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Abstract

The landscape of publicly available vision foundation models (VFMs), such as1

CLIP and SAM, is expanding rapidly. VFMs are endowed with distinct capabilities2

stemming from their pretraining objectives. For instance, CLIP excels in semantic3

understanding, while SAM specializes in spatial understanding for segmentation. In4

this work, we introduce a simple recipe based on multi-task distillation to efficiently5

merge VFMs into a unified model that assimilates their expertise. By applying our6

method to SAM and CLIP, we derive SAM-CLIP : a unified model that amalgamates7

the strengths of SAM and CLIP into a single backbone, making it apt for edge8

device applications. We show that SAM-CLIP learns richer visual representations,9

equipped with both localization and semantic features, suitable for a broad range10

of vision tasks. We further show that SAM-CLIP not only retains the foundational11

strengths of its precursor models but also introduces synergistic functionalities,12

most notably in zero-shot semantic segmentation, where SAM-CLIP establishes13

new state-of-the-art results. It outperforms previous models that are specifically14

designed for this task by a large margin, including +6.8% and +5.9% mean IoU15

improvement on Pascal-VOC and COCO-Stuff datasets, respectively.16

1 Introduction17

Vision Foundation Models (VFM) such as CLIP [37], SAM [20], MAE [15], and DINOv2 [34]18

provide strong backbones that can be utilized for a wide range of vision tasks after finetuning.19

Additionally, some of these models exhibit notable zero-shot capabilities, such as classification20

from text prompts [37] and segmentation from geometric prompts (points and bounding boxes) [20].21

Depending on their pretraining objectives, VFMs can act as feature extractors suitable for diverse22

downstream tasks. For instance, models that employ contrastive losses during training [6, 37, 34],23

utilize low-frequency signals, and generate features that can linearly separate samples based on their24

semantics [36]. Conversely, the pretraining objectives for MAE and SAM involve denoising masked25

images and instance mask segmentation, respectively, leading to the acquisition of features utilizing26

high-frequency signals with localization knowledge but limited semantic understanding (Figure 3).27

Deploying separate models for different downstream tasks is inefficient (high memory footprint and28

runtime, especially on edge devices) and lacks opportunity for cross-model learning [42]. Multitask29

learning [52] is a paradigm capable of addressing this issue. However, it often requires costly training30

and simultaneous access to all tasks[11]. Training foundation models often relies on an unsupervised31

or semi-supervised approach, requiring substantial computational resources. For example, state-of-32

the-art CLIP models are trained on extensive datasets, such as LAION [43] and DataComp [12],33

consuming massive amount of computational power. Similarly, SAM’s pretraining on 1.1 billion34

masks is computationally demanding. A multi-objective pretraining method requires comparable35

or more data and compute as single objective VFM training. This is in addition to other multi-task36
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Figure 1: SAM-CLIP inherits zero-shot capabilities of SAM (instance segmentation) and CLIP
(classification) using a single shared backbone (left). Further, SAM-CLIP is capable of a new task,
zero-shot semantic segmentation, and obtains state-of-the-art results on several benchmarks (right).

learning challenges such as interfering gradients, training instabilities [9], and access to pretraining37

datasets that are often proprietary [37], which limit the scalability and feasibility of this approach.38

To overcome these challenges, model merging has emerged as a rapidly growing area of re-39

search [46, 51]. The majority of merging techniques focus on combining multiple task-specific40

models into a single model without requiring additional training. For instance, this can be achieved41

through techniques such as model weights interpolation [17], parameter importance analysis [29],42

or leveraging invariances in the models [1]. These techniques, however, put too much stress on43

not using data or not performing additional training/finetuning resulting in decreased performance44

or lack of generalization to diverse set of tasks [46]. Our goal is to merge VFMs that are trained45

with fundamentally different objectives, have distinct capabilities, and possibly interact with other46

modalities. In this setup, naive merging approaches results in significant forgetting [30] (Appendix B).47

We aim to fill the gap between training-free model merging and multitask training by drawing48

techniques from continual learning [24, 35] and knowledge distillation [16]. We treat model merging49

as a continual learning problem, where, given a pretrained base VFM, the knowledge of a second50

auxilary VFM is merged without forgetting of the initial knowledge. On one side, in contrast to51

weight averaging techniques, we allow access to small part of pretraining data or its surrogates during52

the merging process. We leverage multi-task distillation on the replay data to avoid forgetting the53

original knowledge of base VFM during the merging process. On the other side, our merging process54

is significantly more efficient than traditional multitask training by requiring less than 10% of the55

data and compute compared to their original pretraining (Section 2).56

We instantiate our proposed merging approach by combining SAM and CLIP into a single multi-task57

model, called SAM-CLIP , suitable for edge device deployment. This merged model inherits prompt-58

based zero-shot capabilities from both CLIP and SAM with minimal forgetting: specifically, zero-shot59

classification and image-text retrieval from CLIP, and zero-shot instance segmentation from SAM60

(see Figure 1 left). Further, we illustrate that SAM-CLIP learns richer visual representations compared61

to SAM and CLIP, endowed with both spatial and semantic features, resulting in improved head-62

probing performance on new tasks (see Figure 3). Finally, SAM-CLIP shows an emerging capability63

of zero-shot transfer to a new task: zero-shot semantic segmentation thanks to combined skills64

inherited from SAM and CLIP. This task involves generating a segmentation mask based on a free-65

form text prompt. It requires both semantic understanding from text and segmentation capabilities,66

skills SAM-CLIP learns from CLIP and SAM, respectively. We demonstrate that SAM-CLIP achieves67

state-of-the-art performance on zero-shot semantic segmentation (Figure 1 right).68

2 Proposed Approach69

We constrain our discussion to the specific case where SAM serves as the base VFM, while a CLIP70

model serves as the auxiliary VFM. This pair presents an intriguing combination, as both models have71
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DSAM

Figure 2: Multi-head architecture of SAM-CLIP for training (left) and inference (right).

been successfully deployed in diverse tasks and exhibit complementary capabilities. SAM excels in72

localization and high-resolution image segmentation but has limitations in semantic understanding.73

Conversely, CLIP offers a powerful image backbone for semantic understanding. We demonstrate it74

by several probing experiments (see Figure 3). We assume access to limited subsets of datasets (or75

their proxies) used to train the base and auxiliary VFMs, which function as memory replay in our CL76

setup. These are denoted as DSAM and DCLIP .77

We employ a multi-head architecture, illustrated in Figure 2. Our base VFM, SAM, has an image78

encoder (EncSAM ), a prompt encoder (PromptEncSAM ), and a light mask decoder (MaskDecSAM ).79

The auxiliary VFM, CLIP, has an image encoder (EncCLIP ) and a text encoder (TextEncCLIP ). Our80

goal is to merge both image encoders to a single backbone called EncSAM-CLIP which is initialized by81

EncSAM . Further, we consider lightweight heads corresponding to each VFM, namely, HeadSAM and82

HeadCLIP . HeadSAM is initialized with MaskDecSAM and HeadCLIP is initialized with random weights83

(since CLIP does not come with a head that we can deploy). We deploy other modality encoders (i.e.,84

PromptEncSAM and TextEncCLIP ) with no change (frozen).85

As a baseline merging approach, we perform KD on DCLIP utilizing a cosine distillation loss [13]:86

LCLIP = Ex⇠DCLIP

⇥
1� �Pooling

(HeadCLIP (EncSAM-CLIP (x)))
T
EncCLIP (x)

⇤
, (1)

where �Pooling is a pooling operator converting patch-level features from HeadCLIP to a normalized87

image-level embedding. In this setup, parameters of both HeadCLIP and EncSAM-CLIP are learnable,88

while the CLIP encoder, EncCLIP , is frozen and used as a teacher. While this infuses SAM with89

CLIP’s semantic abilities, it incurs at the cost of catastrophic forgetting of SAM’s original capabilities90

even after deploying mitigative methods such as Wise-FT [48] (see supplementary materials).91

To address these challenges, we propose a rehearsal-based multi-task distillation. This serves two92

primary goals: 1) facilitate the efficient transfer of knowledge from the auxiliary VFM to the base93

model, and 2) preserve the original capabilities of the base model. Inspired by [21], we consider a94

two-stage training: head-probing and multi-task distillation.95

I. Head probing: In this stage, we first freeze the image backbone, EncSAM-CLIP , and only train96

HeadCLIP with the loss in Equation (1). Intuitively, with this approach we first learn some reasonable97

values for parameters of HeadCLIP (which is initialized randomly) before allowing any change in98

EncSAM-CLIP that is prone to forgetting.99

II. Multi-task distillation: In this stage, we allow all heads as well as our image encoder to be100

learnable. We perform a multi-task training on LCLIP + �LSAM , with:101

LSAM = E(x,g)⇠DSAM LFD(HeadSAM (EncSAM-CLIP (x),PromptEncSAM (g)), z), (2)

where, x is raw image, g is a geometric prompt, z = MaskDecSAM(EncSAM(x)) is segmentation mask102

score produced by frozen SAM teacher, and LFD refers to a linear combination of Focal [25] and103

Dice [32] used in the original SAM training adapted for distillation. We train on DSAM [DCLIP with104

total loss of LCLIP + �LSAM . During training, each batch has some samples from DCLIP and some105

form DSAM , which contribute to LCLIP and LSAM , respectively. To encourage less forgetting we use106

an order of magnitude smaller learning rate for parameters of EncSAM-CLIP and HeadSAM compared to107

HeadCLIP at this stage.108
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Figure 3: Head-probing evaluation of each vision back-
bone for classification and semantic segmentation tasks
demonstrating enriched visual features of SAM-CLIP .

(a) (b)

(c) (d)

Figure 4: Passing an input im-
age through the image encoder
(a), HeadCLIP can predict a se-
mantic segmentation mask (c),
and HeadSAM can refine it to a
more fine-grained mask with auto-
generated geometric prompts (d)
matching ground-truth (b).

3 Experiments109

Experimentation details are presented in the supplementary materials.110

Zero-Shot Image Classification. To examine the CLIP-related capabilities of SAM-CLIP, we perform111

zero-shot image classification on ImageNet [8], ImageNet-v2 [39] and Places365 [54]. Results shown112

in Figure 1 validate the efficacy of our approach in inheriting CLIP’s capabilities.113

Zero-Shot Instance Segmentation. For the SAM component of SAM-CLIP , we evaluate its perfor-114

mance in instance segmentation, a task at which the original SAM model excels [20], with COCO [26]115

and LVIS [14] datasets. Results (Figure 1) show that SAM-CLIP is close to the original SAM ViT-B116

on the two benchmarks, not suffering from catastrophic forgetting.117

Zero-Shot Transfer to Semantic Segmentation. We extend our evaluation to (text-prompted) zero-118

shot semantic segmentation over 5 datasets, Pascal VOC [10], Pascacl Context [33], ADE20k [55],119

COCO-Stuff [2] and COCO-Panoptic [19, 26]. SAM-CLIP establishes new state-of-the-art perfor-120

mance on all 5 datasets as shown in Figure 1 (right).121

Composing Both CLIP and SAM Heads for Better Segmentation. Given that SAM-CLIP is a122

multi-task model with SAM and CLIP heads, one would naturally ask if the two heads can work123

together towards better performance on some tasks. Here, we showcase that a simple composition of124

SAM-CLIP ’s CLIP and SAM heads (low-resolution mask from CLIP head followed by high-resolution125

refinement by SAM head) can lead to even better zero-shot semantic segmentation. Example of this126

pipeline is shown at Figure 5. For fair comparison, when we compare with previous works in Figure 1127

we report SAM-CLIP zero-shot segmentation performance with 448px resolution using HeadCLIP128

only. Using our high-resolution pipeline we obtain further gain: for example mIoU on Pascal-VOC129

increases from 60.6% to 66.0%.130

Head-Probing Evaluations on Learned Representations. By merging the SAM and CLIP models,131

we anticipate that the resultant model will inherit advantages at the representation level from both132

parent models. Specifically, SAM excels at capturing low-level spatial visual details pertinent to133

segmentation tasks, while CLIP specializes in high-level semantic visual information encompassing134

the entire image. We hypothesize that the merged model combines these strengths, thereby enhancing135

its utility in broad range of downstream vision tasks. To investigate this hypothesis, we conduct136

head-probing (i.e., learn a task specific head with a frozen image backbone) evaluations on SAM,137

CLIP, and SAM-CLIP , utilizing different segmentation head structures (linear head, DeepLab-v3 [5]138

and PSPNet [53]) across two semantic segmentation datasets, Pascal-VOC and ADE20k, and linear139

probing for image classification task on ImageNet and Places365 datasets. Results are presented in140

Figure 3 demonstrating SAM-CLIP superior visual feature representation capabilities.141
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