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Abstract001

As synthetic data becomes increasingly preva-002
lent in training large language models (LLMs),003
concerns have emerged that these models may004
deviate from authentic human language pat-005
terns, potentially losing the richness and cre-006
ativity inherent in human communication. This007
highlights the critical need to assess the lan-008
guage humanlikeness of LLMs in real-world009
usage. In this paper, we present a compre-010
hensive Human language Likeness Benchmark011
(HLB)—a comprehensive evaluation of 20012
LLMs using psycholinguistic experiments de-013
signed to probe core linguistic dimensions:014
phonology, lexical processing, syntax, seman-015
tics, and discourse. To contextualize model016
performance, we collected responses from over017
2,000 human participants as a baseline and018
compared these to the outputs generated by the019
models.020

For rigorous evaluation, we developed a cod-021
ing algorithm that accurately identified lan-022
guage use patterns, enabling the extraction of023
response distributions for each task. By com-024
paring the response distributions between hu-025
man participants and LLMs, we quantified hu-026
manlikeness through distributional similarity.027
Our results reveal fine-grained differences in028
how well LLMs replicate human responses029
across various linguistic levels. Importantly, we030
found that improvements in other performance031
metrics did not necessarily lead to greater hu-032
manlikeness, and in some cases, even resulted033
in a decline. By introducing psycholinguistic034
methods to model evaluation, this benchmark035
offers the first framework for systematically036
assessing the humanlikeness of LLMs in lan-037
guage use (see Figure 19 for the leaderboard;038
Code and data will be released upon accep-039
tance.)040

1 Introduction041

In recent years, large language models (LLMs)042

have made significant advancements. Models like043

OpenAI’s GPT series and Meta’s Llama family can 044

generate human-like text, engage in coherent dia- 045

logues, and answer complex questions, often pro- 046

ducing responses that are indistinguishable from 047

those of humans in certain evaluations (Tsubota 048

and Kano, 2024). Cai et al. (2024) conducted a sys- 049

tematic evaluation of human-like language use in 050

models such as ChatGPT and Vicuna, demonstrat- 051

ing that LLMs closely replicate human language 052

patterns in many aspects. However, despite these 053

successes, questions remain about how accurately 054

these models capture the deeper, nuanced patterns 055

of human language use. In other words, the full ex- 056

tent of their similarity to human behavior remains 057

unclear. 058

The importance of evaluating humanlikeness in 059

language use is further underscored by the increas- 060

ing reliance on synthetic data for model training, 061

particularly in dialogue models. While synthetic 062

data generation facilitates efficient scaling of model 063

training, it raises concerns about models diverging 064

from real-world human language patterns (del Rio- 065

Chanona et al., 2024). Studies have shown that 066

synthetic data can degrade model performance af- 067

ter retraining (Shumailov et al., 2024). This makes 068

it imperative to assess the humanlikeness of LLMs 069

rigorously across various aspects of language use, 070

to ensure that models do not lose the diversity and 071

richness of human language data. 072

To address this challenge, we introduce a psy- 073

cholinguistic benchmark designed to provide a 074

systematic and comprehensive evaluation of how 075

closely LLMs align with human linguistic behav- 076

ior. 077

Although numerous benchmarks and leader- 078

boards have been developed to assess the perfor- 079

mance of LLMs on downstream NLP tasks, they 080

often fail to capture the finer, human-like qualities 081

of language use. Current NLP benchmarks typi- 082

cally focus on task-based accuracy or performance 083

(Lewkowycz et al., 2022; Zhou et al., 2023; Peng 084
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Figure 1: (a) Taxonomy of psycholinguistics experiments in HLB. The experiments and their sources are: sound-
shape association (Köhler, 1967), sound-gender association (Cassidy et al., 1999), word length and predictivity
(Mahowald et al., 2013), word meaning priming (Rodd et al., 2013), structural priming (Pickering and Branigan,
1998), syntactic ambiguity resolution (Altmann and Steedman, 1988), implausible sentence interpretation (Gibson
et al., 2013), semantic illustion (Erickson and Mattson, 1981), implicit causality (Garvey and Caramazza, 1974),
drawing inferences (Singer and Spear, 2015). (b) The benchmark framework. The example prompt is taken from
the sound-gender association task, where humans can infer the gender of a novel name (e.g., Pelcra for Female;
Pelcrad for Male) based on phonology.

et al., 2024; Hendrycks et al., 2021; Zellers et al.,085

2019), overlooking the broader psycholinguistic086

dimensions that characterize how humans process087

and produce language. Furthermore, few studies088

have systematically compared the language use of089

LLMs and human participants across multiple lin-090

guistic levels. This gap highlights the need for091

a new benchmark that can robustly measure the092

extent to which LLMs replicate human language093

behavior in real-world, diverse linguistic contexts.094

In this paper, we address this gap by presenting095

a psycholinguistic benchmark study that evaluates096

the human language likeness of 20 LLMs. Our097

benchmark consists of 10 representative psycholin-098

guistic experiments, which cover five core linguis-099

tic aspects: sound, word, syntax, semantics, and100

discourse, with two experiments dedicated to each101

aspect (see Figure 1). We collected approximately102

50 to 100 responses per item from over 2,000 hu-103

man participants. Additionally, we gathered 100104

responses per item from each of the 20 LLMs, in-105

cluding well-known models such as GPT-4o, GPT-106

3.5, Llama 2, Llama 3, Llama 3.1, and other state-107

of-the-art models (see Table 2). To quantify human108

language likeness, we developed an auto-coding109

algorithm that efficiently and reliably extracts lan-110

guage use patterns from responses. The human111

language likeness metric was then calculated based 112

on the similarity between the response distributions 113

of humans and LLMs, using a comparison of their 114

probability distributions. 115

Our findings reveal significant, nuanced differ- 116

ences in how LLMs perform across various linguis- 117

tic aspects, offering a new benchmark for evaluat- 118

ing the humanlikeness of LLMs in natural language 119

use. This benchmark introduces psycholinguistic 120

methods to model evaluation and provides the first 121

framework for systematically assessing the human- 122

likeness of LLMs in language use. 123

2 Related Work 124

Recent advances in LLMs have led to the develop- 125

ment of various benchmarks designed to evaluate 126

their linguistic capabilities. Standard benchmarks 127

like GLUE (Wang et al., 2018) and SuperGLUE 128

(Wang et al., 2019) assess models across a range 129

of natural language processing (NLP) tasks, in- 130

cluding sentence classification, textual entailment, 131

and question answering. However, these bench- 132

marks primarily focus on task-based accuracy and 133

often overlook the more intricate aspects of human- 134

like language processing. While these evaluations 135

provide valuable insights into model performance, 136

they do not fully capture the extent to which LLMs 137
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comprehend and generate language in a humanlike138

manner. As Manning et al. (2020) note, LLMs are139

powerful statistical models that can identify pat-140

terns in vast datasets, but these benchmarks do not141

adequately test how well models replicate human142

patterns of language use due to the interplay of143

complex cognitive biases.144

2.1 Psychological Experimentation on LLMs145

A growing body of research has begun apply-146

ing classical psychological experiments to eval-147

uate LLMs in more domain-specific and cogni-148

tively demanding tasks. For example, Binz and149

Schulz (2023) and Dasgupta et al. (2023) used150

well-known psychological paradigms, such as the151

Linda problem and the Wason selection task, to152

probe LLMs’ abilities in judgment and decision-153

making. Similarly, Sap et al. (2023) and Trott et al.154

(2023) explored whether LLMs exhibit theory of155

mind, a key component of human social cogni-156

tion, while Miotto et al. (2022) and Karra et al.157

(2023) examined LLMs’ personality traits. In the158

domain of behavioral economics, Horton (2023)159

conducted experiments with GPT-3 to explore its160

decision-making processes. These studies suggest161

that LLMs can be treated as cognitive agents in162

psychological experiments, providing insights into163

how LLMs align with humans in reasoning, be-164

havior, and decision-making. Moreover, they help165

shed light on the underlying mechanisms of LLMs,166

as seen in the work of Huang and Chang (2023)and167

Qiao et al. (2023), who analyzed reasoning patterns168

in LLMs. Hagendorff (2023) further provided a169

comprehensive review of LLM performance in psy-170

chological tests, showing that while LLMs demon-171

strate sophisticated behaviors, they often diverge172

from human cognition. These divergences high-173

light the need for more robust frameworks to under-174

stand the limitations of LLMs in mimicking human175

thought processes.176

2.2 Psycholinguistic Experimentation on177

LLMs178

Psycholinguistic approaches offer a deeper anal-179

ysis by testing LLMs on how well they replicate180

the cognitive processes underlying human language181

processing. Ettinger (2020) and Futrell (2019) have182

subjected models like BERT to psycholinguistic183

tasks such as syntactic ambiguity resolution and184

structural priming, revealing both the strengths and185

limitations of LLMs in replicating human language186

processing. Michaelov and Bergen (2023) used187

structural priming tasks to investigate how LLMs 188

internalize syntactic structures, while Huang et al. 189

(2024) examined LLMs’ ability to resolve syntac- 190

tic ambiguity. Qiu et al. (2023) explored how well 191

LLMs handle pragmatic reasoning. These stud- 192

ies demonstrate that LLMs can, to some extent, 193

mimic humanlike behavior in controlled experi- 194

ments. However, divergences in processing reveal 195

the distinctions between machine learning models 196

and humans. A recent review by Demszky et al. 197

(2023) emphasized the need for benchmarks that 198

incorporate psychological paradigms to evaluate 199

LLMs. The authors argue that by applying psy- 200

cholinguistic methods, researchers can better un- 201

derstand how closely LLMs approximate human 202

cognition and where they fall short. Despite exten- 203

sive research on LLMs’ performance across various 204

tasks, there is still no benchmark that includes hu- 205

man language processing data to reveal the extent 206

to which LLMs resemble humans, particularly in 207

language use. This paper addresses that gap by 208

adapting 10 psycholinguistic experiments to evalu- 209

ate how closely LLMs align with human language 210

behavior, covering phenomena ranging from sound 211

symbolism to discourse comprehension. 212

3 Methodology 213

3.1 Human Experiments 214

Experimental Design The human experiments 215

were constructed using Qualtrics, an online survey 216

platform (Qualtrics, 2024). The study included ten 217

psycholinguistic tasks that spanned various linguis- 218

tic levels, from sound, word, syntax, and meaning 219

to discourse comprehension, with two experiments 220

for each level (see Appendix A for details). We 221

exposed a participant to only one trial on each task, 222

with a total of 10 trials across all the tasks. This 223

setup minimized trial-level effects and facilitated 224

direct comparisons with LLMs, which were tested 225

under similar conditions (presenting instructions 226

and stimuli in a single prompt) to avoid context 227

effects within individual conversations. 228

Procedure After providing consent, participants 229

completed the ten psycholinguistic tasks (presented 230

in a random order); four attention checks were ran- 231

domly interspersed among the trials to later identify 232

participants for random responding. Each exper- 233

imental task began with an instructional screen, 234

some of which included examples to clarify task 235

requirements. The examples were carefully de- 236

signed to differ from the experimental stimuli to 237
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prevent potential priming effects. For instance, in238

a sentence-completion task, an illustrative example239

that did not resemble the experimental stimuli and240

did not induce target words for any stimuli was241

used. The priming tasks (which included pairs of242

priming and target stimuli) were spread across mul-243

tiple pages to avoid strategic responses in case par-244

ticipants realise the relation between the prime and245

the target. The overall experimental procedure was246

streamlined for clarity and efficiency, with each ses-247

sion lasting approximately 8 to 10 minutes (mean248

= 8.336, SD = 4.171).249

Participants Participants were recruited from250

the crowd-sourcing platform Prolific and restricted251

to native English speakers residing in the UK and252

US, according to their registration on the platform.253

They were required to use a desktop computer to254

complete the tasks. Among the 2,205 participants255

taking part in the experiments, 290 were excluded256

for not well adhering to the experimental instruc-257

tions, including completing the study too quickly,258

showing low effort, or not finishing the experiment,259

according to the Qualtrics system. The remain-260

ing 1,915 participants were further checked for261

language nativeness and their accuracy with at-262

tention checks. After a thorough screening pro-263

cess—excluding those who were not native speak-264

ers, failed attention checks, or exhibited irregular-265

ities such as excessively short completion times266

or multiple participation attempts—the final valid267

sample consisted of 1,905 participants. The sample268

was composed of participants as follows: female (n269

= 1,051), male (n = 838), preferred not to disclose270

(n = 16), with an average age of 44.8 years (range:271

18 to 89 years). Educational levels included: no272

formal education (n = 2), elementary school (n =273

12), high school (n = 672), bachelor’s degree (n =274

862), and master’s degree (n = 357). This sample275

of participants resulted in each item being tested in276

a minimum average of 24 trials (e.g., Word Length277

and Predictability) and up to an average of 96 trials278

(e.g., Sound-Shape Association Task).279

3.2 LLM Experiments280

Experimental Design To compare human re-281

sponses with those generated by LLMs, we em-282

ployed the same 10 psycholinguistic tasks designed283

for human participants. 20 LLMs (See Table 2)284

were selected for evaluation, including models285

from prominent families like OpenAI’s GPT series286

(GPT-4o, GPT-3.5), Meta’s Llama series (Llama287

2, Llama 3, Llama 3.1) and Mistral series(OpenAI288

et al., 2024; Touvron et al., 2023; AI, 2024). Each 289

model provided 100 responses per item in each ex- 290

periment, ensuring that the response data was com- 291

parable to the human data. Similar to the human 292

experimental design, LLMs followed a one-trial- 293

per-run paradigm, ensuring that responses were 294

generated independently for each item to prevent 295

context effects. The input format for the LLMs 296

closely mirrored the instructions provided to hu- 297

man participants. Careful modification of human 298

prompts was performed to ensure that task instruc- 299

tions were clear and interpretable by LLMs. This 300

allowed for a direct comparison between human 301

and LLM performance on the same tasks under 302

identical conditions. 303

Response Collection Procedure This closely 304

mirror that in the human experiments. Each LLM 305

was presented with the task instructions and the 306

stimulus combined into a single prompt. We col- 307

lected 100 responses (across different conditions) 308

for each stimulus in an experiment in order to en- 309

sure a sufficiently large dataset for robust analysis 310

of the response distributions. For OpenAI mod- 311

els, responses were obtained through the OpenAI 312

API, while models hosted on Hugging Face were 313

accessed using the Hugging Face Inference API. 314

All requests to the models were made using their 315

default parameters to encourage variability in re- 316

sponses. The collected responses were stored and 317

processed for subsequent coding and analysis. 318

3.3 Response Coding 319

Development and Validation We employed an 320

auto-coding algorithm across 10 experiments to 321

assess agreement between human annotations and 322

machine-generated labels. This algorithm utilized 323

spaCy’s en_core_web_trf-3.7.3 model for syntactic 324

parsing (e.g., structural priming and syntactic am- 325

biguity resolution tasks) and regular expressions 326

to detect answer patterns in others. Across 20,953 327

trials of human response data, we computed Co- 328

hen’s Kappa (kappa), a measure that corrects for 329

chance agreement between the results from man- 330

ually coding and auto-coding algorithm, defined 331

as: 332

K =
P0 − Pe

1− Pe
(1) 333

where Po is the observed agreement, and Pe is 334

the expected agreement by chance. 335

The Kappa score was κ = 0.993, indicating near- 336

perfect agreement (z = 451, p < 0.001). This demon- 337
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Model Overall Sound Word Meaning Syntax Discourse
E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Meta-Llama-3.1-70B-Instruct 66.50 89 62 61 6 81 77 80 67 80 63
Meta-Llama-3.1-8B-Instruct 65.89 73 65 60 12 84 78 79 74 79 56
Phi-3-mini-4k-instruct 64.61 61 68 59 19 89 71 76 48 80 76
Mistral-7B-Instruct-v0.1 62.77 73 70 62 24 87 43 69 36 79 84
gpt-4o 58.58 60 63 68 2 71 77 47 61 75 62
gpt-3.5-turbo 58.32 55 61 66 3 76 76 71 47 76 50
zephyr-7b-alpha 56.96 57 62 47 23 85 29 44 73 76 75
Mistral-8x7B-Instruct-v0.1 52.80 60 53 48 23 71 46 43 59 73 52
zephyr-7b-beta 47.85 28 53 48 26 71 7 38 73 75 60

Table 1: Language human-likeness scores for selected models across 10 experiments. Bold values indicate task-wise
best performances among all models; Underlined values indicate the weakest. Full data for 20 models are provided
in Table 2.

strates the high accuracy of the auto-coding algo-338

rithm in replicating human annotations.339

3.4 Humanlikeness Scoring340

To quantify the humanlikeness of LLM responses,341

we used Jensen-Shannon (JS) divergence to com-342

pare the response distributions between human par-343

ticipants and LLMs. JS divergence, a symmetric344

measure of similarity between two probability dis-345

tributions, is ideal for assessing how closely LLM346

responses mirror human behavior across linguis-347

tic levels. For each task, the auto-coding algo-348

rithm generated response distributions for both hu-349

mans and LLMs. We computed language human-350

likeness score (HS) for each item as:351

HSitem = 1− JS(P,Q)

= 1− 1

2
[KL(P ∥ M) +KL(Q ∥ M)]

(2)352

where P and Q are the human and LLM response353

distributions, and M is their average. For each354

experiment, we average the scores across all items.355

The overall language human-likeness score across356

all experiments is then computed as:357

HSOverall =
1

m

m∑
j=1

(
1

nj

nj∑
i=1

(
1− 1

2
[KL(Pi ∥ Mi)

+KL(Qi ∥ Mi)]))
(3)358

The HS metric offers a significant advantage359

over traditional metrics by capturing not just aver-360

age response differences but also the distributional361

similarities between human and model responses,362

making it more sensitive to subtle divergences in363

how LLMs mimic human behavior. See the case364

analysis section for a detailed explanation of how365

this metric captures distributional differences effec- 366

tively. 367

4 Result 368

4.1 Overall Performance 369

We begin by providing an overview of the ex- 370

perimental results for the 20 LLMs and human 371

participants across the 10 psycholinguistic tasks. 372

Detailed experiment result data for each task are 373

displayed in Figure 18 and plotted in Figure 8 to 374

17 in Appendix C. From these results, it was ob- 375

served that Meta-Llama-3.1-70B-Instruct consis- 376

tently exhibited minimal deviation from human 377

results, both in terms of mean values and effect 378

sizes (i.e., differences in mean values between con- 379

ditions). In contrast, models such as Mistral-7B- 380

Instruct-v0.3 displayed notable divergence from 381

human results across several tasks. These results 382

provide a foundational overview for the subsequent 383

language human-likeness score (HS) calculations. 384

The language language human-likeness scores 385

(HS) revealed significant variation in how well 386

LLMs emulated human language use across the 387

10 psycholinguistic experiments (see Table 1; Ta- 388

ble 2 in Appendix D for the complete leaderboard). 389

Meta-Llama-3.1-70B-Instruct led both in overall 390

humanlikeness and across several individual tasks, 391

followed by Meta-Llama-3.1-8B-Instruct. On the 392

other hand, Mistral-7B-Instruct-v0.2 scored lower 393

among the models, with Zephyr-7B-beta receiving 394

the lowest score. 395

4.2 Model Family Divergence in 396

Humanlikeness 397

Statistical comparisons across model families re- 398

veal substantial and systematic differences in their 399

alignment with human language behavior, as quan- 400
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Figure 2: Language human-likeness scores of three LLM families

tified by language human-likeness scores (see Fig-401

ure 3). Among the most striking findings, Llama402

models significantly outperformed Mistral mod-403

els in humanlikeness (t = 10.44, p < .001), high-404

lighting a pronounced divergence between these405

two architectural families. Although Llama mod-406

els also surpassed OpenAI models (t = 3.13, p =407

.002), the magnitude of this difference was notably408

smaller, suggesting that the performance gap be-409

tween Llama and Mistral models is particularly410

robust.411

Intra-family comparisons further illuminate the412

developmental trajectories of these models. Within413

the Llama family, the transition from Meta-Llama-414

3-70B-Instruct to Meta-Llama-3.1-70B-Instruct415

yielded a significant improvement in humanlike-416

ness (t = –4.85, p < .001), reflecting meaning-417

ful gains in language pattern alignment likely at-418

tributable to training data refinements or architec-419

tural tuning. By contrast, OpenAI’s GPT-3.5-turbo420

and GPT-4o did not differ significantly in perfor-421

mance (t = –0.93, p = 0.352), indicating a plateau422

in their alignment with human responses across the423

tasks evaluated. Within the Mistral family, however,424

a significant performance decline was observed425

from Mistral-7B-Instruct-v0.1 to v0.3 (t = 5.45, p426

< .001), raising questions about the effect of model427

updates on cognitive fidelity.428

This cross-family analysis represents one of the429

most consequential findings of the present study. It 430

underscores that not all LLMs progress uniformly 431

in approximating human-like language use and that 432

family-level design choices, training objectives, 433

and versioning strategies can exert a marked in- 434

fluence on cognitive alignment. The superior per- 435

formance of the Llama models across both inter- 436

and intra-family comparisons highlights them as 437

the current frontier in capturing fine-grained human 438

linguistic patterns, while also reinforcing the utility 439

of language human-likeness scores as a diagnostic 440

tool for comparative evaluation. 441

4.3 Challenges in Aligning Semantic 442

Interpretation Patterns 443

A closer examination of individual experiments 444

further underscores the nuanced challenges LLMs 445

face in replicating human-like language behavior. 446

Among the ten tasks, Experiment 4, which as- 447

sessed word meaning priming, yielded the most 448

pronounced divergence between model and human 449

responses, as indicated by a substantial statistical 450

difference (t = –116.32, p < .001). 451

This experiment was designed to evaluate 452

whether models, like humans, show sensitivity to 453

recent contextual exposure when interpreting an 454

ambiguous word such as post. Specifically, par- 455

ticipants were presented with sentences that either 456

primed the target meaning directly (e.g., post used 457
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Figure 3: Language human-likeness scores of three
LLM families

as a job title) or through a synonymous context.458

Human participants demonstrated a relatively mod-459

est priming effect: 20% interpreted post with its460

job-related meaning following a word-meaning461

prime, compared to 18% following a synonym462

prime. These small differences reflect the graded463

and flexible nature of human semantic activation.464

In contrast, Meta-Llama-3.1-70B exhibited an465

exaggerated priming response, with 52% and 38%466

selecting the job-related meaning in the respective467

conditions. While directionally consistent with the468

human pattern, the model’s magnitude of response469

was disproportionately large, suggesting a rigid-470

ity or over-sensitivity in semantic activation that471

departs from human interpretive subtlety.472

This case highlights a core challenge for LLMs:473

aligning with the probabilistic and contextually474

modulated nature of human semantic processing,475

especially in the face of lexical ambiguity. It further476

demonstrates that even when models approximate477

human behavior at a coarse level (e.g., showing a478

priming effect in the correct direction), the gran-479

ularity and distribution of responses often reveal480

critical mismatches. Such discrepancies underscore481

the importance of evaluating not just outcome align-482

ment but also the underlying response dynamics483

that shape human-like interpretation.484

4.4 Distributional Divergence Beyond Effect485

Size486

The E2 sound-gender association task provides a487

clear case study for illustrating the diagnostic value488

of the language human-likeness score, particularly489

in capturing divergences that are obscured when490

Figure 4: Experiment results of Llama-3-8B-instruct,
Llama-3.1-8B-instruct and humans in E2 (sound-gender
association)

comparing only mean-level effects. Specifically, 491

the contrast between Meta-Llama 3-8B-Instruct 492

and Meta-Llama 3.1-8B-Instruct (hereafter Llama 493

3-8B and Llama 3.1-8B) reveals how similar effect 494

sizes can mask substantial differences in response 495

distributions—differences that are critical for as- 496

sessing alignment with human linguistic behavior. 497

As shown in Figure 4, both models—along with 498

human participants—exhibit a higher probability of 499

classifying vowel-ending pseudonames as female, 500

consistent with documented phonological biases. 501

The difference in mean response between vowel 502

and consonant conditions (i.e., effect size) is actu- 503

ally more similar between Llama 3-8B (difference 504

= 0.47) and humans (0.41) than between Llama 505

3.1-8B (0.33) and humans. Nevertheless, Llama 3- 506

8B received a substantially lower language human- 507

likeness score (53) than Llama 3.1-8B (65). This 508

counterintuitive result stems from distributional di- 509

vergence: although Llama 3-8B matches human 510

effect size more closely, its response distribution 511

pattern deviates more markedly from human be- 512

havior than that of Llama 3.1-8B. The language 513

human-likeness score, computed via JS divergence, 514

captures these subtler discrepancies in response 515

structure, not just aggregate values. By evaluat- 516

ing full response distribution, the score provides a 517

more precise and meaningful assessment of how 518

closely language models approximate human-like 519

language behavior. 520
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5 Discussion521

The results of this benchmark study highlight no-522

table differences in how LLMs approximate hu-523

man language use across various linguistic levels.524

The Llama family of models, particularly Meta-525

Llama-3.1-70B-Instruct, consistently outperformed526

both the OpenAI and Mistral models in terms of527

language human-likeness score. This finding sug-528

gests that recent advancements in the Llama models529

have led to more humanlike language behaviors,530

especially in terms of semantic and discourse pro-531

cessing. The OpenAI models, including GPT-4o532

and GPT-3.5-turbo, showed relatively stable perfor-533

mance across tasks, with no significant differences534

between the models. This stability may reflect a535

plateau in the improvement of humanlikeness in536

these models, as compared to the more recent gains537

observed in the Llama family. On the other hand,538

the Mistral models demonstrated a decrease in lan-539

guage human-likeness scores, particularly in the540

transition to Mistral-7B-Instruct-v0.3. This sug-541

gests that certain training methods and data quality542

in Mistral may have reduced their alignment with543

human language patterns. One of the key insights544

from this study is that models differ not only in their545

overall language human-likeness scores but also in546

how they handle specific linguistic phenomena. For547

instance, in Experiment 4 (word meaning priming),548

we observed a significant divergence in resposnes549

between humans and LLMs, with the latter show-550

ing a much larger priming effect. This over-priming551

suggests that while LLMs may excel in certain as-552

pects of language generation, they often lack the553

subtle flexibility that humans display when process-554

ing ambiguous or context-dependent language. A555

major strength of this study is its use of psycholin-556

guistic experiments to evaluate LLMs, which goes557

beyond traditional NLP benchmarks that focus on558

task accuracy. By systematically probing various559

linguistic levels—sound, word, syntax, semantics,560

and discourse—this benchmark provides a more561

comprehensive understanding of how LLMs pro-562

cess and generate language.563

6 Conclusion564

In this paper, we introduced a novel benchmark565

for evaluating the humanlikeness of LLMs in lan-566

guage use based on psycholinguistic experiments.567

Our study evaluated 20 LLMs, including OpenAI’s568

GPT family, Meta’s Llama family, the Mistral fam-569

ily and others, across 10 experiments that spanned570

key linguistic aspects such as sound, word, syntax, 571

semantics, and discourse. Using responses from 572

over 2,000 human participants as a baseline, the 573

results revealed significant differences in model 574

performance, with Llama models consistently out- 575

performing both OpenAI and Mistral models in 576

terms of language use humanlikeness. These find- 577

ings underscore the potential of psycholinguistic 578

benchmarks to capture aspects of language that are 579

often missed by traditional NLP evaluations. 580

This benchmark provides a framework for future 581

research on LLMs, offering a more meaningful and 582

comprehensive way to evaluate their performance 583

in real-world language use. It also highlights areas 584

where current LLMs diverge from human language 585

patterns, particularly in tasks involving semantic 586

priming and ambiguity resolution. By identifying 587

these gaps, this study offers critical insights for 588

the next generation of LLM development, paving 589

the way for models that more closely mirror the 590

intricacies of human communication. 591

7 Limitation 592

However, there are several limitations to this study. 593

First, while the benchmark covers a wide range 594

of linguistic tasks, it may not encompass the full 595

complexity of human language use. Some linguis- 596

tic phenomena, such as pragmatic reasoning, were 597

not explored in this study. Second, we did not 598

manipulate models’ parameters, particularly the 599

temperature or top k, to control the diversity of the 600

generated responses. While using default parame- 601

ters, particularly temperature, may seem limiting, 602

this choice ensures that we evaluate models in their 603

most typical and practical configurations. Default 604

settings reflect how these models are commonly 605

used in real-world applications, offering a fair and 606

standardized comparison. Tuning parameters like 607

temperature could introduce bias and variability 608

across models, making it difficult to ensure con- 609

sistent evaluation. By using default settings, we 610

eliminate these concerns, allowing for a more reli- 611

able assessment of humanlikeness. Finally, while 612

the study includes a large sample of human par- 613

ticipants, the specific demographic characteristics 614

(e.g., native English speakers from the UK and US) 615

may not fully represent global language use pat- 616

terns. Compared to previous benchmarks that focus 617

on task-based performance, this study offers a more 618

in-depth analysis of language models’ alignment 619

with human linguistic behavior. Similar studies, 620

8



such as Ettinger (2020), have used psycholinguis-621

tic principles to probe LLMs, but our study stands622

out by incorporating a broader range of linguistic623

levels and by using a large-scale dataset of human624

responses for direct comparison. The significant625

differences found between model families, such as626

the higher humanlikeness of Llama models, pro-627

vide valuable insights for the ongoing development628

and fine-tuning of LLMs.629

References630

Mistral AI. 2024. Mistral-7b-instruct-v0.3: An ad-631
vanced instruction-based language model. Hug-632
ging Face Model Card. Released on May 22,633
2024. Available at: https://huggingface.co/634
mistralai/Mistral-7B-Instruct-v0.3.635

Gerry Altmann and Mark Steedman. 1988. Interac-636
tion with context during human sentence processing.637
Cognition, 30(3):191–238.638

Marcel Binz and Eric Schulz. 2023. Using cognitive639
psychology to understand GPT-3. Proceedings of the640
National Academy of Sciences, 120(6):e2218523120.641
Publisher: Proceedings of the National Academy of642
Sciences.643

Zhenguang G. Cai, Xufeng Duan, David A. Haslett,644
Shuqi Wang, and Martin J. Pickering. 2024. Do large645
language models resemble humans in language use?646
arXiv preprint. ArXiv:2303.08014 [cs].647

Kimberly Wright Cassidy, Michael H. Kelly, and648
Lee’at J. Sharoni. 1999. Inferring gender from name649
phonology. Journal of Experimental Psychology:650
General, 128(3):362–381.651

Ishita Dasgupta, Andrew K. Lampinen, Stephanie C. Y.652
Chan, Hannah R. Sheahan, Antonia Creswell, Dhar-653
shan Kumaran, James L. McClelland, and Felix654
Hill. 2023. Language models show human-like655
content effects on reasoning tasks. arXiv preprint.656
ArXiv:2207.07051 [cs].657

R Maria del Rio-Chanona, Nadzeya Laurentsyeva, and658
Johannes Wachs. 2024. Large language models re-659
duce public knowledge sharing on online Q&amp;A660
platforms. PNAS Nexus, page pgae400.661

Dorottya Demszky, Diyi Yang, David S. Yeager,662
Christopher J. Bryan, Margarett Clapper, Susannah663
Chandhok, Johannes C. Eichstaedt, Cameron Hecht,664
Jeremy Jamieson, Meghann Johnson, Michaela665
Jones, Danielle Krettek-Cobb, Leslie Lai, Nirel666
JonesMitchell, Desmond C. Ong, Carol S. Dweck,667
James J. Gross, and James W. Pennebaker. 2023. Us-668
ing large language models in psychology. Nature669
Reviews Psychology, 2(11):688–701. Publisher: Na-670
ture Publishing Group.671

TD Erickson and ME Mattson. 1981. From words to672
meaning: A semantic illusion. j verbal learn verbal673
behav 20 (5): 540–551.674

Allyson Ettinger. 2020. What bert is not: Lessons from 675
a new suite of psycholinguistic diagnostics for lan- 676
guage models. Transactions of the Association for 677
Computational Linguistics, 8:34–48. 678

R Futrell. 2019. Neural language models as psycholin- 679
guistic subjects: Representations of syntactic state. 680
arXiv preprint arXiv:1903.03260. 681

Catherine Garvey and Alfonso Caramazza. 1974. Im- 682
plicit causality in verbs. Linguistic inquiry, 5(3):459– 683
464. 684

Edward Gibson, Leon Bergen, and Steven T Piantadosi. 685
2013. Rational integration of noisy evidence and 686
prior semantic expectations in sentence interpretation. 687
Proceedings of the National Academy of Sciences, 688
110(20):8051–8056. 689

Thilo Hagendorff. 2023. Machine Psychology: In- 690
vestigating Emergent Capabilities and Behavior in 691
Large Language Models Using Psychological Meth- 692
ods. arXiv preprint. ArXiv:2303.13988 [cs]. 693

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 694
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 695
2021. Measuring Massive Multitask Language Un- 696
derstanding. arXiv preprint. ArXiv:2009.03300 [cs]. 697

Jie Huang and Kevin Chen-Chuan Chang. 2023. To- 698
wards Reasoning in Large Language Models: A Sur- 699
vey. arXiv preprint. ArXiv:2212.10403 [cs]. 700

Kuan-Jung Huang, Suhas Arehalli, Mari Kugemoto, 701
Christian Muxica, Grusha Prasad, Brian Dillon, and 702
Tal Linzen. 2024. Large-scale benchmark yields no 703
evidence that language model surprisal explains syn- 704
tactic disambiguation difficulty. Journal of Memory 705
and Language, 137:104510. 706

Saketh Reddy Karra, Son The Nguyen, and Theja 707
Tulabandhula. 2023. Estimating the Personality 708
of White-Box Language Models. arXiv preprint. 709
ArXiv:2204.12000 [cs]. 710

Wolfgang Köhler. 1967. Gestalt psychology. Psycholo- 711
gische forschung, 31(1):XVIII–XXX. 712

Aitor Lewkowycz, Anders Andreassen, David Dohan, 713
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh, 714
Ambrose Slone, Cem Anil, Imanol Schlag, Theo 715
Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy 716
Gur-Ari, and Vedant Misra. 2022. Solving Quanti- 717
tative Reasoning Problems with Language Models. 718
arXiv preprint. ArXiv:2206.14858 [cs]. 719

Kyle Mahowald, Evelina Fedorenko, Steven T Pianta- 720
dosi, and Edward Gibson. 2013. Info/information 721
theory: Speakers choose shorter words in predictive 722
contexts. Cognition, 126(2):313–318. 723

Christopher D. Manning, Kevin Clark, John Hewitt, 724
Urvashi Khandelwal, and Omer Levy. 2020. Emer- 725
gent linguistic structure in artificial neural networks 726
trained by self-supervision. Proceedings of the Na- 727
tional Academy of Sciences, 117(48):30046–30054. 728

9

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://doi.org/10.1073/pnas.2218523120
https://doi.org/10.1073/pnas.2218523120
https://doi.org/10.1073/pnas.2218523120
https://doi.org/10.48550/arXiv.2303.08014
https://doi.org/10.48550/arXiv.2303.08014
https://doi.org/10.48550/arXiv.2303.08014
https://doi.org/10.1037/0096-3445.128.3.362
https://doi.org/10.1037/0096-3445.128.3.362
https://doi.org/10.1037/0096-3445.128.3.362
https://doi.org/10.48550/arXiv.2207.07051
https://doi.org/10.48550/arXiv.2207.07051
https://doi.org/10.48550/arXiv.2207.07051
https://doi.org/10.1093/pnasnexus/pgae400
https://doi.org/10.1093/pnasnexus/pgae400
https://doi.org/10.1093/pnasnexus/pgae400
https://doi.org/10.1093/pnasnexus/pgae400
https://doi.org/10.1093/pnasnexus/pgae400
https://doi.org/10.1038/s44159-023-00241-5
https://doi.org/10.1038/s44159-023-00241-5
https://doi.org/10.1038/s44159-023-00241-5
https://doi.org/10.48550/arXiv.2303.13988
https://doi.org/10.48550/arXiv.2303.13988
https://doi.org/10.48550/arXiv.2303.13988
https://doi.org/10.48550/arXiv.2303.13988
https://doi.org/10.48550/arXiv.2303.13988
https://doi.org/10.48550/arXiv.2303.13988
https://doi.org/10.48550/arXiv.2303.13988
https://doi.org/10.48550/arXiv.2009.03300
https://doi.org/10.48550/arXiv.2009.03300
https://doi.org/10.48550/arXiv.2009.03300
https://doi.org/10.48550/arXiv.2212.10403
https://doi.org/10.48550/arXiv.2212.10403
https://doi.org/10.48550/arXiv.2212.10403
https://doi.org/10.48550/arXiv.2212.10403
https://doi.org/10.48550/arXiv.2212.10403
https://doi.org/10.1016/j.jml.2024.104510
https://doi.org/10.1016/j.jml.2024.104510
https://doi.org/10.1016/j.jml.2024.104510
https://doi.org/10.1016/j.jml.2024.104510
https://doi.org/10.1016/j.jml.2024.104510
https://doi.org/10.48550/arXiv.2204.12000
https://doi.org/10.48550/arXiv.2204.12000
https://doi.org/10.48550/arXiv.2204.12000
https://doi.org/10.48550/arXiv.2206.14858
https://doi.org/10.48550/arXiv.2206.14858
https://doi.org/10.48550/arXiv.2206.14858
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.1073/pnas.1907367117


Publisher: Proceedings of the National Academy of729
Sciences.730

James A. Michaelov and Benjamin K. Bergen. 2023.731
Emergent inabilities? Inverse scaling over the course732
of pretraining. arXiv preprint. ArXiv:2305.14681733
[cs].734

Marilù Miotto, Nicola Rossberg, and Bennett Klein-735
berg. 2022. Who is GPT-3? An Exploration of Per-736
sonality, Values and Demographics. arXiv preprint.737
ArXiv:2209.14338 [cs].738

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,739
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-740
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-741
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,742
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-743
ing Bao, Mohammad Bavarian, Jeff Belgum, and744
262 others. 2024. GPT-4 Technical Report. arXiv745
preprint. ArXiv:2303.08774 [cs].746

Qiwei Peng, Yekun Chai, and Xuhong Li. 2024.747
HumanEval-XL: A Multilingual Code Generation748
Benchmark for Cross-lingual Natural Language Gen-749
eralization. arXiv preprint. ArXiv:2402.16694 [cs].750

Martin J Pickering and Holly P Branigan. 1998. The rep-751
resentation of verbs: Evidence from syntactic prim-752
ing in language production. Journal of Memory and753
language, 39(4):633–651.754

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen,755
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang,756
and Huajun Chen. 2023. Reasoning with Lan-757
guage Model Prompting: A Survey. arXiv preprint.758
ArXiv:2212.09597 [cs].759

Zhuang Qiu, Xufeng Duan, and Zhenguang Garry Cai.760
2023. Pragmatic Implicature Processing in ChatGPT.761

Qualtrics. 2024. Qualtrics and all other qualtrics prod-762
uct or service names are registered trademarks or763
trademarks of qualtrics. Provo, UT, USA.764

Jennifer M Rodd, Belen Lopez Cutrin, Hannah Kirsch,765
Alessandra Millar, and Matthew H Davis. 2013.766
Long-term priming of the meanings of ambiguous767
words. Journal of Memory and Language, 68(2):180–768
198.769

Maarten Sap, Ronan LeBras, Daniel Fried, and Yejin770
Choi. 2023. Neural Theory-of-Mind? On the Limits771
of Social Intelligence in Large LMs. arXiv preprint.772
ArXiv:2210.13312 [cs].773

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas774
Papernot, Ross Anderson, and Yarin Gal. 2024. Ai775
models collapse when trained on recursively gener-776
ated data. Nature, 631(8022):755–759.777

Murray Singer and Jackie Spear. 2015. Phantom recol-778
lection of bridging and elaborative inferences. Dis-779
course Processes, 52(5-6):356–375.780

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 781
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 782
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 783
Bhosale, Dan Bikel, Lukas Blecher, Cristian Can- 784
ton Ferrer, Moya Chen, Guillem Cucurull, David 785
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, 786
and 49 others. 2023. Llama 2: Open Founda- 787
tion and Fine-Tuned Chat Models. arXiv preprint. 788
ArXiv:2307.09288 [cs]. 789

Sean Trott, Cameron Jones, Tyler Chang, James 790
Michaelov, and Benjamin Bergen. 2023. Do Large 791
Language Models know what humans know? arXiv 792
preprint. ArXiv:2209.01515 [cs]. 793

Yuka Tsubota and Yoshinobu Kano. 2024. Text Genera- 794
tion Indistinguishable from Target Person by Prompt- 795
ing Few Examples Using LLM. In Proceedings of 796
the 2nd International AIWolfDial Workshop, pages 797
13–20, Tokyo, Japan. Association for Computational 798
Linguistics. 799

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 800
preet Singh, Julian Michael, Felix Hill, Omer Levy, 801
and Samuel Bowman. 2019. Superglue: A stick- 802
ier benchmark for general-purpose language under- 803
standing systems. Advances in neural information 804
processing systems, 32. 805

Alex Wang, Amanpreet Singh, Julian Michael, Felix 806
Hill, Omer Levy, and Samuel R Bowman. 2018. 807
Glue: A multi-task benchmark and analysis platform 808
for natural language understanding. arXiv preprint 809
arXiv:1804.07461. 810

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 811
Farhadi, and Yejin Choi. 2019. HellaSwag: Can 812
a Machine Really Finish Your Sentence? arXiv 813
preprint. ArXiv:1905.07830 [cs]. 814

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun 815
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi 816
Song, Mingjie Zhan, and Hongsheng Li. 2023. Solv- 817
ing Challenging Math Word Problems Using GPT-4 818
Code Interpreter with Code-based Self-Verification. 819
arXiv preprint. ArXiv:2308.07921 [cs] version: 1. 820

10

https://doi.org/10.48550/arXiv.2305.14681
https://doi.org/10.48550/arXiv.2305.14681
https://doi.org/10.48550/arXiv.2305.14681
https://doi.org/10.48550/arXiv.2209.14338
https://doi.org/10.48550/arXiv.2209.14338
https://doi.org/10.48550/arXiv.2209.14338
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2402.16694
https://doi.org/10.48550/arXiv.2402.16694
https://doi.org/10.48550/arXiv.2402.16694
https://doi.org/10.48550/arXiv.2402.16694
https://doi.org/10.48550/arXiv.2402.16694
https://doi.org/10.48550/arXiv.2212.09597
https://doi.org/10.48550/arXiv.2212.09597
https://doi.org/10.48550/arXiv.2212.09597
https://doi.org/10.31234/osf.io/qtbh9
https://www.qualtrics.com
https://www.qualtrics.com
https://www.qualtrics.com
https://www.qualtrics.com
https://www.qualtrics.com
https://doi.org/10.48550/arXiv.2210.13312
https://doi.org/10.48550/arXiv.2210.13312
https://doi.org/10.48550/arXiv.2210.13312
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2209.01515
https://doi.org/10.48550/arXiv.2209.01515
https://doi.org/10.48550/arXiv.2209.01515
https://aclanthology.org/2024.aiwolfdial-1.2
https://aclanthology.org/2024.aiwolfdial-1.2
https://aclanthology.org/2024.aiwolfdial-1.2
https://aclanthology.org/2024.aiwolfdial-1.2
https://aclanthology.org/2024.aiwolfdial-1.2
https://doi.org/10.48550/arXiv.1905.07830
https://doi.org/10.48550/arXiv.1905.07830
https://doi.org/10.48550/arXiv.1905.07830
https://doi.org/10.48550/arXiv.2308.07921
https://doi.org/10.48550/arXiv.2308.07921
https://doi.org/10.48550/arXiv.2308.07921
https://doi.org/10.48550/arXiv.2308.07921
https://doi.org/10.48550/arXiv.2308.07921


A Details of the Ten Psycholinguistic821

Experiments822

This section introduces the ten psycholinguistic823

experiments used to evaluate the humanlikeness824

of LLMs across multiple linguistic levels. Each825

experiment was designed to test a specific linguis-826

tic phenomenon and compare the performance of827

LLMs to human participants.828

Sounds: sound-shape association People of-829

ten associate specific sounds with certain shapes,830

a phenomenon known as sound symbolism. We831

tested whether LLMs, like humans, tend to link832

spiky-sounding words (words consist of /i/, /eI/,833

/@/ as vowels and /p/, /t/, /k/ as consonants, such834

as takete or kiki) with spiky objects and round-835

sounding words (words consist of /o/, /u/ as vow-836

els and /b/, /g/, /l/, /m/, /n/, /w/ as consonants,837

like maluma or baamoo) with round objects.838

Sounds: sound-gender association People can839

often guess if an unfamiliar name is male or fe-840

male based on its sound. In English, women’s841

names more frequently end in vowels compared to842

men’s names. In this task, we asked participants to843

complete a preamble containing either a consonant-844

ending name (e.g., Pelcrad in 1a) or a vowel-ending845

novel name (e.g., Pelcra in 1b).846

1a. Consonant-ending name: Although Pelcrad847

was sick...848

1b. Vowel-ending name: Although Pelcra was849

sick...850

Words: word length and predictivity Shorter851

words are suggested to make communication more852

efficient by carrying less information. If both853

humans and LLMs are sensitive to the relation-854

ship between word length and informativity, they855

should prefer shorter words over longer ones with856

nearly identical meanings when completing sen-857

tence preambles that predicted the meaning of the858

word (making it less informative; e.g., 2a), com-859

pared to neutral sentence preambles (e.g., 2b)860

2a. Predictive context: Susan was very bad at861

algebra, so she hated... 1. math 2. mathematics862

2b. Neutral context: Susan introduced herself to863

me as someone who loved... 1. math 2. mathemat-864

ics865

Words: word meaning priming Many words866

have multiple meanings; for instance, post can re-867

fer to mail or a job. People update an ambiguous868

word’s meaning based on recent exposure. We869

tested whether humans and LLMs similarly demon-870

strate word meaning priming phennomenon: Partic-871

ipants associated post with its job-related meaning 872

more frequently after reading sentences using that 873

context rather than synonyms’ contexts (3a vs.3b). 874

3a. Word-meaning prime: The man accepted the 875

post in the accountancy firm. 876

3b. Synonym prime: The man accepted the job 877

in the accountancy firm. 878

Syntax: structural priming In structural prim- 879

ing, people tend to repeat syntactic structures 880

they’ve recently encountered. We had participants 881

complete prime preambles designed for either PO 882

(prepositional-object dative structure, e.g., The rac- 883

ing driver gave helpful mechanic wrench to com- 884

plete 4a) or DO (double-object dative structure, 885

e.g., The racing driver gave torn overall his me- 886

chanic to complete 4b). Participants then com- 887

pleted target preamble which could be continued 888

as either DO/PO. If structural priming is demon- 889

strated, participants replicate structure of the prime 890

preamble. 891

4a. DO-inducing prime preamble: The racing 892

driver showed the helpful mechanic ... 893

4b. PO-inducing prime preamble: The racing 894

driver showed the torn overall ... 895

4c. Target preamble: The patient showed ... 896

Syntax: syntactic ambiguity resolution The way 897

people parse words into syntactic structures has 898

garnered significant attention in psycholinguistics. 899

For instance, in VP/NP ambiguity (e.g., The ranger 900

killed the poacher with the rifle), people usually 901

interpret the ambiguous prepositional phrase (PP, 902

with the rifle) as modifying the verb phrase (VP, 903

killed the poacher) rather than the noun phrase (NP, 904

the poacher). However, contextual information can 905

modulate this resolution: People are more likely to 906

interpret ambiguous PPs as modifying NPs when 907

there are multiple possible referents (e.g., 5b) com- 908

pared to when there is only a single referent (e.g., 909

5a). We examine how effectively LLMs use con- 910

textual information to resolve syntactic ambiguities 911

and exhibit such modulation patterns. 912

5a. Single referent: There was a hunter and a 913

poacher. The hunter killed the dangerous poacher 914

with a rifle not long after sunset. Who had a rifle, 915

the hunter or the poacher? 916

5b. Multiple referents: There was a hunter and 917

two poachers. The hunter killed the dangerous 918

poacher with a rifle not long after sunset. Who had 919

a rifle, the hunter or the poacher? 920

Meaning: implausible sentence interpretation 921

Listeners often need to recover intended messages 922

from noise-corrupted input. Errors in production 923
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or comprehension can make a plausible sentence924

implausible by omitting (e.g., to omitted, 6a) or925

inserting words (e.g., to inserted, 6b). People may926

interpret an implausible sentence nonliterally if927

they believe it is noise-corrupted. who found that928

people more frequently reinterpret implausible DO929

sentences than PO sentences due to the likelihood930

of omissions over insertions. We tested whether931

people and LLMs similarly assume that implau-932

sible sentences result from noise corruption, with933

omissions being more likely than insertions.934

6a. Implausible DO: The mother gave the candle935

the daughter.936

6b. Implausible PO: The mother gave the daugh-937

ter to the candle.938

6c. Question: Did the daughter receive some-939

thing/someone?940

Meaning: semantic illusions People often over-941

look obvious errors in sentences. For instance,942

when asked (7a), many fail to notice that the ques-943

tion should refer to Noah instead of Moses. Such944

semantic illusions suggest that processing sentence945

meanings involves partial matches in semantic946

memory. We tested whether LLMs and people alike947

produce semantic illusions and are more likely to948

catch a weak imposter (e.g., Adam, less similar to949

Noah, 7b) than a strong imposter (e.g. Morse, more950

similar to Noah, 7a).951

7a. Strong: During the Biblical flood, how many952

animals of each kind did Moses take on the ark?953

7b. Weak: During the Biblical flood, how many954

animals of each kind did Adam take on the ark?955

Discourse: implicit causality Certain verbs956

prompt people to associate causality with either957

the subject or the object within a sentence. For958

instance, stimulus-experiencer verbs like scare typ-959

ically lead people to attribute causality to the sub-960

ject (e.g., completing 8a as Gary scared Anna961

because he was violent), whereas experiencer-962

stimulus verbs like fear generally lead people to963

attribute causality to the object (e.g., completing 8b964

as Gary feared Anna because she was violent). We965

assessed whether LLMs, like humans, show similar966

patterns of causal attribution based on verb type.967

8a. Stimulus-experiencer verb: Gary scared968

Anna because...969

8b. Experiencer-stimulus verb: Gary feared970

Anna because...971

Discourse: drawing inferences People make972

bridging inferences more frequently than elabora-973

tive inferences. Bridging inferences connect two974

pieces of information (after reading 9a, people infer975

that Sharon cut her foot) while elaborative infer- 976

ences extrapolate from a single piece of informa- 977

tion (people are less likely to make this inference 978

after reading 9b). We examined how well an LLM 979

aligns with human patterns of inference by compar- 980

ing the bridging and elaborative conditions. 981

9a. Bridging: While swimming in the shallow 982

water near the rocks, Sharon stepped on a piece 983

of glass. She called desperately for help, but there 984

was no one around to hear her. 985

9b. Elaborative: While swimming in the shallow 986

water near the rocks, Sharon stepped on a piece of 987

glass. She had been looking for the watch that she 988

misplaced while sitting on the rocks. 989

Question: Did she cut her foot? 990
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B Results of Human Participants Across991

Psycholinguistic Experiments992

Across 10 classic psycholinguistic and cognitive993

experiments, human participants consistently repli-994

cated well-established effects, as indicated by995

mixed-effects logistic regression models (see also996

Figures 5, 6, 7.)997

In Experiment 1, participants were more likely998

to match round-sounding pseudowords to round999

shapes than to spiky shapes (Round: 0.83 vs. Sharp:1000

0.37, β = 2.28, SE = 0.28, z = 8.02, p < .001),1001

demonstrating robust sound-shape symbolism.1002

In Experiment 2, vowel-ending names were1003

more likely to be interpreted as female than1004

consonant-ending names (Vowel: 0.54 vs. Con-1005

sonant: 0.07, β = 3.39, SE = 0.64, z = 5.32, p <1006

.001), replicating the classic sound-gender associa-1007

tion.1008

In Experiment 3, participants showed a prefer-1009

ence for using shorter words in predictive contexts1010

than in neutral ones (Predictive: 0.40 vs. Neutral:1011

0.31, β = 0.57, SE = 0.18, z = 3.14, p = .002),1012

consistent with the principle of communicative ef-1013

ficiency.1014

In Experiment 4, participants selected meanings1015

congruent with primed word meanings more often1016

than with semantic associations alone (Word Mean-1017

ing: 0.27 vs. Semantic: 0.24, β = 0.28, SE = 0.14,1018

z = 1.97, p = .049), reflecting a subtle effect of1019

lexical priming.1020

In Experiment 5, a structural priming effect was1021

observed: participants were more likely to produce1022

prepositional object (PO) constructions after PO1023

primes than after double object (DO) primes (PO:1024

0.65 vs. DO: 0.48, β = 0.73, SE = 0.15, z = 4.95,1025

p < .001).1026

In Experiment 6, participants more often inter-1027

preted ambiguous phrases as noun phrases (NP) fol-1028

lowing plural contexts compared to singular ones1029

(Plural: 0.16 vs. Single: 0.11, β = 0.70, SE = 0.17,1030

z = 4.20, p < .001), supporting prior findings in1031

syntactic ambiguity resolution.1032

In Experiment 7, no significant difference was1033

observed in interpretation of implausible sentences1034

across syntactic structures (PO: 0.53 vs. DO: 0.50,1035

β = –0.12, SE = 0.36, z = –0.33, p = .741), suggest-1036

ing limited sensitivity to structure in this context.1037

In Experiment 8, participants more frequently1038

overlooked semantic inconsistencies when the key-1039

word was weak versus strong (Weak: 0.74 vs.1040

Strong: 0.61, β = 0.70, SE = 0.13, z = 5.21, p1041

Figure 5: Results of Experiments 1–4. Bar plots show
the proportion of target-consistent responses in each
condition across participants, with error bars represent-
ing ±1 SE. (a) Participants more often matched round-
sounding pseudowords to round shapes than to spiky
shapes (Experiment 1). (b) Vowel-ending names were
more frequently judged to be feminine than consonant-
ending names (Experiment 2). (c) Shorter words were
more likely in predictive contexts than in neutral ones
(Experiment 3). (d) Word-meaning primes increased
access to subordinate word meanings compared to se-
mantic primes (Experiment 4). Black diamond markers
indicate the proportion reported in the original studies.
Our replication used a one-trial-per-run design, which
deviates from the original multiple-trials-per-run setup.
This adjustment minimizes potential context effects and
offers a more LLM-compatible benchmarking format.

< .001), demonstrating the classic semantic illusion 1042

effect. 1043

In Experiment 9, subject vs. object pronoun con- 1044

tinuation strongly depended on verb type: partici- 1045

pants overwhelmingly chose object continuations 1046

following stimulus-experiencer (SE) verbs and sub- 1047

ject continuations following experiencer-stimulus 1048

(ES) verbs (ES: 0.93 vs. SE: 0.14, β = 25.50, SE = 1049

1.31, z = 19.47, p < .001), consistent with implicit 1050

causality patterns. 1051

In Experiment 10, bridging inferences were 1052

more likely to be made in bridging contexts than 1053

in elaborative ones (Bridging: 0.48 vs. Elabora- 1054

tive: 0.28, β = 0.98, SE = 0.19, z = 5.22, p < 1055

.001), confirming sensitivity to discourse structure 1056

in inference making. 1057

C Experiment Results of Models and 1058

Human 1059

Figures 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 1060

showed the results of the 20 models in 10 experi- 1061

ments, together with human results for comparison. 1062
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Figure 6: Results of Experiments 5–8.Bar plots show
the proportion of structure- or meaning-consistent re-
sponses in each condition, with error bars representing
±1 SE. (a) Structural priming: Participants more of-
ten produced PO structures following PO primes than
DO primes (Experiment 5). (b) Participants showed a
preference for NP interpretation following plural noun
contexts (Experiment 6). (c) Sentence interpretation
was not significantly influenced by syntactic structure in
implausible constructions (Experiment 7). (d) Semantic
illusions occurred more frequently when critical words
were weakly associated (Experiment 8).Black diamond
markers reflect the originally reported values. As in all
experiments, the one-trial-per-run format was used to
reduce context sensitivity and align with LLM evalua-
tion conditions.

Figure 7: Results of Experiments 9–10. (a) Participants
showed strong implicit causality biases, preferring ob-
ject continuations for stimulus-experiencer verbs and
subject continuations for experiencer-stimulus verbs
(Experiment 9). (b) Bridging inferences were more
likely endorsed than elaborative inferences, consistent
with original discourse inference patterns (Experiment
10). Bars reflect mean response proportions across par-
ticipants; error bars indicate ±1 SE. Black diamond
markers denote the original experimental outcomes. The
present one-trial-per-run setup removes potential carry-
over or adaptation effects and enhances the design’s
suitability for benchmarking LLMs.

Figure 18 showed the mean values.

Figure 8: Experiment results of models and humans in
Experiment 1

1063

Figure 9: Experiment results of models and humans in
Experiment 2

Figure 10: Experiment results of models and humans in
Experiment 3

D Humanlikeness Scores for All 20 LLMs 1064

As shown in Table 2, the language human-likeness 1065

scores for the 20 language models across 10 psy- 1066

cholinguistic experiments are summarized. 1067
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Figure 11: Experiment results of models and humans in
Experiment 4

Figure 12: Experiment results of models and humans in
Experiment 5

Figure 13: Experiment results of models and humans in
Experiment 6

Figure 14: Experiment results of models and humans in
Experiment 7

Figure 15: Experiment results of models and humans in
Experiment 8

Figure 16: Experiment results of models and humans in
Experiment 9

Figure 17: Experiment results of models and humans in
Experiment 10
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Figure 18: Average targeted response rates for 20 language models and human participants across conditions in 10
psycholinguistic tasks. Color gradients indicate relative performance: red cells reflect higher response rates than
those of humans, while blue cells indicate lower rates.
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Experiment Overall Sound Word Meaning Syntax Discourse
E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Meta-Llama-3.1-70B-Instruct 66.50 89 62 61 6 81 77 80 67 80 63
Meta-Llama-3.1-8B-Instruct 65.89 73 65 60 12 84 78 79 74 79 56
Phi-3-mini-4k-instruct 64.61 61 68 59 19 89 71 76 48 80 76
Mistral-Nemo-Instruct-2407 63.69 74 63 56 10 84 77 52 75 79 68
Llama-2-13b-chat-hf 63.15 57 57 51 25 75 67 74 72 76 79
Mistral-7B-Instruct-v0.1 62.77 73 70 62 24 87 43 69 36 79 84
CodeLlama-34b-Instruct-hf 62.18 79 64 60 23 82 53 58 63 79 61
c4ai-command-r-plus 60.77 79 60 63 8 72 72 66 59 78 50
Meta-Llama-3-8B-Instruct 60.65 69 53 57 14 79 78 59 66 77 54
starchat2-15b-v0.1 60.57 58 70 58 25 87 73 62 36 75 62
gpt-4o 58.58 60 63 68 2 71 77 47 61 75 62
gpt-3.5-turbo 58.32 55 61 66 3 76 76 71 47 76 50
Yi-1.5-34B-Chat 58.20 67 54 55 13 72 70 61 65 78 48
Llama-2-7b-chat-hf 57.47 74 61 58 22 67 69 50 60 75 39
zephyr-7b-alpha 56.96 57 62 47 23 85 29 44 73 76 75
Meta-Llama-3-70B-Instruct 56.73 60 61 55 4 71 75 57 59 75 50
gpt-4o-mini 56.21 56 58 62 3 70 75 46 58 75 57
Mistral-8x7B-Instruct-v0.1 52.80 60 53 48 23 71 46 43 59 73 52
Mistral-7B-Instruct-v0.3 52.45 53 58 47 25 75 38 49 59 73 47
Mistral-7B-Instruct-v0.2 50.18 13 58 54 14 72 61 46 64 71 49
zephyr-7b-beta 47.85 28 53 48 26 71 7 38 73 75 60

Table 2: Language human-likeness scores for 20 language models across 10 psycholinguistic experiments. Bold
values indicate the highest task-wise scores; underlined values denote the lowest.

Figure 19: Leaderboard of language human-likeness scores across LLMs as assessed by the HLB
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