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Abstract

We provide a detailed evaluation of various image classification architectures
(convolutional, vision transformer, and fully connected MLP networks) and data
augmentation techniques towards generalization to large translation shifts. We
make the following observations: (a) In the absence of data augmentation, all archi-
tectures, including convolutional networks suffer degradation in performance when
evaluated on translated test distributions. Understandably, both the in-distribution
accuracy and degradation to shifts is significantly worse for non-convolutional
architectures. (b) Across all architectures, even a minimal augmentation of 4 pixel
random crop improves the robustness of performance to much larger magnitude
shifts of up to 1/4 of image size (8-16 pixels) in the test data — suggesting a form
of meta generalization from augmentation. For non-convolutional architectures,
while the absolute accuracy is still low, we see dramatic improvements in robust-
ness to large translation shifts. (c) With sufficiently advanced augmentation (4
pixel crop+RandAugmentation+Erasing+MixUp) pipeline all architectures can be
trained to have competitive performance, in terms of in-distribution accuracy as
well as generalization to large translation shifts.

1 Introduction

Convolutional neural networks (ConvNets) are a natural architectural choice for a variety of computer
vision tasks. The built-in structure from localization and translation equivariance of the convolutional
layers is intrinsically useful in many image processing scenarios [Krizhevsky et al., 2012, LeCun
et al., 1989, Fukushima and Miyake, 1982]. For over a decade ConvNets were the backbone of
computer vision and continue to be one of the most important class of models. At the same time,
advances in large datasets and data augmentation techniques have made it possible to train general
purpose architectures to be competitive with ConvNets despite lacking any image specific priors.
Most popular among these are the Vision Transformers (ViTs) and their variants [Vaswani et al.,
2017, Dosovitskiy et al., 2020, Touvron et al., 2021c,b]. When pretrained on ultra-large datasets
like ImageNet-21k (14 million images) or JFT-300/3B (300 million/3 billion weakly labeled images,
respectively), ViTs can outperform similarly pretrained ConvNets on diverse vision tasks. While the
scale of the data was original thought to be crucial, follow up work show that competitive accuracies
can also be achieved in small-to-medium data regimes using advanced data augmentation [Touvron
et al., 2021b] or optimization techniques [Chen et al., 2021]. Detailed experimentation on competitive
benchmarks by Steiner et al. [2021] showed that ViTs trained with extensive data augmentation can
recover the performance gains from ~ 10x larger independently annotated dataset. In such large
data or extensive augmentation regimes, even simpler fully connected multi-layer perceptron (MLP)
architectures [Tolstikhin et al., 2021, Touvron et al., 2021a] can achieve competitive performance. In
this work we focus on the role of data augmentation in learning from general purpose architectures.
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Can data augmentation capture the inductive biases of carefully designed architectures? Beyond
accuracy, the design of architectures is often motivated by domain knowledge of desired invariances.
One of the fundamental image priors is the invariance of object labels to spatial shift or translation of
its position. Indeed, the success and motivation of ConvNets is often attributed to their component
convolutional operators being definitionally translation equivariant. In this work, we study to what
extent the shift-equivariant convolutional layers make ConvNets robust to translation shifts compared
to ViTs and MLPs? How effective are data augmentation techniques in encouraging similar behaviors?

There is a rich literature on understanding the translation invariance properties of ConvNets (cf.
Section 1.1). It has been shown that despite the equivariance of the convolutional operator, other
architectural components like non-linearities and strides can cause the networks lose their invariance
to translations [Zhang, 2019, Azulay and Weiss, 2019, Chaman and Dokmanic, 2021, Engstrom et al.,
2019, Xiao et al., 2018, Alsallakh et al., 2020]. Despite these findings, it is reasonable to believe
that ConvNets will still have substantial edge in robustness to translation when compared to ViT or
MLP models. At the same time, the competitive performance of latter architectures suggests that
good image priors can also be learned from rich training data. The goal of this work is to quantify the
relative effectiveness of architectures design and data augmentation towards robustness to translation
shifts. Algorithmically, these are complementary tools for incorporating domain knowledge. On one
hand, it is conceptually simpler to generate data with desired invariant transformation rather than hard
code it in the architecture. On the other hand, data augmentation only provides a weak supervision
about the invariant properties and is limited by the biases in the training samples.

Generalization vs invariance. In our experiments, rather than chase the gold standard of strict in-
variance on all inputs, we work with a data-centric measure of generalization to structured translation
shifts in the test distribution. We evaluate our models for accuracy on specific out-of-distribution test
datasets where the object locations are systematically shifted without creating additional distortions
or domain gaps from training distribution. See Section 2 for full setup.

In the strict sense, a classifier f : X — Y on input space X is invariant to set of spatial translations
T if forall t € T and all inputs z € X, f(t(z)) =~ f(x). Often we are not concerned with
performance on all inputs but rather on typical samples from a task distribution, say (z,y) ~
D. We thus evaluate our models a structured out-of-distribution accuracy, wherein we train on
samples from D, but test on translation shifted inputs ¢(z), i.e., generalized accuracy to shift ¢ is
E(z,y)~p1[f(t(z)) = y]. This evaluation also differs from adversarial robustness to translation shifts
as studied in Engstrom et al. [2019], Xiao et al. [2018]. In our notation, the adversarial accuracy
metric would be E(, )~ p1[f(t.(x)) # yl, where t, € T is adversarially chosen per-sample (z,y).
Finally, we clarify that data augmentation does change the training distribution D. If inputs x were to
be augmented with their respective transformations {¢(z) : t € T'} (and no other augmentation), then
there is no distribution shift. However, our experiments are never in the no-distribution shift regime.
Importantly, all our augmentation pipelines uses random crop of at most 4 pixels (some are further
restricted to 1 or 2 pixels), but we evaluate our models on much larger translation shifts of up to 1/4th
of image dimension (8 pixels on CIFAR and 16 on TinyImageNet). Thus, any generalization to larger
translation shifts from limited augmentation can be thought of as a form of meta-generalization.

1.1 Related work

Translation invariance in ConvNets. ConvNets have been extensively studied on various ap-
proximate measures of invariance to translation shifts including, but not limited to, Goodfellow et al.
[2009], Zeiler and Fergus [2014], Fawzi and Frossard [2015], Kanbak et al. [2018], Azulay and Weiss
[2019], Zhang [2019], Engstrom et al. [2019], Kayhan and Gemert [2020], Chaman and Dokmanic
[2021]. For example, Zeiler and Fergus [2014] provide visualizations of the hidden layer filters in
early ConvNets that show their sensitivity to small changes in translation, scale, and rotation. Similar
visual evaluation was also more recently used in Alsallakh et al. [2020]. Other work Fawzi and
Frossard [2015], Kanbak et al. [2018], Azulay and Weiss [2019], Zhang [2019], Engstrom et al.
[2019] focus on more quantitative measures of invariance such as mean change in top-1 prediction or
class probabilities between images within a distortion range. These works collectively establish that
despite the built-in inductive bias, ConvNets are not “truly" invariant even to small translation. Some
recent work, importantly [Zhang, 2019, Chaman and Dokmanic, 2021], address this shortcoming
of ConvNets by designing new architectural modifications to ConvNets. These prior works show
that strict spatial invariance is a strong measure that even ConvNets with their built-in priors do



92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

110
111
112
113
114
115
116
17
118

119
120
121
122
123
124
125
126
127
128
129
130

131
132
133
134
135

136

137
138
139
140
141
142
143
144

not satisfy. We choose a data-centric measure in our evaluation that is more practical for general
architectures. Our experimental and evaluation protocol has some key differences from these prior
works studying invariance: (a) Our evaluation is designed to introduce only translations shifts in
the test data without confounding with any other domain gap between train and test distributions.
For example, in the experiments of Azulay and Weiss [2019], Zhang [2019] the test samples are
padded and resized during evaluation, while the models were trained on regular dataset without such
padding or resizing. This leads the test dataset to differ from the training data in ways that are not
just translation of the objects. (b) Our evaluation is non-adversarial in that it measures degradation
in average test loss and not in the worst-case drop in performance on any single image. Further, by
comparing the drop in performance from translation shift to the unperturbed in-distribution accuracy,
we inherently down-weight the non-robustness on hard-to-learn inputs on which the classifier had
inaccurate prediction to begin with. (c) Finally, our evaluation does not penalize models from learning
position dependent features as observed by Kayhan and Gemert [2020]. For example, a network has
the flexibility to use its large representation power to create a separate model for an object (say a
cat) at each pixel location — while such a model will be inefficient, it would still do a good job at
detecting cats in translated test distribution. These differences are nuanced but significant, which
makes our results complementary to prior work in this space. Such differences may or may not be
important depending on the application.

Robustness under adversarial perturbations and other OOD benchmarks. In a work closest to
ours, Engstrom et al. [2019] study test accuracy degradation from adversarially chosen translations
and rotations on test images. While much of the work in adversarial robustness focus on ¢, or
£5 norm bounded perturbations to the inputs, Engstrom et al. [2019] show that ConvNets can be
effectively “attacked" even when the perturbed inputs are merely small rotations and/or translations
of the input. Similar adversarial attack on ConvNets based on more complex spatial transformations
was previously studied in [Xiao et al., 2018]. Our evaluation is closer to “random perturbation”
evaluation, which is only briefly explored in Engstrom et al. [2019]. In comparison to these studies,
our distribution shift is picked non-adversarially and independent of input samples.

Complementing the work on adversarial robustness, there has also been lot of interest in evaluating
models on other out-of-distribution robustness. Generalization to out-of-distribution test datasets is a
broad umbrella topic, and aside from adversarial robustness, many work also focus on robustness
performance on benchmarks for benign “natural” perturbations Recht et al. [2019], Hendrycks and
Dietterich [2018], Koh et al. [2021], Djolonga et al. [2021]. For ConvNets, inspired by the neural
networks scaling laws line of work, Djolonga et al. [2021] probe for relation between OOD robustness
and learning choices like data size, model size, optimization algorithm, and model choices like model
sizes, and normalization (they do not consider data augmentation in detail though). They also propose
a synthetic benchmark SI-SCORE for controlled image invariance evaluation. Expanding on this line
of work, Yung et al. [2021], Bhojanapalli et al. [2021], Bai et al. [2021], Mahmood et al. [2021], Shao
et al. [2021], Paul and Chen [2021], Pinto et al. [2022], compare ConvNets and ViTs on adversarial
robustness and/or out-of-distribution robustness benchmarks.

Aside from the methodological differences, much of the work in this space has focused on the relative
merits, demerits, and robustness of different model choices and the role of training data size. The
effects of data augmentation is only minimally considered, if at all. In contrast, our goal in this work
is to specifically quantify how much different data augmentation pipelines can capture the inductive
biases in a carefully designed architecture.

2 Experimental setup

All our experiments are conducted on the CIFAR-10, CIFAR-100, and TinyImageNet datasets. Since
our study involves training from scratch and testing on large models in numerous configurations, it is
beyond the scope of the paper to extend such a detailed study to larger benchmarks like full ImageNet.
Moreover, we emphasize that our goal here is not to get the state-of-the-art accuracy/robustness
on benchmarks, but rather to understand how much data augmentation captures the benefits of the
convolutional architecture. Arguably, it is also the small data regime where the inductive biases
from architecture and/or augmentations play more important roles. In ultra-large scale datasets,
accuracy/robustness might naturally come from dataset size itself rather than model priors.
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In the main paper we focus on results from CIFAR-10 and CIFAR-100 datasets which consists of
32 x 32 pixel RGB images balanced across 10 and 100 classes, respectively. We defer the discussion
on TinylmageNet, which a subset of the more diverse ImageNet benchmark, to Appendix C. To study
large translation shifts without introducing domain gaps, we modify the dataset by symmetrically
padding all the CIFAR images with 8 pixels (1/4 of image size) on each side. The padded pixels
contain the mean channel values of the entire training dataset, which ensures that the channel-wise
means and standard deviations across training dataset remains the same as the original un-padded
dataset (see illustration in Figure 1). This padded dataset allows us to evaluate large translation shifts
of up to 16 pixels (Hamming distance) in the test dataset without creating additional confounding
factors. Importantly, in all the shifted test sets, there is no cropping or loss of the image content and
the entire image is available to the network at the same scale as seen during training. After padding
with a mean-valued canvas, we resize the resulting 48 x 48 x 3 images to 224 x 224 x 3 (the standard
input size for ImageNet) using bilinear interpolation. This up-sampling step helps avoid extensive
hyperparameter tuning of the models, especially, the ViT and MLP models.

We briefly discuss the alternative evaluation methodologies. The more natural random cropping of
images to evaluate robustness to translation is inherently limited by the number of pixels we can
faithfully forgo without losing information and hence cannot capture large translation shifts. In prior
work, Azulay and Weiss [2019] also used similar padded images to investigate translation shifts. A
key difference in our methodology is that we have our entire training and testing pipeline on the
preprocessed images (with padding), while the latter paper evaluated models pretrained on standard
ImageNet without any padding — this creates an uncontrolled distribution shifts. Another technical
difference is that Azulay and Weiss [2019] downsampled the images, which leads to loss in resolution,
while our preprocessing is non-lossy. Finally, synthetic benchmarks such as SI-Score proposed
in Djolonga et al. [2021] are a good alternative to our setup. However, for our simple controlled
setting, the conceptual advantage of padding is that it does not change the natural distribution of
foreground and background which would be lost in the cut-and-paste protocol of Djolonga et al.
[2021]. Furthermore, the segmentation process in Djolonga et al. [2021] appears to be not perfect
which might create additional confounders. To further ensure that our “synthetic" padding is benign,
we verified that the test accuracy of our models trained on the padded dataset is comparable to the
standard train-test pipeline on 32 x 32 x 3 CIFAR inputs without any padding (see Table 1).

(a) Original (b) Mean padded  (c) Resize to 224 x 224  (d) Translation shift

Figure 1: Sample images from the prepossessing steps

Training All the models are trained on the mean-padded datasets for 1600 epochs on 8 x V100
GPUs. We use implementations (with suitable modifications) of the models from various open source
repositories, most notably Wightman [2019] and Liu [2017]. We performed basic hyperparameter
tuning in a small grid around the parameters reported in the respective papers. The exact value of
hyperparameters used in experiments along with code are provided in the supplementary material.
All the evaluation metrics reported in this paper are median performance over 3 runs.

2.1 Architectures

Our goal is to compare fundamentally different architectures on generalization to translation shifts.
After initial experiments with different variants, we choose the following models in our evaluation.

* resnetl8_bn (11M parameters): We use ResNets He et al. [2016] as our representative ConvNet.
In our initial experiments, larger ResNets and the other ConvNets like RegNet Radosavovic et al.
[2020] did not yield qualitative difference in performance on our datasets.

* resnetl8_gn (11M parameters): It has been observed that batch normalization often leads to
poor performance in transfer learning as the batch statistics from source task could be widely off
for target task (see e.g., Kolesnikov et al. [2020], Wu and Johnson [2021]). The same reasoning
also applies when dealing with distribution shifts, where batch statistics could become irrelevant
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even when the test distribution shifts systematically Djolonga et al. [2021]. To overcome this, we
consider a variant of resnetl8 with group normalization and weight standardization Wu and He
[2018], Qiao et al. [2019] in place of batch normalization. This modification indeed leads to more
stable performance in our experiments, specially in the absence of data augmentation.

* antialiased_resnet18 (11M parameters): Azulay and Weiss [2019], Zhang [2019] show that
the downsampling layers (pooling/strides) make ConvNets non-shift invariant. To remedy this,
Zhang [2019] proposed a a specialized modification to ConvNets to improve their invariance to
spacial shifts by introducing a BlurPool layer as an antialiasing-filter before downsampling. This
constitute a model with more specialized priors about translation invariance built into its design.

¢ cait_xxs36 (17M parameters): CaiT architecture Touvron et al. [2021c¢] is a variant of the basic
vision transformer (ViT) Dosovitskiy et al. [2020] that leads to more efficient training of deeper
models. We use CaiT as our representative transformer model as it had the best performance in
initial experiments. Other ViT variants, including larger models and the distilled variant DeiT
Touvron et al. [2021b] did not provide significant performance boost on our small scale datasets.

* resmlp_12 (18M parameter): Among the MLP models for image classification, we tried MLP-
mixer Tolstikhin et al. [2021] and ResMLP Touvron et al. [2021a] in our initial experiments. We
stick with ResMLP for detailed experimentation as it had slightly better performance.

Although the above model configurations are not the state-of-the-art on larger benchmarks, on smaller
scale CIFAR and TinyImageNet datasets, they have competitive performance as their larger or more
complex counterparts. Since our goal is to evaluate the relative degradation in performance with
translation shifts, we do not overly optimize for top-accuracy.

2.2 Augmentations

We first consider four data augmentation pipelines while training the models described above. In the
appendix, we look at more minimal augmentations to elaborate on our findings.

* No Augmentation (NoAug): We use this setting as a baseline for purely evaluating the merits of
an architecture in generalization to translation shifts.

* Basic augmentation (BA): The basic augmentation consists of a random flip and a random crop
with up to 4 X 4 pixel padding. This minimal augmentation has been a de-facto standard in many
vision tasks, and it already gives over 5% boost in accuracy even without considering its effects
on distribution shifts. Note that unlike in standard training pipeline, with our padding of training
images, the random crop does not lose any original image pixels.

» Advanced augmentation (AA): The current slate of image data augmentation techniques are
more varied and less intuitive compared to the simple transformations described above. In our
version of advanced augmentation (AA), we use the following pipeline: first we apply (a) the
basic augmentation (BA) described above, then (b) RandAugment Cubuk et al. [2019], then (c)
random erasing Zhong et al. [2020], and finally use (d) MixUp Inoue [2018]. RandAugment uses a
randomly chosen composition of transformations from a predefined list. We use the standard Ran-
dAugment list from Wightman [2019] but without the TranslationX and TranslationY
as these are covered with more control within basic augmentation.

* AA without translation (AA(no tr)): We also consider a variant of advanced augmentation (AA)
where we remove any augmentations that are explicitly related translation shifts. Specifically, we
remove random crop from basic augmentation (BA) and in the RandAugment transformations
list, along with previously removed TranslationX and TranslationY, we also remove
ShearX and ShearY. In this case, any improvements over NoAug arise only indirectly.

2.3 In-distribution test accuracy

Table 1 gives the test accuracies on the in-distribution test dataset, which is preprocessed with the
same padding configuration as the train dataset (i.e., with 8 pixels padded symmetrically on all sides).
We use this as a reference performance without any distribution shifts (a.k.a. the in-distribution
accuracy). Ideally, we would expect a classifier that that learns good image priors to maintain their
reference performance even when the test dataset is shifted by object invariant properties.

5
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resent18_bn | resnetl8_gn antialiased cait_xxs36 | resmlp_12
_resnetl8

- NoAug 90.85i0,19 91.48i0,09 92.55i0,21 77.58i0,11 79.99i0,15
E BA 96.10+0.05 95.9640.06 95.63+0.15 87.694+0.50 87.73+0.07
f AA(IIO-tI‘) 96~35:t0.06 96.06i0,07 96.98i0,07 95.09i0,19 91.90i0,10
< AA 97.74i0‘03 98-03i0.06 97.77i0_10 97.25i0.01 96.03i0A09
a NOAllg 67.62i0,65 64.62i()‘29 70.37i()‘09 43.43i0A12 52.79i()‘21
= | BA 78.68410.18 78.4210.08 78.2010.16 57.6240.78 60.52+0.60
Z | AA(o-tr) | 74.5610.46 | 74.091022 | 77.621025 | 77.7441.40 | 65.4310.30
S| AA 82.9840.14 | 82.09410.27 81.5410.17 | 82.46410.27 78.6310.28

Table 1: Accuracy on in-distribution test dataset (i.e., test and train images have same padding).

3 Generalization to translation shifts

With the flexibility of padded pixels in our preprocessed training data, we can now create test datasets
with up to 16 pixel translations (in Hamming distance) from the training image distribution by moving
the test images anywhere within the 48 x 48 frame. This allows us to evaluate large translation while
not distorting the contents of the image itself. In the extreme locations (see, e.g., corners of grid in
Figure 2) there only 25% overlap with the training distribution.

For each trained model, we can look at a grid of 17 x 17 test evaluations on modified test datasets.
Each cell in the evaluation grid corresponds to the position of the 32 x 32 test images within the
48 x 48 frame (see illustration in Figure 2 for a resnet/8_bn network). The center cell of the
grid acts as the reference performance and corresponds to the no distribution shift, i.e., the test
images are centered on the frame, same as the train images. As we move away from the center, we
analogously translate the position of the object image in the test dataset. The model is then evaluated
for classification accuracy on the shifted test dataset. Thus, the generalization or robustness of trained
models to translation shifts can be comprehensively summarized by such a grid.

train = test

Figure 2: Generalization to translation shifts of a resnetl8_bn trained without data augmentation (NoAug)
for 1600 epochs on CIFAR-10 dataset: Each cell in the grid corresponds to the model performance on a test
dataset with specific positioning of the object image. The center cell corresponds to no translation shift from
training; and the distance of the cells from the center corresponds to respective position shift between train and
test dataset. The values in each cell is the accuracy on the shifted test dataset. The color corresponds to “relative”
drop in performance from the in-distribution performance: yellow the maximum accuracy in the grid (typically
the center cell), while the dark blue is saturated at 90% of the max-value in the grid, i.e., 10% drop in accuracy.
For resnet18_bn +NoAug on CIFAR-10, max accuracy on the grid is 90.85% while min accuracy is 81.82%.

3.1 Case study: Convolutional networks

We first describe some observations from our initial experimentation exclusively on ConvNets trained
on CIFAR-10. Our evaluations on other architectures are provided in Section 4. In this subsection,
we mainly compare variations of resnet!8 trained in different configurations. First, in Figure 2 along
with the illustration of translation shift grid, we show the evaluation of the basic resnet!8_bn (with
batch normalization) on generalization to translation shifts in CIFAR-10. This model was trained
without any augmentation to demonstrate the baseline performance of convolutional architecture.
We observe that, despite the built-in image priors in ConvNets and despite using a weaker notion
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than translation invariance, there are significant drops in performance on even small translations
shifts. For example, in the non-yellow cells close to center in Figure 2, we notice that a two pixel
hamming distance translation can lead to > 5% drop in performance. It is worth forward referencing
at this point that in spite of these drops in performance, when compared to other architectures (see
Section 4), we find that ConvNets are relatively more resilient to translation shifts in the absence of
data augmentation — the worst case drop in performance is ~ 10% for ConvNets, while for other
architectures, the drop in performance could be as large as 30 — 50% (see Figure 4).
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(a) resnetl8_gn+NoAug: max = 91.48, min = 87.97. (b) resnet18_gn+BA: max = 95.96, min = 95.63

Figure 3: Generalization to translation shifts of resner variants using the same evaluation as in Figure 2. (a)
resnet18_gh network group norm and weight standardization again trained without any augmentation. (b)
resnetl8_gn trained with basic augmentation (BA) consisting of random horizontal flip and random crop at most
4 pixels. For quick reference, the sub-captions mention the max and min accuracy of the models over the grid.

Batchnorm vs groupnorm+weight standardization. Prior work most notably Azulay and Weiss
[2019], Zhang [2019], Chaman and Dokmanic [2021] attribute the lack of invariance to strides and
ReLU non-linearities in the standard networks. We believe these factors also affect the weaker
notion of generalization to translation shifts that we study. Indeed, the “near" periodic locations of
high-performing (yellow) cells is in line with prior observations that strides in ResNets would tend
to have periodic translation invariance (Azulay and Weiss [2019], Fukushima and Miyake [1982]).
Additionally, our experiments suggest that batch normalization is yet another factor that contributes
to lack of translation invariance. In Figure 3(a), we show the performance of resnet/8_gn model
trained with the same configuration as resnet18_bn in Figure 2, but with a modification that all the
batch normalization layers replaced by group normalization and weight standardization Wu and He
[2018], Qiao et al. [2019], as was also done in Kolesnikov et al. [2020]. We see that this simple
modification already improves the generalization of the ResNet to translation shifts. In hindsight, it is
understandable that batch normalization would have detrimental effects when the test distribution
shifts from the training distribution as the batch statistics obtained from exponential moving average
of training statistics no longer remains accurate Wu and Johnson [2021].

Training with basic augmentation (BA). Experiments in Azulay and Weiss [2019] show that even
after using data augmentation, ConvNets are not translation invariant when tested on inputs that are
not from the same manifold as training images. On the other hand, in our evaluation of a weaker
notion of generalization to translation shifts, we observe a different conclusion. In Figure 3(b), we
show that even a small nudge using basic augmentation (BA) can make the models remarkably robust.
A simple augmentation using random crops of up to 4 pixels and horizontal flips, not only improve
in-distribution accuracy by over 5%, but also make the networks near-perfectly robust to up to 8 pixel
translations in test distribution — indicating a form of meta-generalization from augmentations. In the
appendix we provide further evidence of such meta-generalization: (a) In (Appendix B) ConvNets
trained with a more minimal BA-/ite and BA-liter augmentation with smaller range of random crops
of at most 2 and 1 pixels, respectively already help robustness to translation shifts of up to 8 pixels on
CIFAR-10, and (b) In Appendix C our results on TinyImageNet dataset show robustness to a larger
range of translation shifts of up to 16 pixel shifts, even though BA still uses only 4 pixel shifts.

4 Architectures and augmentations for generalization to translation shifts

The summary grid view of evaluations on translation shifts (as in Figure 2-3) is more comprehensive
and we will revisit them in the appendix. However, it is not ideal for comparing different configura-
tions of architectures and augmentations. In this section, we use an alternative visualization and plot
the test accuracies as a function of Hamming distance between the position of images in the test and
training datasets. The performance of all our models and augmentations are summarized in Figure 4.
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Figure 4: Generalization to translation shifts. The z-axis in each plot is the Hamming distance of the location
of test images (within the 48 x 48 frame) relative to the location in the training images (center of the frame).
The larger the x-axis value, the larger is the shift from train distribution. For a given value of z, there might be
multiple test configurations that are z-Hamming distance away (like shift of 1 pixel to top, bottom, right, or left
when z = 1). The median of these values is plotted as line plot, while the shaded region covers the min and max
values of the list. The left and right plots correspond to accuracies on the CIFAR-10 and the more challenging
CIFAR-100 dataset, respectively. The y-axis for each dataset (column) is normalized to be on the same scale.
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4.1 Key takeaways

We make the following observations that are supported by our experiments. We provide additional
experiments and discussions from our study including evaluation on TinyImageNet in the appendix.

1. Without data augmentation, even ConvNets with designed architecture has a noticeable drop in
performance on spatially shifted test dataset. From Figures 2-3, one can see that merely switching
batchnorm with groupnorm appears to mitigate some performance gap. Using a specialized
antialiased modification by Zhang [2019] further improves the performance, albeit not to perfect
invariance as the non-linearities could be a source of breaking spacial invariance Chaman and
Dokmanic [2021]. Nonetheless, the architectural inductive biases in these ConvNets are still
useful, if not perfect, as we can predictably see that the drop in performance is much more dramatic
for the non-convolutional architectures without any image priors. In CaiT and ResMLP, without
augmentation, even 1 — 2 pixel translation shift can lead to dramatic drop in performance.

2. In the other extreme, with an Advanced Augmentation (AA) pipeline, all the architectures are
remarkably robust even to large translation shifts in test distribution. Note that even with AA, the
maximum translation augmentation we provide (in the form of random crop) is at most 4 pixels (8
pixels in Hamming distance), but we see robustness to up to 8 pixel shifts (16 pixels in Hamming
distance). This supports a notion of meta generalization in robustness performance. In Appendix C,
we see that ResNets continue to be robust to even larger translation shifts of up to 16 pixels on
each direction on TinyImageNet dataset. To further support the idea of meta-generalization, we
also show in Appendix B, even more minimal 1 or 2 pixel random crop augmentation already
boosts robustness to translation shifts.

3. Furthermore, with AA, the performance on in-distribution test error becomes significantly closer
for all architectures. Specially, the performance of resnet18 and cait_xxs36 are statistically
identical in this setting even though we trained on the small-medium scale CIFAR datasets. The
performance of resmlp_12 is however relatively suboptimal even with AA pipeline. First, there
is non-trivial gap in the in-distribution accuracies. Secondly, the robustness to translation shifts
is not nearly as good as with ResNet or CaiT. Despite these differences, even for ResMLP, the
augmentations dramatically boost the generalization to translation shifts and the differences in
relative drop start to appear only after 10-12 pixel hamming distance shifts in test distribution.
These experiments suggest that with sufficient augmentation, the relative benefits or shortcomings
of the architectures are effectively diminished.

4. Even with a minimal Basic Augmentation (BA), we see significant improvement in robustness to
translations. In fact, for ConvNets, BA is sufficient to achieve the near perfect generalization on
our canvas. This further highlights the benefit of the built-in inductive biases in ConvNet. For
non-convolutional architectures, this simple augmentation is not sufficient to achieve optimal
absolute test performance, but the relative robustness is still uniformly improved.

5. Finally, an intriguing phenomenon is observed when training with advance augmentation but
without translation related augmentations (AA(no-tr)). Here the absolute test accuracy of all the
models improves (presumably from learning some useful priors). For ConvNets on CIFAR-10,
even such indirect augmentation is effective in making the models robust to translation shifts — but
this does not appear to uniformly hold across datasets, so the conclusion might be spurious. For
transformer and MLP architectures, the robustness does not improve significantly, even though the
in-distribution accuracies are significantly higher.

6. Somewhat tangentially, our experiment slightly supports the position that data augmentation can
recover some of the benefits of large datasets even when learning with general architectures like
ViT and MLP are beneficial. In ImageNet scale datasets this was previously observed in Touvron
et al. [2021c], Steiner et al. [2021] for ViTs and Touvron et al. [2021a] for MLPs. Our experiments
show similar validation even on small CIFAR-10 datasets.

In summary, even though convolutional networks are not invariant or robust to translations in absolute
sense, they clearly fare much better compared to other general-purpose architectures. Specially,
ConvNets learn robust models with minimal augmentation, while it appears the transformer and MLP
architectures require more sophisticated augmentations. At the same time, our experiments suggest
that data augmentation can enforce learning of the right inductive bias with comparable or more
effectiveness than the network architecture.
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