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Abstract
Taxi demand prediction in a city is a highly demanded smart city research application for better traffic strategies formulation.
It is essential for the interest of the commuters and the taxi companies both to have an accurate measure of taxi demands at
different regions of a city and at varying time intervals. This reduces the cost of resources, efforts and meets the customers’
satisfaction at its best. Modern predictive models have shown the potency of Deep Neural Networks (DNN) in this domain
over any traditional, statistical, or Tensor-Based predictive models in terms of accuracy. The recent DNN models using
leading technologies like Convolution Neural Networks (CNN), Graph Convolution Networks (GCN), ConvLSTM, etc. are
not able to efficiently capture the existing spatio-temporal characteristics in taxi demand time-series. The feature aggregation
techniques in these models lack channeling and uniqueness causing less distinctive but overlapping feature space which
results in a compromised prediction performance having high error propagation possibility. The present work introduces
Spatio-Temporal Aggregator Predictor (ST-AGP), a DNN model which aggregates spatio-temporal features into (1) non-
redundant and (2) highly distinctive feature space and in turn helps (3) reduce noise propagation for a high performing
multi-step predictive model. The proposed model integrates the effective feature engineering techniques of machine learning
approach with the non-linear capability of a DNN model. Consequently, the proposed model is able to use only the
informative features responsible for the objective task with reduce noise propagation. Unlike, existing DNN models, ST-
AGP is able to induce these qualities of feature aggregation without the use of Multi-Task Learning (MTL) approach or any
additional supervised attention that existing models need for their notable performance. A considerable high-performance
gain of 25−37% on two real-world city taxi datasets by ST-AGP over the state-of-art models on standard benchmark metrics
establishes the efficacy of the proposed model over the existing ones.
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1 Introduction

On-demand taxi services such as Uber, Ola, andMobike are
playing a major role in meeting the transportation demands
in several urban locations. Modeling the taxi demand across
different regions of a city can be useful in determining the
business strategies for these transport companies. Taxi-
Demand prediction is among the utmost tasks from the
point of business perspective as well as city traffic policy
makers. Researchers have been working hard to create
more efficient models to have an accurate prediction of
taxi-demands at a region over time. Such models can be
helpful in maintaining customer satisfaction by providing
hassle-free services with manageable resources [1–4]. The
following paragraphs detail the taxi-demand prediction
problem and the existing models in the field of taxi-demand
prediction along with their contributions and limitations
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which progress to summarize the need for an improved
predictive model in the domain.

Many predictive models have been developed to assist
these taxi companies as well as commuters for accurate on-
demand services as possible [5–8]. To model every region of
a complete city, these models primarily take as input Origin-
Destination Tensor (ODT). A general form of an ODT is
a three-dimensional data-structure with time (t), source (s)
and destination (d) being its three dimensions. A value in
a particular cell < ti, sj , dk > is the demand of taxi from
source (sj ) to destination (dk) in a particular time duration
(ti). The objectives of these predictive models are both to
predict demands at each region and demands across each
region pair over one or more steps in the future. Demand
at a region is the aggregated values of all demands whose
destination is that particular region irrespective of source
regions. While demands between regions mean the demands
between two regions when one is treated as a source and the
other as destination and vice-versa. However, the existing
models [9–11] target more on the region demand predic-
tion. In this paper, we consider the demand across each
region pair since it contains more information than the for-
mer one. For this purpose, researchers have developed many
efficient classical models as well as statistical and Tensor-
Decomposition based models. Recently advances in Deep
Neural Networks, have provided many predictive models
that yield ever-high accuracy in this application domain.
However, the existing models have many pitfalls that create
gaps between efficient feature extraction and predictive perfor-
mance. Consequently, models based on different approaches
could not cope with the benefits of others e.g. machine
learning based models could not compete with the high
accuracy and non-linearity of Deep Neural Network mod-
els. Despite all, the contribution of the existing models in the
field of taxi-demand prediction has reached a considerable
height considering their improvement over their competitive
counterparts. These improvements can be observed precisely
with the advent of a new prediction model in the domain.

The classical parametric and statistical models like
ARIMA [12], SARIMA [13], VAR [14], Bayesian
Update [11] etc. are able to predict the taxi-demand time-
series but their performance have limited gain. Additionally,
these linear models are not much helpful in predicting taxi-
demand with the complex spatio-temporal features. Though,
these models are able to make multi-step prediction for
many regions, dealing with every region altogether along
with capturing inter-regional correlations is often neglected,
resulting in a marginal predictive performance gain of these
models. Additionally, these models have hardly any provi-
sion to include region-specific traffic characteristics. Con-
sequently, these models are not able to fully capture spatio-
temporal characteristics of the taxi-demand time-series of a
complete city.

Tensor decomposition based models are able to adapt to
multi-dimensional traffic features and require no training
process for the prediction. These tensor based data-driven
approaches such as DTC [11], CP-Decomposition [15] and
TeDCAN [16] are a few of the models in this category
that have been applied for traffic time-series. These models
are based on spectral decomposition of higher order tensor
(ODT) and hence are able to capture spatio-temporal
characteristics in-efficiently. Though most of the Tensor-
Decomposition based models do not incorporate network
specific-characteristics in traffic time-series prediction,
few models like TeDCaN [16] can include specific
characteristics of a ‘city traffic network’ for better
prediction results. Despite the considerable performance
of these models, they are not much efficient in long-term
prediction and additionally these models being data-driven
approaches are not able to fully capture complex spatio-
temporal characteristics of the city taxi-demand time-series
present in latent space. Though, these models require no
training process, during prediction these models involve
computationally costly tensor decomposition operation
using approximation and require convergence by alternating
least square (ALS) or a similar approach using many
iterations, which consumes time. These models despite
showing good short-term prediction performance often
are not preferred for long term prediction due to hard
to accommodate attention mechanism which recent deep
neural networks models can easily integrate.

Recently, Deep Neural Networks have shown some
remarkable accuracy in predicting taxi-demand time series
of regions in a city. DNN layers like Convolution Neu-
ral Networks (CNN), Graph Convolution Networks (GCN),
Long Short-Term Memory RNN (LSTM), convLSTM, etc.
are specialized in capturing spatial and temporal charac-
teristics in input datasets. Hence trendy predictive mod-
els like GEML [17], STMGCN [9], ST-GCN [18], att-
ConvLSTM [19], T-GCN [20] etc. using these layers or
their modification have proved to be an efficient predictive
model with high accuracy on many taxi-demand datasets.
Att-ConvLSTM [19] uses convolution operation on city
grid structure (city ODT) for spatial and temporal features
encoding and decoding. To enhance the prediction result,
att-ConvLSTM [19] uses temporal representatives of city
grid structures using kmeans++ as attention to the derived
spatio-temporal encoded features by the model. The use of
convolution (CNN) in att-ConvLSTM limits its capability
to consider only the neighboring regions for considera-
tion while any distant region like (airport, city-centre) are
important irrespective of their distance from the region. To
overcome this limitation CNN is replaced with GCN. The
models like ST-GCN, STMGCN, GEML [9, 17, 18] etc. use
GCN for spatial convolution. ST-GCN [18] uses spectral
graph convolution along with GLU for traffic time-series
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prediction. This provides a generic approach to capture
spatio-temporal characteristics of the city traffic demand
time-series prediction. ST-GCN performance can not com-
pete with more recent DNN models which include different
attention to incorporate traffic specific characteristics dur-
ing prediction. GEML [17] is an efficient Multi-Task Learn-
ing model using GCN and LSTM. It employs traffic features
for attention. Despite this, GEML’s capability to capture
complex latent spatio-temporal characteristics, it does not
support feature refinement. Features refined for the objec-
tive task can greatly boost the performance of the model.
It’s an usual approach often seen for a machine learning
model. Overlapping features from different attention as well
as noise propagation are possible limitations [21, 22] of its
predictive performance. STMGCN uses temporal attention
and multiple traffic network graphs to enhance its predic-
tion capability using GCN and RNN. STMGCN, GEML,
and other trendy DNN models lack feature organization.
The spatio-temporal features captured by these models have
less distinctive and overlapping characteristics, which lim-
its their predictive power. Additionally, these models have
no dedicated components to reduce noise propagation dur-
ing prediction. To describe, these glitches can be explained
as a major gap in the utilization of input features and predic-
tive performance. The present DNNmodels are less likely to
utilize the conceptual benefits of feature manipulation used
in the machine learning approaches that can lead to a major
performance gain rather than depending on DNN models as
a black-box approach.

With a view to the existing constraints in trendy
predictive models, we introduce a DNN model, Spatio-
Temporal Aggregator Predictor (ST-AGP) which efficiently
makes a multi-step prediction of the taxi demands
among every region pair in the city. The proposed
model incorporates features attention and unsupervised
loss to capture complex spatio-temporal characteristics of
the network. A clear advantage of ST-AGP over other
existing DNN models is that it includes a dedicated
component to create non-overlapping, distinctive features
from various sources and helps reduce noise propagation
during prediction. Hence, the proposed model is a
DNN based model that inherits the capability of feature
engineering of a machine learning approach (PCA in our
case) amalgamated with the highly accurate prediction
capability of DNN models.. In the coming sections, we
elaborate on the conceptual and constructional background
of the proposed model with experimental findings to support
its predictive capabilities. The major contribution of the
present work can be enumerated in brief as follows:

• The paper contributes by providing a deep neural network
analog of a machine learning approach (PCA) which
inherits important capabilities of both approaches like

high accuracy of a DNNmodel and efficient feature trans-
formation of a PCA. Consequently, this has consider-
ably improved the predictive performance of the pro-
posed model over the existing state-of-the-art models.

• The proposed model contributes by capturing complex
spatio-temporal feature characteristics of the input
data [9, 10] and refining them into a non-overlapping
and highly distinctive feature in embedding space [10,
21]. Additionally, the proposed model can cope with
noisy data owing to orthogonal transformation of
features in the model. Resulting in an improved
performance of the predictive model than the existing
DNN models [9, 17, 23] in this domain.

• The present model does not depend on Multi-
Tasks [17] or supervised attention [19, 24] which are
indispensably important in recent models for their
predictive performance whereas the proposed model
uses unsupervised loss for its predictive approach.

• The proposed model presents its efficacy on two
real-world city taxi-demand datasets with varying
experimental conditions over many popular models
existing in this field.

The organization of the paper is as follows: we discuss
the literature in Section 2. Section 3 outlines the problem
definition in detail and is followed by preliminary keywords
description in a separate section in Section 4. The
methodology of our proposed approach is discussed in
Section 5. Next, we see our dataset, experimental set-up,
and baselines description in Section 6. Results and analysis
is discussed in Section 7 followed by conclusion and future
work in Section 8.

2 Related works

In this section, we review mainstream schemes on traffic
flow prediction. Traffic flow prediction is of prime
importance in developing smart city [25] traffic operations.
However, the accurate prediction of the total traffic flow
between the locations is still a significant challenge in
this research area. For a decade, researchers have been
improving the prediction methodology to make accurate
forecasts of the vehicle’s demand at a required time and
place. Some well known recent predictive approaches in this
field include Dynamic Tensor Completion (DTC), Region
POI Demand Identification (RPDI), Ensemble method,
encoder-decoder convLSTM framework and Canonical
Polyadic Alternating Least Square (CP-ALS) [11, 15, 26,
27], Graph based models [9, 10] etc. to name a few.

The underlying supports of these predictive approaches
can be grouped as traditional models (generally uses
bayesian, Discrete fourier transform etc.), tensor based
models and Deep Neural Network (DNN) models [28–30].
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Next we present an elaborated view on articles for each type
of predictive approach.

Traditional approaches like ARIMA, SARIMA [11, 31]
and other modifications of auto-regressive approaches serve
as basic models for emerging tensors and deep learning
based approaches. However, such methods cannot capture
the non-linearity and parallel dependency of traffic time-
series. The performances of these approaches as well
as statistical approaches (like Bayesian update) are quite
often challenged by those using tensors [19, 32], DNN
approaches [19, 33], etc. Still, these approaches set the basic
guidelines for any emerging predictive model that should
retain the influence of past values.

Tensor models utilises matrix factorization approach
for finding the missing values in traffic ODMs [34, 35]
while performing traffic demand predictions [11, 15]. Such
models are data driven and produces high quality results.
The matrix factorization concept has been generalized
as Tensor-Decomposition. Canonical Polyadic Decompo-
sition (CP-Decomposition), Higher-Order SVD (HOSVD),
HOOI, Tucker Decomposition, etc. are few tensor decom-
position approaches that have been widely used in this
domain as the principle for prediction model construc-
tion. CP has used the decomposition of multi-dimensional
traffic information. However, CP did not consider the
network characteristics i.e. different cities might have
different traffic characteristics. Dynamic Tensor Comple-
tion (DTC) [11] is another tensor model i.e a short-term
traffic prediction model based on Tucker-Decomposition
approach exploiting multi-dimensional information. It
employs the concept of data imputation for missing val-
ues in matrix using tensor approach. However, DTC has
to carry a rank determining approach being a modifica-
tion of Tucker-Decomposition(QDA [36]). Additionally,
DTC would always depend on an extra temporal dimen-
sion to predict traffic for minutes, it required one additional
temporal dimension as ‘day’. Also, similar to other tensor-
based model it is not able to implement the peculiarity
of different city traffic in a single model as a generic
one.

Despite decent prediction performance of the Tensor-
based models, DNN models provide higher flexibility to
adopt auxiliary information and tap deeper latent features
from time-series information. Hence DNN’s are heavily
explored in this field.

DNN methods Recent works mainly focus on traffic flow
prediction at any particular location using neural network
based techniques [4, 9, 10]. Hoang et al. [33] integrates
a seasonal model, trend model, then a residual model to
predict the numbers of in-flow and out-flow crowds of a
region, while Zhang et al. [37] proposes a deep-learning-
based approach called ST-ResNet to solve the same task.
But these two studies overlook the transferring relationships

among regions. Deng et al. [38] design a latent space
model based on road networks to predict traffic matrix,
which learns the attributes of vertices in latent spaces to
capture both topological and temporal properties. LSTMs
based methods are employed in many research including [2,
17, 39]. Nevertheless, they either have not considered the
problem from both spatial and temporal perspectives or
fail to give an adequate and meaningful representation for
each region. Further graph based predictive models find its
wide application in recent traffic prediction tasks. Next, we
discuss significant work done in this domain.

Graph models Recent traffic prediction techniques
involve graph representation learning. Hamilton et al. [40]
propose GraphSAGE, a general inductive framework that
leverages node feature information to efficiently generate
node embeddings for graph data. Unfortunately, they just
focused on the spatial perspective and cannot capture the
temporal trend of the data. Further Seo et al. [41] build
a model called GCRN to generalize the classical RNN
to structured data by an arbitrary graph, which can be
used to predict sequences of structured data. However,
this method is incapable of modeling the transferring
relationship between areas because they have not considered
the semantic neighbors.

AttConvLSTM [19] is another DNN model which cap-
tures spatial features of only adjacent locations while spatial
features of distant locations are ignored. STGCN [10] also
uses GCN for spatial feature extraction and GLU (gated lin-
ear unit) for temporal feature extraction and also provides
space for multi-dimensional GCN. Spatial feature extraction
of graphs using GCN is the most basic form and hence there
is no scope of sequential feature correlation between graphs
at different time-stamps. Further STMGCN leverages the
power of GCN with RNN. GCN can capture the wide range
of spatial features of nearby and distant locations. However,
using STMGCN traffic demand at a particular node can be
predicted only and there is no provision for predicting traf-
fic between two regions. Though it uses the most basic form
of graph convolution attention is provided for better traffic
prediction and it plays the role of scaling factor rather than
feature space embedding.

GEML [17] gives a new direction in the traffic flow
prediction task while capturing latent spatio-temporal char-
acteristics but the model is getting trained on features using
multi-task learning (MTL) other than the specific tasks,
resulting in a constrained performance gain. Additionally,
it has no concept of feature channeling (an organization
that we implement using orthogonality constraints.) hence,
overlapping features with different feature attention as well
as noise leads to its poor performance. Similar to GEML,
STMGCN and other trendy DNN models also lack fea-
ture organization. The spatio-temporal features [9, 10, 42]
captured by the above techniques have less distinctive
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capability and overlapping characteristics, which may lead
to compromised predictive performance.

Generative Adversarial Network (GAN) adds another
dimension to the traffic prediction task. Probabilistic Fore-
casting approach using Generative Adversarial Network
(ForGAN) [43] is a conditional Generative Adversarial Net-
work (GAN) model used to predict multi-step time series
data. ForGAN exploits both powers of conditional GAN to
generate fake time series data with the realistic distribution.
However, being a generative model requires a good amount
of training information which is not always available in the
objectives of this domain. Also, training for ForGAN is
relatively tedious and difficult.

Emerging Transformer concept has also been imple-
mented for the said task. Graph Multi-Attention Network
(GMAN) [44] aggregates both spatial and temporal traffic
characteristics using multi-head attention and uses spatial
and temporal embedding as attention to the series of the
adjacency matrix and feature matrix. GMAN is capable
to predict feature matrix for the traffic network instead of
region pair (ODT) owing to its limitation of dense layer
as final decoding layer for the output. GMAN being a par-
allel attention model is anticipated to be a noise immune
model which can prevent accumulation of error over recur-
sion when RNN, LSTM, etc. is used. However, GMAN has
a limitation that for two-way traffic prediction it does not
use both region’s features hence to-and-fro traffic prediction
is not much useful. GMAN is limited to making a prediction
at a region but not across two regions or more.

Considering the pitfalls in the existing techniques, we
propose a spatio-temporal DNN model ST-AGP, that is
capable of capturing non-lapping and highly distinctive
features and hence leads to improved performance with a
good margin. In the subsequent sections, we discuss the
problem definition in detail followed by our proposed model
description.

3 Problem statement

Typically, the traffic taxi-demand time series prediction
problem requires the prediction of an ODT (A ∈ R

t×n×n)
given different temporal snapshots of the ODMs for a
city. The values in ODMs (A ∈ R

n×n) are the total
trips from the source (n) to the destination (n) within
a given time interval t . The trip information is obtained
from the start and finish GPS information of the vehicles
along with the timestamps. Thus a trip is represented by
an ordered pair given as [(xs, ys, ts), (xd, yd, td)] where
(xs, ys) and (xd, yd) represent the latitude, longitude pair of
the source and destination respectively, and ts , td represent
the corresponding timestamps. The trip information at
a time interval can be used to create the ODM, Ai ,

representing the volume of trips between different locations.
Additionally, each location in an ODM (A) has some
features (f) which is represented by X ∈ R

n×f as a feature
matrix corresponding to A. Similarly, historic ODT (H-
ODT) AH = {A1, A2, . . . , At } having historic window
size t (HWND: t), is stacked ODMs over consecutive t

time intervals has its corresponding feature ODT (F-ODT)
XH = {X1, X2, . . . , Xt } for the same time intervals. Given
the H-ODT and F-ODT (AH , XH ), the objective is to
find predicted ODT (P-ODT) ÂP = {Ât+1, Ât+2, . . . , Âr}
having prediction window size r (PWND: r), against the
original ODT O-ODT (AG) that minimizes the following
loss function,

argmin
θ

r∑

i=t+1

‖Ai − Âi‖2,

where Â, A is one of the predicted ODM and corresponding
original ODM respectively. θ is the model parameter. We
next discuss the proposed model in detail.

4 Preliminary

In this section, we discuss preliminary concepts and impor-
tant terminology that would help further understanding
the proposed model and intuition behind the proposed
approach.

Principal Component Analysis (PCA) & Condition
Number: PCA is a dimensionality reduction approach
which is a transformation of information into a non-
overlapping (orthogonal) and highly distinctive spectral
space called principal components. It facilitates introducing
orthogonality by principal components and high variance
of the information along with these components (Fig. 1a).
Provided, Fn×f being f features matrix of n instances
and �f ×d is a matrix of d principal components. Then
columns of � are principal components being orthogonal to
each other (�′� = I) and features in F would have high
variance along with these components. The transformed
feature matrix Rn×d is obtained by:

R = F ∗ � (1)

Where information in R are now non-overlapping and
distinctive. Additionally, on applying matrix multiplication
with �, the noise in F is not magnified as condition number
of an orthogonal matrix is low [45, 46], a less known facts
about orthogonal matrix transformation.

R + δr = (F + δF ) ∗ � (2)

Where ratio of δr and δF would be 1 if the matrix �

is orthogonal. That means, the noise (perturbation) is not
magnified in this case but any other matrix transformation.
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Fig. 1 PCA (Fig. 1a): Illustrating that the variance of projected data
on Principal component (red line) increases as compared to x, y axes.
Heatmaps (Figs. 1b, 1d 1c, 1e) on inner product of kernel with (PCAG,
up) and without (PCAG, down) unsupervised loss. Observing, the

values off the Counter-diagonals in with PCAG are relatively lower
than that of without PCAG, indicating that the kernels approaching 0
(orthogonal) with unsupervised loss

The present approach attempts to analogize these properties
by transforming historic ODT information (spatio-temporal
characteristics) onto orthogonal embedding space with
high variance, which creates highly distinctive embedded
features. Moreover, during prediction, the transformation
of spatio-temporal characteristics through the orthogonal
components (PCAG, Section 5.3.2) of the model prevents
high propagation of noise from input information to
the yield. Hence, the prediction results are immune to
noise and it’s worth desired property of any predictive
model. Consequently, the proposed approach creates a
distinguishable spatio-temporal feature for better prediction
of taxi-demand time series across different locations in a
city.

Graph Convolution Network (GCN): Graph Convolu-
tion Network is a better choice over Convolutional Neural
Network when the input sample is a graph and the con-
nectivity between nodes has an important role however far
the nodes are. The graph convolution network helps embed
node characteristics based on the node’s features as well
as the aggregated features of its neighboring nodes. Hence,
unlike the grid structure, two locations even geographically
far can be well captured by a GCN if there is connectivity
between the locations while a CNN would most likely miss
this relationship. GCN provides similar embedding for the
nodes with similar neighbors characteristics. Hence, GCN
brings contextually similar nodes close in embedding space.
The two forms of graph convolution are (i)Spatial Graph
Convolution and (ii)Spectral Graph Convolution, which we
describe below using a graph having n nodes and each node
having f features where An×n and Xn×f represent adja-
cency matrix and feature matrix of the corresponding graph:
Spatial Graph Convolution: Spatial graph convolution

creating a node embedding by aggregating the node’s fea-
tures and its neighboring nodes’ features as follows:

H = σ(AXW + b) (3)

Where H ∈ R
n×d being graph embedding after

convolution. σ is an activation function. W ∈ R
f ×d is GCN

kernel and b ∈ R
d is bias term. The overall procedure

is a transformation of graph A with features X from f

dimension to a d dimensional space.
Spectral Graph Convolution: Spectral convolution

helps to transform a graph embedding from node domain to
spectral domain. Spectral domain being orthogonal helps to
override the redundancy in the graph embedding. Replacing
the computationally costly spectral decomposition, spectral
graph convolution is carried using the coefficients of
chebyshev polynomial of first degree. Below, x is a signal
(features in node domain) is transformed to spectral domain
as follows:

gθ � x = UgθU
T x (4)

Where U is spectral decomposition of normalized graph

Laplacian L = In − D− 1
2 AD− 1

2 and gθ = diag(θ) ∈
R

n is parameterised by θ . Spectral decomposition being
expensive, is replaced by coefficients of Chebyshev
Polynomial of first order as:

gθ � x ≈
K∑

k=0

θkT (L̂)x (5)

Where L̂ = 2
λmax

L − Ln with λmax being highest eigen
value and θk is Chebyshev coefficients of order K . Under
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approximation for first order Chebyshev polynomial, the
above equation can be reduced to:

gθ � x ≈ θk(In + D− 1
2 AD− 1

2 )x (6)

Hence a spectral graph convolution can be approximated
by a GCN as follows:

H = D̃− 1
2 ÃD̃− 1

2 Xθ (7)

Where D̃− 1
2 ÃD̃− 1

2 is an approximation of normalized
reduced Laplacian of A and X is a feature matrix while θ

is GCN kernel which is learned during training. Hence (7)
is spectral graph convolution and been proved to be very
useful for convolution in many literatures [18, 47].

5 Proposedmethodology

In this section, we provide a detailed description of
proposed methodology. A schematic view of the operational
steps taken by the proposed model can be seen in
Algorithm 1 and Figs. 3 and 4. We start with describing
the characteristics of taxi-demand time-series that includes
spatio-temporal characteristics.

5.1 Characteristics of Taxi-Demand Time Series
in a City

Taxi-Demand of various regions of a city over a period
of time forms a group of correlated time-series data with
some specific characteristics [29, 31, 48]. In this section, we
would define two of these important characteristics which
can be very helpful for the prediction. We term this as
spatio-temporal characteristics. Additionally Table 1 list out
all the important symbols used in our proposed model.

Spatio-Temporal Characteristics:Most often, there are
many different kinds of spatio-temporal characteristics of
demand traffic time series. The two prominent characteris-
tics [17] are (i) proximal characteristics and (ii) mobility
characteristics which are greatly involved in regulating

the demand between two locations. Proximal Characteris-
tics [17] relates to the demands based on the distance of
the regions like often two nearby city regions would expe-
rience more traffic transition than outskirt regions of the
city. Similarly,Mobility Characteristics [17] relates to those
regions which are purposely connected as residential and
office regions. Next, we describe each of these formally:

• Proximal Characteristics: Depending upon the dis-
tance between locations, demand among them most
often follows an inverse trend. Nearby locations are
found to have more traffic demand transitions among
them than that among the distant locations. We define
this proximal characteristics as Cp ∈ R

t×n×n where a
cell value in Cn×n ∈ Cp is defined as follows:

cx,y = 1 − dist (x, y)∑
z∈Nei(x) dist (x, z)

(8)

where x, y are two locations and Nei(x) defines all
neighbors of x. dist (x, y) returns euclidean distance
between the centres of the locations x and y.

• Mobility Characteristics: Sometimes few locations
are having some specific characteristics, and despite
being very distant, these locations are having a
continuous traffic (taxi-demands) transition with the
others. For an example, airport in a city is located at
a distant place, still it has high traffic exchange with
few commercial and residential regions. Consequently,
demand traffic between two locations is also affected
by the volume of demand traffic between them. We
define these characteristics as “mobility” between the
locations. It is presented by Cm ∈ R

t×n×n where
Cn×n ∈ Cm has a value in cell as follows:

cx,y = mob(x, y)∑
z∈Nei(x) mob(x, z)

(9)

Similarly, x, y, Nei(x) are defined above. mob(x, y)

returns the demand traffic volume between the locations
x, y in a given time interval t when c ∈ Cn×n at time
interval t .

Table 1 Some of important symbols used in explaining the proposed model

Symbols

A, X , C Tensors (Origin-Destination, Feature, Characteristics)

A, X, C Matrices (Origin-Destination, Feature, Characteristic)

[Ât+1, Ât+2 . . . Âr ] A sequence of Predicted ODMs

H, H̃ , H̃agg Node Feature Representation, Embedded ODM Representation (GCN, PCAG)

θs, θd parameters: spatial and predictor

p, m, cb Subscripts: proximal, mobility, spectral convolution

t , r Historic Window size, prediction window size

⊕, α Aggregation operation: concatenation, addition, characteristics attention

Lo, Lv Unsupervised Loss: orthogonal, variance
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These two spatio-temporal characteristics (Cp, Cm) are used
as attention in the proposed model. Importantly, these
mentioned characteristics do not require any additional
data but can be easily derived from the historic ODT in
use. We next elaborate on the procedural steps for the
construction of the proposed model.

5.2 Proposedmodel

Based on primary operations, the proposed model is having
two operational modules (i)Aggregator, (ii)Predictor which
acts in coordination to achieve refined prediction results
for P-ODT. A conceptual view of component’s operation is
visualized in Figs. 3 and 4. We start by briefly describing
these two modules and then followed by a detailed
description of the proposed model.

• Aggregator: This operational module is involved in
aggregating input time series features in H-ODT
into an enhanced spatio-temporal embedded features
using components like: Graph Convolution Network
(GCNF or GCNcb), Principle Component Aggregator
(PCAG) and Long Short-Term Memory Recurrent
Neural Network (LSTM). These components help
in creating a refined feature representation for the
input from varying sources having different feature
characteristics.

• Predictor: This operational module is used to predict
the aggregated embedded representation of H-ODT into
the final multi-step predicted Origin-Destination Tensor
P-ODT. The module consists of a Predictor (PrD)
component. A single Predictor kernel is used to obtain
multiple P-ODMs to learn dominant temporal behavior
across ODMs.

The above components are used in our model construc-
tion in a combination. The proposed model is a combination
of three models (i) Proximal model: GCNF+LSTM+PrD
(ii) Mobility model: GCNF+LSTM+PrD (iii) ChebNet
model: GCNcb+PCAG+LSTM+PrD. Consequently the
proposed model has 3 input terminals as well as 3 output ter-
minals. The PCAG component of ChebNet model receives
inputs from Graph convolution components of all the three
models. LSTM component in each model receives inputs
from its predecessor component in their respective model
explicitly. We illustrate our model in Figs. 3 and 4 and its
simplified procedural steps in Algorithm 1. Next, we elab-
orate each components of the proposed model and provide
the necessary procedural1 steps taken into each of them.

1A common operation over each element of a sequence is presented
using an arrow with common operands and operation denoted above
and below arrow sign.

5.3 Aggregator

This module transforms the input samples from node-
domain feature space to embedding-feature space using
Graph Convolutional Network GCNF (GCNcb). GCNcb is
spectral graph convolution with no explicit characteristics.
Provided historic information based on different character-
istics (Ci) as denoted by A ∈ R

t×n×n, X ∈ R
t×n×f

and C ∈ R
t×n×n where C denotes a specific characteris-

tics of historic information, we elaborate working of Graph
Convolution (GCNF ) next.

5.3.1 Featured graph convolution network (GCNF ):

GCNF works on a sequence of {Aj } ∈ Ai , {Xj } ∈ Xi and
{Cj } ∈ Ci as follows:

[{A1, X1, C1}, {A2, X2, C2}, . . . {At , Xt , Ct }] GCNF−−−−→
θs ,k

[H̃1, H̃2, . . . H̃t ] (10)

The GCNF (θs , k) operates on each triplet of {Ai, Xi, Ci} at
ith time interval as follows:

{Ai, Xi, Ci} k−→ {[A1
i , A

2
i , . . . A

k
i ], Xi, Ci} (11)

{[A1
i , A

2
i , . . . A

k
i ], Ci} Xi−→ {[H 1

i , H 2
i , . . . Hk

i ], Ci} (12)

{[H 1
i , H 2

i , . . . Hk
i ]} α(Ci)−−−→ {[H 1

α i, H
2
α i, . . . H

k
α i]} (13)

{[H 1
α i, H

2
α i, . . . H

k
α i]}

θs−→ {[H̃ 1
i , H̃ 2

i , . . . H̃ k
i ]} (14)

{[H̃ 1
i , H̃ 2

i , . . . H̃ k
i ]}

∑
−→ {H̃i} (15)

Where θs ∈ R
f ×d , H ∈ R

n×f and H̃ ∈ R
n×d are

having f node features and d embedding dimension. α is
characteristics attention. The attention is provided based on
the present value of the node and its neighbors. For example,
if ni is a node having a particular value hi ∈ H and
ci ∈ C and correspondingly the same is true for each of its
neighbors nj as hj ∈ H and cj ∈ C, then the characteristics
attention provided by GCNF to the node ni is as follows:

hi = cihi +
Nei∑

j

‖cj‖
‖

Nei∑
l

cl‖
hj (16)

The above equation in matrix notation can be expressed

as H
α(C)−−→ CH which is spatial aggregation of a node value

based on its weighted neighbors values. Hence for each
spatio-temporal characteristics GCNF produces spatially
aggregated representation as follows:

{Ai, Xi, Ci} GCNF−−−−→
θs ,k

{H̃i}c (17)

Here subscript c represents different spatio-temporal
characteristics of the input tensor which can be replaced
with p, m referring to spectral graph convolution with
proximal, mobility characteristics and cb for simply
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graph spectral convolution with no characteristics input
(i.e. skipping (13)). We denote the parameters of graph
convolution θs (GCNF or GCNcb) with W (kernel weight)
with a numeric subscripts as represented in Figs. 1b and d
in order of p, m and cb.

5.3.2 Principle component aggregator (PCAG )

GCNF brings about the orthogonal projection (spectral
convolution, Section 4) of the node features along with
providing attention to the nodes based on their spatio-
temporal characteristics. PCAG operates similarly by pro-
viding orthogonal projection of varying spatio-temporal
characterized GCN outputs and aggregates them together
to have non-overlapping embedding. Additionally, PCAG

attempts to introduce distinguishable embedding repre-
sentation between nodes by using variance maximization.
PCAG works on the sequential outputs of the 3 Graph
Convolution Networks as follows:

ω1[H̃1, . . . H̃t ]p ⊕ ω2[H̃1, . . . H̃t ]m ⊕ ω3[H̃1, . . . H̃t ]cb PCAG−−−−→
Lo,Lv

[H̃1, . . . H̃t ]agg

(18)

Where ⊕ is an aggregation operation (concatenation,
addition) and ωi is ith co-efficient implemented using dense
layer. It operates on each temporal slice and aggregates their
feature together as follows:

ω1H̃p ⊕ ω2H̃m ⊕ ω3H̃cb
PCAG−−−−→
Lo,Lv

{H̃ }agg (19)
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Where H̃i belongs to Rn×d but H̃agg might have either of
these two space R

n×3d (concatenation) or Rn×d (addition)
depending on aggregation operation used. The unsupervised
losses (Lo, Lv) are computed at this point. The term
unsupervised is used since such loss does not require
explicit labeling. Lo and Lv is explained later, and they
depend on the following inputs :

minimize Lo = f (H̃p, H̃m, H̃cb) (20)

maximize Lv = f (H̃i) i = {p, m, cb} (21)

5.3.3 LSTM:

It is a variation of RNN that can capture long-term
dependency in sequence and is able to cope up with gradient
problems. LSTM [17, 49] has been very much efficient in
many sequence predictions over RNN and it operates using
a gated mechanism to produce its output. The following
shows the operational steps of different gates of an LSTM
cell where xt (H̃aggt ) is the input to LSTM cell at t th

timestamp:

it = σ(wi[ht−1, xt ] + bi) (22)

ft = σ(wf [ht−1, xt ] + bf ) (23)

ot = σ(wo[ht−1, xt ] + bo) (24)

Where i, f , o corresponds to input-gate, forget-gate and
output-gate in the t th LSTM cell. w and b are the weight of
the corresponding gates nodes and bias respectively. ht−1 is
the output of (t − 1)th LSTM cell. The following equations
describe the generation of LSTM intermediate cell state (̃c),
cell state (c) and final output (h):

c̃t = tanh(wc[ht−1, xt ] + bc) (25)

c = tt ∗ c̃t−1 + ft ∗ ct−1 (26)

ht = ot ∗ tanh(ct ) (27)

In the above equations, (26) forms a deciding factor
where LSTM keeps only the relevant information of the
previous state and forgets the rest. The sequence of the
aggregated output from the previous components is received
by LSTM to capture temporal dependencies between
encoded features of the nodes, where LSTM captures
those dependencies and produces a temporally aggregated
sequence:

[H̃1, H̃2, H̃3 . . . H̃t ] LST M−−−−→
r

[H̃t+1, H̃t+2 . . . H̃t+r ] (28)

The symbols have usual meanings and previously defined
dimensions. To delve more into this transformation and
elaborate how the input and output of the LSTM is encoded
and decoded, the following equation shows the required
procedure:

[H̃1, H̃2, H̃3 . . . H̃i] LST M−−−−→ H̃t+r−(t−i) (29)

The above equation creates multiple instances for each
i ∈ {1, 2, . . . t}, of which the accepted outputs are i ∈
{t − (r − 1), t − (r − 2) . . . t}. Also, as H̃ is a two
dimensional tensor, it is reshaped to 1-D tensor before and
after the transformation. Provided a multi-step prediction
scalar r , only the final r outputs are passed to the next
Predictor component where finally interpretable values of
nodes are obtained as predicted traffic counts. The LSTMs
in Proximal and Mobility models receive inputs from their
respective GCNF components whereas LSTM in ChebNet
Model receives inputs from PCAG. LSTM output is passed
to the predictor component in each model.

5.4 Predictor

The input to Predictor (PrD) is the aggregated spatio-
temporal embedding representation of features of H-ODT.
Predictor uses a single kernel (θd ∈ R

d×d ) on each of the
elements (H̃i ∈ R

n×d ) of temporal input and predict the
corresponding ODMs (Ĥi ∈ R

n×n). The Predictor works as
follows:

[H̃1, H̃2 . . . H̃r ] PrD−−→
θd

[Â1, Â2 . . . Âr ] (30)

The θd slides on each input and operates as follows on each
individual input element:

Â = H̃iθdH̃ T
i (31)

In the above equation T stands for matrix transpose
operation. Thus a sequence of multi-step (r) predicted
ODMs (Âi) is obtained which is further used to estimate the
error and optimize the model using the ground truth ODMs.
We next define the loss used for the optimization of the
model.

5.5 Optimization strategy

To optimize the model parameters, the formulated model
loss is defined in this subsection. Being predictive model,
the model calculates mean squared error (mse) during
optimization over the prediction error. The following
presents (Lmse) of a single predicted ODT.

Lmse = 1

n

n∑

i

(Yi − Ŷ )2i (32)

The two losses defined as unsupervised loss are orthogonal
loss (Lo) and var-loss (Lv). The orthogonal loss Lo is
defined for each pair of embedded feature representation
(e.g. H̃j , H̃k where j 	= k) at the ith temporal instance. The
orthogonal loss is defined as follows:

Lo =
∑

j,k

〈H̃j , H̃k〉F (33)

ST-A P: Spatio-Temporal aggregator predictor model for multi-step...G 2119

1 3



〈, 〉F denotes Frobenius inner-product hence making (or
attempting to make) H̃j , H̃k orthogonal (non-overlapping
as much as possible) to each other, minimizing redundancy
between them. Here subscripts j, k denote p, m, cb.
Another loss Lv is introduced to maintain variation among
the nodes n ∈ H̃ and H̃ ∈ R

n×d and defined as follows:

var = 1

N − 1

n∑

i

(ni − nmean)
2 (34)

Lv ∗ σ(var) = 1 (35)

Where minimizing Lv maximizes variance (var). nmean is
mean of all nodes embedding in a H̃p/m/cb. σ is the sigmoid
activation and ∗ here is scalar product. The complete model
loss including 3 models is defined as follows:

Lf inal = 
1Lp
mse+
2Lm

mse+
3Lcb
mse+
4Lo+
5Lv (36)

Where superscripts and subscripts have usual meaning
and Ω1, Ω2, Ω3, Ω4 and Ω5 are weights of each loss
determined while training. Heatmaps in Figs. 1b and d
reveal that unsupervised loss results into shifting of kernel
weights (W ) towards being orthogonal. Values off the
Counter-diagonals in heatmaps are tending to 0 (not exactly
0 i.e. approaching to be orthogonal) as Lf inal does not only
comprise of unsupervised loss but losses for other tasks too.
Hence, for the best prediction results, maximum variance
and non-overlapping of embedded features are obtained
at these values of W (Heatmaps 1b and 1d), supporting
the prime objective of ODT predictions during training.
The coming section discusses the details of experimental
settings.

6 Experiment

In this section, we outline the details of the experiments
including the dataset and the baselines. Having taxi dataset,
we form ODT for each source-destination pair, apply
our proposed prediction technique to finally predict the
taxi demand for each pair. We also mention the varying
conditions for each experiment with the hyper-parameter
settings involved. We start with data preparation for
different experimental ODT creations.

6.1 Dataset

Many of the existing works have evaluated their model
performance using the traffic data of two major cities [19,
23, 50, 51], the Green-Taxi of New York City 2(NYC)
(Jan – Mar 2014) and private taxi-data of Thessaloniki
City 3(THS) (Jan – Mar 2015). Thessaloniki city data has

2https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
3Kaggle “Taxi Fare Challenge”, 2017

the records of only 3 months traffic data, so to maintain
consistency in the time and volume of data, we used only
3 months traffic records of NYC, even though the data for
one year is available. A trip in both NYC and THS contains
the GPS coordinates (latitude & longitude) of the start and
end locations of a journey. Consequently, the NYC and THS
datasets have trip information of about 2.1 and 1.7 million
made for three consecutive months.

6.2 Model input preparation

Now we write details of ODT formation from trip counts
information with the features involved. We also elaborate
on experimental setups and hyper-parameters values during
experiments.

ODT Construction: Provided the GPS data of the city
for 3 months time duration, we created an hourly temporal
snapshot of the city traffic. Initially, the city is bounded
in a rectangular box by four extreme GPS points in the
dataset. Then the city as the rectangular box is divided
into equal-sized grids. The center GPS value of a grid is
termed asGrid-Representative (GR). Traffic is recorded if it
starts from a grid (source) and ends in another (destination)
over a given time. Grid clustering with extreme points
would result in many vacant and insignificant grids [17,
23, 52]. Hence, we select only the actively participating
n grids which account for top major mobility counts. For
each hour, we prepare a matrix (n × n) where each cell
containing the count of taxi-demand traffics from a source
(row) to a destination (column) in that hour [17, 19], which
is called the Origin-Destination Matrix ODM (Ai ∈ R

n×n).
These ODMs contain both intra and inter regions demands.
Stacking such temporal ODMs over chosen time duration
(t) forms Origin-Destination Tensor ODT (Ai ∈ R

t×n×n).
In our present experiments, the obtained active grids (nodes)
for NYC and THS are 55 and 25 respectively with a grid size
of 5 × 5 sqkm in each. The temporal slice of 2160 ODMs
over 3 months from January to March are stacked to obtain
respective ODT.

ODM Features/Characteristics: ODM features are
defined based on the grid connectivity and mobility (taxi-
demand) among the grids for providing attention to the pro-
posed model. As discussed in Section 5, depending upon the
normalized distance of the neighboring active grids repre-
sentatives, proximal characteristics are calculated. Mobility
characteristics are measured using the taxi-demand count
between the grids over time. These features correspond to
the connective links between grids. Similarly, for a given
time-interval each grid (gi as a node) has two features (f )
of traffic: (a) Demand - the count of total traffic originating
in any other neighboring grids which have grid gi as desti-
nation; (b) Supply - the count of total traffic starting from
the grid gi going to any of its connected grids.
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6.3 Training steps, parameters & deployment

We use 80% of ODT for training purposes, out of which
20% is used for validation. The rest 20% is used for testing.
Using historic ODMs of HWND = {12, 24, 168}hr , we
predict next r ODMs of one hour interval, where r ∈
PWND = {1, 2, 4, 6, 8, 10, 12}hr . In our experiments,
we further use a min-max scaling, grid-search for tuning,
and relu, sigmoid, tanh as activation functions, 0.2 dropout
rate, 500, 793 epochs for NYC, THS respectively, and
L1(10−6) regularizer. Dimension size of reported results
is 10 with depth k = 2 in GCNF and each Ω has value
1.0. The aggregation operation is concatenation. Mean
Squared Error is used as training loss with adam(10−4)

optimizer and accuracy is training metric. The reported
results are on the predicted outputs of ChebNet Model. The
model architecture can be seen in Fig. 2 illustrating the
flow of input to output. The experiments are done on a
system with the following details: Intel i5, 3.5GHz, 16GB
RAM. The programming language used is Python. Some
of the most used libraries are Scipy, Folium, Igraph, and
Keras, Tensorflow, Pandas, Numpy, Matplotlib, etc. The
experiment is carried on a GPU system with 11GB NVIDIA
GeForce GTX-1080 Ti-GPU configuration. Next, we detail
the experimental setup for each of the major steps outlined
in our approach (Figs. 3 and 4).

6.4 Competitive systems

For the performance comparison, we have considered trendy
predictive models in this domain. Majority of which are
the DNN models having similar experimental conditions,
while we have used a DNN generative model as well as a
Tensor based model for a wide range of testing platforms
of the proposed model. Ultimately, we have compared the
proposed model with a few of its variants to identify the
effectiveness of each of the components in the proposed
model.

Deep neural network models : GEML [17] and
STMGCN [9] are two trendy models in this category

that have shown their high performance deliverance in
this application field. GEML uses an MTL approach with
two traffic characteristics for attention and uses GCN and
LSTM for prediction. STMGCN uses temporal attention
with multi-graph convolution using GCN and RNN for
prediction. STMGCN uses chebNet in its model.

Generative adversarial networks : ForGAN [43] is a
conditional GAN model used for time series prediction. It
uses historic information as a condition and is efficient in
learning the data distribution of the input time series.

Tensor decomposition based model : TeDCaN [16] is
a tensor based model which incorporates network character-
istics for multi-step prediction. As the experimental setup of
TeDCaN varies widely with that of mentioned DNNmodels,
we compare TeDCaN (weeks = 2, k = 70 [16]) with the
proposed model for multi-step prediction at historic window
of hr = 24 only. Reports are presented separately.

Variations of the proposed models : The proposed model
is compared to its different variations in order to study the
effect of each component of the model.

ST-AGP∼P: This variant is created by removing the
Proximal model from the main model. It can evaluate
the contribution of Proximal characteristics in multi-step
prediction.

ST-AGP∼M: This variant helps us to understand the
importance of Mobility characteristics in the proposed
model. It is constructed by omitting the Mobility model
from the proposed model structure.

ST-AGP∼PCAG: This variant is created by omitting
PCAG component from ST-AGP. This can help us under-
stand the impact of feature channeling (orthogonality) and
noise immunity (unsupervised attention) in the proposed
model.

ST-AGP∼ Loss : By omitting Lp
mse and Lm

mse from the
proposed model, this variant is created. This helps us study
the effect of optimizing each component model in the main
model.

ST-AGP∼Cheby: This variant is prepared by replacing
spectral graph convolution with spatial graph convolution
in the model. This offers us to understand whether spectral
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Fig. 2 Block Diagram of the proposed architecture ST-AGP. The inputs are provided to ‘Aggregator’ followed by ‘Predictor’. Brown blocks are
input-output on left-right ends respectively
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Fig. 3 Historic ODT and
Characteristics Networks are
taken as input to GCN and
GCNF . The aggregated feature
is passed to PCAG. PCAG

operates on unorganized features
to eliminate overlapping, feature
creeping, reduce noise so that
the best of the features can be
used for prediction task

- -
- - -

Mobility Characteristic

- - - - -

Proximal Characteristic
GCNF

GCNF

GCNcb

PCAG

ODT

Complex Spatio-Temporal Features

Refined Spatio-Temporal Features

decomposition has a noticeable contribution in multi-step
prediction of taxi-demand time series.

6.5 Evaluationmeasures

Following standard literature in this domain [9, 17],
evaluation of the proposed model is carried for the multi-
step prediction of the hourly ODMs on the test data using
root mean square error (RMSE), mean absolute percentage
error (MAPE), and symmetric mean absolute percentage
error (SMAPE). These values are derived using the multi-
step predictions (ÂP ∈ R

r×n×n) and the true values
(AG) regarding the chebNet Model containing PCAG. The
proposed model is evaluated for the model performance
under (i) varying historic window size (ii) under the varying
percentage of missing information in the historic data (iii)
for varying dimension size of the model and aggregation

operations in PCAG. The formulae are represented by
element (cell value) ŷ ∈ ÂP and y ∈ AG as follows:

RMSE =

√√√√√
r×n×n∑

i=1
(yi − ŷi )2

r × n × n
(37)

The other measure that we use for performance
evaluation is the mean absolute percentage error (MAPE).
MAPE is a statistical measure used to determine the
accuracy of a forecast and is given as

MAPE = 1

r × n × n

r×n×n∑

i

|yi − ŷi |
|yi | (38)

Unlike the RMSE, MAPE [9, 53] represents the error
in terms of the percentage with respect to the true value,

Fig. 4 Feature representation
used for prediction without
PCAG (above) and with PCAG

(below) are shown. Evidently,
this is why PCAG module
reveals better prediction
performance

PrD(LSTM)Spatio-Temporal Features

Refined

Predicted ODT
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SMAPE presents the symmetric measure of the results
for boundedness and is also helpful metric for different
datasets [17].

SMAPE = 1

r × n × n

r×n×n∑

i

|yi − ŷi |
(|yi | + |ŷi |) (39)

The reported values of MAPE and SMAPE are ranging
between 0 − 1 in our study.

7 Results analysis

In this section, we discuss about the experimental findings
and also mention the inferences drawn from the findings.
We discuss on each aspect of the model compared to the
competitive models and the limitations on varying scenario
of experimental conditions. The different experimental
conditions are: (i)multi-step prediction on varying historic
windows (ii) 12hr prediction with varying percentage of
missing information in historic data (at HWND = 24)
(iii) 12hr prediction at different hyper-parameters settings
(at HWND = 24) and (iv) behaviour of model variants
during multi-step prediction with varying historic windows.
The obtained results are statistically significant for the given
value [10, 17]. All the differences between results obtained
by the proposed model and the best performing baseline are
statistically significant. For HWND 24, the obtained p value
difference is less than 0.000015 (RMSE, MAPE) and 0.033
(SMAPE). Next, we discuss the experimental findings in
detail.

7.1 Comparison with state-of-the-art on varying
historic window

The proposed model is compared to the state-of-art models
for varying historic windows hr = {12, 24, 168} i.e. when
data is available for a half-day, day and a week. The multiple
prediction window size are hr = {1, 2, 4, 6, 8, 10, 12}.

The results presented in Tables and Figures report a
good performance of the proposed model on all the three
standard benchmark metrics RMSE (Tables 2, 5 and 6),
MAPE (Table 3, Fig. 5a and b), SMAPE (Table 4, Fig. 5c
and d). Bold entries in Tables 2, 3, 4, 5, 6, represents the
best value of that column for both the datasets. It shows the
proposed model consistently report a comparatively lower
error (RMSE, MAPE) in multi-step predictions, as well
as the model, is capable of working on varying datasets
with symmetricity in results (SMAPE). As intuitive, it can
be observed that with increasing prediction window size
the performance degrades for all models, though this is
much less steep in the proposed model comparatively. The
proposed model makes a considerable reduction in error
during multi-step prediction in all cases in comparison to the

baselines. A possible reason is the use of PCAG block which
is an advantage over the state-of-the-art models. Hence, ST-
AGP has an organized and distinctive embedded features
for prediction than similar models GEML, STMGCN. We
report the percentage reduction in the results for the three
metrics (RMSE, MAPE, SMAPE) with the best performing
baseline as 37%, 36%, 9%, and 25%, 36%, 13% for two
cities NYC, THS respectively at the historic window 24.
This reveals that the feature aggregation in the proposed
model has reached a quality performance where most of
the trendy models have failed due to their constructional
limitations. We observe that the generative model is not able
to compete with the other baselines because such models
usually require a large amount of training data. This is
the reason we exclude ForGAN in graphs for better clarity
in observations. Additionally, we observe that models like
STMGCN, ForGAN are not performing well when cross-
regions demands are predicted (like demands from region
A to region B and demands from region B to region
A). These models’ capability limits their performance for
such prediction. While GEML, TeDCaN and the proposed
models are deliberately designed for such tasks. GEML,
TeDCaN despite having attention mechanism, due to lack
of feature organization techniques lag the proposed model
in prediction performance. A key player in this case is
the PCAG block. Moreover, without MTL approach and
supervised attention, the proposed model can have better
performance owing to its strategic feature aggregation
techniques. A test snapshot of a part of the cities can be
seen in Fig. 11, where one can observer correctly predicted
demands of GRs (Red) by proposed model against the
missed ground-truth GRs (Blue). The higher number of Red
GRs than Blue GRs are self-informative.

7.2 Comparison with state-of-the-art onMissing
data scenario

In this paragraph we discuss the performance of different
models in missing data scenario. A percent of historic
information is omitted and replaced with 0 value for data
imputation to conduct this experiments. It is usually a
practical scenario when either information is missing or
there is noise during experimentation which corrupts the
data. The experiment is conducted multiple times [11, 23]
and mean results are reported. Observing the experimental
results in Fig. 6a, b and c, the performance of every model
seems to degrade with respect to their obtained performance
(at HWND : 24 and PWND : 12) due to missing
information in their training data. The proposed model is
still able to maintain its lower error output than the existing
state-of-art models in all three metrics. The reason is that the
proposed model has a dedicated component PCAG which
offers noise immunity [45, 46] by explicitly implementing
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Table 2 RMSE values of Multi-step prediction at HWND 24

Performance comparison with state-of-the-art methods

PREDICTION WINDOW SIZE

MODELS Dataset 1 2 4 6 8 10 12

STMGCN NYC 4.3216 4.6189 3.8241 4.2831 3.9912 4.1025 4.4855

THS 4.2295 4.5792 6.7197 5.7965 4.6369 4.5318 4.7567

GEML NYC 3.2217 3.6259 3.9061 3.8248 4.4681 3.9752 4.1194

THS 4.7944 4.489 4.1774 4.6387 4.5888 5.0266 4.3973

ForGAN NYC 6.0389 6.0318 6.0365 6.0204 6.0063 5.9895 5.9716

THS 5.4897 5.7122 5.7484 5.8546 5.8468 5.8693 5.8716

Performance comparison with variants of proposed approach

ST-AGP∼P NYC 2.4356 2.5847 2.8026 3.0388 3.0994 3.2798 4.4949

THS 4.5257 4.413 4.8773 3.8589 4.5155 4.9264 3.8247

ST-AGP∼M NYC 2.2432 2.5567 2.6746 2.988 3.0 3.0016 3.1328

THS 4.0253 4.412 3.5417 4.8015 4.6639 5.3361 4.7033

ST-AGP∼Loss NYC 1.9432 2.4207 2.4932 2.7647 2.7734 3.0852 2.8606

THS 3.5694 3.1496 3.6263 5.4586 5.5066 4.8844 4.0124

ST-AGP∼PCAG NYC 3.4524 3.7051 3.8375 4.9877 4.6037 4.1636 4.2775

THS 4.3514 4.6272 4.6347 5.4082 6.0111 5.9079 6.1922

ST-AGP∼Cheby NYC 2.1708 2.6831 2.6749 2.8069 2.9693 3.0882 3.0111

THS 3.3993 3.381 3.6738 4.5076 4.6609 4.5815 4.6222

ST-AGP NYC 1.9827 2.2056 2.7007 2.7151 2.9727 2.7804 2.9002

THS 2.7564 2.9964 3.7853 3.8584 3.8105 4.4675 4.0364

Table 3 MAPE values of Multi-step prediction at HWND 24

Performance comparison with state-of-the-art methods

PREDICTION WINDOW SIZE

MODELS Dataset 1 2 4 6 8 10 12

STMGCN NYC 0.1168 0.1358 0.1004 0.1334 0.1112 0.1238 0.1481

THS 0.1125 0.1336 0.1938 0.1404 0.1162 0.1296 0.1292

GEML NYC 0.1158 0.1281 0.1519 0.1521 .2387 0.1591 0.1584

THS 0.1272 0.1278 0.1271 0.1448 0.1255 0.1292 0.1239

ForGAN NYC 0.3785 0.3781 0.375 0.3728 0.3695 0.3698 0.3693

THS 0.5619 0.5413 0.5269 0.5249 0.5239 0.5232 0.5228

Performance comparison with variants of proposed approach

ST-AGP∼P NYC 0.0707 0.0732 0.0798 0.0842 0.09 0.0909 0.1232

THS 0.1332 0.1261 0.1152 0.1005 0.0984 0.1042 0.0894

ST-AGP∼M NYC 0.0686 0.0749 0.0829 0.0941 0.0936 0.0912 0.0924

THS 0.0823 0.0823 0.085 0.0867 0.0868 0.0944 0.0973

ST-AGP∼Loss NYC 0.0651 0.071 0.0771 0.0798 0.0865 0.089 0.0848

THS 0.0789 0.081 0.0812 0.084 0.0898 0.0899 0.0896

ST-AGP∼PCAG NYC 0.0917 0.0944 0.1004 0.1567 0.1207 0.1093 0.1116

THS 0.0929 0.0911 0.0922 0.0919 0.0938 0.096 0.0989

ST-AGP∼Cheby NYC 0.0701 0.0765 0.0825 0.0842 0.0918 0.0916 0.0862

THS 0.0829 0.0816 0.0836 0.0872 0.0916 0.0943 0.1004

ST-AGP NYC 0.0661 0.0697 0.0765 0.0795 0.0873 0.0811 0.0837

THS 0.08 0.0805 0.0845 0.0854 0.0851 0.0905 0.089
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Fig. 5 Mean MAPE and
SMAPE score of baselines as
well as our ST-AGP at HWND
12 and 168 for NYC and THS

orthogonality (Section 4). The results for all the models
are showing an upward trend which is intuitive with higher
portion of missing information. This is a good indication
of the fact that the inclusion of PCAG module not only
improves prediction but also makes the model more immune

to this practical scenario. Additionally, the obtained values
for NYC is lower than that of THS because of the varying
temporal pattern [23] of the cities. For better clarity, we have
omitted ForGAN from the results as ForGAN is having the
highest error values in all and three metrics.

Table 4 SMAPE values of Multi-step prediction at HWND 24

Performance comparison with state-of-the-art methods

PREDICTION WINDOW SIZE

MODELS Dataset 1 2 4 6 8 10 12

STMGCN NYC 0.0999 0.1045 0.0962 0.1009 0.0963 0.0997 0.1062

THS 0.1259 0.1312 0.1465 0.1383 0.1363 0.1367 0.1364

GEML NYC 0.103 0.1059 0.1082 0.1098 0.1121 0.1094 0.1075

THS 0.1367 0.1352 0.139 0.1426 0.1364 0.1403 0.1366

ForGAN NYC 0.7446 0.7438 0.7376 0.7331 0.7265 0.7271 0.7262

THS 1.0951 1.055 1.0265 1.0228 1.0206 1.0194 1.0184

Performance comparison with variants of proposed approach

ST-AGP∼P NYC 0.0891 0.0906 0.0923 0.093 0.0941 0.0934 0.1108

THS 0.1352 0.1345 0.1358 0.1296 0.1339 0.1322 0.1205

ST-AGP∼M NYC 0.0876 0.0901 0.0924 0.0943 0.0942 0.0947 0.0953

THS 0.1131 0.1141 0.1179 0.1188 0.1184 0.1206 0.1243

ST-AGP∼Loss NYC 0.0864 0.0888 0.0899 0.0903 0.0918 0.092 0.0932

THS 0.1117 0.1119 0.1166 0.1199 0.1218 0.1229 0.122

ST-AGP∼PCAG NYC 0.0978 0.0993 0.1001 0.1096 0.1038 0.1016 0.1018

THS 0.1189 0.1192 0.1213 0.1234 0.1278 0.1288 0.1287

ST-AGP∼Cheby NYC 0.0879 0.0906 0.0917 0.092 0.0934 0.0943 0.0939

THS 0.1129 0.1142 0.1189 0.1202 0.1211 0.1246 0.123

ST-AGP NYC 0.0873 0.0879 0.0907 0.0911 0.092 0.0918 0.0917

THS 0.1123 0.1136 0.1199 0.1179 0.1196 0.1206 0.1189
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Fig. 6 RMSE, MAPE and SMAPE Score comparison of ST-AGP with Baselines with varying % of missing information (at HWND:24,
PWND:12) for NYC and THS

7.3 Comparison with tensor model

We discuss the result comparison of TeDCaN [23] with
the proposed model by means of Figs. 7a, b and c. Due
to different experimental conditions of Tensor Models
(2weeks, k = 70 [23]) with a DNN model, only multi-
step prediction comparison is made for hr = 24 with
the proposed model. we can observe that TeDCaN is
not able to compete for the prediction results for larger
prediction windows and its performance is noticeably
degrading for that. While the proposed model maintains
a much slower degradation over multi-step prediction.
Additionally, the historic information requirements of the
proposed model are much lower than that of TeDCaN during
prediction. However, as the computational complexity is
different for both these models in different phases of
operations i.e. training and testing, Tensor based models
are less favored high prediction complexity [15]. Another
observation suggests that tensor-based model can only be
effective for short-term traffic forecasts. However, ST-
AGP performs better for both short-term and long-term
predictions.

7.4 Analysing Results on varying Hyper-parameters

Observing the model’s performance (at HWND : 24
and PWND : 12) on varying aggregation operation
(concatenation, addition) at embedding dimension of
dim = 10 in the result Fig. 8a b and c and those
with varying embedding dimensions in Fig. 9a, b and
c, we can notice that addition operation has better yield
than concatenation. A possible reason may be that with
concatenation the dimension size increases multiplicatively,
introducing a more sparse representation of embedded
features to affect the prediction results. However, ‘addition’
is able to maintain essential features in embedding space
for better prediction without compromising the feature
embedding dimension. As expected, both the operations
have degrading results with increasing prediction window
size. We notice in Fig. 9, that at lower embedding size
the model performance is worst but with increasing the
dimension between 10 − 40, the results improve and
become steady or worse slightly. As it is obvious that lower
dimension size is not able to capture the complete feature
in embedding space and very high dimension results in

Fig. 7 RMSE, MAPE, SMAPE values of ST-AGP compared to TedCaN for NYC and THS
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Fig. 8 RMSE, MAPE and SMAPE score comparison of ST-AGP with varying aggregation operation (at HWND:24, PWND:12) for NYC and
THS

Fig. 9 RMSE, MAPE and SMAPE value of ST-AGP on varying embedding dimension size for NYC and THS

Table 5 RMSE values of Multi-step prediction at HWND 12

Performance comparison with state-of-the-art methods

PREDICTION WINDOW SIZE

MODELS Dataset 1 2 4 6 8 10 12

STMGCN NYC 4.1982 4.0693 3.8454 3.7857 3.8859 4.2779 4.3914

THS 4.1528 4.4387 4.4456 4.526 5.8002 7.01 6.5585

GEML NYC 3.9593 3.4843 3.7983 4.3721 4.326 4.5041 4.1358

THS 5.2944 4.4533 4.7751 5.0775 4.5514 4.5884 4.5514

ForGAN NYC 6.0217 6.0187 6.022 5.9945 5.9945 5.989 5.9963

THS 5.4494 5.6918 5.8754 5.6139 5.7963 5.6822 5.825

Performance comparison with variants of proposed approach

ST-AGP∼P NYC 2.7588 2.975 2.9912 3.257 4.8891 3.8109 4.4354

THS 4.0674 3.9823 4.2747 3.9995 4.2601 4.2681 4.4611

ST-AGP∼M NYC 2.3562 2.4185 2.8465 3.1269 3.0909 3.373 3.743

THS 4.189 4.1867 4.7203 4.9295 4.4823 5.1534 5.3889

ST-AGP∼Loss NYC 2.0767 2.319 2.7274 2.8693 3.113 3.4149 3.8807

THS 2.9542 4.3724 3.4889 4.1338 4.0912 4.3835 4.0167

ST-AGP∼PCAG NYC 3.6371 3.7832 3.9483 4.3368 5.0804 5.1724 4.8588

THS 4.0723 3.9756 4.2107 4.244 5.3464 5.7604 5.6281

ST-AGP∼Cheby NYC 2.4612 2.4687 2.7593 2.9784 3.0209 3.3744 4.0703

THS 3.4761 3.5847 3.5719 3.8379 4.5455 4.1975 4.6782

ST-AGP NYC 1.9347 2.4743 2.5141 2.9789 3.148 3.1235 3.3202

THS 2.6978 3.2087 4.0352 4.9739 4.097 4.0721 4.1688
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Table 6 RMSE values of Multi-step prediction at HWND 168

Performance comparison with state-of-the-art methods

PREDICTION WINDOW SIZE

MODELS Dataset 1 2 4 6 8 10 12

STMGCN NYC 5.3076 5.3066 5.3069 5.3095 5.3107 5.3753 3.5736

THS 4.1606 4.3724 4.172 6.8581 7.5557 8.6172 7.5381

GEML NYC 5.7257 5.4705 5.5568 5.6764 5.7483 4.5313 5.5312

THS 4.6265 4.5383 5.0348 4.7697 4.8493 4.7962 4.4273

ForGAN NYC 5.822 5.8442 5.8414 5.8321 5.8114 5.8333 5.8151

THS 5.5088 5.6672 5.7337 5.6811 5.7476 5.8171 5.7204

Performance comparison with variants of proposed approach

ST-AGP∼P NYC 5.7028 5.7356 5.6756 5.5496 5.6817 5.2856 4.1526

THS 5.3047 4.5743 4.7188 3.9693 4.229 4.4348 4.3007

ST-AGP∼M NYC 2.1817 2.1672 2.5736 2.5956 2.9666 2.8438 2.9016

THS 3.6404 5.1055 5.6136 4.7731 5.2892 4.9427 5.3981

ST-AGP∼Loss NYC 1.8311 2.0798 2.5036 2.6257 2.5842 2.9333 2.7699

THS 3.3999 4.7666 3.5862 3.7543 5.0268 3.8375 4.4026

ST-AGP∼PCAG NYC 4.874 4.8714 4.7235 4.7404 4.7462 4.8740 4.8713

THS 3.8415 4.0273 5.0973 5.4502 5.7802 6.5814 6.5937

ST-AGP∼Cheby NYC 2.0126 2.247 2.7041 2.8959 2.9923 3.12 3.0056

THS 3.1319 3.3776 3.6203 3.7842 4.6966 4.8029 4.3241

ST-AGP NYC 1.8613 2.1912 2.5893 2.5768 2.8462 2.8676 2.9857

THS 3.4783 3.063 3.2886 3.7009 3.4865 3.8803 4.3761

Fig. 10 Mean MAPE, SMAPE score of ST-AGP and it’s variants at HWND 12 and 128 for NYC and THS
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Fig. 11 A part of NYC (left) and THS (right) from a test case are
shown where Prediction are made against real demands. Each GR
(Red) is plotted whose all demands with the connecting grids are cor-
rectly predicted at the give temporal snapshot and GR (Blue) for which

the proposed model failed to make correct prediction. The maps show a
good number of GRs (Red) are having correct taxi-demand prediction
by ST-AGP for the case

the sparse representation of feature, hence, for the current
experiments on both the cities a good range of the dimension
is between 10−40 and as NYC having a denser taxi-demand
dataset [23] than THS, the DNN models are showing
relatively better performance on it.

7.5 Ablation study

The proposed model is compared to the different variants
of the model in order to observe the effectiveness of
the component in the model. The effectiveness of the
components like PCAG, auxiliary losses (Lp

mse, Lm
mse),

characteristics, etc. are compared and observed to be
contributing as well as derogatory sometimes. The obtained
results are shown in Tables 2, 5, 6 (RMSE), Table 3
(MAPE), Table 4 (SMAPE) and Fig. 10a and b (MAPE)
and Fig. 10c and d (SMAPE). Observing Tables 2, 5, 6, 3, 4
that the removal of PCAG highly degrades the results of
the model. Consequently, PCAG being a key component
in tackling the noise and feature aggregation in multi-
step prediction. Another important factors in the proposed
model are Cheby and Proximity. Absence of these from
the proposed model, highly affects the results. This is
intuitive since, spectral graph convolution [10, 47] is an
efficient spatial aggregation approach while proximity [17]
information is an important feature for traffic network.
ST-AGP performs relatively better than the most of the
variants, sharing some of its results with ST-AGP∼ Loss .
Indicating the presence of loss Lp

mse, Lm
mse do not contribute

to the model’s performance but minutely worsen. Finally,
we can conclude that important components (or factors) in
the proposed model that greatly affects prediction results
are Lp

mse, Lm
mse, Cheby and PCAG, where PCAG being

the most important one owing to it’s ability to create

highly informative orthogonal features aggregation and
noise resilient characteristics. Hence, the model and its any
variant with PCAG can be a better alternative for the state-
of-the-art models. A temporal snapshot of city maps from
test case are shown in Fig. 11 for the prediction performance
of the proposed model.

8 Conclusion and future directions

The present work introduces a deep neural network model
ST-AGP for the prediction of taxi-demand time-series
across regions in a city for multiple steps. The proposed
model is immune to the noise perturbation with a dedicated
component which many recent DNN models lack. The
experimental findings under various conditions show that
the proposed model is considerably better than the existing
predictive models in this domain. The aggregation of
orthogonal spatio-temporal non-redundant features with
high variance in the proposed model presents a sophisticated
strategy in obtaining relevant predictive information for
the task in comparison to the state-of-the-art models.
Moreover, the proposed model does not rely on any
additional information or datasets except an unsupervised
loss. The effectiveness of the proposed model can be
observed with the average performance gain achieved is
25 − 37% over the best performing baseline model on
the standard metric (RMSE) for two cities respectively.
Nevertheless, the proposed model is expected to perform
well on similar objective tasks like weather forecasting,
traffic speed prediction, and many others applications in
various domains. For investigation, we plan to conduct the
experiments on many diversified datasets in those domains
as our future work.
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