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Abstract
Although many image-based plant disease diagnosis systems
have reported high diagnostic performance recently, most of
them do not seem to have a proper separation between the
training and evaluation images. Because of the potential sim-
ilarity of images taken in the same field, the true performance
of a system where the same field is used training and eval-
uation images is much worse than it appears. However, no
systematic evaluation based on large-scale data has been con-
ducted so far. To suppress overfitting due to such similarity,
several attempts have been made to detect regions of interest
(ROI), such as leaves, in advance, but no systematic studies
have been conducted on their effectiveness. In this study, we
used a total of 221,842 leaf images of four crops from 24 pre-
fectures with reliable labels to investigate (i) the performance
bias due to evaluation within the same farm and (ii) the effect
of the ROI detection on the performance. As a result, even
if a large number of training images with sufficient resolu-
tion are prepared, diagnostic performance for images in fields
different from the training images is greatly degraded due to
large differences in image characteristics, i.e., covariate shift.
In this situation, the benefit of ROI detection became smaller.

1 Introduction
Pests and diseases are a threat to food security, with the
United Nations Food and Agriculture Organization (FAO)
estimating that they cause losses of 20-40% of the world’s
food production (FAO 2020). Thus, early detection of dis-
eases and their appropriate treatment are essential to mini-
mizing the damage they cause. Since plant disease diagnosis
by experts is expensive, image-based automatic plant dis-
ease diagnosis techniques centered on convolutional neural
networks (CNNs) have been proposed in recent years (Mo-
hanty, Hughes, and Salathé 2016; Durmuş, Güneş, and Kırcı
2017; Wang, Sun, and Wang 2017; Brahimi, Boukhalfa, and
Moussaoui 2017; Brahimi et al. 2018; Toda and Okura 2019;
Fujita et al. 2016; Tani et al. 2018; Fuentes et al. 2017; Liu
and Wang 2020; Yu and Son 2020; Ferentinos 2018; Suwa
et al. 2019; Zekiwos, Bruck et al. 2021; Mithu et al. 2022).

Plant disease diagnosis is a fine-grained problem, where
the disease symptoms are very small compared to the size
of the image, and where differences in appearance between
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(a) Bacterial Spot
taken in Nagano

(b) Bacterial Spot
taken in Ibaraki

(c) Downy Mildew
taken in Nagano

Figure 1: Cucumber leaf in in-farm environment. Even if (a)
and (b) are of the same disease, some look different in other
fields. On the other hand, some images, such as (a) and (c),
of different diseases look very similar.

classes are slight although their variance within the class
is often significant. Therefore, there are several challenges
in image-based plant disease diagnosis. First, images taken
at different locations (i.e., different farms) normally show
significant dissimilarities in visual appearance, even for the
same disease. This is due to different developing conditions,
environments, and so on. Second, images of the same field,
even for different diseases, are often very similar. Thus, plant
disease identification in practical situations is a difficult task.
As shown in Figure 1, (a) and (b) are the same disease (Bac-
terial Spot), but the appearance of the disease is different
in other environments. On the other hand, (a) Bacterial Spot
and (c) Downy Mildew taken in the same field are very simi-
lar, even though they are different diseases. For diseases with
similar characteristics, such as Bacterial Spot and Downy
Mildew, the difference in the environment may significantly
impact identification results.

Despite the difficulties of handling practical in-farm im-
ages, many automated plant disease diagnosis studies have
reported very high diagnostic accuracy (Fuentes et al. 2017;
Liu and Wang 2020; Yu and Son 2020; Ferentinos 2018;
Suwa et al. 2019; Zekiwos, Bruck et al. 2021; Mithu et al.
2022). From those studies, we strongly suspect that images
were not properly separated into training and evaluation pur-
pose. It is possible that images taken in the same field with
similar composition, of the same subject, or the same sub-
ject taken at short intervals, were separated for training and



evaluation. In other words, the inappropriate similarity be-
tween training and evaluation images may enhance the su-
perficial performance. It has also been pointed out that di-
agnostic models with the same training and evaluation im-
ages achieve high apparent diagnostic accuracy, but reveal
a clear performance degradation and overfitting when di-
agnosing diseases in other locations (Saikawa et al. 2019;
Suwa et al. 2019; Boulent et al. 2019; Kanno et al. 2021;
Cap et al. 2020, 2021). For example, Saikawa et al. (2019)
revealed that a CNN model trained on nearly 36,000 im-
ages of cucumber leaves achieved an average accuracy of
97.5% on images from the same farm as the training data,
but dropped to 40.3% on other farms. This suggests that it
is important to carefully separate training and testing data
sources for true performance evaluation, however, to the au-
thor’s knowledge, this trend has only been reported for cu-
cumber, and there are no reports on other crops. This is due
to the difficulty of data collection, and until now, experi-
ments using large amounts of data from various crops have
not been feasible. This raises the question of whether or not
this overfitting problem also happens with other crops.

In the meantime, some studies have claimed that back-
ground information of the image is the major cause of the
overfitting problem (Saikawa et al. 2019; Ma et al. 2018;
Zhang et al. 2021). They suggest that background simi-
larity in a large region has a greater impact than disease-
induced similarity, thus reducing diagnostic performance.
They aimed for high identification performance for essen-
tially unknown data, either by detecting foreground regions
using background removal (Saikawa et al. 2019) or by de-
tecting lesion sites (Zhang et al. 2021). Each was reported to
have had some effect on disease diagnosis, but not enough to
fill the large gap in the case of performance when the train-
ing and evaluation data were from the same farm and differ-
ent farms. Moreover, research on the effect of background
on disease diagnosis is very limited and has only been con-
ducted on single crop thus far (i.e., cucumber). Hence, it
cannot yet be concluded that background areas are the main
reason for the overfitting problem. For stronger conclusions,
we believe there is a need to study the effect of background
of the images on a large amount of data from various crops.
The goal that we should aim for in an automatic plant dis-
ease diagnosis system is a robust system that is stable even
when the input data is taken in a different environment (dif-
ferent weather, background, shooting distance, etc.) from the
training data. In this paper, we conduct two experiments on
a large amount of disease leaf images from four crops (i.e.,
tomato, strawberry, cucumber, and eggplant) to answer the
following questions:

• How important is it to use data taken in a different en-
vironment than the subdivision of the training data for
performance evaluation?

• How much does the pre-detection of regions of interest
(ROI) including symptoms of diseases affect the perfor-
mance?

Train Test

Same Other

Tomato (10 classes) 38,648 4,295 13,956
Strawberry (4 classes) 16,859 1,874 2,307
Cucumber (10 classes) 82,845 9,206 14,760
Eggplant (6 classes) 30,645 3,405 3,042

Total 168,997 18,780 34,065

Table 1: Number of dataset for four crop diseases.

2 Dataset
In this study, we used a total of 221,842 images of 20 dis-
eases and healthy leaves from four crops (tomato, straw-
berry, cucumber, and eggplant). The summary of the data
used in the study is shown in Table 1 (more details can be
found in Table 3 in the Appendix). The diseases we dealt
with are 1: Powdery Mildew (PM), 2: Gray Mold (GM),
3: Anthracnose (AN), 4: Cercospora Leaf Mold (CLM), 5:
Leaf Mold (LM), 6: Late Blight (LB), 7: Downy Mildew
(DM), 8: Corynespora Leaf Spot (CLS), 9: Corynespora
Target Spot (CTS), 10: Leaf Spot (LS), 11: Fusarium Wilt
(FW), 12: Gummy Stem Blight (GSB), 13: Verticillium Wilt
(VW), 14: Bacterial Wilt (BW), 15: Bacterial Spot (BS),
16: Bacterial Canker (BC), 17: Cucurbit Chlorotic Yellows
Virus (CCYV), 18: Mosaic Diseases (MD), 19: Melon Yel-
low Spot Virus (MYSV), 20: Yellow Leaf Curl (YLC), and
0: Healthy (HE). Images used in this experiment were pre-
pared by experts who inoculated each plant with the disease
or infected it via insects to obtain accurate training labels.

To avoid co-infection, we grew our crops in isolated facil-
ities under strict control. Therefore, the dataset includes not
only typical symptoms but also images of early symptoms
of infection. These images were taken under the condition
of the leaves being roughly in the center of the picture.

3 Experiments
We conducted two experiments based on a large number of
leaf images of four different crops collected by agricultural
institutions from 24 prefectures in Japan.

• Experiment 1: Assessing the need for separation of train-
ing and test data

• Experiment 2: Assessing the effect of pre-detection of
ROI on diagnostic performance

For our experiments, we used EfficientNet-B4 (Tan and Le
2019), which is a sophisticated CNN model and has been
reported to have excellent performance on image classi-
fication in recent years. The input image size was set to
512×512, and basic random online data augmentations were
performed. They are horizontal flip, vertical flip, random ro-
tation with a step size of 20, cropping to include more than
80% of the image, and brightness change. As for the evalu-
ation criteria, we used micro accuracy and F1-score.



Figure 2: Examples of original (top row) and leaf images
with the background removed using AOP (bottom row)

3.1 Effect of separation of training and
evaluation data

First, we investigated the extent to which the potential simi-
larity of the images would result in overfitting of the model
as Experiment 1. In order to compare the diagnostic perfor-
mance of images taken in different locations, we prepared
two test sets: one with images taken in the same field as the
training data, and one from different fields. The farms were
selected so that the number of images was as large as possi-
ble while meeting the requirements. As shown in Table 1, a
total of 168,814 images were used for training, with 18,902
test images taken in the same field as the training image, and
exclusive 34,065 test images taken in the other fields.

3.2 Effect of the ROI detection
Second, we verified the effectiveness of the pre-detection
of the region of the interest as Experiment 2. We used
AOP (Saikawa et al. 2019), a high-quality leaf region de-
tection method based on pix2pix (Isola et al. 2017). Using a
set of original images and the corresponding mask images,
AOP is trained to segment the leaf region from input images.
Figure 2 shows examples of ROI detection, i.e., backgrond
removal for four crops. We confirmed that appropriate seg-
mentation was achieved for most cases by visual evaluation.
For more details of AOP, see Saikawa et al. (2019). To train
the AOP model, a total of 28,661 leaf from the training im-
ages categories in Table 1 were used: 9,725 tomatoes, 2,388
strawberries, 7,881 cucumbers, and 8,667 eggplants images.
The trained AOP model then was used to segment out the
leaf regions as the ROI in the test data prior to diagnosis.

4 Results
4.1 Need for separation of evaluation data
Table 2 shows the comparison of the disease diagnostic per-
formance when the test image is the same as and different
from the training image. When images of the same field were
evaluated, both accuracy and F1-score were about 99%,
which is similar to what has been reported in other papers.
On the other hand, however, we observed that the covariate
shift between training and test images significantly degraded
the diagnostic performance for many disease classes in all
crops. Figure 3 shows the confusion matrices for (a) tomato
and (b) cucumber, where the test images were collected at
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9.1 5.1 27.3 10.2 24.3 7.2 6.1 8.8 1.1 0.8

20.4 0.3 0.4 36.2 12.7 0.0 0.3 0.5 24.7 4.4

40.8 0.0 0.0 1.7 0.0 0.0 0.0 57.5 0.0 0.0

22.9 0.0 0.0 0.2 0.3 0.0 0.2 0.2 62.1 14.0

14.3 2.0 0.0 0.7 3.8 0.0 1.5 0.5 6.8 70.4
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(b) Cucumber

Figure 3: Confusion matrices of (a) tomato and (b) cucum-
ber, where the test images were collected at different sites
than the training images.

different sites than the training images. Those for strawberry
and eggplant are in Figure 4 in the Appendix.

4.2 The effect of ROI detection
The evaluation of pre-detection using AOP is also shown in
Table 2. Here, (+ ROI) in the bottom line indicates the di-
agnosis with ROI. From the diagnostic results, there is no
significant improvement in accuracy and F1-score, which
shows that background information has little effect on the
final performance in this experiment.

5 Discussion
5.1 The impact of test data independence
From Experiment 1, it was confirmed that the diagnostic
performance of all four crops decreased when the evalua-



Metric Test Field Tomato (10 class) Strawberry (4 class) Cucumber(10 class) Eggplant (6 class)

Micro Acc. [%]
same farm 99.1 99.6 98.8 98.9
other farm 84.1 88.3 66.4 81.6
other farm (+ROI) 83.6 86.5 66.0 82.2

Macro F1. [%]
same farm 99.0 99.5 98.2 98.9
other farm 65.2 87.6 49.6 76.3
other farm (+ROI) 66.4 85.0 51.2 76.0

Table 2: Comparison of diagnostic performance. The (+ROI) indicates diagnosing with background removal.

tion data was collected from different farms than the train-
ing data. Since the appearance of images varies greatly from
farm to farm due to differences in symptom presentation,
geometry, and a variety of other conditions, covariate shifts
can be significant, resulting in poor diagnostic performance.

One obvious reason is that regular CNNs are not able to
deal with scaling in nature, so they are strongly affected by
differences in geometry if they have not acquired enough
diversity in their training data. Among all crops, the perfor-
mance gap was pronounced for tomato and cucumber, which
have many disease species. This is because diseases with
similar symptoms to each other are inherently more diffi-
cult to identify. This gap also tends to be larger when the
number of farms from which training data is provided is
small. Increasing the amount of training data at each site
can greatly contribute to improving handling of diversity
within that field, but can only have a limited effect on im-
proving generalizability to very large domain shifts across
fields. Therefore, for intrinsic performance improvement, it
is necessary to collect training data in as many sites as pos-
sible, rather than collecting a lot of training data in a limited
number of sites.

On the other hand, when the evaluation set was from the
same population as the training set, high diagnostic iden-
tification performance was achieved, as shown in existing
studies. In this case, it is not a practical but an inauthentic
performance that can only be achieved in cases similar to the
training data. Evaluations using more data and newer classi-
fication models than previously reported studies have again
confirmed this tendency. Therefore, it is natural to assume
that the results of the previous papers are due to overfitting
caused by training on the same field data, which is yielding
high performance.

5.2 The effect of ROI detection
In this experiment, the pre-detection of ROI had little ef-
fect on the improvement of diagnostic performance, which
was different from Saikawa et al. (2019). Although they used
nearly 36,000 training images of cucumbers, their VGG-16
model (Simonyan and Zisserman 2015) trained on 224×224
low-resolution images may not have detected enough dis-
ease features. Therefore, we believe that their CNN model
overfitted to the background image, and some accuracy im-
provement was obtained by background removal. On the
other hand, in this experiment, we trained our EfficientNet
model with larger training data (about 83,000 images for
cucumbers) and higher resolution images (512×512). This

may have made it easier for the classifier to detect symp-
toms even in the presence of a background. However, as the
results show, the effects of domain shift are still present.

In general, it is very important to focus on cue regions, or
ROIs, in identification and classification problems, as evi-
denced by the recent results of attention mechanisms in ma-
chine learning. The results show that in situations where a
certain resolution is obtained, the background is not the main
cause of this overfitting, but factors present in the ROI (such
as shooting distance, light conditions, camera quality, devel-
opment stage, etc.) affect the diagnostic performance. ROI
detection did not contribute to the performance improve-
ment in this experiment. This can be interpreted not as be-
ing because the detection was meaningless, but rather there
were too many differences between the domains. Although
improving the intrinsic performance for plant diseases is not
the main purpose of this paper, appropriate pre-processing to
reduce the covariate shift, such as standardizing the distance
between the camera and the diagnostic target, normalizing
the color, and applying domain adaptation techniques, can
improve the accuracy. We believe that ROI detection can be
an effective method if we can eliminate too large a covariate
shift, and we will investigate this in the future.

6 Conclusion
We used a large and reliable image dataset taken from four
crop fields to investigate two issues: (1) the importance of
source independence for training and evaluation data, and
(2) the importance of ROI pre-detection. As a result, we have
shown how the evaluations in many previous studies are in-
adequate because of the potential similarities in images from
the same field, and because of the impact of inappropriately
high apparent ratings when these data are taken from the
same source. The characteristics of the images in each field
may vary greatly, and this affects not only the background of
the image but also the ROI regions with symptoms. There-
fore, ROI detection alone cannot solve the problem of per-
formance degradation due to field differences, and measures
to reduce such covariate shift are necessary.
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Appendix
Table 3 shows the details of the datasets that could not be in-
cluded due to space limitations. Here, the number in paren-
theses is the number of plots for which images were col-
lected. Figure 4 is the confusion matrices for (a) strawberry
and (b) eggplant.



ID / Name
Tomato Strawberry Cucumber Eggplant

Train Test Train Test Train Test Train Test

Same Other Same Other Same Other Same Other

0 HE 7,307 (6) 813 2,994 9,440 (6) 1,032 578 14,383 (5) 1,633 5,309 9,784 (4) 1,122 831
1 PM 4,009 (5) 481 4,250 1,770 (6) 182 893 6,211 (4) 667 1,898 6,782 (4) 772 861
2 GM 8,427 (3) 900 571 581 (1) 62 150 920 (1) 104 166
3 AN 3,333 (5) 368 609
4 CLM 3,504 (3) 370 1,809
5 LM 2,462 (3) 261 151 2,363 (2) 260 326
6 LB 1,841 (1) 198 640
7 DM 6,244 (3) 709 1,260
8 CLS 6,864 (4) 701 1,813
9 CTS 1,547 (2) 185 1,350
10 LS 4,847 (3) 505 118
11 FW 2,316 (5) 292 227
12 GSB 1,320 (2) 163 374
13 VW 2,856 (2) 320 290
14 BW 1,972 (4) 214 412 3,093 (3) 322 450
15 BS 3,914 (2) 414 1,147
16 BC 3,535 (1) 404 33
17 CCYV 5,339 (1) 630 179
18 MD 24,209 (1) 2,651 1,626
19 MYSV 13,780 (4) 1,576 1,004
20 YLC 4,044 (4) 469 1,746

Total 38,648 4,295 13,956 16,859 1,874 2,307 82,845 9,206 14,760 30,645 3,405 3,042

Table 3: Details of the dataset numbers for four crop diseases. (*) indicates the number of fields. For example, in 0 HE of
tomato, the number of fields is 6.
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Figure 4: Confusion matrices of (a) strawberry and (b) eggplant, where the test images were collected at different sites than the
training images.


