
Variational Continual Test-Time Adaptation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Continual Test-Time Adaptation (CTTA) task investigates effective domain adapta-1

tion under the scenario of continuous domain shifts during testing time. Due to the2

utilization of solely unlabeled samples, there exists significant uncertainty in model3

updates, leading CTTA to encounter severe error accumulation issues. In this paper,4

we introduce VCoTTA, a variational Bayesian approach to measure uncertainties5

in CTTA. At the source stage, we transform a pretrained deterministic model into6

a Bayesian Neural Network (BNN) via a variational warm-up strategy, injecting7

uncertainties into the model. During the testing time, we employ a mean-teacher8

update strategy using variational inference for the student model and exponential9

moving average for the teacher model. Our novel approach updates the student10

model by combining priors from both the source and teacher models. The evidence11

lower bound is formulated as the cross-entropy between the student and teacher12

models, along with the Kullback-Leibler (KL) divergence of the prior mixture.13

Experimental results on three datasets demonstrate the method’s effectiveness in14

mitigating error accumulation within the CTTA framework. Our code is anony-15

mously available at https://anonymous.4open.science/r/vcotta-D2C3/.16

1 Introduction17

Continual Test-Time Adaptation (CTTA) [51] aims to enable a model to accommodate a sequence18

of distinct distribution shifts during the testing time, making it applicable to various risk-sensitive19

applications in open environments, such as autonomous driving and medical imaging. However, real-20

world non-stationary test data exhibit high uncertainty in their temporal dynamics [23], presenting21

challenges related to error accumulation [51]. Previous CTTA studies rely on methods that enforce22

prediction confidence, such as entropy minimization. However, these approaches often lead to23

predictions that are overly confident and less well-calibrated, thus limiting the model’s ability to24

quantify risks during predictions. The reliable estimation of uncertainty becomes particularly crucial25

in the context of continual distribution shift [40]. It is meaningful to design a model capable of26

encoding the uncertainty associated with temporal dynamics and effectively handling distribution27

shifts. The objective of this paper is to devise a CTTA procedure that not only enhances predictive28

accuracy under distribution shifts but also provides reliable uncertainty estimates.29

To address the above problem, we refer to the Bayesian Inference (BI) [1], which retains a distribution30

over model parameters that indicates the plausibility of different settings given the observed data, and31

it has been witnessed as effective in traditional continual learning tasks [38]. In Bayesian continual32

learning, the posterior in the last learning task is set to be the current prior which will be multiplied33

by the current likelihood. This kind of prior transmission is designed to reduce catastrophic forgetting34

in continual learning. However, this is not feasible in CTTA because unlabeled data may introduce35

unreliable prior. As shown in Fig. 1, an unreliable prior may lead to a poor posterior, which may then36

propagate errors to the next inference, leading to the accumulation of errors.37
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Figure 1: In CTTA task, a BNN model is first trained on a source dataset, and then is used to adapt
to updated with unreliable priors, which may result in error accumulations.

Thus, we delve into the utilization of BI framework to evaluate model uncertainty in CTTA, aiming38

to mitigate the impact of unreliable priors and reduce the error propagation. To approximate the39

intractable likelihood in BI, we adopt to use online Variational Inference (VI) [49, 42], and accordingly40

name our method Variational Continual Test-Time Adaptation (VCoTTA). At the source stage,41

we first transform a pretrained deterministic model, say CNN, into a Bayesian Neural Network42

(BNN) by a variational warm-up strategy, where the local reparameterization trick [27] is used to43

inject uncertainties into the source model. During the testing phase, we employ a mean-teacher44

update strategy, where the student model is updated via VI and the teacher model is updated by45

the exponential moving average. Specifically, for the update of the student model, we propose to46

use a mixture of priors from both the source and teacher models, then the Evidence Lower BOund47

(ELBO) becomes the cross-entropy between the student and teachers plus the KL divergence of the48

prior mixture. We demonstrate the effectiveness of the proposed method on three datasets, and the49

results show that the proposed method can mitigate the error accumulation in CTTA and obtain clear50

performance improvements.51

Our contributions are three-fold:52

(1) This paper develops VCoTTA, a simple yet general framework for continual test-time adaptation53

that leverages online VI within BNN.54

(2) We propose to transform an off-the-shelf model into a BNN via a variational warm-up strategy,55

which injects uncertainties into the model.56

(3) We build a mean-teacher structure for CTTA, and propose a strategy to blend the teacher’s prior57

with the source’s prior to mitigate unreliable prior problem.58

2 Related Work59

2.1 Continual Test-Time Adaptation60

Test-Time Adaptation (TTA) enables the model to dynamically adjust to the characteristics of the61

test data, i.e. target domain, in a source-free and online manner [25, 46, 50]. Previous works have62

enhanced TTA performance through the designs of unsupervised loss [37, 58, 32, 9, 7, 17]. These63

endeavours primarily focus on enhancing adaptation within a fixed target domain, representing a64

single-domain TTA setup, where models adapt to a specific target domain and then reset to their65

original pretrained state with the source domain, prepared for the next target domain adaptation.66

Recently, CTTA [51] has been introduced to tackle TTA within a continuously changing target67

domain, involving long-term adaptation. This configuration often grapples with the challenge of error68

accumulation [47, 51]. Specifically, prolonged exposure to unsupervised loss from unlabeled test69

data during long-term adaptation may result in significant error accumulation. Additionally, as the70

model is intent on learning new knowledge, it is prone to forgetting source knowledge, which poses71

challenges when accurately classifying test samples similar to the source distribution.72

To solve the two challenges, the majority of the existing methods focus on improving the confidence of73

the source model during the testing phase. These methods employ the mean-teacher architecture [47]74

to mitigate error accumulation, where the student learns to align with the teacher and the teacher75

2



updates via moving average with the student. As to the challenge of forgetting source knowledge,76

some methods adopt augmentation-averaged predictions [51, 2, 11, 55] for the teacher model,77

strengthening the teacher’s confidence to reduce the influence from highly out-of-distribution samples.78

Some methods, such as [11, 6], propose to adopt the contrastive loss to maintain the already learnt79

semantic information. Some methods believe that the source model is more reliable, thus they are80

designed to restore the source parameters [51, 2]. Though the above methods keep the model from81

confusion of vague pseudo labels, they may suffer from overly confident predictions that are less82

calibrated. To mitigate this issue, it is helpful to estimate the uncertainty in the neural network.83

2.2 Bayesian Neural Network84

Bayesian framework is natural to incorporate past knowledge and sequentially update the belief with85

new data [59]. The bulk of work on Bayesian deep learning has focused on scalable approximate86

inference methods. These methods include stochastic VI [22, 34], dropout [16, 27] and Laplace87

approximation [41, 15] etc., and leveraging the stochastic gradient descent (SGD) trajectory, either88

for a deterministic approximation or sampling. In a BNN, we specify a prior p(θ) over the neural89

network parameters, and compute the posterior distribution over parameters conditioned on training90

data, p(θ|D) ∝ p(θ)p(D|θ). This procedure should give considerable advantages for reasoning91

about predictive uncertainty, which is especially relevant in the small-data setting.92

Crucially, when performing Bayesian inference, we need to choose a prior distribution that accurately93

reflects the prior beliefs about the model parameters before seeing any data [18, 14]. In conventional94

static machine learning, the most common choice for the prior distribution over the BNN weights95

is the simplest one: the isotropic Gaussian distribution. However, this choice has been proved96

indeed suboptimal for BNNs [14]. Recently, some studies estimate uncertainty in continual learning97

within a BNN framework, such as [38, 12, 13, 28]. They set the current prior to the previous98

posterior to mitigate catastrophic forgetting. However, the prior transmission is not reliable in the99

unsupervised CTTA task. Any prior mistakes will be enlarged by adaptation progress, manifesting100

error accumulation. To solve the unreliable prior problem, this paper proposes a prior mixture method101

based on VI.102

3 Variational Inference in CTTA103

We start from the supervised BI in typical continual learning, where the model aims to learn multiple104

classification tasks in sequence. Let D = {(xn, yn)}Nn=1 be the training set, where xn and yn105

denotes the training sample and the corresponding class label. The task t is to learn a direct posterior106

approximation over the model parameter θ as follows.107

p(θ|D1:t) ∝ pt(θ)p(Dt|θ), (1)

where p(θ|D1:t) denotes the posterior of sequential tasks on the learned parameter and p(Dt|θ) is108

the likelihood of the current task. The current prior pt(θ) is regarded as the given knowledge. [38]109

proposes that this current prior can be the posterior learned in the last task, i.e., pt(θ) = p(θ|D1:t−1),110

where the inference becomes111

p(θ|D1:t) ∝ p(θ|D1:t−1)p(Dt|θ). (2)

The detailed process can be shown in Appendix A.112

In contrast to continual learning, CTTA faces a sequence of learning tasks in test time without any113

label information, requiring the model to adapt to each novel domain sequentially. In this case,114

we assume that each domain is i.i.d. and the classes are separable following many unsupervised115

studies [36, 48, 5], more details about the assumption can be seen in Appendix B.1. We use116

U = {xn}Nn=1 to represent the unlabeled test dataset. The CTTA model is first trained on a source117

dataset D0, and then adapted to unlabeled test domains starting from U1. For the t-th adaptation, we118

have119

p(θ|U1:t ∪ D0) ∝ pt(θ)p(Ut|θ). (3)
Similarly, we can set the last posterior to be the current prior, i.e., pt(θ) = p(θ|U1:t−1 ∪ D0) and120

p1(θ) = p(θ|D0). However, employing BI for adaptation on unlabeled testing data can result121

in untrustworthy posterior estimates. Therefore, during subsequent adaptation, the untrustworthy122

posterior automatically transform into unreliable priors, leading to error accumulation. In other words,123
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Figure 2: VCoTTA is built on mean-teacher structure, and conducts VI in CTTA using a mixture of
teacher prior and source prior. The next teacher prior is updated by the exponential moving average.

an unreliable prior pt(θ) will make the current posterior even less trustworthy. Moreover, the joint124

likelihood p(Ut|θ) for t > 0 is intractable on unlabeled data.125

To make the BI feasible in CTTA task, in this paper, we transform the question to an easy-to-compute126

form. Referring to [20], the unsupervised inference can be transformed into127

p(θ|U) ∝ p(θ) exp (−λH(U|θ)) , (4)

where H denotes the conditional entropy and λ is a scalar hyperparameter to weigh the entropy term.128

This simple form reveals that the prior belief about the conditional entropy of labels is given by the129

inputs. The observation of the input U provides information on the drift of the input distribution, which130

can be used to update the belief over the learned parameters θ through Eq. (4). Consequently, this131

allows the utilization of unlabeled data for BI. More detailed derivations can be seen in Appendix B.2.132

In a BNN, the posterior distribution is often intractable and some approximation methods are required,133

even when calculating the initial posterior. In this paper, we leverage online VI, as it typically134

outperforms the other methods for complex models in the static setting [4]. VI defines a variational135

distribution q(θ) to approxmiate the posterior p(θ|U). The approximation process is as follows.136

qt(θ) = argmin
q∈Q

KL

[
q(θ) ∥ 1

Zt
pt(θ)e

−λH(Ut|θ)
]
, (5)

where Q is the distribution searching space and Zt is the intractable normalizing hyperparameter.137

Thus, referring to the derivations in Appendix C, the ELBO is computed by138

ELBO = −λEθ∼q(θ)H(Ut|θ)− KL (q(θ)||pt(θ)) . (6)

Optimizing with Eq. (6) makes model adapt to domain shift. While VI offers a good framework139

for measuring uncertainty in CTTA, it is noteworthy that VI does not directly address the issue of140

unreliable priors. The error accumulation remains a significant concern.141

Despite this, the form of the ELBO in variational inference offers a pathway for mitigating the impact142

of unreliable priors. In Eq. (6), the entropy term may result in overly confident predictions that are143

less calibrated, while the KL term may be directly affected by an unreliable prior. In the following144

section, we will discuss how to solve the problems when computing the two terms.145

4 Adaptation and Inference in VCoTTA146

4.1 Entropy term: VI by Mean-Teacher Architecture147

In the above section, we introduce the VI in CTTA but challenges remain, i.e., the unreliable prior.148

To mitigate the challenge in the entropy term, we adopt a Mean-Teacher (MT) structure [47] in the149

Bayesian inference process. MT is initially proposed in semi-supervised and unsupervised learning,150

where the teacher model guides the unlabeled data, helping the model generalize and improve151

performance with the utilization of large-scale unlabeled data.152

MT structure is composed of a student model and a teacher model, where the student model learns153

from the teacher and the teacher updates using Exponential Moving Average (EMA) [24]. In VI, the154

student is set to be the variational distribution q(θ), which is a Gaussian mean-field approximation155

for its simplicity. It is achieved by stacking the biases and weights of the network as follows.156

q(θ) =
∏

d
N
(
θd;µd, diag(σ2

d)
)
, (7)
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where d denotes each dimension of the parameter. The teacher model p̄(θ) (we use bar to distinguish157

the general prior) is also a Gaussian distribution. Thus, the student model is updated by aligning it158

with the teacher model through the use of a cross-entropy (CE) loss159

LCE(q, p̄) = −Eθ∼q(θ)Ex∼U [p̄(x|θ) log q(x|θ)] . (8)

In our implementation, we also try to use Symmetric Cross-Entropy (SCE) [53] in CTTA,160

LSCE(q, p̄) = −Eθ∼q(θ)Ex∼U
[
p̄(x|θ) log q(x|θ) + q(x|θ) log p̄(x|θ)

]
. (9)

SCE balances the gradient for high and low confidence, benefiting the unsupervised learning.161

4.2 KL term: Mixture-of-Gaussian Prior162

For the KL term, to reduce the impact of unreliable prior, we propose a mixing-up approach to163

combining the teacher and source prior adaptatively. The source prior is warmed up upon the164

pretrained deterministic model p1(θ) = p(θ|D0) (see Sec. 4.3.1). The teacher model p̄t(θ) is165

updated by EMA (see Sec. 4.3.3). We assume that the prior should be the mixture of the two Gaussian166

priors. Using only the source prior, the adaptation is limited. While using only the teacher prior, the167

prior is prone to be unreliable.168

We use the mean entropy derived from a given serious data augmentation to represent the confidence169

of the two prior models, and mix up the two priors with a modulating factor170

α =
1

|I|
∑

i∈I

eH(x|θ0)/τ

eH(x|θ0)/τ + eH(x|θ̄)/τ , (10)

where I denotes augmentation types. θ0 and θ̄ are the parameters of the source model and the teacher171

model. τ means the temperature factor. Thus, as shown in Fig. 3(b), the current prior pt(θ) is set to172

the mixture of priors as173

pt(θ) = α · p1(θ) + (1− α) · p̄t(θ). (11)
In the VI, we use the upper bound to update the KL term [31] (see Appendix D.1) for simplicity,174

KL (q||pt) ≤ α · KL (q||p0) + (1− α) · KL (q||p̄t) . (12)

Furthermore, we also improve the teacher-student alignment in the entropy term (see Eq. (9)) by175

picking up the augmented logits with a larger confidence than the raw data. That is, we replace the176

teacher log-likelihood log p̄(x|θ) by177

log p̄′(x|θ) =
∑

i∈I 1 (f(p̄(x′
i)) > f(p̄(x)) + ϵ) · log p̄(x′

i)∑
i∈I 1 (f(p̄(x′

i)) > f(p̄(x)) + ϵ)
, (13)

where, for brevity, we let p̄(x′
i) = p̄(x′

i|θ) and p̄(x) = p̄(x)|θ) in short. f(·) is the confidence178

function. ϵ denotes the confidence margin and 1(·) is an indicator function. Eq. (13) can be regarded179

as a filter, meaning that for each sample, the reliable teacher is represented by the average of its180

augmentations with ϵ more confidence. In Appendix D.2, we prove that the proposed mixture-of-181

Gaussian is benifical to CTTA. In Appendix E.1, we discuss the influence of different ϵ.182

4.3 Adaptation and Inference183

4.3.1 Variational Warm-up184

To obtain a source BNN, instead of training a model from scratch on the source dataD0, we transform185

a pretrained deterministic CNN to a BNN by variational warm-up strategy. Specifically, we leverage186

the local reparameterization trick [27] to add stochastic parameters, and warm up the model:187

q0(θ) = argmin
q∈Q

KL

[
q(θ) ∥ 1

Z0
p(θ)p(D0|θ)

]
, (14)

where p(θ) represents the prior distribution, say the pretrained deterministic model. Eq. (14) denotes188

a standard VI on the source data, and we optimize the ELBO to obtain the variational distribution [49].189

By the variational warm-up, we can easily transform an off-the-shelf pretrained model into a BNN190

with a stochastic dynamic. The variational warm-up strategy is outlined in Algorithm 1.191
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Algorithm 1 Variational warm-up
1: Input: Source data D0, pretrained model p0(θ)
2: Initialize prior distribution p(θ) with p0(θ)
3: Update p(θ|D0) ≈ q0(θ) by p(θ) and D0 using Eq. (14)
4: Output: Source prior p1(θ) = p(θ|D0)

The warm-up strategy is a common192

approach in TTA and CTTA tasks to193

further build knowledge structure for194

the source model, such as [26, 45, 11,195

8]. Some other methods may not use196

warm-up but still use the source data,197

such as [39]. The warm-up strategy198

uses the source data only before deploying the model to CTTA scenario, and it is regarded as a part199

of pretraining. All of these methods using source data are operationalized in source-free at test time200

and find it is beneficial to CTTA. We use the warm-up to inject the uncertainties into a given source201

model, i.e., turning an off-the-shelf pretrained CNN model into a pretrained BNN model. This is202

convenient to obtain a pretrained BNN, because the warm-up strategy uses only a few epochs. We203

offer more discussions and experiments on the proposed variational warm-up strategy in Appendix F.204

4.3.2 Student update via VI205

The student model qt(θ) is adapted by approximating using Eq. (5), and is optimized on:206

L(qt) = LSCE(qt, p̄
′
t) + α · KL (qt||q0) + (1− α) · KL (qt||q̄t) , (15)

where p̄′t is the current augmented teacher model in Eq. (13), and p1(θ) ≈ q0(θ), p̄t(θ) ≈ q̄t(θ).207

The KL term between two Gaussians can be computed in a closed form.208

4.3.3 Teacher update via EMA209

The teacher model is updated using EMA. Let (µ,σ) and (µ̄, σ̄) be the mean and standard deviation210

of the student and teacher model, respectively. At test time, the teacher model q̄t(θ) is updated by211

µ̄← βµ̄+ (1− β)µ, σ̄ ← βσ̄ + (1− β)σ. (16)

Although the std is not used in the cross entropy to compute the likelihood, the teacher prior212

distribution is important to adjust the student distribution via the KL term.213

4.3.4 Model inference214

At any time, CTTA model needs to predict and adapt to the unlabeled test data. In our VCoTTA, we215

also use the mixed prior to serve as the inference model. That is, for a test data point x, the model216

inference is represented by217

pt(x) =

∫
p(x|θ)pt(θ)dθ =

∫
αp(x|θ)p1(θ) + (1− α)p(x|θ)p̄t(θ)dθ, (17)

For the data prediction, the model only uses the expectation to reduce the stochastic, but leverages218

stochastic dynamics in domain adaptation.219

4.3.5 The algorithm220

Algorithm 2 Variational CTTA
1: Input: Source data D0, pretrained model p0(θ), Un-

labeled test data from different domain U1:T
2: p1(θ) = Variational warm-up(D0, p0(θ)). // Alg. 1
3: for Domain shift t = 1 to T do
4: for Test data x ∼ Ut do
5: Model predict for x (Eq. (17))
6: Update student model using x (Eq. (15))
7: Update teacher model via EMA (Eq. (16))
8: end for
9: end for

We illustrate the whole algorithm in Al-221

gorithm 2. We first transform an off-the-222

shelf pretrained model into BNN via the223

variational warm-up strategy (Sec. 4.3.1).224

After that, we obtain a BNN, and for each225

domain shift, we forward and adapt each226

test data point in an MT architecture. For227

a data point x, we first predict the class la-228

bel using the mixture of the source model229

and the teacher model (Sec. 4.3.4). Then,230

we update the student model using VI,231

where we use cross entropy to compute232

the entropy term and use the mixture of233

priors for the KL term (Sec. 4.3.2). Finally, we update the BNN teacher model via EMA (Sec. 4.3.3).234

See more details in Appendix G. The process is feasible for any test data without labels.235
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Table 1: Classification error rate (%) for the standard CIFAR10-to-CIFAR10C CTTA task. All results
are evaluated with the largest corruption severity level 5 in an online fashion. C1 to C15 are 15
corruptions for the datasets (see Sec. 5.1). CIFAR100C and ImagenetC use the same setup.

Method C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 Avg

Source 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5
BN 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3 20.4
Tent [50] 24.8 20.6 28.5 15.1 31.7 17.0 15.6 18.3 18.3 18.1 11.0 16.8 23.9 18.6 23.9 20.1
CoTTA [51] 24.5 21.5 25.9 12.0 27.7 12.2 10.7 15.0 14.1 12.7 7.6 11.0 18.5 13.6 17.7 16.3
RoTTA [56] 30.3 25.4 34.6 18.3 34.0 14.7 11.0 16.4 14.6 14.0 8.0 12.4 20.3 16.8 19.4 19.3
PETAL [2] 23.7 21.4 26.3 11.8 28.8 12.4 10.4 14.8 13.9 12.6 7.4 10.6 18.3 13.1 17.1 16.2
SATA [6] 23.9 20.1 28.0 11.6 27.4 12.6 10.2 14.1 13.2 12.2 7.4 10.3 19.1 13.3 18.5 16.1
DSS [52] 24.1 21.3 25.4 11.7 26.9 12.2 10.5 14.5 14.1 12.5 7.8 10.8 18.0 13.1 17.3 16.0
SWA [55] 23.9 20.5 24.5 11.2 26.3 11.8 10.1 14.0 12.7 11.5 7.6 9.5 17.6 12.0 15.8 15.3

VCoTTA (Ours) 18.1 14.9 22.0 9.7 22.6 11.0 9.5 11.4 10.6 10.5 6.5 9.4 15.6 11.0 14.5 13.1

Table 2: Classification error rate (%) for the standard CIFAR100-to-CIFAR100C CTTA task.

Method C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 Avg

Source 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4
BN 42.1 40.7 42.7 27.6 41.9 29.7 27.9 34.9 35 41.5 26.5 30.3 35.7 32.9 41.2 35.4
Tent [50] 37.2 35.8 41.7 37.9 51.2 48.3 48.5 58.4 63.7 71.1 70.4 82.3 88.0 88.5 90.4 60.9
CoTTA [51] 40.1 37.7 39.7 26.9 38.0 27.9 26.4 32.8 31.8 40.3 24.7 26.9 32.5 28.3 33.5 32.5
RoTTA [56] 49.1 44.9 45.5 30.2 42.7 29.5 26.1 32.2 30.7 37.5 24.7 26.9 32.5 28.3 33.5 32.5
PETAL [2] 38.3 36.4 38.6 25.9 36.8 27.3 25.4 32.0 30.8 38.7 24.4 26.4 31.5 26.9 32.5 31.5
SATA [6] 36.5 33.1 35.1 25.9 34.9 27.7 25.4 29.5 29.9 33.1 23.6 26.7 31.9 27.5 35.2 30.3
DSS [52] 39.7 36.0 37.2 26.3 35.6 27.5 25.1 31.4 30.0 37.8 24.2 26.0 30.0 26.3 31.1 30.9
SWA [55] 39.4 36.4 37.4 25.0 36.0 26.6 25.0 29.1 28.4 35.0 23.5 25.1 28.5 25.8 29.6 30.0

VCoTTA (Ours) 35.3 32.8 38.9 23.8 34.6 25.5 23.2 27.5 26.7 30.4 22.1 23.0 28.1 24.2 30.4 28.4

5 Experiment236

5.1 Experimental Setting237

Dataset. In our experiments, we employ the CIFAR10C, CIFAR100C, and ImageNetC datasets as238

benchmarks to assess the robustness of classification models. Each dataset comprises 15 distinct239

types of corruption, each applied at five different levels of severity (from 1 to 5). These corruptions240

are systematically applied to test images from the original CIFAR10 and CIFAR100 datasets, as well241

as validation images from the original ImageNet dataset. For simplicity in tables, we use C1 to C15242

to represent the 15 types of corruption, i.e., C1: Gaussian, C2: Shot, C3: Impulse C4: Defocus, C5:243

Glass, C6: Motion, C7: Zoom, C8: Snow, C9: Frost, C10: Fog, C11: Brightness, C12: Contrast, C13:244

Elastic, C14: Pixelate, C15: Jpeg.245

Pretrained Model. Following previous studies [50, 51], we adopt pretrained WideResNet-28 [57]246

model for CIFAR10to-CIFAR10C, pretrained ResNeXt-29 [54] for CIFAR100-to-CIFAR100C, and247

standard pretrained ResNet-50 [21] for ImageNet-to-ImagenetC. Note in our VCoTTA [51], we248

further warm up the pretrained model to obtain the stochastic dynamics for each dataset. Similar to249

CoTTA, we update all the trainable parameters in all experiments. The augmentation number is set to250

32 for all compared methods that use the augmentation strategy.251

5.2 Methods to be Compared252

We compare our VCoTTA with multiple state-of-the-art (SOTA) methods. SOURCE denotes the253

baseline pretrained model without any adaptation. BN [30, 43] keeps the network parameters frozen,254

but only updates Batch Normalization. TENT [50] updates via Shannon entropy for unlabeled255

test data. CoTTA [51] builds the MT structure and uses randomly restoring parameters to the256

source model. SATA [6] modifies the batch-norm affine parameters using source anchoring-based257

self-distillation to ensure the model incorporates knowledge of newly encountered domains while258

avoiding catastrophic forgetting. SWA [55] refines the pseudo-label learning process from the259

perspective of the instantaneous and long-term impact of noisy pseudo-labels. PETAL [2] tries to260

estimate the uncertainty in CTTA, which is similar to BNN, but it ignores the unreliable prior problem.261

All compared methods adopt the same backbone, pretrained model and hyperparameters.262
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Table 3: Classification error rate (%) for the standard ImageNet-to-ImageNetC CTTA task.

Method C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 Avg

Source 95.3 95.0 95.3 86.1 91.9 87.4 77.9 85.1 79.9 79.0 45.4 96.2 86.6 77.5 66.1 83.0
BN 87.7 87.4 87.8 88.0 87.7 78.3 63.9 67.4 70.3 54.7 36.4 88.7 58.0 56.6 67.0 72.0
Tent [50] 85.6 79.9 78.3 82.0 79.5 71.4 59.5 65.8 66.4 55.2 40.4 80.4 55.6 53.5 59.3 67.5
CoTTA [51] 87.4 86.0 84.5 85.9 83.9 74.3 62.6 63.2 63.6 51.9 38.4 72.7 50.4 45.4 50.2 66.7
RoTTA [56] 88.3 82.8 82.1 91.3 83.7 72.9 59.4 66.2 64.3 53.3 35.6 74.5 54.3 48.2 52.6 67.3
PETAL [2] 87.4 85.8 84.4 85.0 83.9 74.4 63.1 63.5 64.0 52.4 40.0 74.0 51.7 45.2 51.0 67.1
DSS [52] 84.6 80.4 78.7 83.9 79.8 74.9 62.9 62.8 62.9 49.7 37.4 71.0 49.5 42.9 48.2 64.6

VCoTTA (Ours) 81.8 78.9 80.0 83.4 81.4 70.8 60.3 61.1 61.7 46.4 35.7 71.7 50.1 47.1 52.9 64.2

5.3 Comparison Results263

We show the major comparisons with the SOTA methods in Tables 1, 2 and 3. We have the following264

observations. First, no adaptation at the test time (SOURCE) suffers from serious domain shift, which265

shows the necessity of the CTTA. Second, traditional TTA methods that ignore the continual shift266

in test time perform poorly such as TENT and BN. We also find that simple Shannon entropy is267

effective in the first several domain shifts, especially in complex 1,000-classes ImageNetC, but shows268

significant performance drops in the following shifts. Third, the mean-teacher structure is very useful269

in CTTA, such as COTTA and PETAL, which means that the pseudo-label is useful in domain shift.270

In the previous method, the error accumulation leads to the unreliable pseudo labels, then the model271

may get more negative transfers in CTTA along the timeline. The proposed VCOTTA outperforms272

other methods on all the three datasets, such as 13.1% vs. 15.3% (SWA) on CIFAR10C, 28.4%273

vs. 30.0% (SWA) on CIFAR100C and 64.2% vs. 66.7% (COTTA) on ImageNetC. We hold the274

opinion that the prior will inevitably drift in CTTA, but VCOTTA slows down the process via the275

prior mixture. We also find that the superiority is more obvious in the early adaptation, which may be276

influenced by the different corruption orders. We analyze the order problem in Appendix H.277

5.4 Ablation Study278

We evaluate the two components in Table 4, i.e., the Variational Warm-Up (VWU) and the Symmetric279

Cross-Entropy (SCE) via ablation. The ablation results show that the two components are both280

important for VCOTTA. First, the VWU is used to inject stochastic dynamics into an off-the-shelf281

pretrained model. Without the VWU, the performance of VCOTTA drops to 18.4% from 13.9% on282

CIFAR10C, 31.5% from 28.8% on CIFAR100C and 68.1% from 64.2% on ImageNetC. Also, the283

SCE can further improve the performance on CIFAR10C and CIFAR100C, because SCE balances284

the gradient for high and low confidence predictions. We also find that SCE is ineffective for complex285

ImageNetC, and the reason may be the class sensitivity imbalance, causing the model to lean more286

towards one direction during optimization.287

Table 4: Ablation study on under severity 5.
No. VWU SCE CIFAR10C CIFAR100C ImageNetC

1 18.4 31.5 68.1
2

√
17.1 31.2 68.3

3
√

13.9 28.8 64.2
4

√ √
13.1 28.4 64.7

Table 5: Different weights for mixture of priors.
No. α 1− α CIFAR10C CIFAR100C ImageNetC

1 1 0 17.4 35.0 69.9
2 0 1 16.3 33.7 71.2
3 0.5 0.5 14.7 31.3 67.0
4 Eq. (10) 13.1 28.4 64.7

5.5 Mixture of Priors288

In Sec. 4.2, we introduce a Gaussian mixture strategy, where the current prior is approximated as the289

weighted sum of the source prior and the teacher prior. The weights are determined by computing the290

entropy over multiple augmentations of two models. To assess the effectiveness of these weights, we291

compare them with three naive weighting configurations: using only the source model, using only the292

teacher model, and a simple average with equal weights for both models. The results, as presented in293

Table 5, reveal that relying solely on the source model or the teacher model (i.e., weighting with (1, 0)294

and (0, 1)) results in suboptimal performance. Additionally, naive weighting with equal contributions295

from both models (i.e., (0.5, 0.5)) proves ineffective for CTTA due to the inherent uncertainty in both296

models. In contrast, the proposed adaptive weights for the Gaussian mixture in CTTA demonstrate its297

effectiveness. This underscores the significance of striking a balance between the two prior models in298
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an unsupervised environment. The trade-off implies the need to discern when the source model’s299

knowledge is more applicable and when the teacher model’s shifting knowledge takes precedence.300

5.6 Uncertainty Estimation301

To evaluate the uncertainty estimation, we use negative loglikelihood (NLL) and Brier Score (BS) [3].302

Both NLL and BS are proper scoring rules [19], and they are minimized if and only if the predicted303

distribution becomes identical to the actual distribution:304

NLL = −E(x,y)∈Dtest log(p(y|x,θ)), BS = E(x,y)∈Dtest (p(y|x,θ)− Onehot(y))2 ,

whereDtest denotes the test set, i.e., the unsupervised test dataset U with labels. We evaluate NLL and305

BS with a severity level of 5 for all corruption types, and the compared results with SOTAs are shown306

in Table 6. We have the following observations. First, most methods suffer from low confidence in307

terms of NLL and BS because of the drift priors, where the model is unreliable gradually, and the error308

accumulation makes the model perform poorly. Our approach outperforms most other approaches in309

terms of NLL and BS, demonstrating the superiority in improving uncertainty estimation. We also310

find that PETAL [2] shows good NLL and BS, because PETAL forces the prediction over-confident311

to unreliable priors, thus PETAL shows unsatisfactory results on adaptation accuracy, such as 31.5%312

vs. 28.4% (Ours) on CIFAR100C.313

Table 6: Uncertainty estimation via NLL and BS.

Method CIFAR10C CIFAR100C ImageNetC
NLL BS NLL BS NLL BS

Source 3.0566 0.7478 2.4933 0.6707 5.0703 0.9460
BN 0.9988 0.3354 1.3932 0.4740 3.9971 0.8345
Tent 1.9391 0.3713 7.1097 1.0838 3.6902 0.8281
CoTTA 0.7192 0.2761 1.2907 0.4433 3.6235 0.7972
PETAL 0.5899 0.2458 1.2267 0.4327 3.6391 0.8017

VCoTTA 0.5421 0.2130 1.2287 0.4307 3.4469 0.8092

Table 7: Gradually changing on severity 5.

Method CIFAR10C CIFAR100C ImageNetC
Source 23.9 32.9 81.7
BN 13.5 29.7 54.1
TENT 39.1 72.7 53.7
CoTTA 10.6 26.3 42.1
PETAL 10.5 27.1 60.5

VCoTTA 8.9 24.4 39.9

5.7 Gradually Corruption314

We also show gradual corruption results instead of constant severity in the major comparison, and the315

results are reported in Table 7. Specifically, each corruption adopts the gradual changing sequence:316

1→ 2→ 3→ 4→ 5→ 4→ 3→ 2→ 1, where the severity level is the lowest 1 when corruption317

type changes, therefore, the type change is gradual. The distribution shift within each type is also318

gradual. Under this situation, our VCoTTA also outperforms other methods, such as 8.9% vs. 10.5%319

(PETAL) on CIFAR10C, and 24.4% vs. 26.3% (COTTA) on CIFAR100C. The results show that the320

proposed VCOTTA based on BNN is also effective when the distribution change is uncertain.321

6 Conclusion and Limitation322

Conclusion: In this paper, we proposed a variational Bayesian inference approach, termed VCoTTA,323

to estimate uncertainties in CTTA. At the pretrained stage, we first transformed an off-the-shelf324

pretrained deterministic CNN into a BNN using a variational warm-up strategy, thereby injecting325

uncertainty into the source model. At the test time, we implemented a mean-teacher update strategy,326

where the student model is updated via variational inference, while the teacher model is refined by the327

exponential moving average. Specifically, to update the student model, we proposed a novel approach328

that utilizes a mixture of priors from both the source and teacher models. Consequently, the ELBO329

can be formulated as the cross-entropy between the student and teacher models, combined with the330

KL divergence of the prior mixture. We demonstrated the effectiveness of the proposed method on331

three datasets, and the results show that the proposed method can mitigate the issue of unreliable332

prior within the CTTA framework.333

Limitation: The efficacy of the proposed method relies on injecting uncertainty into the model during334

the pre-training phase, which may be unavailable in scenarios where pretraining is already completed,335

and original data is inaccessible. Additionally, constructing and training BNN models are inherently336

more complex compared to CNNs, highlighting the importance of enhancing computational efficiency.337

The Gaussian mixture method relies on multiple data augmentations, which also incurs computational338

costs. Future endeavors could explore more efficient approaches for Gaussian mixture.339
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Variational Continual Test-Time Adaptation
(Appendix)

A Bayesian Inference (BI) in Traditional CL and CTTA485

As described in Sec. 3, we first illustrate the BI has been studied in traditional Continual Learning486

(CL) methods. In this section, we compare the BI in CL and CTTA in detail and show the differences487

with some related works. The comparison can be seen in Fig. 3. For the CL, BI is conducted by the488

posterior propagation, that is, the prior of next task is equal to the current posterior. This is feasible in489

supervised CL, where the data label is provided. For the CTTA, the posterior is not trustworthy using490

only pseudo labels to adapt to a new domain. Thus, propagate the untrustworthy posterior to the next491

stage would make unreliable prior, which will result in error accumulation. In the proposed VCoTTA,492

we propose to solve the problem via enhancing the two terms in VI (see Sec. 4).493

Prior
  Equal
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Next Prior
 

Labeled
Data     

(a) BI in continual learning

Source Prior
 

EMA

Posterior
 

Next
Teacher Prior

 
Unlabeled

Data     
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Figure 3: Bayesian inference comparison between continual learning and CTTA. We find the
traditional prior transmission is infeasible in CTTA because of the unreliable prior from unlabeled
data. In our method, we place CTTA in a mean-teacher structure, and design BI in CTTA using a
mixture of teacher prior and source prior. The next teacher prior is updated by the exponential moving
average.

VCL [38] is a classic CL study that uses VI, our work is also inspired by VCL but has the following494

difference. (1) The tasks are different: VCL studies supervised CL task, while our VCoTTA studies495

unsupervised CTTA task. (2) The challenges are differnt: CL only suffers from catastrophic forgetting496

(CF), while CTTA sufffers from both CF and error accumulation. (3) Ways of BI are different: To497

conduct BI, one needs to compute prior and likelihood. For the prior, the current prior of VCL is set498

to be the previous posterior, while in CTTA such a prior may be unreliable. For the likelihood, VCL499

can directly compute likelihood, CTTA is under unsupervised setting, thus in our work, we deduce500

the BI in CTTA using conditional entropy. (4) The update strategies are different: To reduce error501

accumulation in unsupervised scenario, we employ a mean-teacher update strategy using VI for the502

student model and exponential moving average for the teacher model, and compute a prior mixture503

to guide the student update. Moreover, VCL maintains an extra coreset from the training set, while504

VCoTTA never store any data during the test time.505
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We also find another recent work named PETAL [2] that estimates uncertainties in CTTA. The506

BI formulation is similar between PETAL and ours, which is derived from [20], but PETAL use507

different method to conduct the inference: (1) PETAL only uses CNN and does not estimate the model508

uncertainties, while VCoTTA uses BNN to model the uncertainties during test time. (2) PETAL509

ignores the unreliable prior in CTTA, and follow the VCL setting that use the previous posterior510

as the current prior. (3) We conduct BI using variational inference while PETAL use SWAG [35].511

SWAG has advantages in terms of computational efficiency and stability during training, especially in512

scenarios where computational resources are limited. However, SWAG might not handle unreliable513

priors as effectively as VI since it doesn’t explicitly model the posterior distribution. (4) We have514

compared with PETAL in our experiment (see Tables 1, 2, 3), and our method outperforms PETAL515

on all datasets.516

B CTTA Approximation by BI517

B.1 Assumption on Class Separability518

In our method, we use the conditional entropy to alternate the intractable computing of likelihood.519

Note that the use of entropy in unsupervised scenario needs to satisfy the class-separable assumption.520

In fact, unlabeled data do not convey category information but still carry information. Miller and521

Uyar [36] theoretically proved that utilizing unlabeled samples to train classifiers can improve522

classification performance if there is a connection between the target and sample distributions.523

It is a common practice in unsupervised/semi-supervised learning to establish the relationship524

between unlabeled data and the target by making some reasonable assumptions to obtain category-525

relevant information from unlabeled data. Common assumptions include the Smoothness assumption,526

Cluster assumption, Manifold assumption, Low-density separation assumption, etc. For example,527

the well-known clustering-based methods utilize the cluster assumption to generate pseudo-labels528

for unsupervised learning [48]. Caron et al. [5] assumes that "the model trained on labeled data529

will produce high uncertainty estimation for unseen data" in domain adaptation tasks to benefit the530

classifier from unlabeled data lacking category information.531

Bengio et al. in [20] proposed the conditional entropy and point out that "These studies conclude that532

the (asymptotic) information content of unlabeled examples decreases as classes overlap. Thus, the533

assumption that classes are well separated is sensible if we expect to take advantage of unlabeled534

examples." This assumption has been applied to many studies, for example in [29, 33, 60, 2]. In535

the CTTA task of this paper, as the task progresses, the domain shifts, but the categories in the task536

remain unchanged. Therefore, under the assumption that unlabeled data contains information, we537

can reasonably continue to use conditional entropy in the current scenario. To sum up, whether in538

unsupervised TTA or in the Bayesian field, this assumption is not difficult to achieve or has never539

been applied. We can quite naturally continue to use this assumption in the context of this paper.540

B.2 BI during Test Time541

The goal of CTTA is to learn a posterior distribution p(θ|U1:T ∪ D0) from a source dataset D0,542

and a sequence of unlabeled test data from U1 to UT . Following [60], assuming we have multiple543

input-generating distributions that the source dataset D0 is drawn from a distribution ϕ, and ϕ̃t544

specifies the shifted of the t-th unlabeled test dataset which we aim to adapt to. Let the parameters545

of the model be θ,then following the semi-supervised learning framework [20], we incorporate all546

input-generating distributions into the belief over the model parameters θ as follows547

p(θ|ϕ, ϕ̃1, · · · , ϕ̃T ) ∝ p(θ) exp (−λ0Hθ,ϕ(Y |X))

T∏
t=1

exp
(
−λtHθ,ϕ̃t

(Y |X)
)
, (18)

where the inputs X are sampled i.i.d. from a generative model with parameters ϕ, while the corre-548

sponding labels Y are sampled from a conditional distribution p(Y |X,θ), which is parameterized549

by the model parameters θ. p(θ) is a prior distribution over θ. {λ0, λ1, · · · , λT } are the factors for550

approximation weighting. Generally, the entropy term Hθ,ϕ(Y |X) represents the cross entropy of551

the supervised learning, and the entropy term Hθ,ϕ̃t
(Y |X) for t > 0 denotes the Shannon entropy of552

the unsupervised learning.553
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Following [60], we can empirically use a point estimation to get a plug-in Bayesian approach to554

approximate the above formula:555

p(θ|U1:T ∪ D0)

∝ p(θ)
∏

∀x,y∈D0

p(y|x,θ) exp

(
− λ0

|D0|
∑

∀x∈D0

H(Y |x,θ)

)
T∏

t=1

exp

(
− λt

|Ut|
∑

∀x∈Ut

H(Y |x,θ)

)
.

(19)
To make the formula feasible to CTTA, that is, no source data is available at the test time, we set556

λ0 = 0. And the source knowledge can be represented by p(θ|D0) ∝ p(θ)
∏

∀x,y∈D0
p(y|x,θ).557

Thus, for the t-th test domain, the Bayesian inference in CTTA can be represented as follows:558

p(θ|U1:t ∪ D0) ∝ p(θ|D0)

t∏
i=1

exp

(
− λi

|Ui|
∑

∀x∈Ui

H(Y |x,θ)

)

∝ p(θ|U1:t−1 ∪ D0) exp

(
− λt

|Ut|
∑

∀x∈Ut

H(Y |x,θ)

)
,

(20)

where H(Ut|θ) =
1

|Ut|
∑

∀x∈Ut
H(Y |x,θ) and the above formula can be rewritten in simplicity as559

p(θ|U1:t ∪ D0) ∝ p(θ|U1:t−1 ∪ D0)e
−λH(Ut|θ) = pt(θ)e

−λH(Ut|θ), (21)

which specifies the Bayesian inference process on continuously arriving unlabeled data in CTTA.560

C ELBO of the VI in CTTA561

We built VI for CTTA in Sec. 3, where we initialize a variational distribution q(θ) to approximate the562

real posterior. For the test domain t, we optimize the variational distribution as follows:563

qt(θ) = argmin
q∈Q

KL

[
q(θ) ∥ 1

Zt
pt(θ)e

−λH(Ut|θ)
]
, (22)

where Q is the distribution searching space, and pt(θ) is the current prior.564

Following the definition of KL divergence and the standard derivation of the Evidence Lower BOund565

(ELBO) is as the following formulas. Specifically, the KL divergence is expanded as566

KL

[
q(θ) ∥

1

Zt
pt(θ)e

−λH(Ut|θ)
]

=−
∫
θ

q(θ) log

1

Zt
pt(θ)e

−λH(Ut|θ)

q(θ)
dθ

=−
∫
θ

q(θ) log
1

Zt
e−λH(Ut|θ)dθ −

∫
θ

q(θ) log
pt(θ)

q(θ)
dθ

=

∫
θ

q(θ) logZtdθ + λ

∫
θ

q(θ)H(Ut|θ)dθ −
∫
θ

q(θ) log
pt(θ)

q(θ)
dθ

= logZt + λEθ∼q(θ)H(Ut|θ) + KL (q(θ) ∥ pt(θ)) ,

(23)

where the first constant term can be reduced in the optimization. Thus, we can optimize the variational567

distribution via the ELBO:568

qt(θ) = argmin
q∈Q

KL

[
q(θ) ∥ 1

Zt
pt(θ)e

−λH(Ut|θ)
]

= argmax
q∈Q
−λEθ∼q(θ)H(Ut|θ)−KL (q(θ) ∥ pt(θ))

= argmax
q∈Q

ELBO.

(24)
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In our case, the former entropy term can be more effectively replaced by the cross entropy or569

symmetric cross entropy (SCE) between the student model and the teacher model in a mean-teacher570

architecture (see Sec. 4.1). For the latter KL term, we can substitute a variational approximation571

that we deem closest to the current-stage prior pt(θ) into the KL divergence. When the prior is a572

multivariate Gaussian distribution, this term can be computed in closed form as573

KL (N (µ1,Σ1) ∥ N (µ2,Σ2))

=
1

2

(
tr(Σ−1

2 Σ1) + (µ2 − µ1)
⊤Σ−1

2 (µ2 − µ1)− k + ln

(
det(Σ2)

det(Σ1)

))
.

(25)

where Σ = diag(σ2), k represents the dimensionality of the distributions, tr(·) denotes the trace of a574

matrix, and det(·) stands for the determinant of a matrix. For the case that the prior is a mixture of575

Gaussian distributions, we can refer to the next section to get its upper bound.576

D Mixture-of-Gaussian Prior577

D.1 Upper Bound of the Mixture of Two KL Divergencies578

We refer to the lemma that was stated for the mixture of Gaussian in [44]. The KL divergence579

between two mixture distributions p =
∑k

i=1 αipi and p′ =
∑k

i=1 αip
′
i is upper-bounded by580

KL(p ∥ p′) ≤ KL(α ∥ α′) +

k∑
i=1

αiKL(pi ∥ p′i), (26)

where α = (α1, α2, · · · , αk) and α′ = (α′
1, α

′
2, · · · , α′

k) are the weights of the mixture components.581

The equality holds if and only if αipi/
∑k

j=1 αjpj = α′
ip

′
i/
∑k

j=1 α
′
jp

′
j for all i. Using the log-sum582

inequality [10], we have583

KL(

k∑
i=1

αipi ∥
k∑

i=1

αip
′
i) =

∫ ( k∑
i=1

αipi

)
log

∑k
i=1 αipi∑k
i=1 αip′i

≤
∫ k∑

i=1

αipi log
αipi

αip′i

=

k∑
i=1

αi

(∫
pi log

αi

α′
i

+

∫
pi log

pi

p′i

)

= KL(α ∥ α′) +

k∑
i=1

αiKL(pi ∥ p′i).

In our algorithm, q(θ) is set to be a mixture of Gaussian distributions, i.e., pt(θ) = α · p1(θ) + (1−584

α) · p̄t(θ). In the above inequality, let q(θ) =
∑k

i=1 αiq(θ), we can get the upper bound of the KL585

divergence between q(θ) and pt(θ):586

KL(q ∥ pt) ≤ α · KL (q||p1) + (1− α) · KL (q||p̄t) . (27)

So the lower bound (24) can be redefined as587

L = −λEθ∼q(θ)H(Ut|θ)−KL (q(θ) ∥ pt(θ))
≥ −λEθ∼q(θ)H(Ut|θ)− α · KL (q||p1)− (1− α) · KL (q||p̄t)
def
= L′,

(28)

Then, we have obtained a lower bound that can be optimized through closed-form calculations as588

the source prior distribution q0(θ) and the teacher prior distribution q̄t(θ) are multivariate Gaussian589

distributions, which means we can also optimize L′ with Eq. (25).590
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D.2 Advantage of the Mixture of Gaussian Prior591

In this subsection, we illustrate why the mixture of Gaussian prior are beneficial to CTTA. First of592

all, we can start from defining what is a better distribution for CTTA. Assume there exists an ideal593

prior distribution p̂t, which effectively represents the distribution of the model after learning all past594

knowledge, including that from the source and unlabeled datasets. Then we can use the difference595

between a distribution and the ideal distribution p̂t (here we use KL divergence) to measure the596

goodness of a distribution, i.e., KL(·||p̂t).597

Generally, neither the source prior p1 (trained on labeled data) nor the adapted prior p̄t (adapt598

on unlabeled data, being unreliable) can be completely consistent with p̂t. Considering that, as t599

increases, the difference between p̄t and p̂t will increase without an upper bound due to the error600

accumulation (since t is infinitely growing). The source prior p1 cannot adapt to the unlabeled data,601

but it contains important information from the labeled data, and the ideal distribution cannot forget the602

source information too much, so we can assume that the difference between p1 and p̂t is a constant,603

i.e., KL(p1||p̂t) < U , where U is a constant upper bound. Accordingly, it can be considered that604

mixing the source prior p1 and the adapted prior p̄t in some way is beneficial for reducing KL(·||p̂t).605

In our paper, we consider using a simple Gaussian mixture, i.e., pt = αtp1 + (1− αt)p̄t, where α is606

computed by Eq. (10). It is easy to illustrate the benefits of this idea using the following inequality:607

KL(pt||p̂t) = KL [(αtp1 + (1− αt)p̄t)||p̂t]
≤ αtKL(p1||p̂t) + (1− αt)KL(p̄t||p̂t)
≤ αtU + (1− αt)KL(p̄t||p̂t).

(29)

In Eq. (29), if KL(p̄t||p̂t) ≥ U , which can be satisfied as mentioned above, then we have

KL(pt||p̂t) ≤ KL(p̄t||p̂t),

This indicates that the mixed distribution pt is closer to the ideal distribution p̂t than the adapted608

prior p̄t. A similar idea can be found in the stochatic restoration in CoTTA [51], where the author609

randomly restore parts of parameters of the current model into the parameters of source model.610

E Augmentation Analysis611

In our method, we use the standard augmentation following CoTTA [51]. In this subsection, we612

analyze the some characteristics via experiments.613

E.1 Confidence Margin614

First, we analyze the margin ϵ in Eq. (13). We experimentally validate different margins with more615

choices. Experimental results are shown in Tables 8. The results indicate that different datasets616

may require different margins to control confidence. Moreover, Eq. (13) signifies that the reliable617

teacher likelihood is represented by the mean of its augmentations with ϵ more confidence than the618

teacher itself. Tables 8 illustrates the selection of ϵ in our approach on CIFAR10C, CIFAR100C619

and ImageNetC. Note that when ϵ = −1, it means no margin is used and the method will use all620

augmentated samples, i.e., without using Eq. (13). The results show that the proposed margin can621

effectively filter out unreliable augmented samples and achieve a better teacher log-likelihood.622

Table 8: Analysis on confidence margin.

No. ϵ CIFAR10C ϵ CIFAR100C ϵ ImageNetC

1 -1 15.1 -1 29.3 -1 66.4
2 0 13.23 0 28.78 0 65.0
3 1e-4 13.23 0.1 28.55 1e-3 65.0
4 1e-3 13.22 0.2 28.45 1e-2 64.8
5 1e-2 13.14 0.3 28.43 1e-1 64.7
6 1e-1 13.31 0.4 28.54 2e-1 66.2
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E.2 Different Number of Augmentation623

In our method, we also use augmentation to enhance the confidence. We then evaluate the the number624

of augmentation in Eq. (10). The results can be seen in Table 9, and shows that increasing the number625

of augmentations can enhance effectiveness, but this hyperparameter ceases to have a significant626

impact after reaching 32.627

Table 9: Different number of augmentation.

Method 0 4 8 16 32 64

CoTTA 17.5 17.0 16.6 16.5 16.3 16.2
PETAL 17.3 16.9 16.4 16.1 16.0 16.0

VCoTTA 14.9 13.8 13.6 13.3 13.1 13.1

F Further Discussion on Variational Warm-up Strategy628

We have discussed the Variational Warm-Up (VWU) strategy in Sec. 4.3.1, and explain that the629

warm-up strategy is a common practice in TTA and CTTA. In this section, we further discuss some630

attributes of the proposed variational warm-up strategy.631

In our method, the VWU strategy is used to turn an off-the-shelf CNN to a pretrained BNN. The632

advantage of this approach is that pretrained CNNs are readily available (e.g., directly leveraging633

official models in PyTorch), while pretrained BNNs are challenging to obtain, especially for large-634

scale datasets. Moreover, training BNNs is more difficult compared to training CNNs. Therefore,635

constructing BNN pretrained models based on existing CNN pretrained models is a feasible approach.636

Additionally, we find that such a warm-up strategy requires only a few epochs to achieve satisfactory637

results. To validate the characteristics of the proposed VWU strategy, we designed the following638

experiments.639

F.1 Warm-up on CNN vs. Directly Pretraining BNN640

First, we conducted experiments to compare the performance of obtaining pretrained BNN models641

using the warm-up approach versus directly training the source model with BNN. We pretrain the642

BNN also use VI as describing in Sec. 4.3.1. The results can be seen in Table 10. As we can see, the643

results are at the same level, for example VI pretraining is with 13.2% error rate while the proposed644

VWU achieves 13.1% on CIFAR10C. However, if we direct turn a pretrained CNN to a BNN by645

adding random stochastic parameters, without warm-up strategy, the results drop to 17.1%. This646

shows that VWU is a feasible strategy to obtain a pretrained BNN.647

Table 10: Error comparison between varional warm-up on CNN and directly pretraining BNN.

Method CIFAR10C CIFAR100C ImagenetC

BNN (Random)→ BNN + VI pretraining 13.2 29.0 65.5
CNN (Pretrained)→ BNN w/o VWU 17.1 31.2 68.3
CNN (Pretrained)→ BNN w/ VWU 13.1 28.4 64.7

F.2 Number of Warm-up Epochs648

In our implementation, we employ only a limited number of epochs for variational warm-up, say 5649

epochs. This is due to the fact that the pretrained model fits well in CNN, thus requiring minimal650

adjustments to the mean of BNN. Additionally, the standard deviation (std) is initialized to be small.651

Consequently, only a small number of iterations are necessary to update the BNN, and the step size is652

also kept small. Experimentation on the epoch number of variational warm-up reveals that keeping653

increasing epochs ( > 5) will diminishes performance, as shown in Fig. 5.654
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Figure 4: Comparisons on different warm-up
epochs (CIFAR10C).
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Figure 5: Comparisons on different warm-up data
scale (CIFAR10C).

F.3 Only Portion Usage of Source Dataset in Warm-up655

As we response to the weakness, the warm-up strategy is a common approach in TTA and CTTA656

tasks and it is regarded as a part of pretraining stage. We also evaluate how if we only use partial657

data for warm-up, and the results are as follow. The experimental results demonstrate that a moderate658

reduction in sample size still maintains certain effectiveness of the warmup strategy. However,659

excessive reduction, such as reducing to 1/10, leads to a certain decline in effectiveness. This is660

because the warmup strategy aims to incorporate statistical information of the dataset into the model,661

and insufficient data may result in inaccurate performance.662

G Recursive Variational Approximation Process in VCoTTA663

In this section, we show the algorithmic workflow utilizing variational approximation in VCoTTA.664

Before testing time: First, we adopt a variational warm-up strategy to inject stochastic dynamics into665

the model before adaptation. Given the source dataset D0, we can use a variational approximation of666

p(θ|D0) as follows667

p(θ|D0) = p1(θ) ≈ q0(θ) = argmin
q∈Q

KL

[
q(θ) ∥ 1

Z0
p(θ)p(D0|θ)

]
, (30)

where we use the pretrained deterministic model p0(θ) as the prior distribution.668

When the domain shift: Then, at the beginning of the test time, we set the prior in task t as669

pt(θ) = α · p1(θ) + (1 − α) · p̄t(θ) and variational approximation, where p1(θ) ≈ q0(θ) and670

p̄t(θ) ≈ q̄t(θ). For q̄t(θ), which means the real-time posterior probability of the teacher model for671

the t-th test domain, is constantly updated by qt(θ) via EMA (see Sec. 4.3.3) during the test phase.672

Note that we do not have q̄t(θ) for the first update in the t-th phase. In fact, we use qt−1(θ) construct673

the prior, thus we have pt(θ) ≈ α · p1(θ) + (1 − α) · qt−1(θ). This is the variational distribution674

that should be used to approximate the prior in the absence of a teacher model in the first step, as675

well as the approximation that should be used when not employing the MT architecture. Note that676

the process is not required to inform the model that the domain produces a shift.677

During the testing time of a domain: With the approximation to pt(θ) and analysis from Ap-678

pendix B.2, we get qt(θ) for student model at the test domain t as follows:679

qt(θ) = argmin
q∈Q

KL

[
q(θ) ∥ 1

Zt
pt(θ)e

−λH(Ut|θ)
]
, (31)

which means, we can recursively derive pt+1(θ) and the following variational distributions, thereby680

achieving the goal of VCoTTA.681

H Different Orders of Corruption682

As we discuss in the major comparisons (see Sec 5.3), the performance may be affected by the683

corruption order. To provide a more comprehensive evaluation of the matter of the order, we conduct684

19



10 different orders from Sec 5.3, and show the average performance of all compared methods.685

10 independent random orders of corruption are all under the severity level of 5. The results686

are shown in Table 11. We find that the order of corruption is minor on simple datasets such as687

CIFAR10C and CIFAR100C, but small std on difficult datasets such as ImageNetC. The proposed688

VCOTTA outperforms other methods on the average error of CIFAR10C and CIFAR100C under 10689

different corruption orders, which shows the effectiveness of the prior calibration in CTTA. Moreover,690

VCOTTA has comparable results with PETAL on ImageNetC, but smaller std over 10 orders, which691

shows the robustness of the proposed method.692

Table 11: Comparisons over 10 orders (avg ± std).

Method CIFAR10C CIFAR100C ImageNetC

CoTTA 17.3±0.3 32.2±0.3 63.4±3.0
PETAL 16.0±0.1 33.8±0.3 62.7±2.6

VCoTTA 13.1±0.1 28.2±0.2 62.8±1.1

I Corruption Loops693

In the real-world scenario, the testing domain may reappear in the future. We evaluate the test694

conditions continually 10 times to evaluate the long-term adaptation performance on CIFAR10C.695

That is, the test data will be re-inference and re-adapt for 9 more turns under severity 5. Full696

results can be found in Fig. 6. The results show that most compared methods obtain performance697

improvement in the first several loops, but suffer from performance drop in the following loops. This698

means that the model drift can be even useful in early loops, but the drift becomes hard because of699

the unreliable prior. The results also indicate that our method outperforms others in this long-term700

adaptation situation and has only small performance drops.701
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Figure 6: 10 loops under a same corruption order (CIFAR10C).

J Experiment on Online Setting702

CTTA does operate in an online setting, where all testing data is used only once. However, the current703

focus of CTTA research primarily revolves around batch-mode online settings, with batch sizes704

typically set to 200 in our experiments like other SOTAs. In CTTA, strict online learning settings705

where each data point is processed individually are under-researched. In fact, our method can be706

applied in scenarios with online learning or small batch sizes. However, it’s important to note that the707

batch normalization (BN) layers is disabled when the batch size is 1. We experimented with batch708

size of 1 on CIFAR10C, and compare the results with some baseline methods. The comparison results709

are shown in Table 12. The results show that small batch size in CTTA makes worse performance.710

We believe this is because a small batch size amplifies the uncertainty in model training.711
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Table 12: Error comparisons of strict online learning (batch size = 1).

Method Batch size 1 Batch size 200

TENT 43.5 20.1
CoTTA 42.4 16.3

VCoTTA 39.1 13.1

K Time and Memory Cost712

We implement our method using a single RTX-4090 GPU card. We provide the memory and time cost713

in Table 13. Our proposed VCoTTA method does not offer an advantage in terms of memory usage.714

This is because in the BNN framework, additional standard deviations are required for implementing715

local reparameterization tricks. However, during the testing phase, this does not significantly impact716

the efficiency of the model. This is because during testing, only the student model employs variational717

inference, which requires uncertainty parameters.718

Table 13: Time and memory cost comparisons.

Method Memory Time per corruption

CoTTA 10.3Gb 272s
PETAL 10.2Gb 261s

VCoTTA 11.1Gb 279s
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NeurIPS Paper Checklist719

The checklist is designed to encourage best practices for responsible machine learning research,720

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove721

the checklist: The papers not including the checklist will be desk rejected. The checklist should722

follow the references and follow the (optional) supplemental material. The checklist does NOT count723

towards the page limit.724

Please read the checklist guidelines carefully for information on how to answer these questions. For725

each question in the checklist:726

• You should answer [Yes] , [No] , or [NA] .727

• [NA] means either that the question is Not Applicable for that particular paper or the728

relevant information is Not Available.729

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).730

The checklist answers are an integral part of your paper submission. They are visible to the731

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it732

(after eventual revisions) with the final version of your paper, and its final version will be published733

with the paper.734

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.735

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a736

proper justification is given (e.g., "error bars are not reported because it would be too computationally737

expensive" or "we were unable to find the license for the dataset we used"). In general, answering738

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we739

acknowledge that the true answer is often more nuanced, so please just use your best judgment and740

write a justification to elaborate. All supporting evidence can appear either in the main paper or the741

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification742

please point to the section(s) where related material for the question can be found.743

IMPORTANT, please:744

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",745

• Keep the checklist subsection headings, questions/answers and guidelines below.746

• Do not modify the questions and only use the provided macros for your answers.747

1. Claims748

Question: Do the main claims made in the abstract and introduction accurately reflect the749

paper’s contributions and scope?750

Answer: [Yes]751

Justification: We made clear claims to illustrate that we evaluate the uncertainty in CTTA752

task using variational inference.753

Guidelines:754

• The answer NA means that the abstract and introduction do not include the claims755

made in the paper.756

• The abstract and/or introduction should clearly state the claims made, including the757

contributions made in the paper and important assumptions and limitations. A No or758

NA answer to this question will not be perceived well by the reviewers.759

• The claims made should match theoretical and experimental results, and reflect how760

much the results can be expected to generalize to other settings.761

• It is fine to include aspirational goals as motivation as long as it is clear that these goals762

are not attained by the paper.763

2. Limitations764

Question: Does the paper discuss the limitations of the work performed by the authors?765

Answer: [Yes]766
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Justification: We discuss the limitation in the last section.767

Guidelines:768

• The answer NA means that the paper has no limitation while the answer No means that769

the paper has limitations, but those are not discussed in the paper.770

• The authors are encouraged to create a separate "Limitations" section in their paper.771

• The paper should point out any strong assumptions and how robust the results are to772

violations of these assumptions (e.g., independence assumptions, noiseless settings,773

model well-specification, asymptotic approximations only holding locally). The authors774

should reflect on how these assumptions might be violated in practice and what the775

implications would be.776

• The authors should reflect on the scope of the claims made, e.g., if the approach was777

only tested on a few datasets or with a few runs. In general, empirical results often778

depend on implicit assumptions, which should be articulated.779

• The authors should reflect on the factors that influence the performance of the approach.780

For example, a facial recognition algorithm may perform poorly when image resolution781

is low or images are taken in low lighting. Or a speech-to-text system might not be782

used reliably to provide closed captions for online lectures because it fails to handle783

technical jargon.784

• The authors should discuss the computational efficiency of the proposed algorithms785

and how they scale with dataset size.786

• If applicable, the authors should discuss possible limitations of their approach to787

address problems of privacy and fairness.788

• While the authors might fear that complete honesty about limitations might be used by789

reviewers as grounds for rejection, a worse outcome might be that reviewers discover790

limitations that aren’t acknowledged in the paper. The authors should use their best791

judgment and recognize that individual actions in favor of transparency play an impor-792

tant role in developing norms that preserve the integrity of the community. Reviewers793

will be specifically instructed to not penalize honesty concerning limitations.794

3. Theory Assumptions and Proofs795

Question: For each theoretical result, does the paper provide the full set of assumptions and796

a complete (and correct) proof?797

Answer: [Yes]798

Justification: We provide the assumption and proofs mostly in appendix.799

Guidelines:800

• The answer NA means that the paper does not include theoretical results.801

• All the theorems, formulas, and proofs in the paper should be numbered and cross-802

referenced.803

• All assumptions should be clearly stated or referenced in the statement of any theorems.804

• The proofs can either appear in the main paper or the supplemental material, but if805

they appear in the supplemental material, the authors are encouraged to provide a short806

proof sketch to provide intuition.807

• Inversely, any informal proof provided in the core of the paper should be complemented808

by formal proofs provided in appendix or supplemental material.809

• Theorems and Lemmas that the proof relies upon should be properly referenced.810

4. Experimental Result Reproducibility811

Question: Does the paper fully disclose all the information needed to reproduce the main ex-812

perimental results of the paper to the extent that it affects the main claims and/or conclusions813

of the paper (regardless of whether the code and data are provided or not)?814

Answer: [Yes]815

Justification: We use open-source dataset and provide a anonymous code link.816

Guidelines:817

• The answer NA means that the paper does not include experiments.818
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• If the paper includes experiments, a No answer to this question will not be perceived819

well by the reviewers: Making the paper reproducible is important, regardless of820

whether the code and data are provided or not.821

• If the contribution is a dataset and/or model, the authors should describe the steps taken822

to make their results reproducible or verifiable.823

• Depending on the contribution, reproducibility can be accomplished in various ways.824

For example, if the contribution is a novel architecture, describing the architecture fully825

might suffice, or if the contribution is a specific model and empirical evaluation, it may826

be necessary to either make it possible for others to replicate the model with the same827

dataset, or provide access to the model. In general. releasing code and data is often828

one good way to accomplish this, but reproducibility can also be provided via detailed829

instructions for how to replicate the results, access to a hosted model (e.g., in the case830

of a large language model), releasing of a model checkpoint, or other means that are831

appropriate to the research performed.832

• While NeurIPS does not require releasing code, the conference does require all submis-833

sions to provide some reasonable avenue for reproducibility, which may depend on the834

nature of the contribution. For example835

(a) If the contribution is primarily a new algorithm, the paper should make it clear how836

to reproduce that algorithm.837

(b) If the contribution is primarily a new model architecture, the paper should describe838

the architecture clearly and fully.839

(c) If the contribution is a new model (e.g., a large language model), then there should840

either be a way to access this model for reproducing the results or a way to reproduce841

the model (e.g., with an open-source dataset or instructions for how to construct842

the dataset).843

(d) We recognize that reproducibility may be tricky in some cases, in which case844

authors are welcome to describe the particular way they provide for reproducibility.845

In the case of closed-source models, it may be that access to the model is limited in846

some way (e.g., to registered users), but it should be possible for other researchers847

to have some path to reproducing or verifying the results.848

5. Open access to data and code849

Question: Does the paper provide open access to the data and code, with sufficient instruc-850

tions to faithfully reproduce the main experimental results, as described in supplemental851

material?852

Answer: [Yes]853

Justification: We provide the anonymous code link.854

Guidelines:855

• The answer NA means that paper does not include experiments requiring code.856

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/857

public/guides/CodeSubmissionPolicy) for more details.858

• While we encourage the release of code and data, we understand that this might not be859

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not860

including code, unless this is central to the contribution (e.g., for a new open-source861

benchmark).862

• The instructions should contain the exact command and environment needed to run to863

reproduce the results. See the NeurIPS code and data submission guidelines (https:864

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.865

• The authors should provide instructions on data access and preparation, including how866

to access the raw data, preprocessed data, intermediate data, and generated data, etc.867

• The authors should provide scripts to reproduce all experimental results for the new868

proposed method and baselines. If only a subset of experiments are reproducible, they869

should state which ones are omitted from the script and why.870

• At submission time, to preserve anonymity, the authors should release anonymized871

versions (if applicable).872
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• Providing as much information as possible in supplemental material (appended to the873

paper) is recommended, but including URLs to data and code is permitted.874

6. Experimental Setting/Details875

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-876

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the877

results?878

Answer: [Yes]879

Justification: We follow previous to set the experiments.880

Guidelines:881

• The answer NA means that the paper does not include experiments.882

• The experimental setting should be presented in the core of the paper to a level of detail883

that is necessary to appreciate the results and make sense of them.884

• The full details can be provided either with the code, in appendix, or as supplemental885

material.886

7. Experiment Statistical Significance887

Question: Does the paper report error bars suitably and correctly defined or other appropriate888

information about the statistical significance of the experiments?889

Answer: [Yes]890

Justification: We offer the 10 different task orders to reduce the influence of stochastic and891

provide the avg ± std in Appendix H.892

Guidelines:893

• The answer NA means that the paper does not include experiments.894

• The authors should answer "Yes" if the results are accompanied by error bars, confi-895

dence intervals, or statistical significance tests, at least for the experiments that support896

the main claims of the paper.897

• The factors of variability that the error bars are capturing should be clearly stated (for898

example, train/test split, initialization, random drawing of some parameter, or overall899

run with given experimental conditions).900

• The method for calculating the error bars should be explained (closed form formula,901

call to a library function, bootstrap, etc.)902

• The assumptions made should be given (e.g., Normally distributed errors).903

• It should be clear whether the error bar is the standard deviation or the standard error904

of the mean.905

• It is OK to report 1-sigma error bars, but one should state it. The authors should906

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis907

of Normality of errors is not verified.908

• For asymmetric distributions, the authors should be careful not to show in tables or909

figures symmetric error bars that would yield results that are out of range (e.g. negative910

error rates).911

• If error bars are reported in tables or plots, The authors should explain in the text how912

they were calculated and reference the corresponding figures or tables in the text.913

8. Experiments Compute Resources914

Question: For each experiment, does the paper provide sufficient information on the com-915

puter resources (type of compute workers, memory, time of execution) needed to reproduce916

the experiments?917

Answer: [Yes]918

Justification: We provide the compute resources in Appendix K.919

Guidelines:920

• The answer NA means that the paper does not include experiments.921

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,922

or cloud provider, including relevant memory and storage.923
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• The paper should provide the amount of compute required for each of the individual924

experimental runs as well as estimate the total compute.925

• The paper should disclose whether the full research project required more compute926

than the experiments reported in the paper (e.g., preliminary or failed experiments that927

didn’t make it into the paper).928

9. Code Of Ethics929

Question: Does the research conducted in the paper conform, in every respect, with the930

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?931

Answer: [Yes]932

Justification: We confirm that we conducted in the paper conform with the NeurIPS Code of933

Ethics.934

Guidelines:935

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.936

• If the authors answer No, they should explain the special circumstances that require a937

deviation from the Code of Ethics.938

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-939

eration due to laws or regulations in their jurisdiction).940

10. Broader Impacts941

Question: Does the paper discuss both potential positive societal impacts and negative942

societal impacts of the work performed?943

Answer: [NA]944

Justification: Nor applicable. We study machine learning problem on public dataset such as945

CIFAR10.946

Guidelines:947

• The answer NA means that there is no societal impact of the work performed.948

• If the authors answer NA or No, they should explain why their work has no societal949

impact or why the paper does not address societal impact.950

• Examples of negative societal impacts include potential malicious or unintended uses951

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations952

(e.g., deployment of technologies that could make decisions that unfairly impact specific953

groups), privacy considerations, and security considerations.954

• The conference expects that many papers will be foundational research and not tied955

to particular applications, let alone deployments. However, if there is a direct path to956

any negative applications, the authors should point it out. For example, it is legitimate957

to point out that an improvement in the quality of generative models could be used to958

generate deepfakes for disinformation. On the other hand, it is not needed to point out959

that a generic algorithm for optimizing neural networks could enable people to train960

models that generate Deepfakes faster.961

• The authors should consider possible harms that could arise when the technology is962

being used as intended and functioning correctly, harms that could arise when the963

technology is being used as intended but gives incorrect results, and harms following964

from (intentional or unintentional) misuse of the technology.965

• If there are negative societal impacts, the authors could also discuss possible mitigation966

strategies (e.g., gated release of models, providing defenses in addition to attacks,967

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from968

feedback over time, improving the efficiency and accessibility of ML).969

11. Safeguards970

Question: Does the paper describe safeguards that have been put in place for responsible971

release of data or models that have a high risk for misuse (e.g., pretrained language models,972

image generators, or scraped datasets)?973

Answer: [NA]974

Justification: No such risks.975
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Guidelines:976

• The answer NA means that the paper poses no such risks.977

• Released models that have a high risk for misuse or dual-use should be released with978

necessary safeguards to allow for controlled use of the model, for example by requiring979

that users adhere to usage guidelines or restrictions to access the model or implementing980

safety filters.981

• Datasets that have been scraped from the Internet could pose safety risks. The authors982

should describe how they avoided releasing unsafe images.983

• We recognize that providing effective safeguards is challenging, and many papers do984

not require this, but we encourage authors to take this into account and make a best985

faith effort.986

12. Licenses for existing assets987

Question: Are the creators or original owners of assets (e.g., code, data, models), used in988

the paper, properly credited and are the license and terms of use explicitly mentioned and989

properly respected?990

Answer: [Yes]991

Justification: We referred to open-source code from various methods and developed our own992

implementation of the core algorithm.993

Guidelines:994

• The answer NA means that the paper does not use existing assets.995

• The authors should cite the original paper that produced the code package or dataset.996

• The authors should state which version of the asset is used and, if possible, include a997

URL.998

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.999

• For scraped data from a particular source (e.g., website), the copyright and terms of1000

service of that source should be provided.1001

• If assets are released, the license, copyright information, and terms of use in the1002

package should be provided. For popular datasets, paperswithcode.com/datasets1003

has curated licenses for some datasets. Their licensing guide can help determine the1004

license of a dataset.1005

• For existing datasets that are re-packaged, both the original license and the license of1006

the derived asset (if it has changed) should be provided.1007

• If this information is not available online, the authors are encouraged to reach out to1008

the asset’s creators.1009

13. New Assets1010

Question: Are new assets introduced in the paper well documented and is the documentation1011

provided alongside the assets?1012

Answer: [NA]1013

Justification: No new assets will be released.1014

Guidelines:1015

• The answer NA means that the paper does not release new assets.1016

• Researchers should communicate the details of the dataset/code/model as part of their1017

submissions via structured templates. This includes details about training, license,1018

limitations, etc.1019

• The paper should discuss whether and how consent was obtained from people whose1020

asset is used.1021

• At submission time, remember to anonymize your assets (if applicable). You can either1022

create an anonymized URL or include an anonymized zip file.1023

14. Crowdsourcing and Research with Human Subjects1024

Question: For crowdsourcing experiments and research with human subjects, does the paper1025

include the full text of instructions given to participants and screenshots, if applicable, as1026

well as details about compensation (if any)?1027
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Answer: [NA]1028

Justification: We use public dataset.1029

Guidelines:1030

• The answer NA means that the paper does not involve crowdsourcing nor research with1031

human subjects.1032

• Including this information in the supplemental material is fine, but if the main contribu-1033

tion of the paper involves human subjects, then as much detail as possible should be1034

included in the main paper.1035

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1036

or other labor should be paid at least the minimum wage in the country of the data1037

collector.1038

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1039

Subjects1040

Question: Does the paper describe potential risks incurred by study participants, whether1041

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1042

approvals (or an equivalent approval/review based on the requirements of your country or1043

institution) were obtained?1044

Answer: [NA]1045

Justification: We do not involve crowdsourcing nor research with human subjects.1046

Guidelines:1047

• The answer NA means that the paper does not involve crowdsourcing nor research with1048

human subjects.1049

• Depending on the country in which research is conducted, IRB approval (or equivalent)1050

may be required for any human subjects research. If you obtained IRB approval, you1051

should clearly state this in the paper.1052

• We recognize that the procedures for this may vary significantly between institutions1053

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1054

guidelines for their institution.1055

• For initial submissions, do not include any information that would break anonymity (if1056

applicable), such as the institution conducting the review.1057
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