Section 3.

Changes in clustering solutions due to local autonomy can significantly affect downstream infer-
ence and decision-making. For instance, in decentralized sensing, the cluster center determines the
location of the processing unit; with local autonomy, the center is no longer the centroid of the en-
tities assigned to the cluster, but shifts toward the centroid of the entire dataset (see Figure 1(d)).
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Similarly, in recommender systems, cluster centers are used to characterize user preference profiles,
and shifts induced by local autonomy may lead to different insights for designing new products.
Ignoring autonomy, therefore, risks producing misleading conclusions from clustering outcomes.

One of the key contributions of this work is the development of a framework that captures the
effect of local autonomy on clustering solutions. The framework is presented in two stages. We
first consider the case where the autonomy models are known. Here, we build upon the Maximum
Entropy Principle (MEP)–based Deterministic Annealing (DA) algorithm for data clustering (Rose,
1991), which has proven itself to be effective in addressing major challenges such as combinatorial
complexity, non-convexity, poor local minima, and sensitivity to initialization. Our reformulation of
DA with local autonomy models inherits these advantages. In particular, our modified DA algorithm
maintains soft assignment distributions π(j|i) ∈ [0, 1], where the annealing parameter β controls
the entropy (or “softness”) of the assignments. Reformulating the problem in terms of these soft
distributions yields explicit solutions for π(j|i) at each β, thereby significantly reducing problem
complexity. The annealing process, in which these relaxed problems are solved successively as β
increases, helps avoid shallow minima and reduces sensitivity to initialization. A key feature of DA
is its phase transition behavior: cluster centers yj remain stable over ranges of β and tend to change
significantly only at certain critical values. This property enables efficient annealing schedules in
which β is increased exponentially.

We then turn to the more practical case where autonomy models are unknown. In this setting, we
view clustering as a Markov Decision Process (MDP) with unit horizon: the state space consists
of the data points {xi} and cluster centers {yj}, the action space corresponds to the set of clusters
{Cj}, local autonomy defines the transition probabilities, the instantaneous cost reflects the cluster-
association cost, and the policy µ(j|i) specifies the action at each state i. This formulation allows us
to leverage reinforcement learning (RL), which can determine cluster assignments without explicit
knowledge of the transition probabilities. Accordingly, we propose an RL-based framework that
jointly learns both the assignment policy µ and the cluster representatives yj , effectively tracking
the solutions from the known-model case. We develop algorithms for both scenarios: when the lo-
cal autonomy model p(k|j, i) is independent of the decision variables yj , and when it depends on
them. A further contribution of this work is the Adaptive Distance Estimation Network (ADEN),
an attention-based deep model built on a transformer backbone (Vaswani et al., 2017). ADEN en-
ables model-free learning by leveraging the attention mechanism to capture dependencies between
entity properties xi and cluster representatives yj — dependencies that subsequently determine the
assignment policy. Its flexibility in handling inputs and outputs of varying sizes facilitates knowl-
edge transfer across diverse problem instances. Crucially, ADEN takes in the entire set of cluster
representatives as input, which is essential to address the scenario where the local autonomy dis-
tribution p(k|j, i) depends on all yj . Such global dependencies are common in applications such
as decentralized sensing and recommender systems. The proposed ADEN architecture also allows
exploiting hardware parallelism for large-scale datasets.

Empirical evaluations were conducted on a suite of synthetic scenarios where autonomy distribu-
tions were governed by scenario parameters, as well as on a decentralized sensing application using
the UDT19 London Traffic dataset (Loder et al., 2019), where the problem is posed as optimal
UAV placement to maximize coverage of roadside sensors. These studies show that our frame-
work produces solutions that closely reflect the underlying data dynamics: even without explicit
autonomy models, the performance of our method on average remains within ∼ 3 − 4% of model-
based solutions. Interestingly, on some instances of the large-scale decentralized sensing problem,
our proposed learning-based algorithm achieves up to a 10% improvement over the case where the
local autonomy model is explicitly known, underscoring its inherent capacity to escape poor min-
ima. Note that, the reinforcement learning foundation of our framework equips it with the ability
to operate in an online manner, where solutions are not only computed once but can be progres-
sively improved as more information becomes available. This capability is particularly attractive for
real-world applications, where data are generated dynamically and the entities have local autonomy.

2 RELATED WORK

Probabilistic model-based clustering has been widely studied in classical machine learning and
applied to diverse domains including image segmentation and topic modeling (Deng & Han,
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2018). Fundamental approaches include mixture models such as Gaussian Mixture Models
(GMM) and Bernoulli Mixture Models (BMM) (McLachlan & Basford, 1988; McLachlan &
Peel, 2000; Figueiredo & Jain, 2002; Zhang et al., 2021), as well as algorithms like Expectation-
Maximization (EM) (McLachlan & Krishnan, 2008), probabilistic topic models (Hofmann, 2013)
and offline/online Deterministic Annealing (Rose, 1998; Mavridis & Baras, 2022). In such frame-
works, data points are not deterministically assigned to clusters; instead, they have soft assignments
πj|i ∈ [0, 1], with

∑
j πj|i = 1 for each data point i. These soft assignments naturally accommodate

stochasticity in cluster assignment at the level of policy, but they do not capture the local autonomy
of the agents where they actively choose or reject assignments.

A line of theoretical work in (Harris et al., 2019; Brubach et al., 2024; Negahbani & Chakrabarty,
2021) have formulated clustering directly under stochastic assignment policy and developed approx-
imation algorithms with provable guarantees. For example, (Harris et al., 2019) defines a probability
distribution, termed as “k-lottery,” over possible sets of K centers rather than deterministically se-
lecting a fixed set. The users however, are still passive recipients of assignments, highlighting a gap
between these approaches and applications where agents may autonomously accept or reject assign-
ments. In parallel, researchers have cast clustering as a reinforcement learning (RL) problem. One
of the earliest examples is Reinforcement Clustering (RC) (Likas, 1999) where each data point’s
(assumed passive) assignment to a cluster is treated as an action and the distortion/error acts as the
reward signal. More recent work in (Li et al., 2022; Gowda et al., 2022; Zhu et al., 2025), provide
a deep reinforcement learning variant of the approach presented in (Likas, 1999).

This line of work also connects to clustering in environments where human behavior introduces
uncertainty. For instance, (Banerjee & Veltri, 2024; Ji et al., 2023) highlight how policies assign
individuals to behavioral “clusters,” yet real-world deviations due to human unpredictability and in-
formation asymmetry necessitate probabilistic post-adjustments. Similarly, The Ethical Algorithm
(Kearns & Roth, 2019) discusses fairness-aware clustering and allocation under uncertainty, under-
scoring challenges when algorithmic groupings diverge from intended impact.

Unlike prior works, our framework allows stochasticity not only in the cluster-assignment policy but
also in the behavior of the entities themselves conditioned on the prescribed cluster. In fact, we ex-
plicitly accounts for the latter in the underlying optimization problem that we pose. Building on the
DA framework-where the annealing parameter governs the softness of the assignment policy—we
introduce a notion of local autonomy: for each entity, a probability distribution governs the realized
action conditioned on the assigned policy action. To our knowledge, incorporating such entity-level
autonomy into clustering is novel and opens a promising direction for applications where policy
adaptation to locally stochastic behavior is essential.

3 PROBLEM FORMULATION AND SOLUTION METHODOLOGY

In this article, we modify the classical clustering (resource allocation) problem (P1) to include local
autonomy. Let xi ∈ X ⊆ Rd denote the feature vector of the i-th entity, with relative weight ρ(i)
such that

∑N
i=1 ρ(i) = 1. In the autonomy-aware setting, each entity i may override its prescribed

cluster assignment. Specifically, if entity i is assigned to cluster Cj , it may instead select cluster
Ck with probability p(k|j, i). The objective is to determine a set of representative feature vectors
Y := {yj}Kj=1, corresponding to cluster centers, together with binary association variables µ(j|i) ∈
{0, 1}, which indicate the assignment of entity i to cluster Cj , such that the cumulative expected
cost of assignment is minimized:

min
{µ(j|i)},{yj}

D :=

N∑
i=1

ρ(i)

K∑
j=1

µ(j|i)
K∑

k=1

p(k|j, i) d(xi, yk), subject to µ ∈ Λ, (P2)

where Λ = {µ : µ(j|i) ∈ {0, 1} ∀i, j,
∑K

j=1 µ(j|i) = 1 ∀i} denotes the set of feasible assignment

policies as in (P1). We further define davg(xi, yj) :=
∑K

k=1 p(k|j, i) d(xi, yk) as the average cost
of associating the ith entity to the jth cluster.

To address the autonomy-aware clustering problem, we adapt the maximum entropy principle
(MEP)-based deterministic annealing (DA) algorithm, originally developed for the classical for-
mulation (P1). Instead of solving Problem (P2) directly, we introduce a family of parameterized
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problems (P(β)), which are solved sequentially for an increasing sequence of annealing parameters
{βk}. At each stage, the solution of (P(βk−1)) is used to initialize (P(βk)), and the sequence is
constructed such that the limiting solution of (P(∞)) provides a high-quality approximation to (P2).

In (P(β)) the binary assignment policy µ(j|i) ∈ {0, 1} is relaxed to π(j|i), which takes values
in the interval [0, 1]. This relaxation enables soft rather than binary associations, and π(·|i) can
be interpreted probabilistically as a distribution over cluster assignments for the ith entity. The
parameterized problem is then formulated as

min
{π(j|i)},Y

F = D − 1
βH subject to π ∈ Λβ , (P(β))

where D :=

N∑
i=1

ρ(i)

K∑
j=1

π(j|i)
K∑

k=1

p(k|j, i) d(xi, yk), H := −
N∑
i=1

ρ(i)

K∑
j=1

π(j|i) log π(j|i),

denote the relaxed distortion term (corresponding to (P2)) and the conditional entropy of the assign-
ment distribution p(yj |xi) = π(j|i), respectively. The feasible set is defined as Λβ := {π : π(j|i) ∈
[0, 1] ∀i, j,

∑
j π(j|i) = 1 ∀i}, which is the natural relaxation of the feasible set Λ in (P1) and (P2).

The entropy term serves two purposes: (i) it reduces sensitivity to initialization, and (ii) it helps avoid
poor local minima. When β is small, the entropy term dominates, encouraging high-entropy (near-
uniform) assignments. In this regime, cluster centers {yj} are estimated using information from
the entire dataset, producing more global solutions. As β increases, the influence of the distortion
term grows, gradually sharpening the assignments towards deterministic clustering. This contrasts
with algorithms such as k-means, where cluster centers depend only on local memberships and are
therefore highly sensitive to initialization.

For each fixed β, the cost function F is convex with respect to the policy variables π(j|i) (al-
though it is not jointly convex in both {yj} and {π(j|i)}). The optimal assignment policy
can therefore be obtained in closed form. Specifically, consider the unconstrained Lagrangian
F ′ = F +

∑N
i=1 νi

(∑K
j=1 π(j|i)− 1

)
, where νi are the multipliers enforcing the normalization of

π(·|i). Setting ∂F ′

∂π(j|i) = 0 yields the Gibbs distribution:

πβ
Y (j|i) = softmaxj

(
− β davg(xi, yj)

)
=

exp{−β davg(xi, yj)}∑K
ℓ=1 exp{−β davg(xi, yℓ)}

, (1)

where davg(xi, yj) :=
∑K

k=1 p(k|j, i) d(xi, yk) represents the average cost of assigning entity i to
cluster j under autonomy-aware reassignments. The Gibbs distribution (1) assigns higher probability
to clusters with smaller average costs. The parameter β acts as an annealing factor controlling
the sharpness of assignments: when β is small, πβ

Y (j|i) approaches a uniform distribution over
clusters (high entropy), encouraging exploration; as β → ∞, assignments become increasingly
deterministic, converging toward the hard clustering of Problem (P2).

Substituting the Gibbs distribution into (P(β)) eliminates the policy variables and yields the free
energy F as a function of the cluster representatives Y = [y⊤1 y⊤2 . . . y⊤K ]⊤ ∈ RKd:

min
Y

F (Y ) = − 1

β

N∑
i=1

ρ(i) log

(
K∑
j=1

exp
{
− β davg(xi, yj)

})
. (P̂(β))

The cluster representatives {yℓ} are obtained by minimizing (P̂(β)), either by solving ∂F
∂Y = 0 or

via a descent method (Luenberger et al., 1984). For the commonly used squared Euclidean cost
d(xi, yk) = ∥xi − yk∥22, the optimality condition yields the update rule:

yℓ =

∑N
i=1

∑K
j=1 ρ(i) p(ℓ|j, i)π

β
Y (j|i)xi∑N

i=1

∑K
j=1 ρ(i) p(ℓ|j, i)π

β
Y (j|i)

, ∀ 1 ≤ ℓ ≤ K. (2)

Equations (1) and (2) are therefore coupled and must be solved iteratively at each β. Algorithm 1
summarizes the procedure for computing these solutions under the assumptions that the autonomy
probabilities p(k|j, i) are known and independent of Y ; here the cost function is squared Euclidean

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1: Autonomy-aware clustering - when local autonomy is known explicitly

Input: βmin, βmax, τ , K, {xi}Ni=1, ρ(i), and p(k|j, i) for all 1 ≤ j, k ≤ K and 1 ≤ i ≤ N ;
Output: Assignment policy π, and cluster representatives {yℓ}Kℓ=1

Initialize: β = βmin, πY (j|i) = 1
K
∀ i, j, and {yℓ}Kℓ=1 using (2).

while β ≤ βmax do
while until convergence do

Compute {πY (j|i)} in (1), {yℓ} in (2)
β ← τβ; set yℓ ← yℓ + ϵnoise (to escape saddle) ∀ ℓ

(though the approach generalizes to other dissimilarity notions and cases where p(k|j, i) depends
on Y ). In Section (4), we develop a framework for determining clustering solutions when the local
autonomy is unknown (and possibly dependent on Y ) — the more common scenario in practice.

Remark. (1) reinforces that annealing promotes insensitivity to initialization: for small β, π(j|i) ≈
1/K, producing nearly uniform assignments, while increasing β gradually emphasizes the distortion
term D in (P(β)), breaking uniformity. In the limit β → ∞, πβ

Y collapses to hard assignments,
recovering the solution of (P2). This annealing induces a homotopy from the convex surrogate −H
to the original non-convex objective D, a feature of maximum-entropy methods (Rose, 1998; Xu
et al., 2014) that helps avoid poor local minima (Srivastava & Salapaka, 2020; 2021).

We analyze Algorithm 1 by separating the inner-loop and outer-loop convergence. In the inner
loop, the coupled equations (1) and (2) can be solved via fixed-point iterations. These iterations
can be interpreted as gradient descent steps, which ensures convergence under mild conditions. We
formalize this as follows:

Theorem 1 (Inner-Loop Convergence). The fixed-point iteration defined by (1) and (2) is equiva-
lent to gradient descent iteration of the form

Y (t+ 1) = Y (t)− 1

2

(
P̂Y (t)
πρ

)−1∇F (Y (t)), (3)

where P̂Y (t)
πρ = P

Y (t)
πρ ⊗Id, Id is the d×d identity,⊗ is the Kronecker product, and PY (t)

πρ ∈ RK×K is
diagonal with [P

Y (t)
πρ ]ℓℓ = p

Y (t)
πρ (ℓ) :=

∑
i,j ρ(i)πY (t)(j|i) p(ℓ|j, i), representing the effective mass

of cluster ℓ. The iterations (3) converge to a stationary point under the following mild assumptions:

(i) Non-degenerate clusters: There exists c > 0 such that pY (t)
πρ (ℓ) ≥ c for all ℓ; i.e., every cluster

has non-zero mass. This is trivially satisfied for πβ
Y in (1) at β <∞.

(ii) No abrupt shift in cluster mass: Let Yr(t + 1) = Y (t) − r
2

(
P̂

Y (t)
πρ

)−1∇F (Y (t)), r ∈ (0, 1]

be the relaxed updates. Then the cluster mass change is bounded: maxr∈(0,1] p
Yr(t+1)
πρ (ℓ) <

4 p
Y (t)
πρ (ℓ), ∀ℓ, i.e., no cluster’s mass increases by a factor of 4 in a single update.

If these assumptions do not hold, there exist adaptive step-sizes σt such that Y (t + 1) = Y (t) −
σt∇F (Y (t)) still converges to a stationary point.

Proof: See Appendix A for details, including a modification of Algorithm 1 with adaptive step sizes
that ensures convergence to a stationary point when assumptions are violated.

For the outer-loop (β) iterations, we highlight an important feature that motivates fast (geometric)
annealing schedules. At β ≈ 0, the Lagrangian F is dominated by the convex term −H , and the
fixed-point iterations in Algorithm 1 converge to a global minimum. As β increases, the algorithm
tracks the minimizer of F (Y ) until reaching a critical value βcr, where the fixed point ceases to
be a (local) minimum. Simulations show that the cluster representatives yℓ change significantly at
βcr, a phenomenon referred to as a phase transition, analogous to annealing processes in statistical
physics. Between successive critical points, Y = {yℓ} remains nearly constant. The following
theorems quantify βcr and bound the change of Y between phase transitions, enabling the design of
efficient annealing schedules in Algorithm 1.
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Theorem 2 (Phase Transitions). The critical value of the annealing parameter at which the fixed
point of (1) and (2) is no longer a minimum is

βcr =
1

2λmax

((
P̂Y
πρ

)− 1
2∆
(
P̂Y
πρ

)− 1
2

) , where ∆ =

N∑
i=1

( K∑
j=1

P ij
A ziz

⊤
i P

ij − ρ(i)P iziz
⊤
i P

i
)

(4)

is a Kd×Kd matrix, λmax(·) denotes the maximum eigenvalue, P̂Y
πρ

is positive definite as defined
in (3), and P ij

A , zi, P
i are matrices determined by πY , Y , X , and {p(k|j, i)}.

Proof: See Appendix B.
Theorem 3 (Insensitivity in-between phase transitions). Let β be sufficiently far from a critical
value βcr. Specifically, let δ > 0 satisfy λmin

(
Id − 2β

(
PY
πρ

)−1/2
∆
(
PY
πρ

)−1/2
)
≥ δ, where λmin(·)

is the minimum eigenvalue. Then, the cluster representatives evolve according to
∥∥∥dY

dβ

∥∥∥ ≤ N
√
KRΩ

eβδ ,

whereRΩ is the diameter of the space Ω containing X . In particular, the sensitivity of Y to β decays
as O(1/(βδ)), becoming smaller the farther β is from βcr.

Proof: See Appendix C. The above theorems are stated for the squared Euclidean cost d(xi, yk) =
∥xi − yk∥22; similar results may be derived for other distance functions with suitable modifications.

Annealing Schedule in Algorithm 1: Theorems 2 and 3 show that significant changes in Y occur
only at critical points βcr, while Y remains nearly constant between successive critical points. This
motivates an annealing schedule that steps from one βcr to the next. Since exact computation of
βcr can be expensive, a practical alternative is a geometric schedule β ← τβ, τ > 1, which is
computationally efficient. While Theorem 3 provides a conservative bound for small β, simulations
indicate that Y changes little for β far from βcr (see Appendix D for details).

4 REINFORCEMENT-BASED METHOD FOR AUTONOMY-AWARE CLUSTERING

To account for the local autonomy when it is not known explicitly, we develop a reinforcement-
based method to learn the assignment policy πβ

Y (j|i), as well as the representative vectors {yℓ}.
Structurally, our proposed learning algorithm parallels Algorithm 1, with the key difference that in
the inner while loop (executed at fixed β), explicit expressions (or updates) of πβ

Y (j|i) and {yℓ} are
replaced with their learning counterparts. We can distinguish between two learning paradigms for
autonomy-aware clustering, each motivated by a different reinforcement learning framework: (C1)
whenX contains a tractable number of data points, d(xi, yk) is available in closed form, and p(l|j, i)
is independent of yℓ; and (C2) when the dataset is large (N ≫ 1), d(xi, yk) is not available in closed
form, or the local autonomy depends on yℓ.

In (C1), we can estimate the policy πβ
Y in (1) by learning davg(xi, yj) through straightforward Q-

learning–style stochastic iterative updates (Sutton & Barto, 2018), followed by stochastic gradient
descent (SGD) iterations to update the cluster representatives yℓ; see Appendix E for details. Here,
we expound on the learning framework for the case (C2), which is more general, and subsumes (C1).
In this learning framework, we learn a function approximator dθ(xi, yj) to estimate the average cost
davg(xi, yj). Note that here the Q-learning type tabular method to estimate davg(xi, yj) would fail
to scale (N ≫ 1), and SGD iterations would not be possible due to either the missing closed form
of d(xi, yk), or the dependence of p(k|j, i) on {yℓ} (or both) — preventing the computation of
stochastic gradients. We learn the parameteric function approximator dθ(xi, yj) similar to several
deep RL frameworks (Mnih et al., 2015). In particular, we determine θ such that it minimizes

L(θ) = Ei∼ρ,j∼πθ
k∼p

[
(d(xi, yk)− dθ(xi, yj))2

]
, where πθ(j|i) =

e−βdθ(xi,yj)∑K
j′=1 e

−βdθ(xi,yj′ )
. (5)

In practice, L(θ) is approximated using sampled mini-batches and optimized to obtain θ. We then
substitute the average cost davg(xi, yj) with its closed-form approximator dθ(xi, yj) in F (Y ) in
(P̂(β)), and update the representatives {yℓ} using a descent method. See Algorithm 2 for details. In
Appendix F, we present the detailed description and architecture of Adaptive Distance Estimation
Network (ADEN), our proposed attention-based deep neural approximator for davg(xi, yj).
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Algorithm 2: Deep autonomy-aware clustering algorithm.
Input: data points X = {xi}Ni=1, number of clusters K, annealing parameters βmin, βmax, τ > 1,

number of samples L, number of epochs Td, Ty , learning rates ηd, ηy , number of batches B, batch size
S, Exponential Moving Average (EMA) factor λ ∈ (0, 1), perturbation spread σ ≪ 1

Output: trained NNθ , optimized cluster representatives Y , and assignment policy πθ

Initialize: β ← βmin; θ ← Xavier initialization; Y ← 1
N

∑
i xi +N (0, σ2); d̄0(i, j) = 0 ∀ i, j

while β ≤ βmax do
for t = 1 to Td do

Sample mini-batches {Ib}Bb=1, Ib = {iq : 1 ≤ q ≤ S, iq ∼ ρ}; Ỹb ← Y +N (0, σ2)

forward pass NNθ to obtain predicted distances D̄θ(Xb, Ỹb) for all mini-batches
for each i ∈ Ib (in parallel) do

j ∼ ϵ-greedy(πθ(· | i)) with πθ(j|i) in (5)

draw L̂ samples kℓ ∼ p(k|j, i); compute the empirical mean d̂t(i, j) =
1

L̂

∑L̂
ℓ=1 d

(
i, kℓ

)
update the estimate d̄t(i, j)← λ d̄t−1(i, j) + (1− λ) d̂t(i, j); setMb ←Mb ∪ (i, j)

update θ with one AdamW step on: L(θ) = 1
B

∑B
b=1

∑
(i,j)∈Mb

[
d̄t(i, j)− dθ(xi, ỹj)

]2.

for t = 1 to Ty do
Substitute davg(xi, yj) in F (Y ) in (P̂(β)) with dθ(xi, yj); perform Y ← Y − ηy∇Y F (Y )

β ← τβ

5 SIMULATIONS

To evaluate how well our framework accounts for local autonomy, we test it on the synthetic dataset
in Figure 1(a), designing scenarios with varying autonomy levels. In some cases, the autonomy
p(k|j, i) explicitly depends on the parameters X and Y; in others, it is independent. These settings
capture realistic behaviors where an entity i may reject its prescribed cluster j and instead join
another k ̸= j. Here we choose the local autonomy model such that, with probability 1 − κ,
the entity i accepts its prescribed cluster j; otherwise, with probability κ, it chooses an alternative
cluster k ̸= j according to a softmax distribution, p(k|j, i) = κ exp[−ck(j,i)/T ]∑

t ̸=j exp[−ct(j,i)/T ] , where the

cost ck(j, i) = ζ d(yj , yk) + γ d(xi, yk) balances cluster–cluster distance (ζ) and cluster–entity
distance (γ). Here, κ controls override frequency, and T regulates randomness (uniform as T →∞,
deterministic as T → 0). Varying {κ, T, ζ, γ} yields diverse autonomy scenarios that affect both
cluster locations {yℓ} and the central-planner policy πβ

Y . Full hyperparameters of ADEN in different
scenarios appear in Appendix G.

We compare Algorithm 1 (ground truth), Algorithm 2 (ADEN-based), and a baseline that ignores
autonomy. Table 1 reports objective gaps relative to ground truth, for the dataset in figure 1. The
ADEN-based algorithm incurs only modest error: median 3.12%, mean 3.42%, with deviations
from 1.40% (small κ) to 8.03% (intermediate κ). By contrast, ignoring autonomy produces severe
degradation: median 30.84%, mean 36.26%, and up to 100.20%. Performance in this baseline
worsens as κ increases, while the performance of the ADEN-based algorithm is independent of
it and can be further improved through hyperparameter tuning, underscoring its robustness across
varying autonomy levels.

As a second illustrative example, we consider decentralized sensing in urban traffic monitoring. Us-
ing the UDT19 London Traffic dataset (Loder et al., 2019), which provides geocoordinates of road-
side traffic sensors across Greater London, we pose a facility-location problem: determine optimal
UAV positions to maximize coverage of the sensor network. In practice, sensors may occasionally
fail to transmit data to their assigned UAV due to network uncertainties such as packet loss or con-
gestion (Psannis, 2016). When this occurs, a sensor forwards its measurements to a different UAV,
with higher probability for UAVs in adjacent clusters—naturally introducing local autonomy.

We model this behavior using the same transition distribution p(k|j, i) described earlier, setting
γ = 0, ζ = 1, and varying κ ∈ {0.1, 0.5} and T ∈ {0.1, 0.01}. The temperature T controls
the sharpness of the softmax: lower values create a strong preference for selecting nearby UAVs
whenever the assigned policy cannot be satisfied, while the two κ values represent low and high
rates of network faults. Figure 2 reports the solutions obtained by ADEN (Algorithm 2).
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Table 1: D gap (%) of the ADEN versus the setting that ignores local autonomy p(k|j, i), relative to
the ground truth (Algorithm 1) across scenarios where p(k|j, i) depends on Y .

κ γ ζ T ADEN Ignored
0.1 0 1 0.01 2.11 10.73
0.1 0 1 100 2.08 6.67
0.1 0.5 1 0.01 1.87 10.01
0.2 0 1 0.01 3.01 25.80
0.2 0 1 100 1.79 15.08
0.2 0.5 1 0.01 1.50 24.90
0.2 0.5 1 100 1.40 15.06
0.3 0 1 0.01 4.80 44.62
0.3 0 1 100 3.25 24.71

κ γ ζ T ADEN Ignored
0.3 0.5 1 0.01 7.02 43.56
0.3 0.5 1 100 3.24 24.69
0.4 0 1 0.01 8.03 68.89
0.4 0 1 100 3.36 35.92
0.4 0.5 1 0.01 3.47 67.63
0.4 0.5 1 100 2.68 35.89
0.5 0 1 100 5.66 49.21
0.5 0.5 1 0.01 1.72 100.20
0.5 0.5 1 100 4.66 49.17

(a) κ = 0.1, T = 0.1 (b) κ = 0.5, T = 0.1 (c) κ = 0.1, T = 0.01 (d) κ = 0.5, T = 0.01

Figure 2: Clustering of the UDT19 dataset under parameterized autonomy for varying κ. UAVs are
indicated by colored stars, and sensor (denoted by ∗) colors denote their associated UAV.

The results demonstrate a consistent pattern. Increasing κ causes the UAV (cluster) representatives
to move closer together (closer to the centroid of the entire dataset), reflecting stronger cross-cluster
autonomy ((Figure 2(b),2(d))). Whereas, in case of low κ, the UAVs are fairly spread out (Figure
2(a),2(c)). This intuitive outcome is accurately captured by our learned model (ADEN) in both
temperature regimes.

Notably, when κ = 0.1, T = 0.1, ADEN matches the performance of the model-based baseline
(ground truth), and for κ = 0.5, T = 0.1 it achieves approximately a 10% improvement over the
ground truth, despite the absence of an explicit autonomy model. These results underscore the ability
of our approach to remain competitive with, and in some cases surpass, model-aware methods while
scaling to large, high-dimensional decentralized sensing problems.

The case T = 0.01 is particularly challenging: the distribution p(k|j, i) becomes sharply peaked,
and the large number of entities and clusters add to this challenge. Even in this setting, our model-
free solution attains average optimality gaps of only 18.37% and 24.82% for κ = 0.1 and κ = 0.5,
respectively, relative to a model-based oracle. These gaps can be further reduced through standard
hyperparameter tuning and extended training. Finally, we emphasize that Algorithm 2, being rooted
in a reinforcement learning framework, can be naturally deployed in an online setting where it
continuously learns and refines the solution.

REPRODUCIBILITY STATEMENT

1. For all the theorems presented in this work, the complete details of the underlying assump-
tions (if any) and the full proofs are provided in the Appendix, with appropriate references
made in the main text.

2. The codes were executed on a GPU Cluster, specifically utilizing the ghx4 partition. This
system is comprised of NVIDIA Grace Hopper Superchip nodes, each equipped with an
NVIDIA H100 GPU and a Grace CPU. The node provided 16 CPU cores and 1 GPU, with
a total of 64 GB of memory allocated for the job.
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3. The random seeds / hyperparameter settings for all the simulations in Section 5 are provided
in the Appendix G.

4. For the simulations reported in Section 5, the corresponding datasets and implementation
codes are included in the supplementary material. Also, the code and data will be made
publicly available on Github once review is completed.

5. Similarly, for the simulations described in Appendix D, the relevant dataset (data point lo-
cations and their autonomy levels) is also included in the same supplementary material. The
code to reproduce the plots here are straightforward and based on Algorithm 1. The inputs
involved are βmin = 10−3, βmax = 103, τ = 0.99, ρ(i) = 1

N , ϵnoise ∼ (10−4)N (0, 1).
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A CONVERGENCE PROOF

A.1 CASE A: WHEN THE ASSUMPTIONS IN THEOREM 1 HOLD TRUE

Parts of the proof below require hessian of F (Y ) in (P̂(β)), which is computed in the Appendix B.
We refer to the relevant equations from Appendix B wherever required.

We have the following assumptions:

(i) Non-degenerate clusters - there exists c > 0 such that pY (t)
πρ (l) ≥ c for all l. In other words,

each cluster is a of non-zero mass. Note that this is trivially true for πβ
Y in (1) at β <∞.

(ii) No abrupt shift in cluster mass - let Yr(t + 1) = Y (t) − r
2

(
P̂

Y (t)
πρ

)−1∇F (Y (t)) be the
relaxed update of the iteration in (3), where r ∈ (0, 1]. Then the change in cluster mass
from t and t + 1 is upper bounded. In particular, maxr∈(0,1] p

Yr(t+1)
πρ (ℓ) < 4p

Y (t)
πρ (ℓ) for

all ℓ, i.e., the ℓth cluster mass at t+1 does not increase by more than 4 times of that at t for
all possible values of r ∈ (0, 1].

Consider fixed point iterations in the inner-loop of the Algorithm 1. Substituting the policy πβ
Y (j|i)

in (1) into the expression for the representative features yℓ in (2) results into

yℓ =

∑N
i=1

∑K
j=1 ρ(i)p(l|j, i)

exp{−βdavg(xi,yj)}∑K
j′=1

exp{−βdavg(xi,yj′ )}
xi∑N

i=1

∑K
j=1 ρ(i)p(l|j, i)

exp{−βdavg(xi,yj)}∑K
j′=1

exp{−βdavg(xi,yj′ )}

. (6)

Thus, one pass over the equations in (1) and (2) is analogous to the iteration

yℓ(t+ 1) =

∑N
i=1

∑K
j=1 ρ(i)p(l|j, i)

exp{−βdavg(xi,yj(t))}∑K
j′=1

exp{−βdavg(xi,yj′ (t))}
xi∑N

i=1

∑K
j=1 ρ(i)p(l|j, i)

exp{−βdavg(xi,yj(t))}∑K
j′=1

exp{−βdavg(xi,yj′ (t))}

∀ l, (7)

⇒ yℓ(t+ 1)pY (t)
πρ

(l) =

N∑
i=1

K∑
j=1

ρ(i)p(l|j, i)πβ
Y (t)(j|i)xi, where (8)

πβ
Y (t)(j|i) =

exp{−βdavg(xi,yj(t))}∑K
j′=1

exp{−βdavg(xi,yj′ (t))}
and pY (t)

πρ (l) =
∑N

i=1 ρ(i)
∑K

j=1 p(l|j, i)π
β
Y (t)(j|i). Sub-

tracting pY (t)
πρ (l)yℓ(t) from both sides of the equation (8), we obtain(

yℓ(t+ 1)− yℓ(t)
)
pY (t)
πρ

(l) = −
N∑
i=1

K∑
j=1

ρ(i)p(l|j, i)πβ
Y (t)(j|i)

(
yℓ(t)− xi

)
(9)

⇒
(
yℓ(t+ 1)− yℓ(t)

)
pY (t)
πρ

(l) = −∂F (Y (t))

∂yℓ
, (10)

which in the stacked vector notation can be re-written as

Y (t+ 1) = Y (t)− 1

2

(
P̂Y (t)
πρ

)−1∇F (Y (t)) =: Y (t) + S(t). (11)

Here, P̂Y (t)
πρ = PY

πρ
(t)⊗Id, Id is a d×d Identity matrix,⊗ denotes the Kronecker product, PY (t)

πρ ∈
RK×K is a positive definite diagonal matrix with

[
P

Y (t)
πρ

]
ll

= p
Y (t)
πρ (l) ≥ c > 0, ∇F (Y (t)) =[

dF (Y (t))
dy1

⊤
, · · · , dF (Y (t))

dyK

⊤]⊤
∈ RKd. At every time instant t, we define

L(Y (t)) := sup
r∈[0,1]

λmax

((
P̂Y (t)
πρ

)−1/2∇2F (Y (t) + rS(t))
(
PY (t)
πρ

)−1/2
)
, (12)

Let Yr(t + 1) := Y (t) + rS(t), and g(r) := F (Yr(t + 1)). Then g′(r) = ∇F (Yr(t +
1))⊤S(t), g′′(r) = S(t)⊤∇2F (Yr(t + 1))⊤S(t). To avoid notational clutter, let Mt :=(
P̂

Y (t)
πρ

)−1/2∇2F (Yr(t+ 1))
(
P

Y (t)
πρ

)−1/2
. Then

g′′(r) =
((
P̂Y (t)
πρ

)1/2
S(t)

)⊤
Mt

((
P̂Y (t)
πρ

)1/2
S(t)

)
(13)
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⇒ g′′(r) ≤ λmax

(
Mt

)(
S(t)⊤

(
P̂Y (t)
πρ

)
S(t)

)
(14)

⇒ g′′(r) ≤ λmax

(
Mt

)∥∥S∥∥2
P

Y (t)
πρ
≤ L(Y (t))

∥∥S(t)∥∥2
P

Y (t)
πρ

(15)

Integrating both sides we obtain

g(1) = g(0) + g′(0) +

∫ 1

0

(1− t)g′′(t)dt (16)

⇒ F (Y (t+ 1)) ≤ F (Y (t)) +∇F (Y (t))⊤S(t) + L(Y (t))∥S(t)∥2
P

Y (t)
πρ

∫ 1

0

(1− t)dt (17)

⇒ F (Y (t+ 1)) ≤ F (Y (t)) +∇F (Y (t))⊤S(t) +
1

2
L(Y (t))∥S∥2

P
Y (t)
πρ

(18)

Substituting S(t) = − 1
2

(
P̂

Y (t)
πρ

)−1∇F (Y (t)) in (18), we get:

F (Y (t+ 1)) ≤ F (Y (t))− 1

2
∇F (Y (t))⊤

(
PY (t)
πρ

)−1∇F (Y (t))

+
1

8
L(Y (t))

(
∇F (Y (t))⊤

(
PY (t)
πρ

)−1)∇F (Y (t))
)

(19)

⇒
(1
2
− 1

8
L(Y (t))

)
∥∇F (Y (t))∥(

P
Y (t)
πρ

)−1 ≤ F (Y (t))− F (Y (t+ 1)) (20)

Telescopic summation over all t ∈ {0, 1, . . . , T} gives us

T∑
t=0

νt∥∇F (Y (t))∥(
P

Y (t)
πρ

)−1 ≤ F (Y (0))− F (Y (T )), where νt =
1

2
− 1

8
L(Y (t)) (21)

⇒
T∑

t=0

νt∥∇F (Y (t))∥(
P

Y (t)
πρ

)−1 ≤ F (Y (0))− Fmin <∞ (22)

There always exists a minimum Fmin such that F (Y (T )) ≥ Fmin for all Y ; note that for 0 < β <

∞, the Log-Sum-Exponential function F (Y (T )) in (P̂(β)) is always lower bounded. Thus, if νt > 0
∀ t, then, as T →∞, ∥∇F (Y (T ))∥(

P
Y (T )
πρ

)−1 → 0.

The condition νt > 0 holds true if L(Y (t)) < 4. We have from (49) in Appendix B that

∇2F (Yr(t+ 1)) = P̂Yr(t+1)
πρ

− 2β

N∑
i=1

(
K∑
j=1

P ij
A ziz

⊤
i P

ij − ρ(i)P iziz
⊤
i P

i

)
︸ ︷︷ ︸

=∆

, (23)

where P̂Yr(t+1)
πρ is positive definite by definition in Appendix B, and the matrix ∆ is positive semi-

definite too under the definition of the matrices P ij
A , z,P

ij , P i detailed in Appendix B. Actually, the
latter follows from the fact that for any Ψ = [ψ⊤

1 . . . ψ
⊤
K ]⊤ ∈ RKd, Ψ⊤∆Ψ =

∑N
i=1 ρ(i)δi, where

δi =

K∑
j=1

πβ
Y (j|i)

( K∑
k=1

p(k|j, i)[yk − xi]⊤ψk

)2
−
( K∑

j,k=1

πβ
Y (j|i)p(k|j, i)[yk − xi]

⊤ψk

)2
. (24)

Note that δi ≥ 0, because variance of
(∑K

k=1 p(k|j, i)[yk − xi]⊤ψk

)
computed with respect to the

distribution πβ
Y (·|i) is always non-negative. Thus, we can say that ∇2F (Yr(t+ 1)) ⪯ P

Yr(t+1)
πρ , in

other words PYr(t+1)
πρ −∇2F (Yr(t+ 1)) is positive semi-definite. Thus, we have that

λmax

((
P̂Y (t)
πρ

)−1/2∇2F (Yr(t+ 1))
(
PY (t)
πρ

)−1/2
)
≤ λmax

((
P̂Y (t)
πρ

)−1
P̂Yr(t+1)
πρ

)
(25)

⇒ L(Y (t)) ≤ max
r∈[0,1]

λmax

((
P̂Y (t)
πρ

)−1
P̂Yr(t+1)
πρ

)
= max

r∈[0,1]
max

1≤l≤K

p
Yr(t+1)
πρ (l)

p
Y (t)
πρ (l)

. (26)
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Under the assumption that for any cluster, its mass does not drastically change, i.e.,
pYr(t+1)
πρ

p
Y (t)
πρ

< 4

for all r ∈ (0, 1], we obtain that L(Y (t)) < 4. Thus νt > 0, and ∥∇F (Y (T ))∥(
P

Y (T )
πρ

)−1 → 0 as

T →∞. This is equivalent to ∇F (Y (T ))→ 0, which implies that the iterations (11) converge to a
stationary point.

A.2 CASE B: WHEN THE ASSUMPTIONS IN THEOREM 1 DO NOT HOLD

Here, we replace the gradient descent steps in (3) with descent steps of the form

Y (t+ 1) = Y (t)− σt∇F (Y (t)) =: Y (t) + σtS(t), (27)

where the step-size σt is designed using Armijo’s rule (Luenberger et al., 1984). More precisely, we
follow the following steps:

1. Let m = 0, σm,t = s, ϱ ∈ (0, 1), ξ ∈ (0, 1) be Armijo’s parameter.

2. Check if

F
(
Y (t)− σm,t∇F (Y (t))

)
− F

(
Y (t)

)
≤ −ϱσm,t∥∇F (Y (t))∥22 (28)

3. If yes: σt ← σm,t and exit. If not: σm+1,t = ξσm,t, m← m+ 1. Go to step 2.

Note that if the above steps terminate, then we obtain a step size σt that enables descent F
(
Y (t)−

σt∇F (Y (t))
)
≤ F

(
Y (t)

)
. We next show that for the free-energy function F (Y ) in (P̂(β)) the

above steps always converge. In other words, we show that there always exists a σt such that
F
(
Y (t)− σt∇F (Y (t))

)
≤ F

(
Y (t)

)
.

Lσ(Y (t)) := sup
r∈[0,1]

λmax

(
∇2F (Y (t) + rσtS(t))

)
(29)

Let Y t
r,σ = Y (t) + rσtS(t), h(r) := F (Y t

r,σ). Then, h′(r) = σt∇F (Y t
r,σ)

⊤S(t), h′′(r) =

σ2
tS(t)

⊤∇2F (Y t
r,σ)S(t). To avoid notational clutter, let M̂t := ∇2F (Y (t) + rσtS(t)). Then

h′′(r) = σ2
t

(
S(t)

)⊤
M̂t

(
S(t)

)
(30)

⇒ h′′(r) ≤ σ2
t λmax

(
M̂t

)(
S(t)⊤S(t)

)
(31)

⇒ h′′(r) ≤ σ2
t λmax

(
M̂t

)∥∥S(t)∥∥2
2
≤ σ2

tLσ(Y (t))
∥∥S(t)∥∥2

2
(32)

Integrating both sides we obtain

h(1) = h(0) + h′(0) +

∫ 1

0

(1− t)h′′(t)dt (33)

⇒ F (Y (t) + σtS(t)) ≤ F (Y (t)) + σt∇F (Y (t))⊤S(t) + σ2
t

1

2
Lσ(Y (t))∥S(t)∥22 (34)

Setting step-size at σm,t in (34), we obtain

F
(
Y (t)− σm,t∇F (Y (t))

)
− F (Y (t)) ≤ σm,t∇F (Y (t))⊤S(t) +

σ2
m,t

2
Lσ(Y (t))∥S(t)∥22 (35)

The Armijo’s condition in (28) will be true if

σm,t∇F (Y (t))⊤S(t) +
σ2
m,t

2
Lσ(Y (t))∥S(t)∥22 ≤ −ϱσm,t∥∇F (Y (t))∥22 (36)

Substituting S(t) = −∇F (Y (t)), we obtain

−∥∇F (Y (t))∥22 +
σm,t

2
Lσ(Y (t))∥∇F (Y (t))∥22 ≤ −ϱ∥∇F (Y (t))∥22 (37)
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Algorithm 3: Autonomy-aware clustering — when assumptions in Theorem 1 fail

Input: βmin, βmax, τ , K, X , ρ(i), p(k|j, i) ∀ i, j, k, and Armijo’s parameters s, ϱ ∈ (0, 1), ξ ∈ (0, 1);
Output: Assignment policy π, and cluster representatives {yℓ}Kℓ=1

Initialize: β = βmin, πβ
Y (j|i) = 1

K
∀ i, j, and {yℓ}Kℓ=1 using (2).

while β ≤ βmax do
while until convergence do

m = 0; σm,t = s; while True do
if F (Y (t)− σm,t∇F (Y (t)))− F (Y (t)) ≤ −ϱσm,t∥∇F (Y (t))∥22 then

σt ← σm,t; break;
else

σm+1,t ← ξσm,t; m← m+ 1

Y (t+ 1)← Y (t)− σt∇F (Y (t)); t← t+ 1;
β ← τβ; set yℓ ← yℓ + ϵnoise (to escape saddle) ∀ ℓ

⇒ −1 + σm,t

2
Lσ(Y (t)) ≤ −ϱ ⇒ σm,t ≤

2

Lσ(Y (t))

(
1− ϱ

)
(38)

⇒ σ0,tξ
m ≤ 2

Lσ(Y (t))

(
1− ϱ

)
(39)

Since ξ < 1, there exist a finite number of iterations m beyond which the above inequality will be
true. In other words, Armijo’s condition in (28) will be satisfied. Thus, resulting into an appropriate
step size σt. See Algorithm 3 for details.

B PHASE TRANSITION AND CRITICAL ANNEALING PARAMETER

B.1 HESSIAN COMPUTATION

We define the following matrices:

1. P̂ ij ∈ RK×K is a diagonal matrix, such that [P̂ ij ]kk = p(k|j, i), P ij = P̂ ij ⊗ Id, where
Id is a d× d identity matrix,

2. P i =
∑K

j=1 π
β
Y (j|i)P ij ,

3. zi = Y −Xi ∈ RKd, where Y =
[
y⊤1 y⊤2 . . . y⊤K

]⊤
, Xi = 1Kd ⊗ xi, and ⊗ denotes the

Kronecker product.

4. P̂ ij
A ∈ RK×K is a diagonal matrix;

[
P̂ ij
A

]
kk

= ρ(i)πβ
Y (j|i)p(k|j, i), P

ij
A = P̂ ij

A ⊗ Id ∈
RKd×Kd,

5. PY
πρ
∈ RK×K is a diagonal matrix such that

[
PY
πρ

]
kk

=
∑N

i=1

∑K
j=1 ρ(i)π

β
Y (j|i)p(k|j, i),

and P̂Y
πρ

= PY
πρ
⊗ Id ∈ RKd×Kd. Note that, under the Gibbs’ distribution of πY in (1),[

PY
πρ

]
kk
> 0 for β <∞, thus making P̂Y

πρ
and PY

πρ
positive definite matrices.

Phase transitions occur when the cluster representatives {yℓ} in (2), given by ∂F
∂yℓ

= 0, are no longer

the local minima. In other words, ∂F (Y )
∂Y = 0, where Y = [y⊤1 , . . . , y

⊤
K ]⊤ but, there exist some

perturbation direction Ψ = [ψ⊤
1 , . . . , ψ

⊤
K ]⊤ ∈ RKd such that the HessianH(Y, π,Ψ, β) =

d2F (Y + ϵΨ)

dϵ2

∣∣∣∣∣
ϵ=0

= Ψ⊤

[
P̂Y
πρ
− 2β

(
N∑
i=1

K∑
j=1

P ij
A ziz

⊤
i P

ij −
N∑
i=1

ρ(i)P iziz
⊤
i P

i

)]
Ψ, (40)

is no longer positive definite.

Computing the Hessian in (40) d2F (Y+ϵΨ)
dϵ2

∣∣∣
ϵ=0

=

=

N∑
i=1

ρ(i)

K∑
j=1

πβ
Y (j|i)

[
K∑

k=1

p(k|j, i)ψ⊤
k ψk − 2β

( K∑
k=1

p(k|j, i)[yk − xi]⊤ψk

)2]
(41)
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+ 2β

N∑
i=1

ρ(i)

[
K∑

j,k=1

πβ
Y (j|i)p(k|j, i)[yk − xi]

⊤ψk

]2
(42)

=

N∑
i=1

ρ(i)

[
K∑
j=1

πβ
Y (j|i)Ψ

⊤[P ij − 2βP ijziz
⊤
i P

ij
]
Ψ (43)

+ 2β

[
K∑

j,k=1

πβ
Y (j|i)p(k|j, i)[yk − xi]

⊤ψk

]2]
(44)

= Ψ⊤

[
P̂Y
πρ
− 2β

N∑
i=1

K∑
j=1

P ij
A ziz

⊤
i P

ij

]
Ψ+ 2β

N∑
i=1

ρ(i)

[
K∑

j,k=1

πβ
Y (j|i)p(k|j, i)[yk − xi]

⊤ψk

]2
(45)

= Ψ⊤

[
P̂Y
πρ
− 2β

N∑
i=1

K∑
j=1

P ij
A ziz

⊤
i P

ij

]
Ψ+ 2β

N∑
i=1

ρ(i)

[
K∑
j=1

πβ
Y (j|i)z

⊤
i P

ijΨ

]2
(46)

= Ψ⊤

P̂Y
πρ
− 2β

N∑
i=1

K∑
j=1

P ij
A ziz

⊤
i P

ij

Ψ+ 2β

N∑
i=1

ρ(i)
[
z⊤i P

iΨ
]2

(47)

= Ψ⊤

[
P̂Y
πρ
− 2β

N∑
i=1

K∑
j=1

P ij
A ziz

⊤
i P

ij

]
Ψ+ 2βΨ⊤

[
N∑
i=1

ρ(i)
[
P iziz

⊤
i P

i
] ]

Ψ (48)

= Ψ⊤

[
P̂Y
πρ
− 2β

(
N∑
i=1

K∑
j=1

P ij
A ziz

⊤
i P

ij −
N∑
i=1

ρ(i)P iziz
⊤
i P

i

)]
Ψ (49)

B.2 βCR - CRITICAL ANNEALING PARAMETER VALUE

The Hessian can be re-written as
H(Y, π,Ψ, β) =

Ψ⊤(P̂Y
πρ
)

1
2

[
I − 2β(P̂Y

πρ
)−

1
2

(
N∑
i=1

K∑
j=1

P ij
A ziz

⊤
i P

ij −
N∑
i=1

ρ(i)P iziz
⊤
i P

i

)
(P̂Y

πρ
)−

1
2

]
(P̂Y

πρ
)

1
2Ψ.

As evident from the above expression and the fact that β gets annealed from a small value to a large

value, the critical βcr at which Hessian loses rank is given by
1

2λmax

(
(P̂Y

πρ
)−

1
2∆(P̂Y

πρ
)−

1
2

) .

C SENSITIVITY OF Y TO THE ANNEALING PARAMETER β

Consider the expression of the cluster representatives yℓ in (2). We re-write this expression as

yℓ =

∑N
i=1 p

Y
πρ
(l, i)xi

pYπρ
(l)

,

where pYπρ
(l, i) =

∑K
j=1 ρ(i)π

β
Y (j|i)p(l|j, i) and pYπρ

(l) =
∑N

i=1 p
Y
πρ
(l, i). We have that

dyℓ
dβ

=
1

pYπρ
(l)

N∑
i=1

dpYπρ
(l, i)xi

dβ
− 1

pYπρ
(l)2

N∑
i=1

pYπρ
(l, i)xi

dpYπρ
(l)

dβ
, (50)

where
dpπY

ρ
(l, i)

dβ
=
∑K

j=1 ρ(i)p(l|j, i)
dπβ

Y (j|i)
dβ

, where πβ
Y (j|i) is the Gibbs’ distribution in (1).

We obtain that

dπβ
Y (j|i)
dβ

= −πβ
Y (j|i)

[
davg(xi, yj) + 2β

K∑
k=1

p(k|j, i)(yk − xi)⊤
dyk
dβ

]
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+ πβ
Y (j|i)

M∑
j′=1

πβ
Y (j

′|i)
[
davg(xi, yj′) + 2β

K∑
k=1

p(k|j′, i)(yk − xi)⊤
dyk
dβ

]
(51)

Substituting (51) in (50), and algebraically simplifying, we obtain

dyℓ
dβ

=
1

pYπρ
(l)

N∑
i=1

K∑
j=1

ρ(i)p(l|j, i)πβ
Y (j|i)davg(xi, yj)

(
yℓ − xi

)
+

2β

pYπρ
(l)

N∑
i=1

K∑
j=1

ρ(i)p(l|j, i)πβ
Y (j|i)

K∑
k=1

p(k|j, i)(yk − xi)⊤
dyk
dβ

(
yℓ − xi

)
− 1

pYπρ
(l)

N∑
i=1

K∑
j=1

ρ(i)p(l|j, i)πβ
Y (j|i)

K∑
j′=1

πβ
Y (j

′|i)davg(xi, yj′)
(
yℓ − xi

)
− 2β

pYπρ
(l)

N∑
i=1

K∑
j=1

ρ(i)p(l|j, i)πβ
Y (j|i)

K∑
j′=1

πβ
Y (j

′|i)
K∑

k=1

p(k|j′, i)(yk − xi)⊤
dyk
dβ

(yℓ − xi) (52)

Multiplying (52) by pπρ
(l)dyℓ

dβ

⊤
on both the sides and summing up over all l, we obtain:

T1 :=

K∑
l=1

pYπρ
(l)
dyℓ
dβ

⊤ dyℓ
dβ

=

N∑
i=1

K∑
j,l=1

ρ(i)p(l|j, i)πβ
Y (j|i)davg(xi, yj)

dyℓ
dβ

⊤
(yℓ − xi)

+ 2β

N∑
i=1

K∑
j=1

ρ(i)πβ
Y (j|i)

[
K∑

k=1

p(k|j, i)dyk
dβ

⊤
(yk − xi)

]2
︸ ︷︷ ︸

T2

−
N∑
i=1

K∑
l=1

pYπρ
(l, i)

K∑
j′=1

πβ
Y (j

′|i)davg(xi, yj′)
dyℓ
dβ

⊤
(yℓ − xi)

− 2β

N∑
i=1

ρ(i)

[
K∑
j=1

πβ
Y (j|i)

K∑
k=1

p(k|j, i)dyk
dβ

⊤
(yk − xi)

]2
︸ ︷︷ ︸

T3

, (53)

which when re-arranged gives

T1 − T2 + T3 =

N∑
i=1

K∑
j,l,j′=1

ρ(i)p(l|j, i)πβ
Y (j|i)π

β
Y (j

′|i)
[
davg(xi, yj)− davg(xi, yj′)

]dyℓ
dβ

⊤
(yℓ − xi)︸ ︷︷ ︸

=:T4

. (54)

Now, we’ll bound some of the terms in the expression T4. Note that, from the expression in (1),
πβ
Y (j|i) ≤ exp

{
− β

(
davg(xi, yj)− davg(xi, yj′)

)}
, which implies

πβ
Y (j|i)

(
davg(xi, yj)− davg(xi, yj′)

)
(55)

≤
(
davg(xi, yj)− davg(xi, yj′)

)
e

{
−β
(
davg(xi,yj)−davg(xi,yj′ )

)}
≤ e−1

β
, (56)

where the last inequality follows from the fact that xe−βx ≤ e−1

β
for β > 0. Substituting this bound

in (54), we obtain

T4 ≤
e−1

β

N∑
i=1

K∑
j,l,j′=1

ρ(i)p(l|j, i)πβ
Y (j|i)π

β
Y (j

′|i)dyℓ
dβ

⊤
(yℓ − xi) (57)
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=
e−1

β

N∑
i=1

K∑
l=1

pYπρ
(l, i)

dyℓ
dβ

⊤
(yℓ − xi) ≤

e−1

β

N∑
i=1

K∑
l=1

∥∥∥dyℓ
dβ

∥∥∥RΩ, (58)

where RΩ quantifies the size of the domain Ω (for instance, radius of the smallest sphere containing
all the data points {xi}). Further note from expression (42) that T1 − T2 + T3 is essentially the

HessianH(Y, π,Ψ, β) where the perturbation Ψ =

[
dy1
dβ

⊤
. . .

dyK
dβ

⊤
]⊤

. Thus, we have that

⇒
K∑
l=1

dyℓ
dβ

⊤ ∂2F

∂y2ℓ

dyℓ
dβ
≤ e−1

β
NRΩ

K∑
l=1

∥∥∥dyℓ
dβ

∥∥∥ (59)

⇒
K∑
l=1

λmin

(∂2F
∂y2ℓ

)∥∥∥dyℓ
dβ

∥∥∥2 ≤ e−1

β
NRΩ

K∑
l=1

∥∥∥dyℓ
dβ

∥∥∥ (60)

⇒
K∑
l=1

δ
∥∥∥dyℓ
dβ

∥∥∥2 ≤ e−1

β
NRΩ

K∑
l=1

∥∥∥dyℓ
dβ

∥∥∥, (61)

where δ = minl
[
λmin

(
∂2F
∂y2

ℓ

)]
, and λmin(·) is the minimum eigenvalue. Note that

∑K
l=1

∥∥dyℓ

dβ

∥∥ ≤
√
K
∥∥dY

dβ

∥∥ by Cauchy-Schwarz inequality, where∥∥∥dY
dβ

∥∥∥ =

√∥∥∥dy1
dβ

∥∥∥2 + . . .+
∥∥∥dyK
dβ

∥∥∥2. (62)

Thus, from (61) we have that

δ
∥∥∥dY
dβ

∥∥∥2 ≤ e−1

β
NRΩ

√
K
∥∥∥dY
dβ

∥∥∥ (63)

⇒
∥∥∥dY
dβ

∥∥∥ ≤ e−1

βδ
NRΩ

√
K (64)

D CHANGE IN Y VERSUS β AND CRITICAL TEMPERATURES

Here we illustrate how Y changes drastically near critical βcr, and remains largely unchanged be-
tween two consecutive βcr. Figure 3(a) illustrates the dataset that we consider for this illustration.
It contains 3200 data points, and we divide it into K = 16 clusters, i.e., 16 cluster representatives
{yℓ}. Each data point has local autonomy, such that it honors the prescribed cluster 15 out 16 times,
and remaining times it overrides the prescription and uniformly associates with the remaining 15
clusters. Figure 3(b) plots ∥∆Y (β)∥ versus β. Note that change in Y remains largely zero except at
3 instances at which critical βcr was attained. Initially all the representatives {yℓ} are coincident, i.e.,
all have the same feature vector values. At first βcr, 4 distinct representative feature vectors value
are formed, where each unique representative feature vector value is shared by 4 representatives.
At the second βcr each of the previous 4 unique representative vector values give rise to 2 unique
representative vector value — making a total of 8 unique representative feature values at this point.
Here, each unique representative feature vector value is shared by 2 representatives in {yl}. At the
third βcr each of the previous 8 unique representative vectors give rise to 2 unique representative
vector values — making a total of unique 16 representative vectors. See the .mp4 file ”Submission-
WithPT.mp4” (where plot title in every frame shows 1

β ) submitted as supplementary material for a
clearer understanding.

E REINFORCEMENT-BASED LEARNING FOR CASE (C1)

Case (C1) - When X contains a tractable number of data points, d(xi, yk) is available in closed
form, and p(l|j, i) is independent of yℓ.

Learning πβ
Y (S1): Our mechanism to learn the assignment policy πβ

Y in (1) is akin to that of
learning the control policy in reinforcement learning (RL) frameworks (Sutton & Barto, 2018).
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(a) (b)

Figure 3: (a)Dataset, (b) Change in Y versus β demonstrates phenomenon of phase transitions

Let qt(xi, yj) be the estimate of the average cost davg(xi, yj) at a time instant t, and πt(j|i) =

softmaxj(−βqt(xi, yj)) be the estimate of the policy πβ
Y . At every t, we sample a data point

i ∼ ρ(·) and its prescribed cluster j ∼ πt(·|i). The data point associates itself to the cluster
k ∼ p(·|j, i) incurring a cost d(xi, yk). We perform the following stochastic iteration to asyn-
chronously update qt(xi, yj):

qt+1(xi, yj) = (1− ϵt,ij)qt(xi, yj) + ϵt,ijd(xi, yk), (65)

and qt+1(xi′ , yj′) = qt(xi′ , yj′) for all (i′, j′) ̸= (i, j). These iterations, under the Robbins-
Monro step-size conditions

∑
t ϵt,ij = ∞, and

∑
t ϵ

2
t,ij < ∞ ∀ i, j, converge to the expected

cost davg(xi, yj), and provide an estimate π̂β
Y of the policy in (1). See (Borkar & Borkar, 2008) for

proof.

Learning {yℓ} (S2): When the cost function d(xi, yk) is known in the closed form and the local
autonomy is not dependent on {yℓ}, a straightforward way to learn the cluster representatives is
via stochastic gradient descent (SGD). For instance, when d(xi, yk) = ∥xi − yk∥22 we execute the
following SGD iterations

yℓ(t+ 1) = yℓ(t)− αt

( 1

|S|
∑

(i,j,k)∈S

(
yℓ(t)− xi

)
δℓk

)
, (66)

where the mini-batch S = {(i, j, k) : i ∼ ρ, j ∼ π̂β
Y , k ∼ p}, and π̂β

Y is the policy learnt in (S1).

F ADEN ARCHITECTURE

Given a set of data points X and representatives Y , our attention-based deep neural network NNθ

outputs the expected entity–cluster distance tensor

D̄θ(X ,Y) ∈ R|X |×|Y|
+ ,

where [D̄θ(X ,Y)]ij = dθ(xi, yj). The design of NNθ allows inputs of variable sizes (|X | and
|Y|), enabling efficient transfer learning across problem instances without retraining from scratch.
By training dθ(xi, yj) to approximate a target distance function davg(xi, yj), the model implicitly
encodes the influence of local autonomy p(· | j, i) on the full set of cluster representatives {yℓ},
when such dependencies exist. This design ensures that gradients with respect to the cluster repre-
sentatives are accurately propagated, allowing end-to-end optimization of both entity assignments
and cluster representatives.

See Figure 4 for an architecture of our proposed Adaptive Distance Estimation Network (ADEN)
that incorporates an internal Adaptive Distance Block (ADB). We employ a deep encoder to estimate
autonomy-aware entity–cluster distances. Suppose there are B mini-batch of data, each containing
S samples and all the K clusters. We usually take S ≪ N to avoid computational overhead. The
inputs are the data tensor X ∈ RB×S×d and the cluster tensor Y ∈ RB×K×d. Both are first
projected into a hidden space of dimension dh via

X̂ = FX(X), Ŷ = FY (Y),
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(a) Schematics of ADEN Architecture. (b) ADB Module Used inside ADEN.

Figure 4: Overall Deep Architecture to predict autonomy-aware distances.

Table 2: Hyperparameters used for different scenarios.

Parameter Value
Seed 0
Hidden dim (dh) 64
Feed Forward dim (dFF ) 128
ADB Layers (L) 4
Attention Heads 8
Batch Size (B) 32
Samples in Batch (S) 128
Learning Rate (ηd) 10−4

AdamW Weight Decay 10−5

Perturbation spread (σ) 0.01
Sampling size (L̂) 16
EMA Filter rate (λ) 0.95
Epochs Y (Ty) 100
Learning Rate Y (ηy) 10−4

βmin 10
τ 1.1
Hyperparameters with different values:
Epochs ADEN (Td) Fig. 1 Dataset: 1000 — Decentralized Sensing Fig 2: 2000
βmax Fig. 1 Dataset: 50,000 — Decentralized Sensing Fig 2: 10,000

where FX ,FY : Rd → Rdh are learnable linear layers. Next, we apply L layers of ADB encoding
to X̂ to obtain contextualized embeddings EL ∈ RB×S×dh (see Figure 4(b)):

Uℓ = LN
(
MHA

(
Eℓ−1, Ŷ, Ŷ

)
+Eℓ−1

)
, (67)

Eℓ = LN
(
Ŵ(Uℓ) +Uℓ

)
, ℓ = 1, . . . , L, (68)

where E0 = X̂, MHA denotes standard multi-head attention (query, key, value), LN is layer nor-
malization, and Ŵ : Rdh→Rdff→Rdh is a feed-forward module with expansion–contraction linear
layers (dff ≫ dh) and GeLU activation. To form pairwise entity–cluster features, we broadcast the
final point embeddings EL ∈ RB×S×dh and the cluster embeddings Ŷ ∈ RB×K×dh across the
cluster and entity dimensions, respectively:

Ẽ = EL[:, :, newaxis, :] ∈ RB×S×K×dh , Ỹ = Ŷ[:, newaxis, :, :] ∈ RB×S×K×dh .

We then pairwise-combine these representations by channel-wise stacking,

Z̄ = [ Ẽ∥Ỹ ] ∈ RB×S×K×2dh ,

where [ ·∥· ] denotes feature-wise concatenation for each entity–cluster pair. A shared feed-forward
“distance head”Wz : R2dh → R then predicts autonomy-aware deviations:

D̄ = ReLU
(
θzWz(Z̄) + D̄0

)
,
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where θz is a learnable scalar, and D̄0 is the baseline distance between X,Y. We define

D̄0 =
(
X[:, :, newaxis, :]−Y[:, newaxis, :, :]

)⊙2
1

as the batched, pairwise squared Euclidean distance between X and Y, where ⊙2 denotes element-
wise squaring and 1 ∈ Rd is a vector of ones. Dropout layers within both the ADB blocks and the
distance head mitigate overfitting. This design ensures permutation invariance across clusters, since
Wz is applied identically to every entity–cluster pair.

G ADEN TRAINING HYPERPARAMETERS

Table 2 provides the hyperparameters used for ADEN network in various simulations.

H SIMULATIONS WITH LOCAL AUTONOMY

We evaluate our method on the dataset shown in Fig. 1 under a controlled form of local autonomy.
Specifically, each entity i accepts its prescribed cluster j with probability 1− κ; with probability κ
it selects an alternative cluster k ̸= j according to

p(k | j, i) = κ
exp[−ck(j, i)/T ]∑
t̸=j exp[−ct(j, i)/T ]

.

Here the cost ck(j, i) = ζ d(yj , yk)+γ d(xi, yk). We vary the parameters {κ, γ, ζ, T} to study their
influence on clustering outcomes. The results are shown in Fig. 5. In the visualizations, the color of
each entity reflects its mixture of representative assignments, computed as a linear combination of
representative colors weighted by πY (j | i).
When κ is small (Fig. 5(a1)-(a2)), cluster representatives remain close to their assigned entities.
As κ increases, deviations grow (Fig. 5(a3)-(d4)): the temperature T controls the randomness of
alternative selections—higher T pulls all representatives toward a common location (Fig. 5(c1)-
(c2)), whereas lower T draws each representative toward the nearest entities (Fig. 5(a1) and 5(b1)).
In the high-κ regime (Fig. 5(d1)-(d4)), small T produces pronounced shifts in which representatives
migrate to the closest clusters, yielding nontrivial configurations (Fig. 5(d1), 5(d3), and 5(d4)). Note
how the representative on top of a cluster is not of the same colour as the data points in that cluster
— highlighting the non-trivial configurations under high κ = 0.9. The parameters γ and ζ further
modulate assignment patterns, altering how entities distribute across representatives.

I USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we made limited use of OpenAI’s ChatGPT. Specifically, ChatGPT
was employed to improve grammar, clarity, and readability of the text. On rare occasions, it was
also used to aid in literature discovery; however, all references and citations included in the paper
were independently verified and sourced directly from Google Scholar.
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(a1) {0.1,0,1,0.001} (a2) {0.1,0.5,1,1} (a3) {0.3,0,0.5,0.001} (a4) {0.3,0,0.5,100}

(b1) {0.3,0,1,0.001} (b2) {0.3,0,1,1} (b3) {0.3,0.5,0.5,1} (b4) {0.5,0,0.5,0.001}

(c1) {0.5,0,1,100} (c2) {0.7,0,0.5,100} (c3) {0.7,0,1,0.001} (c4) {0.7,0,1,0.01}

(d1) {0.9,0,0.5,0.01} (d2) {0.9,0,0.5,1} (d3) {0.9,0,1,0.01} (d4) {0.9,0.5,1,0.01}

Figure 5: 4×4 grid of benchmark images. Each subcaption shows the tuple {κ, γ, ζ, T} in that order.
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