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ABSTRACT

The approximation power of the neural network makes it an ideal tool to learn
optimal transport maps. However, existing methods are mostly based on the Kan-
torovich duality and require regularizations and/or special network structures. In
this paper, we propose a direct constraint optimization algorithm for the com-
putation of optimal transport maps based on the Monge formulation. We solve
this constraint optimization problem by using three different methods: the Lan-
grangian multiplier method, the augmented Lagrangian method, and the alternat-
ing direction method of multipliers (ADMM). We demonstrate a significant accu-
racy of learned optimal transport maps on high dimensional benchmarks. More-
over, we show that our methods reduce the regularization effects and accurately
learn the target distributions at a lower transport cost.

1 INTRODUCTION

There has been a great interest in applying modern machine learning techniques for finding optimal
transport maps between two distributions. Different from traditional computational methods that
solve PDEs for optimal transport maps (Benamou & Brenier (2000); Angenent et al. (2003); Li et al.
(2018)), modern machine learning techniques aim to solve the problem directly by optimizations.
The Sinkhorn Distance method Cuturi (2013); Peyré et al. (2019), the regularized OT dual Seguy
et al. (2017) have been used to find large scale optimal transport maps between discrete probability
distributions and have been used to train generative networks Genevay et al. (2018); Sanjabi et al.
(2018). A geometric treatment is provided in Gu et al. (2013). The Input Convex Neural Network
(ICNN) is used to construct a convex Brenier potential for finding optimal transport maps Makkuva
et al. (2020) between continuous distributions and is recently used in population dynamics Bunne
et al. (2022), which combines the ICNN and Sinkhorn distance methods Amos et al. (2022). Despite
these successes, most methods are based on the duality formulation and avoids the direct treatment
on the Monge problem.

In this paper, we focus on the direct solution of the Monge problem. The Monge problem (Monge
(1781)) directly seeks to identify the optimal transport maps and is a nonlinear constraint optimiza-
tion problem. The major difficulty in solving the problem numerically is that it is nonlinear and
includes a constraint that the push-forward distribution is equal to the target distribution, which
is difficult to implement. Therefore, most optimal transport algorithms avoid directly solving the
Monge problem but use the Kantorovich duality (Kantorovich (1942)), for which the objective func-
tion is linear and the transport map is obtained by taking the gradient of the Brenier potential for
the quadratic cost. However, these two problems are not always identical (Villani (2009)) and it is
desirable to find a direct approach for the Monge problem.

The Monge problem has been solved numerically using optimization based methods with polyno-
mial approximations. For example, a Lagrangian penalty method was used to find optimal transport
maps approximated by polynomials for Bayesian inference El Moselhy & Marzouk (2012) and space
discretization was used in Haber et al. (2010) to calculate the Jacobian matrix of the transport maps
and transferred the optimization to finite dimensional spaces. However, their approaches are limited
to low dimensions as number of grids expands exponentially as dimensions become large. Consid-
ering the success of deep neural networks in approximating high dimensional data, the integration
of classical constraint optimization methods and neural networks holds a promise.

1



Under review as a conference paper at ICLR 2023

One successful application of the optimal transport theory to deep learning is the Wasserstein Gener-
ative Adversarial Network (WGAN) Arjovsky et al. (2017). However, WGAN only use the optimal
transport distance as a loss function and does not target at finding the optimal transport maps. It is
desirable to study whether it is possible to lower the transport cost of the map learned by WGAN or
other networks using the algorithm for finding optimal transport maps.

This paper presents a new approach for finding optimal transport maps between two continuous
distributions. We make the following contributions:

• We integrate three constraint optimization algorithms including the Standard Lagrangian
(SL), the Augmented Lagrangian method (AL) and the Alternating Direction Method of
Multipliers (ADMM) with neural networks to solve the Monge problem of optimal trans-
port with provable guarantees (Theorem 1-3).

• We show that our method is able to find an accurate optimal transport map between Gaus-
sian distributions, both theoretically (Theorem 2) and experimentally. Moreover, we apply
our method to WGAN and show that our method can find a generative map with lower
transport cost while not sacrificing the quality of outputs.

• We compare the three algorithms and find the SL algorithm introduces errors but is simple
and easy to implement, while AL and ADMM algorithms can find exact results and are
more robust, and ADMM gives a lower transport cost in general.

Notations. We use the notations αd = (α, · · · , α) ∈ Rd and αd×d for the constant d × d matrix.
The transport cost of a map T , which pushes distribution µ to ν, is defined to be Ex∼µ[|x− Tx|2].

2 THE MONGE PROBLEM AS CONSTRAINT OPTIMIZATION

2.1 THE MONGE PROBLEM

Let (X,µ), (Y, ν) be two separable metric probability spaces. The Monge problem is to find a
transport map T : X 7→ Y that realizes the infimum

inf

{∫
X

c(x, Tx)dµ(x)

∣∣∣∣T#µ = ν

}
(1)

where T#µ denotes the push forward of µ and c : X × Y → R+ is a Borel measurable function
which is lower semicontinuous. In this paper, we simply take the distance |x − y|2 but our method
applies to other distance functions.

The existence of the Monge problem is difficult and does not hold always. However, under suitable
conditions, for example for continuous distributions without atoms, the existence and uniqueness of
the Monge problem is guaranteed (see for example, (Villani, 2009, Theorem 5.30). Therefore, here
we focus on learning transport maps between continuous distributions. For discrete distributions,
one can apply dequantization techniques to transform them to continuous distributions Ho et al.
(2019).

2.2 THE MONGE PROBLEM AS CONSTRAINT OPTIMIZATION

In order to solve the Monge problem, we use a generative network, denoted by Tθ with parameter
set θ, which inputs random samples from the distribution µ and generates samples representing
the target distributions ν. As can be seen from the definition, the Monge problem is a constraint
optimization problem. However, the constraint T#µ = ν is a highly nonlinear constraint. In order
to impose this constraint, we take d(·|·) to be a distance function (such as the Wasserstein distance,
the MMD (Gretton et al. (2012)) or the IPM (Müller (1997))) or a probability divergence (such as
the Kullback–Leibler (KL) divergence). The constraint optimization problem reads as

min
θ

Ex∼µ

[
|x− Tθx|2

]
, s.t. d(Tθ#µ|ν) = 0. (2)

The objective of this paper is to solve the above problem using techniques from the constraint opti-
mization theory (Bertsekas (2014)).
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Since a neural network may not fully reveal the target distributions ν, the above problem can be
relaxed to

min
θ

Ex∼µ

[
|x− Tθx|2

]
, s.t. d(Tθ#µ|ν) ≤ α, (3)

When α goes towards zero, we can prove that the solution Tθα to the problem (3) converges to the
solution of the original Monge problem (1). The following theorem holds:
Theorem 1. Let µ, ν be two probability measures on Rd with finite second moments and are ab-
solutely continuous. Let Tθ be given by a neural network with bounded width(each with at least
2d + 2 neurons) and arbitrary depth, and with non-affine activation functions. Suppose for any
α > 0, there exists a solution θ∗α to problem (2), then as α → 0, Tθ∗

α
→ T where T is a solution

of the Monge problem (1). Moreover, supx∈X |Tα(x)− T (x)|C ≤ Cα for some constant C for any
compact subset X ∈ Rd.

Proof of the above theorem follows from the universal approximation theorem (Kidger & Lyons
(2020)) and the existence theorem of the Monge problem (Villani (2009)), and is given in Appendix
A.1.

2.3 EXAMPLE: THE MONGE PROBLEM FROM GAUSSIAN TO GAUSSIAN

For the case when µ ∼ N (X1,Σ1) and ν ∈ N (X2,Σ2) are two multivariate normal distributions,
the optimal transport map is unique and can be explicitly given by T ∗ : x 7→ X2+A∗(x−X1) with
A∗ = Σ

−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1 (Olkin & Pukelsheim (1982)). Taking d = DKL to be the KL-

divergence, we prove that the solution to problem (2) with Tθx = Ax+b (θ = {A ∈ Rd×d, b ∈ Rd})
is the optimal transport map T ∗ (Theorem 2 in Appendix A.1).

3 CONSTRAINT OPTIMIZATION FOR OPTIMAL TRANSPORT

We propose to leverage three different algorithms to solve the constraint problem (2).

3.1 PENALTY METHOD (OTCOP-P)

Standard Lagrangian (SL). We introduce a Lagrangian multiplier λ and take the Lagrangian function
as

LSL(θ, λ) = Ex∼µ

[
|x− Tθx|2

]
+ λd(Tθ#µ|ν). (4)

Then the solution to the problem (2) is a saddle point of the above Lagrangian. By duality theory, for
each α ≥ 0, the problem (3) corresponds to the duality problem minθ LSL(θ, λ, 0) for a λ ∈ [0,∞].
Hence we can take a suitable λ to solve the problem (2) approximately.

According to the Brenier’s polar factorization theorem Brenier (1991), the optimal transport map
should satisfy∇×T = 0, hence we can add an additional term |∇×T |2 into the above Lagrangian
to impose this constraint. We will show experimentally that without this term, this constraint is
almost satisfied and we will not included in our implementations.

Quadratic penalty (QP). Instead of taking d(Tθ#|ν), we can take a quadratic penalty loss

LQP (θ, ρ) = Ex∼µ

[
|x− Tθx|2

]
+

1

2
ρ(d(Tθ#µ|ν))2. (5)

As ρ goes towards infinity, the constraint violations is penalized with increasing severity. For exam-
ple, we can take ρk at the kth training step to be increased by multiplying by a constant bigger than
1 and parameter θ can be updated using gradient descent considering ρ as a constant.

Convergence. Suppose there exists a global minimizer to the problem (2), and θk is the exact mini-
mizer of LQP (θ, ρk) and ρk ↑ ∞. Then any limit point of the sequence {θk} is a solution to problem
(2). Moreover, for any ε > 0, there exists a sufficient large K > 0, |θk − θ∗| ≤ ε for k ≥ K (see
(Nocedal & Wright, 1999, Theorem 17.1)). In addition, without assuming a global minimizer, for a
sequence θk such that∇θkLQP (θk; ρk)→ 0, its all limit points θ∗ satisfy the Karush–Kuhn–Tucker
(KKT) conditions and there exists a subsequence such that limk→∞(ρkd(Tθk#|ν) = λ∗, where λ∗
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is the multiplier that satisfies the KKT condition (see Appendix A.4 for the KKT condition and see
(Nocedal & Wright, 1999, Theorem 17.2) for the proof).

Advantages and disadvantages. The penalty method is simple and easy to implement. However,
since the optimal value of the Lagrangian multiplier λ is unkown (SL) or the optimal condition
for the Lagrangian multiplier ρ is infinite (QP), the penalty always introduce errors and the exact
solution to the problem (2) cannot be reached. Moreover, the Hessian of the Lagrangian ∇2

θθLQP

becomes singular as ρ goes towards infinity and cause ill-condition problems. These issues can be
solved by the methods below, but at the expense of a more computational cost.

3.2 THE AUGMENTED LAGRANGIAN METHOD (OCTOP-AL)

In order to overcome the above issues, we can use the augmented Lagrangian method, by taking the
loss function as

LAL(θ, λ, ρ) = Ex∼µ

[
|x− Tθx|2

]
+ λd(Tθ#µ|ν) +

ρ

2
(d(Tθ#µ|ν))2. (6)

The above function combines standard Lagrangian penalty (4) and quadratic Lagrangian penalty (5).
At the kth iteration, fix λk, ρk and solve θk = argminθ LAL(θ, λk, ρk). After the minimization,
we update λ by λk+1 = λk + ρkd(Tθk#µ|ν). Comparing the KKT conditions of the SL and the
AL (see Appendix A.4) implies λk + ρkd(Tθk#µ|ν) ≈ λ∗ when λk is taken close to λ∗. Hence
d(Tθk#µ|ν) ≈ (λ∗ − λk)/ρ. Compared to the quadratic penalty method that d(Tθk#µ|ν) ≈ λ∗/ρ,
the infeasibility in θk will be much smaller. Moreover, for certain choice of ρ, the local solution of
(2) is a strict local minimizer of LAL(θ, λ, ρ) ((Nocedal & Wright, 1999, Chapter 17)).

Convergence. One of the nice properties of the AL method is that for the exact Lagrangian multiplier
λ∗, the solution θ∗ of the problem (2) is a strict minimizer of LAL(θ, λ

∗, ρ) for all ρ sufficiently
large. The existence of a threshold is proved under the condition that ∇2

θLSL(θ
∗, λ∗) is locally

strictly positive ((Nocedal & Wright, 1999, Theorem 17.6)). Thus we can take ρ to be increasing
at each minimizing step and when ρ becomes bigger than some threshold value ρ̄, gradient descent
methods could find the local minimizer around θ∗.

Advantages and disadvantages. AL method introduces the multiplier estimates and reduces the
likelihood that large values of ρ will be needed to obtain good feasibility and accuracy. The method
is also simple and easy to implement. However, since this is a min-max method, training may
experience oscillations and slower convergence rates.

3.3 ADMM METHOD (OCTOP-ADMM)

The ADMM method blends the decomposition techniques and the AL method and provides an
efficient way for constraint optimizations Boyd et al. (2011). Let S be the set S = {Tθ : Tθ#µ = ν},
problem (2) can be rewritten into the form

min
θ

Ex∼µ

[
|x− Tθx|2

]
+ 1S(Tθ), (7)

where 1S is the indicator function that equals 0 if Tθ ∈ S and equals∞ if Tθ ̸∈ S. In order to apply
the ADMM method, we rewrite the above problem into the form

min
θ1,θ2

Ex∼µ

[
|x− Tθ1x|2

]
+ 1S(Tθ2), s.t. Tθ1 = Tθ2 . (8)

In the ADMM method, we alternatively update θ1 and θ2. First we take θ2 to be constant and take
the minimization of the above problem over θ1, and then we project θ2 onto the space S. In detail,
we introduce the loss function

LADMM (θ1, θ2,Λ, ρ) = Ex∼µ

[
|x− Tθ1x|2

]
+ 1d(Tθ2#µ|ν)=0

+ ΛT (Tθ1x− Tθ2x) +
ρ

2
(Ex∼µ[|Tθ1x− Tθ2x|2]). (9)

Here Λ ∈ Rd is the multiplier. The training procedure is given by

1. θk+1
1 = argminθ1 LADMM (θ1, θ

k
2 ,Λ

k, ρ) (assuming 1d(Tθ2#µ|ν)=0 = 0);
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2. θk+1
2 = argminθ2 d(Tθ2#µ|ν);

3. Λk+1 = Λk + ρEx∼µ(Tθk+1
1 #(x)− Tθk+1

2 #(x)).

Convergence. The convergence of ADMM method is only known to hold under convex conditions
or for some non-convex problems (Boyd et al. (2011)). Using results of Wang et al. (2019), we can
prove the convergence of the ADMM method if we modify the above method by relaxing problem
(8) to

min
θ

Ex∼µ

[
|x− Tθ1x|2

]
+ ηε(d(Tθ2 , S)), s.t. θ1 = θ2, (10)

where ηε is the mollifier function which converges to the δ-function as ε → 0. We show that the
ADMM method converges to the KKT points and if the corresponding Lagrangian is a Kurdyka-
Łojasiewicz function, the ADMM method converges globally to the unique solution (see Appendix
A.3 for details). As a consequence, there exists a convergence sequence of the ADMM method for
the problem (8) approximately.

Advantage and disadvantages. The advantage of ADMM is that it decomposes the Monge problem
into two sub-problems: minimizing the transport cost and minimizing the DKL. Compared to the
AL method, AMDD solves two decomposed minimization problem and AMDD may also converge
faster than the AL method in some situations (Wang et al. (2019). However, the method also solves
a min-max problem and may facing oscillations in the training process.

3.4 THE DISTANCE d

We need a distance/divergence functional d to compare the generated distribution and the target
distribution. Here we require d to be able to compute using samples.

The KL divergence DKL. When the densities of the target distribution is known, we can use networks
of normalizing flow (Rezende & Mohamed (2015)) as Tθ and the DKL is computed via

DKL(Tθ#µ|ν) = Ex∼µ[logµ(x)− log detJTθ
(x)− log ν(Tθx)], (11)

where JTθ
is the Jacobian of the transport map which is able to compute using the normalizing flow

networks. When the target densities are unknown. We need to reverse the KL divergence and take

DKL(ν|Tθ#µ) = Ex∼ν [log ν(x)− logµ(T−1
θ x)− log detJTθ

(T−1x)].

We can drop the first term in the bracket since it is a constant. We can take LSL in (4) as

LSL(θ, λ) = Ex∼µ

[
|x− Tθx|2

]
+ λEx∼ν [− logµ(T−1

θ x)− log detJTθ
(T−1x)].

For the ADMM method, the second step changes to θk2 ← argminθ Ex∼ν [− logµ(T−1
θ x) −

log detJTθ
(T−1x)]. In order to apply the AL method, one can use Ex∼ν [−∇θ logµ(T

−1
θ x) −

∇θ log detJTθ
(T−1x)] to replace the DKL terms in (6).

Test function as multiplier. A weak form of the constraint Tθ#µ = ν is that for any measurable
function f , ∫

f(Tθx)dµ(x) =

∫
f(x)dν(x)

we can introduce a discriminator network fw as Lagrangian multiplier and the Lagrangian becomes

LSL(θ, w) = Ex∼µ[|x− Tθx|2] + Ex∼µ[fw(Tθx)]− Ez∼ν [fw(z)]. (12)

The augmented Lagrangian then become

LAL(θ, w, ρ) = Ex∼µ[|x− Tθx|2] + Ex∼µ[fw(Tθx)]− Ez∼ν [fw(z)]

+
ρ

2
(Ex∼µ[fw(Tθx)]− Ez∼ν [fw(z)])

2. (13)

The training procedure is given by

1. θk = argminθ LAL(θ, w, ρ);
2. wk+1 = wk + ρkEx∼µ[∇wfw(Tθx)]− Ez∼ν [∇wfw(z)];
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3. Assign ρk+1 ≥ ρk.

To apply the ADMM method, we take the loss function to be

LADMM (θ1, θ2,w1, w2, ρ) = Ex∼µ[|x− Tθ1x|2] + dw2
(Tθ2#µ|ν))

+ Ex∼µ[fw1
(Tθ1x)− fw1

(Tθ2x)] +
ρ

2
Ex∼µ[fw1

(Tθ1x)− fw1
(Tθ2x)]

2. (14)

Then the optimization is decoupled into optimization over θ1 to learn the optimal transport map and
the optimization over θ2 to learn the target distribution. Here we can take for example dw2

to be the
loss function of Wasserstein GANs with gradient penalty (Gulrajani et al. (2017)):

dw2
(Tθ2#µ|ν)) = Ex∼µ[fw1

(Tθx)]− Ez∼ν [∇w1
fw2

(z)] + cEx̂∼γ [(∥∇x̂fw2
(x̂)∥2 − 1)2],

where c is a positive constant and γ is the linear interpolation of Tθ#µ and ν. The training procedure
is given by

1. θk+1
1 = argminθ1 LADMM (θ1, θ

k
2 , w

k
1 , w

k
2 , ρ

k);

2. (θk+1
2 , wk+1

2 ) = argminθ2 maxw2 LADMM (θk+1
1 , θ2, w

k
1 , w2, ρ

k) updated same as
WGAN with gradient penalty.

3. wk+1
1 = wk

1 + ρkEx∼µ[∇w1fw1(Tθx)]− Ez∼ν [∇w1fw1(z)].

3.5 IMPLEMENTATION OF THE ALGORITHMS

The implementations of the algorithms are given in Algorithm 1, 2, 3. Here we give the implementa-
tion when d is given directly without using a discriminator network. For the case when test function
is used as multiplier, see section 3.4 and Appendix ?? for details.

Algorithm 1 Solving the Monge
problem with the penalty method

Input Data: X ∼ µ, Y ∼ ν,
Constants: λ0, ρ0, α > 1,
Training step: η.
for number of training iterations
do

for m steps do
θ ← θ − η∇θLSL

(or θ ← θ − η∇θLQP )
end for
Update ρ← αρ.

end for

Algorithm 2 Solving the Monge problem with the aug-
mented Lagrangian method

Input Data: X ∼ µ, Y ∼ ν
Constants: λ0, ρ0, α > 1,
Training step: η.
for number of training iterations do

for m steps do
θ ← θ − η∇θLAL

end for
Update λ← λ+ ρd(Tθ#µ|ν)
Update ρ← αρ.

end for

Algorithm 3 Solving the Monge problem with the ADMM
Input Data: X ∼ µ, Y ∼ ν, Constants: λ0, ρ0, α > 1, Training step: η.
for number of training iterations do

for m1 steps do
θ1 ← θ1 − η∇θLADMM (θ1, θ2, λ, ρ)

end for
for m2 steps do

θ2 ← θ2 − η∇θd(Tθ2#µ|ν)
w2 ← w2 + η∇wd(Tθ2#µ|ν) (if d = dw)

end for
Update λ← λ+ ρd(Tθ1#µ|Tθ2#µ)

end for
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4 EXPERIMENT

4.1 MULTIVARIATE NORMAL DISTRIBUTIONS

Linear maps. First, we consider the optimal transport between multivariate normal distributions
µ = N (X1,Σ1) and ν = N (X2,Σ2). Considering the map given by Tθ = Ax+ b with θ = {A ∈
Rd×d, b ∈ Rd}, we prove in Theorem 2 that the solution to problem (2) gives the correct solution to
the Monge problem. Indeed, in this case, the SL, AL and ADMM algorithms reduce to optimization
of linear objective function constraint by a nonlinear function and it could be theoretically analyzed
by the constraint optimization theory Bertsekas (2014). Here we take X1 = 02,Σ1 = I2 and
X2 = 02,Σ2 = [[4, 1], [1, 4]], let Tθx = Ax with A = [[a, b], [b, a]] (θ = {a, b}). Then the problem
(2) reduces to

min
a,b

2(1− a)2 + 2b2,

s.t. DKL(Tθµ|ν) = 1
30 (−15 log

(
1

15

(
a2 − b2

)2)
+ 8a2 − 4ab+ 8b2 − 30) = 0.

The landscapes of DKL and LSL(θ, λ = 1) as well as the value of minθ LSL(θ, λ) as functions
of λ, are plotted in Figure 1. As can be seen from the figure, the function DKL(Tθ#µ|ν) has
multiple minimizers (red points), whereas the Lagrangian LSP (θ, 1) has a unique global minimizer
(blue point). Hence minimizing the Lagrangian LSL helps to find the optimal transport maps by
finding the approximate map with the lowest transport cost among all maps that realize the target
distributions. More importantly, from the figure, the whole domain can be divided into four pieces
by the landscape of DKL, and starting in each piece, gradient descent method will converge to one
of the four different points. In contrast, the landscape of the Lagrangian changes dramatically and
starting from any point, gradient descent method will only converge to one point.

The Langrangian introduces errors for λ finite. As can be seen from the leftmost figure, the constraint
DKL = 0 is more relaxed as λ becomes smaller. However, for large λ, the barrier region becomes
wider and the gradient descent may converge to a local minimizer away from the optimal result. For
small λ, the gradient descent is easy to find the global minimizer, but since penalty introduces error,
the relaxation effect of the constraints can also push the minimizer away from the solution of the
Monge problem. The choice of λ needs to take this tradeoff into considerations. Training using a
one layer linear neural network confirms the above analysis.
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Figure 1: Graph of the KL error and the loss function of the SP method (left: minθ LAL(θ, λ) as
well as the corresponding DKL and transport cost as functions of λ; middle: landscape of DKL as
functions of a, b; right: landscape of LSL(θ, 1) as functions of a, b). Red points: minimizers of the
DKL, blue point: minimizer of LSL(θ, 1).

Training with neural networks with nonlinear activation function. Next we present our results on
the training of Gaussian to Gaussian distributions with neural networks with nonlinear activation
function. We take X1 = 0d, X1 = 1d and Σ1 = Id,Σ2 = 3Id + 1d×d. Theoretical analysis
gives that the optimal transport distance is 2d (see Theorem 2). Since here we use the DKL as
distance function which is always positive, so the QP method behaves similarly as the SL method
with different multiplier. Hence the results of the QP method is not presented here. The results are
given in Table 1. and the 784D Gaussian is taken for X1 = 0784, X1 = 2·1784 with Σ1 = Σ2 = I784
(theoretical result of the optimal transport distance is 784 ∗ 4). As can be seen from the table, all
three algorithms give nice result and learn approximately the optimal transport map with a high
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Table 1: Training results on Gaussian and Gaussian mixtures

benchmark method DKL Transport cost/d benchmark DKL Transport cost/d
2D Gaussian SL 0.002 2.018 78D Gaussian 0.228 1.866

AL 0.002 2.021 0.260 2.290
ADMM 0.003 1.950 0.805 2.250

784D Gaussian SL 0.365 3.981 2D mixture 0.034 0.048
AL 0.333 4.001 0.021 0.066
ADMM 0.399 3.998 0.059 0.035

accuracy. Training is done by using a d width and 10 depth neural network with tanh activation for
all cases except for 78D Gaussian, for which a 100 depth neural network is used in order to learn the
correlations correctly. Remarkably, for the highly correlated distributions in high dimensions, our
method gives a nice result.

ADMM learns a lower transport cost. From the figure, we can see that the ADMM method learns
a lower transport cost compared to other methods. This is because during training, minimizing the
DKL between the generated and target distribution may not converge to the solution to the Monge
problem, as illustrated in the simple 2D case above. Hence, the splitting feature enables ADMM
to learn a transport map with lower transport cost. This can also be seen from the learning curve
in Figure 4 in Appendix A.5. The transport of the second network (Tθ2 ) has a higher transport cost
when learning the target distribution, whereas the first network (Tθ1 has a lower transport cost, while
the learned target distribution remains accurate.

4.2 GAUSSIAN TO GAUSSIAN MIXTURES

We take a four component Gaussian mixture, each with variance matrix 0.5I2, centers lying on the
four corners of the square [−1, 1]2 and learn the optimal transport map between two dimensional
standard Gaussian to this mixture distribution. We plot the Jacobian graph of the learned map and
the value of the DKL between target distribution and the prediction by the network in Figure 2. As
can be seen from the figure, solely minimizing the DKL does not fulfil the right directions of the
optimal transport maps. Using our method, the learned map is more balanced and approximately
satisfies the condition∇×Tx = 0. Note that here we donot include the penalty of |∇×Tx|2. From
the learning curves, we confirm the findings above that ADMM learns a lower transport cost than
the other methods. Here the transport cost of the second network converges to around 0.07, while
the transport cost of the first network converges to about one half of that of the second network.

Figure 2: Graph of the KL error and the loss function of the minimization of DKL, minDKL, the
SP, AL and the ADMM method (from left to right). The DKL curve is the decreasing line and the
transport cost is the increasing line. For the bottom right figure, orange line is for the first network
and blue line is for the second network

AL and ADMM methods are more robust. Compared to the SL, AL gives a more robust result
with respect to the value of λ. For a well chosen λ, SL performs as good as AL. However, if λ is
not taken properly, the obtained transport cost will be higher or the target distribution is not well
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realized. For ADMM method, we can see the choice of ρ affects the training process, but in a big
range, the choice of ρ has little effects on the final result (see appendix A.5 for the graphs indicating
this finding). This confirms the benefits of the AL and ADMM method in the literature (Nocedal &
Wright (1999); Boyd et al. (2011)).

4.3 IMPROVED TRANSPORT COST OF GANS

We use the test function as multiplier and test the performance of the algorithms described in section
3.4.

The SL method help overcome the vanishing gradient issue. The constraint fw is a Lipschitz-1
function is important in WGAN. Without this constraint, the training of WGAN may face vanishing
gradients issue, as illustrated in Figure 6 in Appendix A.6. However, adding the transport cost to the
cost function as in (12), the training no longer face this difficulty and the target distribution could
be learned. Note that here we donot use a penalty term on the discriminator network as the gradient
penalty method, the transport cost is only a function of the generator network and no regularization
of the discriminator network is needed.

All three methods significantly reduce the transport cost of GAN. Compared to the WGAN-GP,
which has a transport cost around 3.68, all three methods (SL, AL, ADMM) described in section 3.4
show a significantly lower transport cost (0.077 for SL, 0.071 for AL and 0.049 for the ADMM).
The transport losses are plotted in Figure 7 in Appendix A.6. However, the SL method is sensitive
to the choice of λ, while the AL and ADMM methods are more robust.

MNIST. We also train the WGANs on the MNIST dataset. By using WGAN with SL(λ = 1),
we obtain a transport cost around 1.81 compared to 1.87 with only WGAN. MNIST like samples
generated by the learned optimal is plotted in Figure 3. Therefore, our method lowers the transport
cost of WGAN while keeping the qualify of the generated distributions.

Figure 3: MNIST like samples generated by WGAN with SL penalty

5 CONCLUSION

We have shown that the incorporation of constraint optimization tools provides a direct and efficient
way for computing optimal transport maps. By solving the Monge problem directly, our method
avoids using special network structures or solving the dual problem. Moreover, applying our method
to WGAN shows a lower transport cost for the generative networks without sacrificing the quality
of the generated data.
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A APPENDIX

A.1 PROOF OF THEOREM 1

The proof of Theorem 1 is given below by combing the existence theorem for the Monge problem
and the universal approximation of neural networks.

Proof. First given two probability measures µ, ν satisfying the assumptions of Theorem 1, then
(Villani, 2009, Theorem 5.20) implies that there exists a unique deterministic solution T to the
Monge problem and the map T is a Borel map. Then by Lusin’s theorem, there exists a continuous
function T̃ ∈ C(Rd) such that T̃ = T on any compact subset X ⊂ Rd almost everywhere. Since
Tθ is given by a arbitrary depth neural network, we can use the universal approximation theorem in
Kidger & Lyons (2020) to conclude:

For any ε > 0, there exists Tθ̂ such that supx∈X |Tθ̂(x)− T̃ | ≤ ε.

Therefore, d(Tθ̂#µ|ν) = d(Tθ̂#µ|T#µ) ≤ d(Tθ̂#µ|T̃#µ) + d(T#µ|T̃#µ) ≤ 2ε.

Fix α and take ε < α/2, since d(Tθ̂#µ|ν) ≤ α, we can get that the solution Tθ∗
α

to the problem (3)
satisfies

Ex∼µ[|x− Tθ∗
α
x|2] ≤ Ex∼µ[|x− Tθ̂x|

2] ≤ Ex∼µ[|x− Tx|2] + ε. (15)

Let {αk} be a sequence converging to zero and Tθk be the solution to the corresponding problem
(3), then d(Tθk#µ|ν) ≤ αk → 0 implies Tθk#µ→ Tθ∗#µ = T#µ. Since T solves the problem (1),
we have

Ex∼µ[|x− Tθx|2] ≤ Ex∼µ[|x− Tθ∗x|2].

On the other hand, by taking limit α→ 0 in (15), we have Ex∼µ[|x−Tθ∗x|2] ≤ Ex∼µ[||x−Tθx|2].
Combing this with the previous inequality implies that Ex∼µ[|x − Tθx|2] = Ex∼µ[||x − Tθ∗x|2].
By the unique existence of the Monge map, Tθ∗ = T . Moreover, we have by the convergence of
Tθα → Tθ∗

Ex∼µ[|Tθαx− Tx|2] = Ex∼µ[|Tθαx− Tθ∗x|2] ≤ Cα. (16)
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A.2 PROOF OF THEOREM 2

Theorem 2. Let µ = N (X0,Σ0) and ν = N (X1,Σ1) be two multivariate normal distributions
with X0, X1 ∈ Rd and Σ0,Σ1 ∈ Rd×d. Let Tθ : Rd 7→ Rd be an linear operator defined by
y = Ax + b with θ = (A, b) and A ∈ Rd×d, b ∈ Rd. Then there exists a unique solution to the
following problem

θ∗ = argmin
θ

{∫
Rd

|x− Tθx|2dµ(x), s.t. DKL(Tθ#µ|ν) = 0

}
, (17)

and the corresponding transport map Tθ∗ is the optimal transport map in the sense of (1).

Proof. For x ∼ µ, the linear transformation y = Ax + b also satisfies a multivariate normal distri-
bution, given by

y ∼ ρ = N (AX0 + b, AΣ0A
T ).

Using the formula for KL divergence between two multivariate normal distributions, we can get that
the KL-divergence between ρ and ν is

DKL(ρ|ν) =
1

2

[
tr(Σ−1

1 AΣ0A
T ) + (X1 − (AX0 + b))TΣ−1

1 (X1 − (AX0 + b))− d

+ log
det(AΣ0A

T )

detΣ1

]
(18)

Due to the fact that trB − log detB + d ≥ 0 for any positive definite matrix B > 0 and (X1 −
(AX0 + b))TΣ−1

1 (X1 − (AX0 + b)) ≥ 0, KL(ρ|ν) = 0 is equivalent to

Σ−1
1 AΣ0A

T = Id, (X1 − (AX0 + b)) = 0. (19)

The objective function in (17) can be calculated by∫
Rd

|x− Tθx|2dµ(x) =
∫
Rd

|x− (Ax+ b)|2dµ(x)

= Ex∼µ

[
((I −A)x− b)T ((I −A)x− b)

]
= tr((I −A)T (I −A)Ex∼µ0(xx

T ))− 2bT (I −A)X0 + bT b

= tr((I −A)T (I −A)(Σ0 +X0X
T
0 ))− 2bT (I −A)X0 + bT b

= tr((I −A)T (I −A)Σ0) + |(I −A)X0 − b|2. (20)

Therefore, the optimization problem (17) becomes

min
A∈Rd×d,b∈Rd

tr((I −A)T (I −A)Σ0) + |(I −A)X0 − b|2,

s.t. Σ−1
1 AΣ0A

T = Id, (X1 − (AX0 + b)) = 0. (21)

Eliminating b, this is equivalent to

min
A∈Rd×d

tr((I −A)T (I −A)Σ0) + |X0 −X1|2,

s.t. Σ−1
1 AΣ0A

T = Id. (22)

Since tr((I − A)T (I − A)Σ0) = tr(Σ0) − 2tr(ATΣ0) + tr(AΣ0A
T ) = tr(Σ0) − 2tr(ATΣ0) + d,

the above problem is equivalent to

max
A∈Rd×d

tr(ATΣ0),

s.t. AΣ0A
T = Σ1. (23)

Let R = Σ
1
2
0 A

TΣ
− 1

2
1 , the above problem could be rewritten as

max
R∈Rd×d;RTR=Id

tr(RΣ
1
2
1 Σ

1
2
0 ). (24)
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Note that the optimization is over all orthogonal matrix in Rd×d. The solution is given by
R∗ = V T where Σ

1
2
1 Σ

1
2
0 = V P is the polar decomposition of Σ

1
2
1 Σ

1
2
0 and is given by V =

Σ
1
2
1 Σ

1
2
0 ((Σ

1
2
1 Σ

1
2
0 )

TΣ
1
2
1 Σ

1
2
0 )

− 1
2 = Σ

1
2
1 Σ

1
2
0 (Σ

1
2
0 Σ1Σ

1
2
0 )

− 1
2 and P = (Σ

1
2
0 Σ1Σ

1
2
0 )

1
2 Recalling R∗ =

Σ
1
2
0 (A

∗)TΣ
− 1

2
1 , we obtain

A∗ = Σ
− 1

2
0 (Σ

1
2
0 Σ1Σ

1
2
0 )

1
2Σ

− 1
2

0 , (25)

and by the constraint (X1 −AX0 − b) = 0, we get

b∗ = A∗X0 −X1. (26)

The above formula (A∗, b∗) is the same as that obtained by analytical method for the optimal trans-
port and is shown to be the unique solution to the Monge problem (1).

A.3 PROOF OF THE CONVERGENCE OF THE ADMM METHOD

Theorem 3. Assume Tθ is given by a neural network with Lipschitz continuous activation functions
and satisfying ∥Tθ∥ → ∞ for θ → ∞. For sufficiently large ρ, the ADMM method generates a
bounded sequence that converges to the stationary point of the Lagrangian

Lε(θ1, θ2,Λ, ρ) = Ex∼µ

[
|x− Tθ1x|2

]
+ ηε(d(Tθ2#µ|ν))

+ ΛT (Tθ1x− Tθ2x) +
ρ

2
(Ex∼µ[Λ

T (Tθ1x− Tθ2x)])
2. (27)

Proof. We only need to check the conditions in the reference Wang et al. (2019). First we show the
objective function is coercive. For bounded θ1 = θ2 and θ1 → ∞, then Ex∼µ

[
|x− Tθ1x|2

]
+

ηε(d(Tθ2#µ|ν)) = ∞ and thus is coercive. The Lipschitz continuous assumption implies
the objective function is also Lipschitz continuous. Moreover, the solution to the subproblem
minθ1 Ex∼µ

[
|x− Tθ1x|2

]
and minθ2 ηε(d(Tθ2#µ|ν)) is also Lipschitz continuous. Thus the con-

ditions in Wang et al. (2019) holds and we can conclude that the ADMM method converges.

A.4 THE KKT CONDITIONS

The KKT condition is the conditions for the saddle point of the Lagrangian. The KKT condition for
the SL Lagrangian (4). At the saddle point (θ∗, λ∗), the KKT conditions for (4) are{

∇θLSP (θ
∗, λ∗) = ∇θEx∼µ(

[
|x− Tθx|2

]
)(θ∗) + λ∗(∇θd(Tθ#µ|ν))(θ∗) = 0,

∇λLSP (θ
∗, λ∗) = d(Tθ∗#µ|ν) = 0.

At each training step (taking ρ to be constant), the KKT conditions for the QP loss (5) are

∇θLQP (θk, ρk) = ∇θEx∼µ(
[
|x− Tθx|2

]
)(θk) + ρkd(Tθk#µ|ν)(∇θd(Tθ#µ|ν))(θk) = 0,

At each training step (taking ρ to be constant), the KKT conditions for the AL loss (6) are{
∇θLAL(θk, λk, ρk) = ∇θEx∼µ(

[
|x− Tθx|2

]
)(θk) + (λk + ρkd(Tθk#µ|ν))(∇θd(Tθ#µ|ν))(θk) = 0,

∇λLAL(θk, λk, ρk) = d(Tθkµ|ν) = 0.

A.5 TRAINING RESULTS

The results of 78D Gaussian is plotted below.

We demonstrate the robustness of AL and ADMM method compared to the SL method. The training
curves for these three methods are plotted in Figure 5.

A.6 EXPERIMENT DETAILS

Code for the numerical experiments is available at https://github.com/otcop/otcop.git.

Table 1 and Figure 2, 3 are produced using a normalizing flow network with planar transformation
layers. The initial and target densities are known and samples are drawn from these distributions.
Algorithms described in sections 3.1-3.3 are used. The KL divergence is computed via (11).
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Figure 4: Training curves of the three algorithms for 78D Gaussian benchmark (the increasing line
is the transport cost, and the decreasing line is the DKL. Left: the SL method; middle: the AL
method; right: the ADMM method, orange line is for the first network and blue line is for the
second network).

Figure 5: Graph of the training curves, increasing line for transport loss and decreasing line for the
DKL. Top: SL with λ = 0.1(left), λ = 10(right) Middle: AL with λ = 0.1 (left), λ = 10 (right).
Bottom: ADMM with Λ = 0.1 · 1 (left) and Λ = 10 · 1 (right).

For the WGAN example, we use a fully connected neural network with hidden layers of width 400.
Gradient penalty is used for the WGAN-GP and for the SL, AL and ADMM methods, the alogrithm
is described in section 3.4 and λ = 1 is used in the SL and ρ = 10−4 is used for AL and ρ = 10−5

is used for the ADMM.
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Figure 6: Graph of the results of WGAN without gradient penalty and the SL method; Left to the
right: the discriminator loss, the generator loss and the generated sample; top: WGAN without
gradient penaly, bottom: the SL method (equation (12))

Figure 7: Graph of the transport distances. Top (left to right): WGAN-GP, SL, AL and ADMM
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