
Early Guessing for Dialect Identification

Anonymous ACL submission

Abstract

This paper deals with the problem of incre-001
mental dialect identification. Our goal is to002
reliably determine the dialect before the full003
utterance is given as input. The major part of004
the previous research on dialect identification005
has been model-centric with a focus on perfor-006
mance. We address a new question: How much007
input is needed to identify a dialect? Our ap-008
proach is a data-centric analysis that results in009
general criteria for finding the shortest input010
needed to make a plausible guess. Working011
with two sets of dialects (Swiss German and012
Indo-Aryan languages), we show that the di-013
alect can be identified well before the end of014
the input utterance. To determine the optimal015
point for making the first guess, we propose a016
heuristic that involves calibrated model confi-017
dence (temperature scaling) and input length.018
We show that the same input shortening criteria019
apply to both of our data sets. While the per-020
formance with the early guesses is still below021
the performance on the full input, the gap is022
smaller when the overall performance of the023
fine-tuned model is better1.024

1 Introduction025

Language identification depends very much on026

what kind of languages we are discriminating. If027

languages to be discriminated are distant (e.g. Rus-028

sian vs. Chinese), the task is very easy and a short029

sequence of words provides enough information030

to assign the correct class. But if languages are031

similar and written in the same script (e.g. Russian032

vs. Ukrainian), much longer samples are needed to033

encounter the discriminating features (Tiedemann034

and Ljubešić, 2012). The task is even harder when035

dealing with non-standard orthography, which we036

find in written dialects and user posts on the inter-037

net (Zampieri et al., 2017).038

Current research is mostly concerned with im-039

proving the performance on the task by apply-040

1We plan to release the code for replicating the analyses.

ing increasingly sophisticated methods, including 041

pre-trained models, whose usefulness is still not 042

fully confirmed (Jauhiainen et al., 2021). However, 043

many other aspects of the task may play an im- 044

portant role in practical applications. One of such 045

challenges are the possibility to make early guesses 046

on the language or dialect, before seeing the whole 047

message. Such a feature can be especially useful 048

for more dynamic classification of a continuous 049

stream of messages to choose most suitable meth- 050

ods for end-user tasks. 051

In this paper, we address the problem of early 052

guessing in dialect identification mostly from the 053

data-centric point of view, but considering some 054

model-centric issues too. We pose the following 055

research question: 056

RQ: Given the input text and an existing pre- 057

trained model, is it possible to achieve the same 058

or similar performance by observing a prefix of an 059

utterance compared to the full utterance? 060

To answer this question, we search for general 061

criteria for shortening the input so that the model 062

performance is the same or similar to the perfor- 063

mance obtained with the full input. We perform 064

experimental studies in two settings: dialect iden- 065

tification with non-standard writing and language 066

identification for similar languages with standard 067

writing. We show that the same shortening criteria 068

apply to both settings and that the early guessing 069

performance depends on the overall performance 070

of the model. 071

2 Related Work 072

The task of dialect identification and discrimina- 073

tion between similar languages is mostly addressed 074

in the scope of the VarDial Evaluation Campaign 075

(Zampieri et al., 2017, 2018, 2019). The organis- 076

ers of the tasks released datasets for various cases 077

of dialects and similar languages, such as Swiss- 078

German, Indo-Aryan, Uralic, Romanian, Arabic, 079

Slavic, Chinese, etc. Competing teams proposed 080
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GDI ILI
Train 14647 68453
Dev 4659 8286
Test 4752 9032

Table 1: The size of datasets (expressed as the number
of utterances). GDI : German Dialect Identification. ILI:
Indo-Aryan Language Identification.

various solutions including n-gram features and081

tf-idf features using standard machine learning082

classifiers such as SVM and Naive Bayes, but083

also deep learning approaches using word2vec,084

LSTMS, CNN’s, RNN’s, etc. (Ali, 2018; Ciobanu085

et al., 2018b; Jauhiainen et al., 2018; Gupta et al.,086

2018; Çöltekin et al., 2018; Ciobanu et al., 2018a;087

Bernier-Colborne et al., 2021). With the advent of088

transformer-based models, we see wide use of pre-089

trained models in dialect classifications (Popa and090

S, tefănescu, 2020; Zaharia et al., 2020; Ljubešić091

and Lauc, 2021), but traditional approaches based092

on n-gram statistics still seem to be most successful093

on this task.094

The research in dialect classification is mainly di-095

rected towards improving the model performances096

using various architectures. Usually, language and097

dialect identifications tasks are carried out in a su-098

pervised setup, but with little data analysis. In099

contrast to the previous work, the main focus of100

our work is not on improving the performance,101

but on achieving good performance with minimal102

input. While good models are always desired, a103

data-centric exploration that we propose is needed104

to better exploit the existing classifiers in practical105

applications.106

3 Data107

For our experiments, we select two datasets of-108

fered by the VarDial Evaluation Campaign (see109

Section 2): German Dialect Identification (GDI)2110

and Indo-Aryan Language Identification (ILI).3.111

Swiss German dialect/ GDI dataset represents four112

areas: Basel, Bern, Lucerne, and Zurich. Training113

and the test datasets are obtained from the Archi-114

Mob corpus of Spoken Swiss German with 43 oral115

history interviews (Samardzic et al., 2016). GDI116

datasets are available from the years 2017-2019. In117

GDI-2018 data, a fifth “surprise dialect” (Valais118

2https://drive.switch.ch/index.php/s/
DZycFA9DPC8FgD9

3https://github.com/kmi-linguistics/
vardial2018

Swiss German dialect) was introduced in the test 119

set. The participants could take part either in four- 120

way classification (without the surprise dialect) or 121

in the five-way classification. We work mostly 122

with the GDI-2018, but in the 4-way classifica- 123

tion setting. The ILI task is about identifying five 124

closely-related languages from the Indo-Aryan lan- 125

guage family, namely, Hindi (also known as Khari 126

Boli), Braj Bhasha, Awadhi, Bhojpuri, and Magahi. 127

For each language, 15,000 sentences are extracted 128

mainly from the literature domain. The sources 129

were previously published either on the internet 130

or in print. These languages are often mistakenly 131

considered to be varieties of Hindi. Table 1 reports 132

the data statistics of GDI and ILI datasets. 133

4 Methods 134

We perform incremental analysis by running the 135

same classifier on varied substrings of the test in- 136

put. We start with the first word, then repeat the 137

classification with the first two words and so on 138

until we reach the end of the utterances. We refer 139

to all the incremental substrings as fragments. We 140

observe the performance of the model at each in- 141

cremental step and analyze its state (confidence) to 142

determine the earliest point when a plausible guess 143

can be made. We perform extensive analysis on 144

the influence of different parameters that directly 145

and indirectly affect the model performance after 146

applying the shortening criteria. 147

Models We used the state-of-the-art pre-trained 148

BERT-based models, which had given high per- 149

formance on similar tasks. For the GDI data 150

set, we compared three models: BERT-base-cased 151

model(Devlin et al., 2019), multilingual BERT 152

(mBERT) and German BERT4. In the case of the 153

ILI dataset we compared four models: BERT- 154

base-cased, mBERT, IndicTransformers (Jain et al., 155

2020) and IndicBERT(Kunchukuttan et al., 2020). 156

IndicBERT covers 12 languages including Hindi, 157

Assamese, Tamil, English, Gujarathi, Malayalam 158

etc., trained using AI4Bharat’s 5 monolingual cor- 159

pus and is based on multilingual ALBERT. Indic- 160

Transformers6 is a BERT model trained with 3 GB 161

of monolingual data from OSCAR corpus 7 and 162

covers three languages, viz., Hindi, Bengali and 163

Telugu. 164

4https://www.deepset.ai/german-bert
5https://indicnlp.ai4bharat.org/indic-bert/
6https://huggingface.co/neuralspace-reverie
7https://oscar-corpus.com/
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Input shortening We first tokenize the input sen-165

tence by splitting on white spaces. We then create166

fragments that consist of incrementally increased167

prefixes of the original utterance. The length of168

fragments ranges between 1 and N, where N is the169

length (in tokens) of the original utterance. For170

example, consider the test sentence: ‘das haisst im171

klarteggst’ of length N=4. The incremental frag-172

ments will be:173
[‘das’
‘das haisst’
‘das haisst im’
‘das haisst im klarteggst’]

174

This process gives 42797 fragments for the 4752175

test cases in the GDI dataset. In ILI, we obtain176

170710 fragments from 9032 test cases. For each177

fragment, we obtain predictions using the same178

fine-tuned model. We collect the information about179

model prediction and its confidence for further anal-180

yses.181

Upper Bound To see whether correct predictions182

are possible before seeing the full utterance, we183

first find the minimum length fragment at which184

a correct prediction is made. For instance, length185

four (the fourth line in the example above) will be186

selected as the optimal shortened input for the given187

utterance since the predicted class is wrong in the188

previous three fragments (lines 1-3 in the example189

above). In this case, length 4 is the shortest length190

at which the correct prediction is obtained. We find191

such fragments for each original test utterance (one192

fragment per utterance) and then compute the clas-193

sification accuracy with respect to these optimal194

input lengths.195

Measured in this way, the accuracy scores are196

higher compared to the full-input classification. In197

the case of GDI, we get 80% (compared to 62%198

on the full input). For ILI, we obtained an upper199

bound of 94% compared to the 90% accuracy ex-200

hibited by the best baseline model. We consider201

this accuracy to be our upper bound: this is what202

could be achieved if we knew where to cut the in-203

put utterance in each case. This provides us with204

an empirical justification for the goal of our study,205

which is finding criteria for shortening the input.206

The general idea is that dialects can be identified207

within a range of length of input n, where n<N, N208

is the length of the original utterance.209

Length analysis The first method that we apply210

to find the optimal input shortening point is an211

analysis of the relationship between the lengths212

of fragments and the accuracy obtained from the 213

model. We consider the accuracy of predictions 214

at all fragment lengths to find out whether there is 215

any specific length point at which we can shorten 216

the inputs to obtain correct predictions consistently. 217

The results of this analysis are presented in Section 218

5. Our explorations pointed out that there is no such 219

a length point in absolute terms, but that length is an 220

important parameter to be considered for devising 221

the final criteria. 222

Model confidence analysis with Temperature 223

Scaling This method relies on the fact that the 224

model is not equally confident about all outputs 225

predictions. We thus extract confidence scores for 226

each prediction in order to find out whether this in- 227

formation may facilitate finding the optimal point 228

for input shortening. Extracting the information 229

about the model’s confidence raises the question of 230

how well this information can be trusted. The con- 231

fidence scores of the model can very high (close to 232

1) even when the predictions are incorrect. Calibra- 233

tion is a method to disincentivize a model from be- 234

ing over-confident. Although the transformer mod- 235

els are considered to be well-calibrated (Desai and 236

Durrett, 2020), methods such as temperature scal- 237

ing (Guo et al., 2017) and label smoothing(Müller 238

et al., 2019) can improve the calibration. We expect 239

this help especially for the case of GDI data, where 240

the overall performance is rather low compared to 241

the other datasets. 242

We explore temperature scaling to calibrate the 243

prediction probabilities of our model: we divide 244

the non-normalized logits (before the softmax op- 245

eration) with the scalar temperature hyperparam- 246

eter T . After this step, the prediction probabil- 247

ity is obtained using the usual Softmax function. 248

The values of the parameter T > 0 is the same 249

for all classes and it is optimized with respect to 250

the Negative-Log-Likelihood (NLL) loss on the 251

validation set. To compare the models after and be- 252

fore calibration we use Expected Calibration Error 253

(ECE) as shown in Equation (1). 254

ECE =
K∑
k=1

bk
n
|acc(k)− conf(k)| (1) 255

Calibration is formally expressed as a joint distri- 256

bution which can be approximated by binning the 257

predictions to K disjoint sets. Each bin will have bk 258

predictions and n is the number of samples. ECE 259

is defined as the weighted average of the difference 260
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Dataset Model Full Short

GDI
BERT-base-cased 62 55.2
mBERT 59 50.8
German BERT 60 –

ILI

BERT-base-cased 81 56.5
mBERT 88 69.9
IndicBERT 84 –
IndicTransformers 90 73.7

Table 2: The accuracy (%) with different pretrained
models on full utterances and on shortened input.

Figure 1: Accuracy Related to Each Fragment Length
for GDI and ILI Datasets

between each bin’s accuracy and confidence or pos-261

terior probability. A perfectly calibrated model262

has conf(k) = acc(k) for each bucket of real-valued263

predictions.264

5 Experiments and Results265

Each model was trained for 4 epochs with Adam266

optimizer using a learning rate of 2e-5 on the corre-267

sponding training set using 1 Tesla K80 GPU. We268

used the pre-trained models from the HuggingFace269

library 8. Table 2 shows the classification accuracy270

with full input and with shortened input. Choos-271

ing a pre-trained model based on a close language272

turned out to be important only for the ILI dataset,273

while the best performance on the GDI is obtained274

with BERT-base-cased.275

To find the cut-off point for shortening the in-276

put, we apply a heuristic that relies on the analyses277

described in Section 4. Regarding model calibra-278

tion, we found that, for all the fine-tuned models,279

8https://huggingface.co/models

ECE decreases considerably with calibration using 280

temperature scaling (TS). For example, for the fine- 281

tuned BERT-base-cased model without TS the ECE 282

was 23.96, while with TS t= 2.28, ECE dropped to 283

6.3 in the GDI dataset. Similar experiments were 284

done on ILI data with the IndicTransformer model 285

set to fine-tune the T value. At t=1, we have an 286

ECE of 20.09 for ILI while after calibrations at 287

t=1.79, ECE dropped to 13.91. 288

In exploring input shortening criteria, we use 289

the calibrated probabilities. We consider several 290

shortening possibilities (the details are listed in Ap- 291

pendix A) and find that the best results are achieved 292

with the same criterion in both data sets: probabil- 293

ity drop. In other words, we stop the incremental 294

classification once the model probability starts de- 295

creasing. 296

We add to this criterion the impact of the frag- 297

ment length on the model accuracy, which is shown 298

in Figure 1. The maximum accuracy for the GDI 299

data is obtained at the length 4, while the peak is 300

on length 7 for the ILI dataset. The trend is the 301

same in both data sets, modulated by the length of 302

the original utterances (longer in ILI). 303

The accuracy on shortened input shown in Ta- 304

ble 2 is calculated on the first fragment that satis- 305

fies both criteria (model confidence and fragment 306

length). Another finding that can be observed in Ta- 307

ble 2 is that the gap between the full and the short 308

input performance is smaller in models that per- 309

form better. This relationship applies only within a 310

data set (not across languages). 311

6 Conclusion and Future Work 312

We have shown that dialect identification can be 313

performed before the end of the given utterances. 314

While we could not maintain the performance 315

achieved with the full input, we have identified 316

general criteria for making early guesses: language 317

specific minimal length of the input (4 tokens for 318

GDI, 7 for ILI) and language-independent change 319

in the model confidence score (the first decrease in 320

the confidence score). 321

In future work, we plan to continue improving 322

the performance with early guessing by design- 323

ing models specifically for this task. We plan to 324

focus on unsupervised deep embedding clustering 325

approaches (Xie et al., 2016; Goswami et al., 2020). 326

We will also explore model calibration at training 327

time and extend the analysis to other datasets (e.g. 328

Arabic dialects). 329
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A Explored Early Guessing Possibilities464

In Tables 3 and 4, ‘current’ is the current frag-465

ment under consideration. prob() is the calibrated466

probability. We compare the prob(current) with467

prob(previous) and prob(next). As discussed, the468

fragment is the output of an incremental processing.469

The criteria checks will be done for each group of470

fragments that are associated with a particular sen-471

tence. Another input shortening criterion included472

is the labeling consistency. Here we check the con-473

sistency of predicted labels, predicted label. Each474

of these input shortening criteria is evaluated sep-475

arately as well as in combination with each other.476

We consider the fragment that satisfies the input477

shortening criteria at the first position after a pre-478

defined length point, say, m. The value m will be479

different for each language and needs to be tuned480

based on performance metrics (accuracy/ F-score).481

The same input shortening criteria were evaluated482

for both GDI and ILI while considering different483

starting lengths m. For GDI we found optimal m=4484

while in ILI m=7. The results for each input short-485

ening criterion are reported in Table 3 and Table 4.486

All the input shortening criteria are evaluated sep-487

arately and some of the potential input shortening488

criteria are evaluated in combination.489
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Input Shortening Criteria N Accuracy
prob(current)>prob(previous):p1 4454 51.5% (2449)
prob(current)<prob(previous):p2 4130 47.49% (2257)
prob(current)<prob(next):p3 4048 44.9% (2134)
prob(current)>prob(next):p4 4605 55.2% (2624)
predicted label(current) equals predicted la-
bel(previous):l1

4549 52.5% (2496)

predicted label(current) equals predicted la-
bel(next):l2

4628 51.4% (2445)

p1 and l1 4143 50.35% (2393)
p2 and l2 3475 43.37% (2061)
p4 and l1 4354 53.57% (2546)
p1 and p4 4351 53.45% (2540)
p1 and p4 3024 37% (1762)

Table 3: Input Shortening Results with GDI. N= number of fragments that satisfy the criterion.

Input Shortening Criteria N Accuracy
prob(current)>prob(previous):p1 8096 71.24% (6435)
prob(current)<prob(previous):p2 7842 67.17% (6067)
prob(current)<prob(next):p3 7799 66.17% (5975)
prob(current)>prob(next):p4 8285 73.7% (6658)
predicted label(current) equals predicted la-
bel(previous):l1

7975 71.8% (6485)

predicted label(current) equals predicted la-
bel(next):l2

7964 72.44% (6543)

p1 and l1 7975 71.8% (6485)
p2 and l2 7240 66.44% (6001)
p4 and l1 8250 74.1% (6694)
p1 and p4 7946 67.3% (6076)
p1 and p4 7964 72.4% (6543)

Table 4: Input Shortening Results with ILI. N= number of fragments that satisfy the criterion.
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