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Abstract

This paper deals with the problem of incre-
mental dialect identification. Our goal is to
reliably determine the dialect before the full
utterance is given as input. The major part of
the previous research on dialect identification
has been model-centric with a focus on perfor-
mance. We address a new question: How much
input is needed to identify a dialect? Our ap-
proach is a data-centric analysis that results in
general criteria for finding the shortest input
needed to make a plausible guess. Working
with two sets of dialects (Swiss German and
Indo-Aryan languages), we show that the di-
alect can be identified well before the end of
the input utterance. To determine the optimal
point for making the first guess, we propose a
heuristic that involves calibrated model confi-
dence (temperature scaling) and input length.
We show that the same input shortening criteria
apply to both of our data sets. While the per-
formance with the early guesses is still below
the performance on the full input, the gap is
smaller when the overall performance of the
fine-tuned model is better!.

1 Introduction

Language identification depends very much on
what kind of languages we are discriminating. If
languages to be discriminated are distant (e.g. Rus-
sian vs. Chinese), the task is very easy and a short
sequence of words provides enough information
to assign the correct class. But if languages are
similar and written in the same script (e.g. Russian
vs. Ukrainian), much longer samples are needed to
encounter the discriminating features (Tiedemann
and Ljubesi¢, 2012). The task is even harder when
dealing with non-standard orthography, which we
find in written dialects and user posts on the inter-
net (Zampieri et al., 2017).

Current research is mostly concerned with im-
proving the performance on the task by apply-

"We plan to release the code for replicating the analyses.

ing increasingly sophisticated methods, including
pre-trained models, whose usefulness is still not
fully confirmed (Jauhiainen et al., 2021). However,
many other aspects of the task may play an im-
portant role in practical applications. One of such
challenges are the possibility to make early guesses
on the language or dialect, before seeing the whole
message. Such a feature can be especially useful
for more dynamic classification of a continuous
stream of messages to choose most suitable meth-
ods for end-user tasks.

In this paper, we address the problem of early
guessing in dialect identification mostly from the
data-centric point of view, but considering some
model-centric issues too. We pose the following
research question:

RQ: Given the input text and an existing pre-
trained model, is it possible to achieve the same
or similar performance by observing a prefix of an
utterance compared to the full utterance?

To answer this question, we search for general
criteria for shortening the input so that the model
performance is the same or similar to the perfor-
mance obtained with the full input. We perform
experimental studies in two settings: dialect iden-
tification with non-standard writing and language
identification for similar languages with standard
writing. We show that the same shortening criteria
apply to both settings and that the early guessing
performance depends on the overall performance
of the model.

2 Related Work

The task of dialect identification and discrimina-
tion between similar languages is mostly addressed
in the scope of the VarDial Evaluation Campaign
(Zampieri et al., 2017, 2018, 2019). The organis-
ers of the tasks released datasets for various cases
of dialects and similar languages, such as Swiss-
German, Indo-Aryan, Uralic, Romanian, Arabic,
Slavic, Chinese, etc. Competing teams proposed



GDI ILI
Train 14647 68453
Dev 4659 8286
Test 4752 9032

Table 1: The size of datasets (expressed as the number
of utterances). GDI : German Dialect Identification. ILI:
Indo-Aryan Language Identification.

various solutions including n-gram features and
tf-idf features using standard machine learning
classifiers such as SVM and Naive Bayes, but
also deep learning approaches using word2vec,
LSTMS, CNN’s, RNN’s, etc. (Ali, 2018; Ciobanu
et al., 2018b; Jauhiainen et al., 2018; Gupta et al.,
2018; Coltekin et al., 2018; Ciobanu et al., 2018a;
Bernier-Colborne et al., 2021). With the advent of
transformer-based models, we see wide use of pre-
trained models in dialect classifications (Popa and
Stefanescu, 2020; Zaharia et al., 2020; Ljubesic¢
and Lauc, 2021), but traditional approaches based
on n-gram statistics still seem to be most successful
on this task.

The research in dialect classification is mainly di-
rected towards improving the model performances
using various architectures. Usually, language and
dialect identifications tasks are carried out in a su-
pervised setup, but with little data analysis. In
contrast to the previous work, the main focus of
our work is not on improving the performance,
but on achieving good performance with minimal
input. While good models are always desired, a
data-centric exploration that we propose is needed
to better exploit the existing classifiers in practical
applications.

3 Data

For our experiments, we select two datasets of-
fered by the VarDial Evaluation Campaign (see
Section 2): German Dialect Identification (GDI)?
and Indo-Aryan Language Identification (ILI).3.
Swiss German dialect/ GDI dataset represents four
areas: Basel, Bern, Lucerne, and Zurich. Training
and the test datasets are obtained from the Archi-
Mob corpus of Spoken Swiss German with 43 oral
history interviews (Samardzic et al., 2016). GDI
datasets are available from the years 2017-2019. In
GDI-2018 data, a fifth “surprise dialect” (Valais

nttps://drive.switch.ch/index.php/s/
DZycFA9DPCS8FgD9

Shttps://github.com/kmi-linguistics/
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Swiss German dialect) was introduced in the test
set. The participants could take part either in four-
way classification (without the surprise dialect) or
in the five-way classification. We work mostly
with the GDI-2018, but in the 4-way classifica-
tion setting. The ILI task is about identifying five
closely-related languages from the Indo-Aryan lan-
guage family, namely, Hindi (also known as Khari
Boli), Braj Bhasha, Awadhi, Bhojpuri, and Magahi.
For each language, 15,000 sentences are extracted
mainly from the literature domain. The sources
were previously published either on the internet
or in print. These languages are often mistakenly
considered to be varieties of Hindi. Table 1 reports
the data statistics of GDI and ILI datasets.

4 Methods

We perform incremental analysis by running the
same classifier on varied substrings of the test in-
put. We start with the first word, then repeat the
classification with the first two words and so on
until we reach the end of the utterances. We refer
to all the incremental substrings as fragments. We
observe the performance of the model at each in-
cremental step and analyze its state (confidence) to
determine the earliest point when a plausible guess
can be made. We perform extensive analysis on
the influence of different parameters that directly
and indirectly affect the model performance after
applying the shortening criteria.

Models We used the state-of-the-art pre-trained
BERT-based models, which had given high per-
formance on similar tasks. For the GDI data
set, we compared three models: BERT-base-cased
model(Devlin et al., 2019), multilingual BERT
(mBERT) and German BERT*. In the case of the
ILI dataset we compared four models: BERT-
base-cased, mBERT, IndicTransformers (Jain et al.,
2020) and IndicBERT(Kunchukuttan et al., 2020).
IndicBERT covers 12 languages including Hindi,
Assamese, Tamil, English, Gujarathi, Malayalam
etc., trained using Al4Bharat’s > monolingual cor-
pus and is based on multilingual ALBERT. Indic-
Transformers® is a BERT model trained with 3 GB
of monolingual data from OSCAR corpus ’ and
covers three languages, viz., Hindi, Bengali and
Telugu.

*https://www.deepset.ai/german-bert
Shttps://indicnlp.ai4bharat.org/indic-bert/
®https://huggingface.co/neuralspace-reverie
"https://oscar-corpus.com/
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Input shortening We first tokenize the input sen-
tence by splitting on white spaces. We then create
fragments that consist of incrementally increased
prefixes of the original utterance. The length of
fragments ranges between 1 and N, where N is the
length (in tokens) of the original utterance. For
example, consider the test sentence: ‘das haisst im
klarteggst’ of length N=4. The incremental frag-
ments will be:

[‘das’

‘das haisst’

‘das haisst im’

‘das haisst im klarteggst’]

This process gives 42797 fragments for the 4752
test cases in the GDI dataset. In ILI, we obtain
170710 fragments from 9032 test cases. For each
fragment, we obtain predictions using the same
fine-tuned model. We collect the information about
model prediction and its confidence for further anal-
yses.

Upper Bound To see whether correct predictions
are possible before seeing the full utterance, we
first find the minimum length fragment at which
a correct prediction is made. For instance, length
four (the fourth line in the example above) will be
selected as the optimal shortened input for the given
utterance since the predicted class is wrong in the
previous three fragments (lines 1-3 in the example
above). In this case, length 4 is the shortest length
at which the correct prediction is obtained. We find
such fragments for each original test utterance (one
fragment per utterance) and then compute the clas-
sification accuracy with respect to these optimal
input lengths.

Measured in this way, the accuracy scores are
higher compared to the full-input classification. In
the case of GDI, we get 80% (compared to 62%
on the full input). For ILI, we obtained an upper
bound of 94% compared to the 90% accuracy ex-
hibited by the best baseline model. We consider
this accuracy to be our upper bound: this is what
could be achieved if we knew where to cut the in-
put utterance in each case. This provides us with
an empirical justification for the goal of our study,
which is finding criteria for shortening the input.
The general idea is that dialects can be identified
within a range of length of input n, where n<N, N
is the length of the original utterance.

Length analysis The first method that we apply
to find the optimal input shortening point is an
analysis of the relationship between the lengths

of fragments and the accuracy obtained from the
model. We consider the accuracy of predictions
at all fragment lengths to find out whether there is
any specific length point at which we can shorten
the inputs to obtain correct predictions consistently.
The results of this analysis are presented in Section
5. Our explorations pointed out that there is no such
a length point in absolute terms, but that length is an
important parameter to be considered for devising
the final criteria.

Model confidence analysis with Temperature
Scaling This method relies on the fact that the
model is not equally confident about all outputs
predictions. We thus extract confidence scores for
each prediction in order to find out whether this in-
formation may facilitate finding the optimal point
for input shortening. Extracting the information
about the model’s confidence raises the question of
how well this information can be trusted. The con-
fidence scores of the model can very high (close to
1) even when the predictions are incorrect. Calibra-
tion is a method to disincentivize a model from be-
ing over-confident. Although the transformer mod-
els are considered to be well-calibrated (Desai and
Durrett, 2020), methods such as temperature scal-
ing (Guo et al., 2017) and label smoothing(Miiller
et al., 2019) can improve the calibration. We expect
this help especially for the case of GDI data, where
the overall performance is rather low compared to
the other datasets.

We explore temperature scaling to calibrate the
prediction probabilities of our model: we divide
the non-normalized logits (before the softmax op-
eration) with the scalar temperature hyperparam-
eter T'. After this step, the prediction probabil-
ity is obtained using the usual Softmax function.
The values of the parameter 7" > 0 is the same
for all classes and it is optimized with respect to
the Negative-Log-Likelihood (NLL) loss on the
validation set. To compare the models after and be-
fore calibration we use Expected Calibration Error
(ECE) as shown in Equation (1).

ECE = Z ) —conf(k)] (1)

lace(k

Calibration is formally expressed as a joint distri-
bution which can be approximated by binning the
predictions to K disjoint sets. Each bin will have by,
predictions and n is the number of samples. ECE
is defined as the weighted average of the difference



Dataset Model Full Short
BERT-base-cased 62 55.2
GDI mBERT 59 50.8
German BERT 60 -
BERT-base-cased 81 56.5
ILI mBERT 88 69.9
IndicBERT 84 -
IndicTransformers 90 73.7

Table 2: The accuracy (%) with different pretrained
models on full utterances and on shortened input.

Length of Fragment Vs Accuracy far GOI
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Figure 1: Accuracy Related to Each Fragment Length
for GDI and ILI Datasets

between each bin’s accuracy and confidence or pos-
terior probability. A perfectly calibrated model
has conf{k) = acc(k) for each bucket of real-valued
predictions.

5 Experiments and Results

Each model was trained for 4 epochs with Adam
optimizer using a learning rate of 2e-5 on the corre-
sponding training set using 1 Tesla K80 GPU. We
used the pre-trained models from the HuggingFace
library 3. Table 2 shows the classification accuracy
with full input and with shortened input. Choos-
ing a pre-trained model based on a close language
turned out to be important only for the ILI dataset,
while the best performance on the GDI is obtained
with BERT-base-cased.

To find the cut-off point for shortening the in-
put, we apply a heuristic that relies on the analyses
described in Section 4. Regarding model calibra-
tion, we found that, for all the fine-tuned models,

8https://huggingface.co/models

ECE decreases considerably with calibration using
temperature scaling (TS). For example, for the fine-
tuned BERT-base-cased model without TS the ECE
was 23.96, while with TS = 2.28, ECE dropped to
6.3 in the GDI dataset. Similar experiments were
done on ILI data with the IndicTransformer model
set to fine-tune the 7 value. At t=1, we have an
ECE of 20.09 for ILI while after calibrations at
t=1.79, ECE dropped to 13.91.

In exploring input shortening criteria, we use
the calibrated probabilities. We consider several
shortening possibilities (the details are listed in Ap-
pendix A) and find that the best results are achieved
with the same criterion in both data sets: probabil-
ity drop. In other words, we stop the incremental
classification once the model probability starts de-
creasing.

We add to this criterion the impact of the frag-
ment length on the model accuracy, which is shown
in Figure 1. The maximum accuracy for the GDI
data is obtained at the length 4, while the peak is
on length 7 for the ILI dataset. The trend is the
same in both data sets, modulated by the length of
the original utterances (longer in ILI).

The accuracy on shortened input shown in Ta-
ble 2 is calculated on the first fragment that satis-
fies both criteria (model confidence and fragment
length). Another finding that can be observed in Ta-
ble 2 is that the gap between the full and the short
input performance is smaller in models that per-
form better. This relationship applies only within a
data set (not across languages).

6 Conclusion and Future Work

We have shown that dialect identification can be
performed before the end of the given utterances.
While we could not maintain the performance
achieved with the full input, we have identified
general criteria for making early guesses: language
specific minimal length of the input (4 tokens for
GDI, 7 for ILI) and language-independent change
in the model confidence score (the first decrease in
the confidence score).

In future work, we plan to continue improving
the performance with early guessing by design-
ing models specifically for this task. We plan to
focus on unsupervised deep embedding clustering
approaches (Xie et al., 2016; Goswami et al., 2020).
We will also explore model calibration at training
time and extend the analysis to other datasets (e.g.
Arabic dialects).
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A Explored Early Guessing Possibilities

In Tables 3 and 4, ‘current’ is the current frag-
ment under consideration. prob() is the calibrated
probability. We compare the prob(current) with
prob(previous) and prob(next). As discussed, the
fragment is the output of an incremental processing.
The criteria checks will be done for each group of
fragments that are associated with a particular sen-
tence. Another input shortening criterion included
is the labeling consistency. Here we check the con-
sistency of predicted labels, predicted label. Each
of these input shortening criteria is evaluated sep-
arately as well as in combination with each other.
We consider the fragment that satisfies the input
shortening criteria at the first position after a pre-
defined length point, say, m. The value m will be
different for each language and needs to be tuned
based on performance metrics (accuracy/ F-score).
The same input shortening criteria were evaluated
for both GDI and ILI while considering different
starting lengths m. For GDI we found optimal m=4
while in ILI m=7. The results for each input short-
ening criterion are reported in Table 3 and Table 4.
All the input shortening criteria are evaluated sep-
arately and some of the potential input shortening
criteria are evaluated in combination.



Input Shortening Criteria

N

Accuracy

prob(current)>prob(previous):p1l
prob(current)<prob(previous):p2
prob(current)<prob(next):p3
prob(current)>prob(next):p4

predicted label(current) equals predicted la-
bel(previous):11

predicted label(current) equals predicted la-
bel(next):12

pl and 11

p2 and 12

p4 and 11

pl and p4

pl and p4

4454
4130
4048
4605
4549

4628

4143
3475
4354
4351
3024

51.5% (2449)
47.49% (2257)
44.9% (2134)
55.2% (2624)
52.5% (2496)

51.4% (2445)

50.35% (2393)
43.37% (2061)
53.57% (2546)
53.45% (2540)
37% (1762)

Table 3: Input Shortening Results with GDI. N= number of fragments that satisfy the criterion.

Input Shortening Criteria N Accuracy
prob(current)>prob(previous):p1 8096 71.24% (6435)
prob(current)<prob(previous):p2 7842 67.17% (6067)
prob(current)<prob(next):p3 7799 66.17% (5975)
prob(current)>prob(next):p4 8285 73.7% (6658)
predicted label(current) equals predicted la- 7975 71.8% (6485)
bel(previous):11

predicted label(current) equals predicted la- 7964 72.44% (6543)
bel(next):12

pl and 11 7975 71.8% (6485)
p2 and 12 7240 66.44% (6001)
p4 and 11 8250 74.1% (6694)
pl and p4 7946 67.3% (6076)
pl and p4 7964 72.4% (6543)

Table 4: Input Shortening Results with ILI. N= number of fragments that satisfy the criterion.



