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Abstract
In this paper, we introduce an impor-001
tant yet relatively unexplored NLP task002
called Multi-Narrative Semantic Intersection003
(MNSI), which entails generating a Seman-004
tic Intersection of multiple alternate narratives.005
As no benchmark dataset is readily available006
for this task, we created one by crawling 2, 925007
alternative narrative pairs from the web and008
then, went through the tedious process of man-009
ually creating 411 different ground-truth se-010
mantic intersections by engaging human anno-011
tators. As a way to evaluate this novel task,012
we first conducted a systematic study by bor-013
rowing the popular ROUGE metric from text-014
summarization literature and discovered that015
ROUGE is not suitable for our task. Subse-016
quently, we conducted further human annota-017
tions/validations to create 200 document-level018
and 1, 518 sentence-level ground-truth labels019
which helped us formulate a new precision-020
recall style evaluation metric, called SEM-021
F1 (semantic F1), based on presence, partial-022
presence and absence of information. Exper-023
imental results show that the proposed SEM-024
F1 metric yields higher correlation with hu-025
man judgement as well as higher inter-rater-026
agreement compared to ROUGE metric and027
thus, we recommend the community to use this028
metric for evaluating future research on this029
topic.030

1 Introduction031

Human beings can be viewed as subjective sensors032

who observe real-word events and report relevant033

information through their own narratives. Thus,034

multiple alternative narratives provide a robust way035

to comprehend the complete picture of an event036

being reported and verify corresponding facts and037

opinions from different perspectives. Despite great038

progress in NLP research in recent years, com-039

puters are still far from being able to accurately040

interpret multiple alternative narratives, which still041

remains as an open problem.042

In this paper, we look deeper into this challeng- 043

ing yet relatively under-explored area of automated 044

understanding of multiple alternative narratives. To 045

be more specific, we formally introduce a new NLP 046

task called Multi-Narrative Semantic Intersection 047

(MNSI) and conduct the first systematic study of 048

this task by creating a benchmark dataset as well 049

as proposing a suitable evaluation metric for the 050

task. MNSI essentially means the task of extracting 051

/ paraphrasing / summarizing the overlapping infor- 052

mation from multiple alternative narratives coming 053

from disparate sources. In terms of computational 054

goal, we study the following research question: 055

Given two distinct narratives N1 and N2 of 056

some event e expressed in unstructured natural 057

language format, how can we extract the overlap- 058

ping information present in both N1 and N2? 059

Figure 1 shows a toy example of MNSI task, 060

where the TextIntersect1 (∩T ) operation is being 061

applied on two news articles. Both articles cover 062

the same story related to the topic “abortion”, how- 063

ever, they report from different political perspec- 064

tives, i.e., one from left wing and the other from 065

right wing. For greater visibility, “Left” and “Right” 066

wing reporting biases are represented by blue and 067

red text respectively. Green text denotes the com- 068

mon information in both news articles. The goal of 069

TextIntersect (∩T ) operation is to extract the over- 070

lapping information conveyed by the green text. 071

At first glance, the MNSI task may appear sim- 072

ilar to traditional multi-document summarization 073

task where the goal is to provide an overall sum- 074

mary of the (multiple) input documents; however, 075

the difference is that for MNSI, the goal is to pro- 076

vide summarized content with an additional con- 077

straint, i.e., the commonality criteria. There is no 078

current baseline method as well as existing dataset 079

that exactly match our task; more importantly, it is 080

unclear which one is the right evaluation metric to 081

1We’ll be using the terms TextIntersect operator and Se-
mantic Intersection interchangeably throughout the paper.
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Figure 1: A toy use-case for Semantic Intersection Task (TextIntersect). A news on topic abortion has been
presented by two news media (left-wing and right-wing). “Green” Text denotes the overlapping information from
both news media, while “Blue” and “Red” text denotes the respective biases of left and right wing.

properly evaluate this task. As a starting point, we082

frame MNSI as a constrained summarization task083

where the goal is to generate a natural language084

output which conveys the overlapping information085

present in multiple input text documents. However,086

the bigger challenge we need to address first is the087

following: 1) How can we evaluate this task? and088

2) How would one create a benchmark dataset for089

this task? To address these challenges, we make090

the following contributions in this paper.091
1. We formally introduce Multi-Narrative Seman-092

tic Intersection (MNSI) as a new NLP task and093

conduct the first systematic study by formulat-094

ing it as a constrained summarization problem.095

2. We create and release the first benchmark data-096

set consisting of 2, 925 alternative narrative097

pairs for facilitating research on the MNSI098

task. Also, we went through the tedious pro-099

cess of manually creating 411 different ground-100

truth semantic intersections and conducted fur-101

ther human annotations/validations to create102

200 document-level and 1, 518 sentence-level103

ground-truth labels to construct the dataset.104

3. As a starting point, we experiment with ROUGE,105

a widely popular metric for evaluating text sum-106

marization tasks and demonstrate that ROUGE107

is NOT suitable for evaluation of MNSI task.108

4. We propose a new precision-recall style evalu-109

ation metric, SEM-F1 (semantic F1), for eval-110

uating the MNSI task. Extensive experiments111

show that new SEM-F1 improves the inter-rater112

agreement compared to the traditional ROUGE113

metric, and also, shows higher correlation with114

human judgments.115

2 Related Works116

The idea of semantic text intersection is not en-117

tirely new, (Karmaker Santu et al., 2018) imagined118

a hypothetical framework for performing compar-119

ative text analysis, where, TextIntersect was one120

of the “hypothetical” operators proposed as part of 121

the framework. However, the technical details and 122

exact implementation were left as a future work. 123

As Semantic Intersection can be viewed as a 124

multi-document summarization task with addi- 125

tional commonality constraint, text summarization 126

literature is the most relevant to our work. Over 127

the years, many paradigms for document summa- 128

rization have been explored (Zhong et al., 2019). 129

The two most popular among them are extractive 130

approaches (Cao et al., 2018; Narayan et al., 2018; 131

Wu and Hu, 2018; Zhong et al., 2020) and abstrac- 132

tive approaches (Bae et al., 2019; Hsu et al., 2018; 133

Liu et al., 2017; Nallapati et al., 2016). Some 134

researchers have also tried combinining extrac- 135

tive and abstractive approaches (Chen and Bansal, 136

2018; Hsu et al., 2018; Zhang et al., 2019). Ex- 137

tractive approaches, as the name implies, generate 138

summaries by extracting parts of the original docu- 139

ment (usually sentences), while abstractive meth- 140

ods may generate new words or phrases which are 141

not in the original document. In general, multiple 142

document summarization (Goldstein et al., 2000; 143

Yasunaga et al., 2017; Zhao et al., 2020; Ma et al., 144

2020; Meena et al., 2014) is more challenging than 145

single document summarization. 146

Recently, encoder-decoder based neural models 147

have become really popular for abstractive sum- 148

marization (Rush et al., 2015; Chopra et al., 2016; 149

Zhou et al., 2017; Paulus et al., 2017). It has be- 150

come even prevalent to train a general language 151

model on huge corpus of data and then transfer/fine- 152

tune it for the summarization task (Radford et al., 153

2019; Devlin et al., 2019; Lewis et al., 2019; Xiao 154

et al., 2020; Yan et al., 2020; Zhang et al., 2019; 155

Raffel et al., 2019). Summary length control for 156

abstractive summarization has also been studied 157

(Kikuchi et al., 2016; Fan et al., 2017; Liu et al., 158

2018; Fevry and Phang, 2018; Schumann, 2018; 159
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Makino et al., 2019). However, MNSI task is differ-160

ent from traditional multi-document summarization161

tasks in that the goal here is to summarize content162

with an additional constraint: the overlap criteria,163

i.e., the output should only contain the common164

information from both input narratives.165

Alternatively, one could aim to recover verb166

predicate-alignment structure (Roth and Frank,167

2012; Xie et al., 2008; Wolfe et al., 2013) from168

a sentence and further, use this structure to com-169

pute the overlapping information (Wang and Zhang,170

2009; Shibata and Kurohashi, 2012). Sentence171

Fusion is another related area which aims to com-172

bine the information from two given sentences with173

some additional constraints (Barzilay et al., 1999;174

Marsi and Krahmer, 2005; Krahmer et al., 2008;175

Thadani and McKeown, 2011). A related but sim-176

pler task is to retrieve parallel sentences (Cardon177

and Grabar, 2019; Nie et al., 1999; Murdock and178

Croft, 2005) without performing an actual inter-179

section. However, these approaches are more tar-180

geted towards individual sentences and do not di-181

rectly translate to arbitrarily long documents. Thus,182

MNSI task is still an open problem and there is no183

existing dataset, method or evaluation metric that184

have been systematically studied.185

An idea conceptually similar to our work was186

applied on visual data (Alfassy et al., 2019), where187

the authors developed basic set-operators using neu-188

ral network based approaches. However, we apply189

the idea on textual data which comes with entirely190

different set of challenges.191

Along the evaluation dimension, ROUGE (Lin,192

2004) is perhaps the most commonly used met-193

ric today for evaluating automated summarization194

techniques; due to its simplicity and automation.195

However, ROUGE has been criticized a lot for pri-196

marily relying on lexical overlap (Nenkova, 2006)197

of n-grams. Later, (Zhou et al., 2006) proposed for198

the use of a large broad domain-independent para199

table derived from a bilingual parallel corpus to al-200

low para matching for summary evaluation. (Cohan201

and Goharian, 2016) demonstrated that ROUGE202

performs poorly in cases of terminology variation203

and paraphrasing. As of today, around 192 variants204

of ROUGE are available (Graham, 2015) including205

ROUGE with word embedding (Ng and Abrecht,206

2015) and synonym (Ganesan, 2018), graph-based207

lexical measurement (ShafieiBavani et al., 2018),208

Vanilla ROUGE (Yang et al., 2018) and highlight-209

based ROUGE (Hardy et al., 2019). However, there210

has been no study yet whether ROUGE metric is ap-211

propriate for evaluating the Semantic Intersection 212

task, which is one of central goals of our work. 213

3 Motivation 214

Multiple alternative narratives are very common 215

across many domains like education, medicine, pri- 216

vacy etc., and thus, MNSI/TextIntersect operation 217

can be very useful to digest such multi-narratives 218

at scale and speed. Below are some use-cases. 219

Military Intelligence: If A and B are two intelli- 220

gence reports related to a mission from two human 221

agents, the TextIntersect operation can help verify 222

the claims in each report w.r.t. the other. 223

Security and Privacy: TextIntersect operation can 224

enable real-world users to quickly conduct a com- 225

parative analysis of multiple privacy policies by 226

mining overlapping clauses from those policies, 227

and thus, help users make informed decisions while 228

choosing from multiple alternative web-services. 229

Medical: TextIntersect can be applied on clinical 230

notes of patients provided with the same treatment 231

to understand the success/effects of the treatment. 232

Peer-Reviewing: Given two peer-review narra- 233

tives for an article, TextIntersect can extract por- 234

tions of the narratives that agree with each other, 235

which can help prepare a meta-review quickly. 236

4 Problem Formulation 237

What is Semantic Intersection? This is indeed a 238

philosophical question and there is no single cor- 239

rect answer (various possible definitions are men- 240

tioned in appendix section A). To simplify nota- 241

tions, let us stick to having only two documents 242

DA and DB as our input since it can easily be 243

generalized in case of more documents using Tex- 244

tIntersect repeatedly. Also, let us define the output 245

as Dint ← DA ∩T DB . A human would mostly 246

express the output in the form of natural language 247

and this is why, we frame the MNSI task as a con- 248

straint summarization problem such that the output 249

summary only contains information that is present 250

in both the input documents. It can either be extrac- 251

tive summary or abstractive summary or a mixture 252

of both, as per the use case. This task is inspired 253

by the set-theoretic intersection operator. However, 254

unlike set-intersection, our Text Intersection does 255

not have to be the maximal set. The aim is summa- 256

rize the overlapping information in an abstractive 257

fashion. For example, if a particular piece of infor- 258

mation or quote is repeated twice in both the doc- 259

uments, we don’t necessarily want it to be present 260

in target intersection summary two times. On the 261
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other hand, Semantic Intersection should follow the262

commutative property i.eDA∩TDB = DB∩TDA.263

5 The Benchmark Dataset264

As mentioned in section 1, there is no existing data-265

set which we could readily use to evaluate the MNSI266

task2. To address this challenge, we crawled data267

from AllSides.com. AllSides is a third-party online268

news forum which exposes people to news and in-269

formation from all sides of the political spectrum270

so that the general people can get an “unbiased”271

view of the world. To achieve this, AllSides dis-272

plays each day’s top news stories from news media273

widely-known to be affiliated with different sides of274

the political spectrum including “Left” (e.g., New275

York Times, NBC News), and “Right” (e.g., Town-276

hall, Fox News) wing media. AllSides also pro-277

vides their own factual description of the reading278

material, labeled as “Theme” so that readers can279

see the so-called “neutral” point-of-view. Table 1280

gives an overview of the dataset created by crawl-281

ing from AllSides.com, which consists of news282

articles (from at least one “Left” and one “Right”283

wing media) covering 2, 925 events in total and also284

having a minimum length of “theme-description”285

to be 15 words. Given two narratives (“Left” and286

“Right”), we used the theme-description as a proxy287

ground-truth Text-Intersection for this work. We di-288

vided this dataset into testing data (described next)289

and training data (remaining samples) and their290

statistics in provided in appendix (table 13).291

Feature Description

theme headlines by AllSides
theme-description news description by AllSides
right/left head right/left news headline
right/left context right/left news description

Table 1: Overview of dataset scraped from AllSides

Human Annotations3: We decided to involve hu-292

man volunteers to annotate our testing samples293

in order to create multiple human-written ground-294

truth semantic intersections for each event narra-295

tive pairs. This helped in creating a comprehensive296

testing benchmark for more rigorous evaluation.297

Specifically, we randomly sampled 150 narrative298

pairs (one from “Left” wing and one from “Right”299

wing) and then asked 3 (three) humans to write a300

a natural language description which conveys the301

2Multi-document summarization datasets can not be uti-
lized in this scenario as their reference summaries do not
follow the semantic intersection constraint.

3The dataset and manual annotations can be found in sup-
plementary folder.

semantic intersection of the information present in 302

both narratives describing each event. 303

After the first round of annotation, we immedi- 304

ately observed that there was a discrepancy among 305

the three annotators in terms of the real definition 306

of “semantic intersection”. For example, one anno- 307

tator argued that Semantic Intersection of two nar- 308

ratives is non-empty as long as there is an overlap 309

along one of the 5W1H facets (Who, What, When, 310

Where, Why and How), while another annotator 311

argued that overlap in only one facet is not enough 312

to decide whether there is indeed a semantic in- 313

tersection. As an example, one of the annotators 314

wrote only “Donald Trump” as the Semantic Inter- 315

section for a couple of cases where the narratives 316

were substantially different, while others had those 317

cases marked as “empty set”. 318

To mitigate this issue, we only retained the 319

narrative-pairs where at least two of the annota- 320

tors wrote minimum 15 words as their ground-truth 321

semantic intersection, with the hope that a human 322

written description will contain 15 words or more 323

only in cases where there is indeed a “significant” 324

overlap between the two original narratives. This 325

filtering step gave us 137 testing-samples at the 326

end where each sample had 4 ground-truth seman- 327

tic intersections, one from AllSides and three from 328

human annotators. 329

6 Evaluating MNSI Task using ROUGE 330

As ROUGE (Lin, 2004) is the most popular metric 331

used today for evaluating automated summarization 332

techniques; we first conducted a case-study with 333

ROUGE as the evaluation metric for the MNSI task. 334

6.1 Methods Used in the Case-Study 335

We experimented with multiple SoTA pre-trained 336

abstractive summarization models as a proxy for 337

Semantic-Intersection generator. These models are: 338

1. BART (Lewis et al., 2019), fine tuned on CNN 339

and multi english Wiki news datasets 4, 2. Pegasus 340

(Zhang et al., 2019), fine tuned on CNN and Daily 341

mail dataset 5, and 3. T5 (Raffel et al., 2019) fine 342

tuned on multi english Wiki news dataset 6. As 343

our primary goal is to construct a benchmark data- 344

set for the MNSI task and establish an appropriate 345

metric for evaluating this task, experimenting with 346

only 3 abstractive summarization models is not a 347

barrier to our work. Proposing a custom method 348

fine-tuned for the Semantic-Intersection task is an 349

4WikinewsSum/bart-large-cnn-multi-en-wiki-news
5google/pegasus-cnn_dailymail
6WikinewsSum/t5-base-multi-en-wiki-news

4

https://www.allsides.com
https://huggingface.co/WikinewsSum/bart-large-cnn-multi-en-wiki-news
https://huggingface.co/google/pegasus-cnn_dailymail
https://huggingface.co/WikinewsSum/t5-base-multi-en-wiki-news


orthogonal goal to this work and we leave it as a350

future work. Also, we’ll use the phrases “summary”351

and “intersection-summary” interchangeably from352

here. To generate the summary, we concatenate a353

narrative pair and feed it directly to the model.354

For evaluation, we first evaluated the machine355

generated intersection summaries for the 137 man-356

ually annotated testing samples using the rouge357

metric (Lin, 2004) and follow the procedure men-358

tioned in the paper to compute the ROUGE-F1359

scores with multiple reference summaries. More360

precisely, since we have 4 reference summaries, we361

got 4 precision, recall pairs which are used to com-362

pute the corresponding F1 scores. For each sample,363

we took the max of these 4 F1 scores and averaged364

them out across the test dataset. The raw rouge365

scores can be seen in the table 11 in appendix.366

6.2 Results and Findings367
We computed Pearson’s correlation coefficients be-368

tween each pair of Rouge-F1 scores obtained using369

all of the 4 reference intersection-summaries (3370

human written summary and 1 AllSides theme de-371

scription) to test the robustness of ROUGE metric372

for evaluating the MNSI task. The corresponding373

correlations are shown in table 2. For each annota-374

tor pair, we report the maximum (across 3 models)375

correlation value. The average correlation value376

across annotators is 0.36, 0.33 and 0.38 for R1,377

R2 and RL respectively; suggesting that ROUGE378

metric is not stable across multiple human-written379

intersection-summaries and thus, unreliable. In-380

deed, only one out the 6 different annotator pairs381

has a value greater than 0.50 for all the 3 Rouge382

metrics (R1, R2, RL), which is problematic.383

Pearson’s Correlation Coefficients

R1 R2 RL

I1 I2 I3 I1 I2 I3 I1 I2 I3

I2 0.62 — 0.65 — 0.69 —
I3 0.3 0.38 — 0.27 0.37 — 0.27 0.44 —
I4 0.17 0.34 0.34 0.14 0.33 0.21 0.18 0.35 0.33

Average 0.36 0.33 0.38

Table 2: Max (across 3 models) Pearson’s correlation
between the F1 Rouge scores corresponding to differ-
ent annotators. Here Ii refers to the ith annotator where
i ∈ {1, 2, 3, 4} and “Average” row represents aver-
age correlation of the max values across annotators.
Boldface values are statistically significant at p-value
< 0.05. For 5 out of 6 annotator pairs, the correlation
values are quite small (≤ 0.50), thus, implying the poor
inter-rated agreement with regards to the Rouge metric.
7 Can We Do Better than ROUGE?384

Section 6 shows that ROUGE metric is unstable385

across multiple reference intersection-summaries.386

Therefore, an immediate question is: Can we come387

up with a better metric than ROUGE? To investi- 388

gate this question, we started by manually assess- 389

ing the machine-generated intersections to check 390

whether humans agree among themselves or not. 391

7.1 Different trials of Human Judgement 392
Assigning a Single Numeric Score: As an initial 393

trial, we decided to first label 25 testing samples us- 394

ing two human annotators (we call them label anno- 395

tators L1 and L2). Both label-annotators read each 396

of the 25 narrative pairs as well as the correspond- 397

ing system generated intersection-summary (gener- 398

ated by fine-tuned BART) and assigned a numeric 399

score between 1-10 (inclusive). This number re- 400

flects their judgement/confidence about how accu- 401

rately the system-generated summary captures the 402

actual intersection of the two input narratives. Note 403

that, the reference intersection summaries were not 404

included in this label annotation process and the 405

label-annotators judged the system-generated sum- 406

mary exclusively with respect to the input narra- 407

tives. To quantify the agreement between human 408

scores, we computed the Kendall rank correlation 409

coefficient (or Kendall’s Tau) between two anno- 410

tator labels since these are ordinal values. How- 411

ever, to our disappointment, the correlation value 412

was 0.20 with p-value being 0.227. This shows 413

that even human annotators are disagreeing among 414

themselves and we need to come up with a better 415

labelling guideline to reach a reasonable agreement 416

among the human annotators. 417

On further discussions among the annotators, 418

we realized that one annotator only focused on 419

preciseness of the intersection summaries, whereas 420

the other annotator took both precision and recall 421

into consideration. Thus, we decided to next assign 422

two separate scores for precision and recall. 423

Precision-Recall Inspired Double Scoring: This 424

time, three label-annotators (L1, L2 and L3) as- 425

signed two numeric scores between 1-10 (inclu- 426

sive) for the same set of 25 system generated sum- 427

maries. These numbers represented their belief 428

about how precise the system-generated summaries 429

were (the precision score) and how much of the 430

actual ground-truth intersection-information was 431

covered by the same (the recall score). Also note 432

that, labels were assigned exclusively with respect 433

to the input narratives only. As the assigned num- 434

bers represent ordinal values (i.e. can’t be used 435

7The higher p-value means that the correlation value is
insignificant because of the small number of samples, but the
aim is to first find a labelling criterion where human can agree
among themselves.
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to compute F1 score), we compute the Kendall’s436

rank correlation coefficient among the precision437

scores and recall scores of all the annotator pairs438

separately. The corresponding correlation values439

can be seen in the table 3. As we notice, there is440

definitely some improvement in agreement among441

annotators compared to the one number annotation442

in 7.1, however, the average correlation is still 0.33443

and 0.41 for precision and recall respectively, much444

lower than the 0.5.445

Human agreement in terms of Kendall Tau

Precision Recall

L1 L2 L1 L2

L2 0.52 — 0.37 —
L3 0.18 0.29 0.31 0.54

Average 0.33 0.41

Table 3: Kendall’s rank correlation coefficients among
the the precision and recall scores for pairs of human
annotators (25 test samples). Here Li refers to the ith

label annotator.

7.2 Sentence-wise Scoring446
From the previous trials, we realised the down-447

sides of assigning one/two numeric scores to judge448

an entire system-generated intersection-summary.449

Therefore, as a next step, we decided to assign over-450

lap labels to the each sentence within the system-451

generated intersection and use those labels to com-452

pute an overall precision and recall score.453

Overlap Labels: Label-annotators (L1, L2 and454

L3) were asked to look at a machine-generated455

sentence and determine if the core information con-456

veyed by it is either absent, partially present or457

present in any of the four reference summaries (pro-458

vided by (I1, I2, I3 and I4) and respectively, assign459

the label A, PP or P. More precisely, if the human460

feels there is more than 75% overlap (between each461

system-generated sentence and reference-summary462

sentence), assign label P, else if the human feels463

there is less than 25% overlap, assign label A, and464

else, assign PP otherwise. This sentence-wise la-465

belling was done for 50 different samples (with 506466

sentences in total for system and reference sum-467

mary), which resulted in total 3 × 506 = 1, 518468

sentence-level ground-truth labels.469

To create the overlap labels from precision per-470

spective as described above, we concatenated all471

the 4 reference summaries to make one big refer-472

ence summary and asked label-annotators (L1, L2473

and L3) to use it as a reference for assigning the474

overlap labels to each sentence within machine gen-475

erated summary. We argue that if the system could476

generate a sentence conveying information which477

is present in any of the references, it should be 478

considered a hit. For recall, label-annotators were 479

asked to assign labels to each sentences in each of 480

the 4 reference summaries separately (provided by 481

(I1, I2, I3 and I4)), with respect to the machine 482

generated summary. 483

Human agreement in terms of Kendall’s Rank Correlation

Precision Recall

L1 L2 L1 L2

L2 0.68 — 0.75 —
L3 0.59 0.64 0.69 0.71

Average 0.64 0.72

Table 4: Average precision and recall Kendall rank cor-
relation coefficients between sentence-wise annotation
for different annotators. Li refers to the ith label anno-
tator. All values are statistically significant (p<0.05).

Inter-Rater-Agreement: We use the Kendall rank 484

correlation coefficient to compute the agreement 485

among the ordinal labels assigned by human label 486

annotators. Since there can be multiple sentences 487

in the system generated or the reference summary, 488

we flatten out the sentence labels and concatenate 489

them for the entire dataset. To compute the Kendall 490

Tau, we map the ordinal labels to numerical val- 491

ues using the mapping: {P : 1, PP : 0.5, A : 0}. 492

As we can notice in table 4, inter-annotator cor- 493

relation for both precision and recall are ≥ 0.50 494

and thus, signifying higher agreement among label 495

annotators. 496

Reward-based Inter-Rater-Agreement: Alterna- 497

tively, we first define a reward matrix (Table 5) 498

which is used to compare the label of one annotator 499

(say annotator A) against the label of another anno- 500

tator (say annotator B) for a given sentence. This 501

reward matrix acts as a form of correlation between 502

two annotators. Once reward has been computed 503

for each sentence, one can compute the average 504

precision and recall rewards for a given sample and 505

accordingly, for the entire test dataset. The cor- 506

responding reward scores can be seen in table 6. 507

Both precision and recall reward scores are high 508

(≥ 0.70) for all the different annotator pairs, thus 509

signifying, high inter label-annotator agreement. 510

We believe, one of the reasons for higher reward 511

scores could be that sentence-wise labelling puts 512

less cognitive load on human mind in contrast to the 513

single or double score(s) for the entire intersection 514

summary and accordingly, shows high agreement 515

in terms of human interpretation. Similar observa- 516

tion is also noted in Harman and Over (2004). 517
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Label from Annotator B P PP A

Label from An-
notator A

P 1 0.5 0
PP 0.5 1 0
A 0 0 1

Table 5: Reward function used to evaluate the labels
assigned by two label annotators (or labels inferred us-
ing SEM-F1 metric and human annotated labels) for a
given sentence. It acts as a form of correlation between
annotator pairs.

Human agreement in terms of Reward function

Precision Recall

L1 L2 L1 L2

L2 0.81± 0.26 — 0.85± 0.11 —
L3 0.79± 0.26 0.70± 0.31 0.80± 0.16 0.77± 0.17

Average 0.77 0.81

Table 6: Average precision and recall reward scores
(mean± std) between sentence-wise annotation for dif-
ferent annotators. Li refers to the ith label-annotator.

8 Semantic-F1: The New Metric518

Human evaluation is costly and time-consuming.519

Thus, one needs an automatic evaluation metric for520

large-scale experiments. But, how can we devise521

an automated metric to perform the sentence-wise522

precision-recall style evaluation discussed in the523

previous section? To achieve this, we propose a524

new evaluation metric called SEM-F1. The details525

of our SEM-F1 metric are described in algorithm 1526

and the respective notations are mentioned in table527

7. F1 scores are computed by the harmonic mean528

of the precision (pV ) and recall (rV ) values. Algo-529

rithm 1 assumes only one reference summary but530

can be trivially extended for multiple references.531

As mentioned previously, in case of multiple ref-532

erences, we concatenate them for precision score533

computation. Recall scores are computed individu-534

ally for each reference summary and later, an aver-535

age recall is computed across references.536

The basic intuition behind SEM-F1 is to com-537

pute the sentence-wise similarity (e.g., cosine simi-538

larity using a sentence embedding model) to infer539

the semantic overlap/intersection between two sen-540

tences from both precision and recall perspective541

and then, combine them into F1 score.542

Notations Description

SG Machines generated summary
SR Reference summary
T := (tl, tu) Tuple representing the lower and upper threshold val-

ues (between 0 and 1).
ME Sentence embedding model
pV, rV Precision, Recall value for (SG, SR) pair

Table 7: Table of notations for algorithm 1

8.1 Is SEM-F1 Reliable?543

The SEM-F1 metric computes cosine similarity544

scores between sentence-pairs from both precision545

Algorithm 1 Semantic-F1 Metric
1: Given SG, SR,ME

2: rawpV , rawrV ← COSINESIM(SG, SR,ME) .
Sentence-wise precision and recall values

3: pV ← MEAN(rawpV )
4: rV ← MEAN(rawrV )

5: f1 ←
2 ∗ pV ∗ rV
pV + rV

6: return (f1, pV, rV )

1: procedure COSINESIM(SG, SR,ME)
2: lG ←No. of sentences in SG

3: lR ←No. of sentences in SR

4: init: cosSs← zeros[lG, lR]; i← 0
5: for each sentence sG in SG do
6: EsG ←ME(sG);j ← 0
7: for each sentence sR in SR do
8: EsR ←ME(sR)
9: cosSs[i, j]← Cos(EsG, EsR)

10: end for
11: end for
12: x← Row-wise-max(cosSs)
13: y ← Column-wise-max(cosSs)
14: return (x,y)
15: end procedure

and recall perspectives. To see whether SEM-F1 546

metric correlates with human-judgement, we fur- 547

ther converted the sentence-wise raw cosine scores 548

into Presence (P), Partial Presence (PP) and Ab- 549

sence (A) labels using some user-defined thresh- 550

olds as described in algorithm 2. This helped us 551

to directly compare the SEM-F1 inferred labels 552

against the human annotated labels. 553

As mentioned in section 8, we utilized state-of- 554

the-art sentence embedding models to encode sen- 555

tences from both the model generated summaries 556

and the human written narrative intersections. To 557

be more specific, we experimented with 3 sen- 558

tence embedding models: Paraphrase-distilroberta- 559

base-v1 (P-v1) (Reimers and Gurevych, 2019), 560

stsb-roberta-large (STSB) (Reimers and Gurevych, 561

2019) and universal-sentence-encoder (USE) (Cer 562

et al., 2018). Along with the various embedding 563

models, we also experimented with multiple thresh- 564

old values used to predict the sentence-wise pres- 565

ence (P), partial presence (PP) and absence (A) 566

labels to report the sensitivity of the metric with 567

respect to different thresholds. These thresholds 568

are: (25, 75), (35, 65), (45, 75), (55, 65), (55, 75), 569

(55, 80), (60, 80). For example, threshold range 570

(45, 75) means that if similarity score < 45%, in- 571

fer label "absent", else if similarity score ≥ 75%, 572

infer label "present" and else, infer label “partial- 573

present”. Next, we computed the average preci- 574

sion and recall rewards for 50 samples annotated 575

by label-annotators (Li) and the labels inferred by 576

SEM-F1 metric. For this, we repeat the proce- 577
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Reward/Kendall Machine-Human Agreement in terms of Reward Function

T = (25,75) T = (35,65) T = (45,75) T = (55,65) T = (55,75) T = (55,80) T = (60,80)

Embedding:
P-v1

Precision 0.75/0.57 0.8/0.63 0.76/0.59 0.8/0.63 0.78/0.6 0.74/0.6 0.73/0.58

Recall 0.66/0.54 0.76/0.64 0.73/0.66 0.72/0.64 0.69/0.63 0.65/0.64 0.61/0.6

Embedding:
STSB

Precision 0.73/0.6 0.73/0.62 0.73/0.6 0.73/0.62 0.73/0.63 0.73/0.59 0.73/0.58

Recall 0.63/0.55 0.64/0.63 0.63/0.6 0.65/0.61 0.65/0.61 0.63/0.61 0.64/0.59

Embedding:
USE

Precision 0.76/0.64 0.76/0.66 0.78/0.64 0.78/0.64 0.79/0.63 0.78/0.62 0.79/0.65

Recall 0.63/0.53 0.66/0.6 0.67/0.58 0.68/0.61 0.67/0.62 0.64/0.62 0.65/0.61

Table 8: Average Precision and Recall correlation (Reward score/Kendall correlation) between label-annotators
(Li) and automatically inferred labels using SEM-F1 (average of 3 label annotators). The raw numbers for each
annotators can be found in appendix (table 12). The results are shown for different embedding models (8.1) and
multiple threshold levels T = (tl, tu). Moreover, the both the Reward and Kendall values are consistent/stable
across all the 5 embedding models and threshold values.

dure of Table 6, but this time comparing human578

labels against ‘SEM-F1 labels’. The corresponding579

results are shown in Table 8. As we can notice,580

the average reward values are consistently high581

(≥ 0.50) for all the 3 label-annotators (Li). More-582

over, the reward values are consistent/stable across583

all the 3 embedding models and threshold values,584

signifying that SEM-F1 is indeed robust across var-585

ious sentence embeddings and threshold used.586

Following the procedure in table 4, we also com-587

pute the Kendall’s Tau between human label an-588

notators and automatically inferred labels using589

SEM-F1. Our results in table 8 are consistent with590

reward-based inter-rater-agreement and the corre-591

lation values are ≥ 0.50 with little variation along592

various thresholds for both precision and recall.593

8.2 SEM-F1 Scores for Random Baselines594

Here, we present the actual SEM-F1 scores for595

the three models described in section 6.1 along596

with scores for two intuitive baselines, namely, 1)597

Random Intersection 2) Random Annotation.598

Random Intersection: For a given sample and599

model, we select a random intersection summary600

generated by the model out of the other 136 test601

samples. There random intersections are then evalu-602

ated using SEM-F1 against 4 reference summaries.603

Random Annotation: For a given sample, we se-604

lect a random reference summary out of the other 4605

references among the other 136 test samples. The606

model generated summaries are then compared607

against these Random Annotations/References to608

compute SEM-F1 scores as reported in table 9.609

As we notice, there is approximately 40-45 per-610

cent improvement over the baseline scores suggest-611

ing SEM-F1 can indeed distinguish good from bad.612

8.3 Pearson Correlation for SEM-F1613

Following the case-study based on Rouge in section614

6, we again compute the Pearson’s correlation co-615

efficients between each pair of raw SEM-F1 scores616

Random Annotation Random Intersection SEM-F1 Scores
SEM-F1 Scores SEM-F1 Scores

P-V1 STSB USE P-V1 STSB USE P-V1 STSB USE

BART 0.16 0.21 0.22 0.21 0.27 0.27 0.65 0.67 0.67
T5 0.17 0.21 0.23 0.20 0.26 0.26 0.58 0.60 0.60

Pegasus 0.15 0.20 0.22 0.19 0.26 0.26 0.59 0.60 0.62

Average 0.16 0.21 0.22 0.20 0.26 0.26 0.61 0.62 0.63

Table 9: SEM-F1 Scores

obtained using all of the 4 reference intersection- 617

summaries. The corresponding correlations are 618

shown in table 10. For each annotator pair, we 619

report the maximum (across 3 models) correlation 620

value. The average correlation value across annota- 621

tors is 0.49, 0.49 and 0.54 for P-V1, STSB, USE 622

embeddings, respectively. This shows a clear im- 623

provement over the ROUGE metric suggesting that 624

SEM-F1 is more accurate than ROUGE metric. 625

Pearson’s Correlation Coefficients

P-V1 STSB USE

I1 I2 I3 I1 I2 I3 I1 I2 I3

I2 0.69 — 0.65 — 0.71 —
I3 0.40 0.50 — 0.50 0.52 — 0.51 0.54 —
I4 0.33 0.44 0.60 0.33 0.36 0.56 0.37 0.42 0.66

Average 0.49 0.49 0.54

Table 10: Max (across 3 models) Pearson’s correlation
between the SEM-F1 scores corresponding to different
annotators. Here Ii refers to the ith annotator where
i ∈ {1, 2, 3, 4} and “Average” row represents average
correlation of the max values across annotators. All
values are statistically significant at p-value < 0.05.

9 Conclusions 626

In this work, we proposed a new NLP task, called 627

Multi-Narrative Semantic Intersection (MNSI) and 628

created a benchmark dataset through meticulous 629

human effort to initiate a new research direction. 630

As a starting point, we framed the problem as a 631

constrained summarization task and showed that 632

ROUGE is not a reliable evaluation metric for this 633

task. We further proposed a more accurate metric, 634

called SEM-F1, for evaluating MNSI task. Experi- 635

ments show that SEM-F1 is more robust and yield 636

higher agreement with human judgement. 637
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A Other definitions of Text Intersection942

Below, we present a set of possible definitions of943

Semantic Intersection to encourage the readers to944

think more about other alternative definitions.945

1. On a very simplistic level, one can think of Se-946

mantic Intersection to be just the common words947

between the two input documents. One can948

also include their frequencies of occurrences949

in such representation. More specifically, we950

can define Dint as a set of unordered pairs of951

words wi and their frequencies of common oc-952

currences fi, i.e., Dint = {(wi, fi)}. We can953

further extend this approach such that Seman-954

tic Intersection is a set of common n-grams955

among the input documents. More specifically,956

Dint = {
(
(w1, w2, ..., wn)i, fi

)
} such that the957

n-grams, (w1, w2, ..., wn)i, is present in both958

DA (with frequency fiA) and DB (with fre-959

quency fiB) and fi = min(fiA, fiB).960

2. Another way to think of Semantic Intersection961

is to find the common topics among two doc-962

uments just like finding common object labels963

among two images (Alfassy et al., 2019), by964

computing the joint probability of their topic dis-965

tributions. More specifically, Semantic Intersec-966

tion can be defined by the following joint proba-967

bility distribution: P (Ti|Dint) = P (Ti|DA)×968

P (Ti|DB). This representation is more seman-969

tic in nature as it can capture overlap in topics.970

3. Alternatively, one can take the 5W1H approach971

(Xie et al., 2008), where a given narrative D972

can be represented in terms of unordered sets973

of six facets: 5Ws (Who, What, When, Where974

and Why) and 1H (How). In this case, we can975

define Semantic Intersection as the common el-976

ements between the corresponding sets related977

to these 6 facets present in both narratives, i.e.978

Dint = {Si} where Si is a set belonging to one979

of the six 5W1H facets. It is entirely possible980

that one of these Si’s is an empty set (φ). The981

most challenging aspect with this approach is982

accurately inferring the 5W1H facets.983

4. Another way could be to define a given docu-984

ment as a graph. Specifically, we can consider985

a document D as a directed graph G = (V,E)986

where V represents the vertices and E repre-987

sents the edges. Thus, TextIntersect can be de-988

fined as the set of common vertices or edges989

or both. Specifically, Dint can be defined as a990

maximum common subgraph of both GA and991

GB , where GA and GB are the corresponding 992

graphs for the documents DA and DB respec- 993

tively. However, coming up with a graph struc- 994

ture G which can align with both documents 995

DA and DB , would itself be a challenge. 996

5. One can also define TextIntersect operator (∩) 997

between two documents based on historical con- 998

text and prior knowledge. Given a knowledge 999

base K, Dint = ∩(DA, DB|K) (Radev, 2000). 1000

All the approaches defined above have their specific 1001

use-cases and challenges, however, from a human- 1002

centered point of view, they may not reflect how 1003

humans generate semantic intersections. A human 1004

would mostly express it in the form of natural lan- 1005

guage and this is why, we frame the TextIntersect 1006

operator as a constraint summarization problem 1007

such that the information of the output summary is 1008

present in both the input documents. 1009

B Threshold Algorithm 1010

Algorithm 2 Threshold Function
1: procedure THRESHOLD(rawSs, T )
2: initialize Labels← []
3: for each element e in rawSs do
4: if e ≥ tu% then
5: Labels.append(P )
6: else if tl% ≤ e ≤ tu% then
7: Labels.append(PP )
8: else
9: Labels.append(A)

10: end if
11: end for
12: return Labels
13: end procedure

C Rouge Scores 1011

Model R1 R2 RL

BART 40.73 25.97 29.95
T5 38.50 24.63 27.73

Pegasus 46.36 29.12 37.41

Table 11: Average Rouge-F1 Scores for all the test
models across test dataset. For a particular sample, we
take the maximum value out of the 4 F1 scores corre-
sponding to the 4 reference summaries.
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Machine-Human Agreement in terms of Reward Function

T = (25,75) T = (35,65) T = (45,75) T = (55,65) T = (55,75) T = (55,80) T = (60,80)

Sentence Embedding: P-v1

Precision
Reward

L1 0.73± 0.27 0.81± 0.25 0.77± 0.26 0.85± 0.23 0.80± 0.24 0.77± 0.24 0.77± 0.26
L2 0.72± 0.30 0.73± 0.29 0.73± 0.30 0.78± 0.27 0.79± 0.27 0.75± 0.26 0.73± 0.29
L3 0.81± 0.23 0.86± 0.21 0.79± 0.24 0.78± 0.28 0.74± 0.28 0.69± 0.28 0.69± 0.27

Recall
Reward

L1 0.66± 0.19 0.79± 0.16 0.75± 0.16 0.76± 0.18 0.71± 0.17 0.66± 0.17 0.61± 0.18
L2 0.67± 0.19 0.78± 0.16 0.76± 0.15 0.73± 0.19 0.72± 0.18 0.70± 0.18 0.65± 0.21
L3 0.66± 0.15 0.72± 0.17 0.68± 0.17 0.68± 0.22 0.64± 0.20 0.59± 0.19 0.57± 0.20

Sentence Embedding: STSB

Precision
Reward

L1 0.75± 0.29 0.75± 0.29 0.75± 0.29 0.75± 0.29 0.75± 0.29 0.75± 0.30 0.75± 0.23
L2 0.63± 0.32 0.63± 0.31 0.63± 0.32 0.63± 0.31 0.63± 0.32 0.64± 0.32 0.64± 0.32
L3 0.81± 0.23 0.82± 0.23 0.81± 0.23 0.82± 0.23 0.81± 0.23 0.81± 0.22 0.81± 0.22

Recall
Reward

L1 0.66± 0.21 0.67± 0.21 0.66± 0.21 0.68± 0.21 0.67± 0.21 0.65± 0.21 0.66± 0.21
L2 0.57± 0.20 0.58± 0.21 0.57± 0.20 0.59± 0.20 0.59± 0.20 0.58± 0.20 0.58± 0.21
L3 0.67± 0.19 0.67± 0.20 0.67± 0.19 0.68± 0.20 0.68± 0.19 0.67± 0.18 0.68± 0.18

Sentence Embedding: USE

Precision
Reward

L1 0.76± 0.29 0.77± 0.30 0.78± 0.27 0.80± 0.28 0.80± 0.27 0.77± 0.27 0.80± 0.27
L2 0.69± 0.32 0.66± 0.32 0.71± 0.30 0.68± 0.30 0.72± 0.30 0.76± 0.29 0.78± 0.29
L3 0.82± 0.24 0.85± 0.22 0.85± 0.23 0.86± 0.21 0.85± 0.23 0.82± 0.23 0.78± 0.25

Recall
Reward

L1 0.64± 0.19 0.67± 0.19 0.68± 0.19 0.70± 0.21 0.69± 0.22 0.64± 0.20 0.65± 0.21
L2 0.62± 0.19 0.63± 0.20 0.66± 0.18 0.66± 0.21 0.68± 0.20 0.68± 0.19 0.69± 0.21
L3 0.64± 0.16 0.68± 0.19 0.66± 0.16 0.69± 0.20 0.65± 0.19 0.60± 0.17 0.60± 0.18

(a) Average Precision and Recall reward/correlation (mean± std) between label-annotators (Li) and automatically inferred labels
using SEM-F1. The results are shown for different embedding models (8.1) and multiple threshold levels T = (tl, tu). For all
the annotators Li (i ∈ {1, 2, 3}), correlation numbers are quite high (≥ 0.50). Moreover, the reward values are consistent/stable
across all the 5 embedding models and threshold values.

Machine-Human Agreement in terms of Kendall Rank Correlation

T = (25,75) T = (35,65) T = (45,75) T = (55,65) T = (55,75) T = (55,80) T = (60,80)

Sentence Embedding: P-v1

Precision
Reward

L1 0.55 0.6 0.58 0.59 0.57 0.56 0.54
L2 0.61 0.67 0.63 0.67 0.64 0.67 0.68
L3 0.54 0.62 0.56 0.64 0.6 0.56 0.52

Recall
Reward

L1 0.53 0.64 0.66 0.62 0.61 0.62 0.59
L2 0.55 0.64 0.67 0.63 0.63 0.64 0.61
L3 0.54 0.65 0.64 0.66 0.65 0.65 0.61

Sentence Embedding: STSB

Precision
Reward

L1 0.57 0.67 0.58 0.66 0.6 0.57 0.58
L2 0.66 0.63 0.65 0.63 0.7 0.63 0.6
L3 0.56 0.57 0.58 0.56 0.59 0.57 0.56

Recall
Reward

L1 0.55 0.65 0.64 0.62 0.62 0.61 0.59
L2 0.56 0.65 0.65 0.63 0.63 0.64 0.63
L3 0.54 0.59 0.61 0.57 0.58 0.57 0.54

Sentence Embedding: USE

Precision
Reward

L1 0.58 0.62 0.6 0.61 0.59 0.62 0.65
L2 0.68 0.7 0.68 0.68 0.68 0.7 0.73
L3 0.66 0.67 0.65 0.64 0.63 0.53 0.56

Recall
Reward

L1 0.53 0.59 0.56 0.61 0.62 0.61 0.6
L2 0.54 0.6 0.61 0.62 0.64 0.64 0.62
L3 0.52 0.6 0.58 0.61 0.61 0.6 0.6

(b) Average Precision and Recall Kendall Tau between label-annotators (Li) and automatically inferred labels using SEM-F1.
The results are shown for different embedding models (8.1) and multiple threshold levels T = (tl, tu). For all the annotators Li
(i ∈ {1, 2, 3}), correlation numbers are quite high (≥ 0.50). Moreover, the reward values are consistent/stable across all the 5
embedding models and threshold values. All values are statistically significant at p-value<0.05.

Table 12: Machine-Human Agreement
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AllSides Dataset

Split #words (docs) #sents (docs) #words (reference/s) #sents (reference/s)

Train 1613.69 66.70 67.30 2.82
Test 959.80 44.73 65.46/38.06/21.72/32.82 3.65/2.15/1.39/1.52

Table 13: Two input documents are concatenated to compute the statistics. Four numbers for reference
(#words/#sents) in Test split corresponds to the 4 reference intersections.
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