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Abstract

As synthetic data becomes increasingly preva-
lent in training large language models (LLMs),
concerns have emerged that these models may
deviate from authentic human language pat-
terns, potentially losing the richness and cre-
ativity inherent in human communication. This
highlights the critical need to assess the lan-
guage humanlikeness of LLMs in real-world
usage. In this paper, we present a compre-
hensive Human language Likeness Benchmark
(HLB)—a comprehensive evaluation of 20
LLMs using psycholinguistic experiments de-
signed to probe core linguistic dimensions:
phonology, lexical processing, syntax, seman-
tics, and discourse. To contextualize model
performance, we collected responses from over
2,000 human participants as a baseline and
compared these to the outputs generated by the
models.

For rigorous evaluation, we developed a cod-
ing algorithm that accurately identified lan-
guage use patterns, enabling the extraction of
response distributions for each task. By com-
paring the response distributions between hu-
man participants and LLMs, we quantified hu-
manlikeness through distributional similarity.
Our results reveal fine-grained differences in
how well LLMs replicate human responses
across various linguistic levels. Importantly, we
found that improvements in other performance
metrics did not necessarily lead to greater hu-
manlikeness, and in some cases, even resulted
in a decline. By introducing psycholinguistic
methods to model evaluation, this benchmark
offers the first framework for systematically
assessing the humanlikeness of LLMs in lan-
guage use (see Figure 19 for the leaderboard;
Code and data will be released upon accep-
tance.)

1 Introduction

In recent years, large language models (LLMs)
have made significant advancements. Models like

OpenAl’s GPT series and Meta’s Llama family can
generate human-like text, engage in coherent dia-
logues, and answer complex questions, often pro-
ducing responses that are indistinguishable from
those of humans in certain evaluations (Tsubota
and Kano, 2024). Cai et al. (2024) conducted a sys-
tematic evaluation of human-like language use in
models such as ChatGPT and Vicuna, demonstrat-
ing that LLMs closely replicate human language
patterns in many aspects. However, despite these
successes, questions remain about how accurately
these models capture the deeper, nuanced patterns
of human language use. In other words, the full ex-
tent of their similarity to human behavior remains
unclear.

The importance of evaluating humanlikeness in
language use is further underscored by the increas-
ing reliance on synthetic data for model training,
particularly in dialogue models. While synthetic
data generation facilitates efficient scaling of model
training, it raises concerns about models diverging
from real-world human language patterns (del Rio-
Chanona et al., 2024). Studies have shown that
synthetic data can degrade model performance af-
ter retraining (Shumailov et al., 2024). This makes
it imperative to assess the humanlikeness of LLMs
rigorously across various aspects of language use,
to ensure that models do not lose the diversity and
richness of human language data.

To address this challenge, we introduce a psy-
cholinguistic benchmark designed to provide a
systematic and comprehensive evaluation of how
closely LLMs align with human linguistic behav-
ior.

Although numerous benchmarks and leader-
boards have been developed to assess the perfor-
mance of LLMs on downstream NLP tasks, they
often fail to capture the finer, human-like qualities
of language use. Current NLP benchmarks typi-
cally focus on task-based accuracy or performance
(Lewkowycz et al., 2022; Zhou et al., 2023; Peng
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Figure 1: (a) Taxonomy of psycholinguistics experiments in HLB. The experiments and their sources are: sound-
shape association (Kohler, 1967), sound-gender association (Cassidy et al., 1999), word length and predictivity
(Mahowald et al., 2013), word meaning priming (Rodd et al., 2013), structural priming (Pickering and Branigan,
1998), syntactic ambiguity resolution (Altmann and Steedman, 1988), implausible sentence interpretation (Gibson
et al., 2013), semantic illustion (Erickson and Mattson, 1981), implicit causality (Garvey and Caramazza, 1974),
drawing inferences (Singer and Spear, 2015). (b) The benchmark framework. The example prompt is taken from
the sound-gender association task, where humans can infer the gender of a novel name (e.g., Pelcra for Female;

Pelcrad for Male) based on phonology.

et al., 2024; Hendrycks et al., 2021; Zellers et al.,
2019), overlooking the broader psycholinguistic
dimensions that characterize how humans process
and produce language. Furthermore, few studies
have systematically compared the language use of
LLMs and human participants across multiple lin-
guistic levels. This gap highlights the need for
a new benchmark that can robustly measure the
extent to which LLMs replicate human language
behavior in real-world, diverse linguistic contexts.

In this paper, we address this gap by presenting
a psycholinguistic benchmark study that evaluates
the human language likeness of 20 LLMs. Our
benchmark consists of 10 representative psycholin-
guistic experiments, which cover five core linguis-
tic aspects: sound, word, syntax, semantics, and
discourse, with two experiments dedicated to each
aspect (see Figure 1). We collected approximately
50 to 100 responses per item from over 2,000 hu-
man participants. Additionally, we gathered 100
responses per item from each of the 20 LLMs, in-
cluding well-known models such as GPT-40, GPT-
3.5, Llama 2, Llama 3, Llama 3.1, and other state-
of-the-art models (see Table 2). To quantify human
language likeness, we developed an auto-coding
algorithm that efficiently and reliably extracts lan-
guage use patterns from responses. The human

language likeness metric was then calculated based
on the similarity between the response distributions
of humans and LLMs, using a comparison of their
probability distributions.

Our findings reveal significant, nuanced differ-
ences in how LLMs perform across various linguis-
tic aspects, offering a new benchmark for evaluat-
ing the humanlikeness of LLMs in natural language
use. This benchmark introduces psycholinguistic
methods to model evaluation and provides the first
framework for systematically assessing the human-
likeness of LLMs in language use.

2 Related Work

Recent advances in LLMs have led to the develop-
ment of various benchmarks designed to evaluate
their linguistic capabilities. Standard benchmarks
like GLUE (Wang et al., 2018) and SuperGLUE
(Wang et al., 2019) assess models across a range
of natural language processing (NLP) tasks, in-
cluding sentence classification, textual entailment,
and question answering. However, these bench-
marks primarily focus on task-based accuracy and
often overlook the more intricate aspects of human-
like language processing. While these evaluations
provide valuable insights into model performance,
they do not fully capture the extent to which LLMs



comprehend and generate language in a humanlike
manner. As Manning et al. (2020) note, LLMs are
powerful statistical models that can identify pat-
terns in vast datasets, but these benchmarks do not
adequately test how well models replicate human
patterns of language use due to the interplay of
complex cognitive biases.

2.1 Psychological Experimentation on LLMs

A growing body of research has begun apply-
ing classical psychological experiments to eval-
uate LL.Ms in more domain-specific and cogni-
tively demanding tasks. For example, Binz and
Schulz (2023) and Dasgupta et al. (2023) used
well-known psychological paradigms, such as the
Linda problem and the Wason selection task, to
probe LLMs’ abilities in judgment and decision-
making. Similarly, Sap et al. (2023) and Trott et al.
(2023) explored whether LLMs exhibit theory of
mind, a key component of human social cogni-
tion, while Miotto et al. (2022) and Karra et al.
(2023) examined LLMs’ personality traits. In the
domain of behavioral economics, Horton (2023)
conducted experiments with GPT-3 to explore its
decision-making processes. These studies suggest
that LLMs can be treated as cognitive agents in
psychological experiments, providing insights into
how LLMs align with humans in reasoning, be-
havior, and decision-making. Moreover, they help
shed light on the underlying mechanisms of LLMs,
as seen in the work of Huang and Chang (2023)and
Qiao et al. (2023), who analyzed reasoning patterns
in LLMs. Hagendorff (2023) further provided a
comprehensive review of LLM performance in psy-
chological tests, showing that while LLMs demon-
strate sophisticated behaviors, they often diverge
from human cognition. These divergences high-
light the need for more robust frameworks to under-
stand the limitations of LLMs in mimicking human
thought processes.

2.2 Psycholinguistic Experimentation on
LLMs

Psycholinguistic approaches offer a deeper anal-
ysis by testing LLMs on how well they replicate
the cognitive processes underlying human language
processing. Ettinger (2020) and Futrell (2019) have
subjected models like BERT to psycholinguistic
tasks such as syntactic ambiguity resolution and
structural priming, revealing both the strengths and
limitations of LLMs in replicating human language
processing. Michaelov and Bergen (2023) used

structural priming tasks to investigate how LLMs
internalize syntactic structures, while Huang et al.
(2024) examined LLMs’ ability to resolve syntac-
tic ambiguity. Qiu et al. (2023) explored how well
LLMs handle pragmatic reasoning. These stud-
ies demonstrate that LLMs can, to some extent,
mimic humanlike behavior in controlled experi-
ments. However, divergences in processing reveal
the distinctions between machine learning models
and humans. A recent review by Demszky et al.
(2023) emphasized the need for benchmarks that
incorporate psychological paradigms to evaluate
LLMs. The authors argue that by applying psy-
cholinguistic methods, researchers can better un-
derstand how closely LLLMs approximate human
cognition and where they fall short. Despite exten-
sive research on LLMs’ performance across various
tasks, there is still no benchmark that includes hu-
man language processing data to reveal the extent
to which LLMs resemble humans, particularly in
language use. This paper addresses that gap by
adapting 10 psycholinguistic experiments to evalu-
ate how closely LLMs align with human language
behavior, covering phenomena ranging from sound
symbolism to discourse comprehension.

3 Methodology

3.1 Human Experiments

Experimental Design The human experiments
were constructed using Qualtrics, an online survey
platform (Qualtrics, 2024). The study included ten
psycholinguistic tasks that spanned various linguis-
tic levels, from sound, word, syntax, and meaning
to discourse comprehension, with two experiments
for each level (see Appendix A for details). We
exposed a participant to only one trial on each task,
with a total of 10 trials across all the tasks. This
setup minimized trial-level effects and facilitated
direct comparisons with LLMs, which were tested
under similar conditions (presenting instructions
and stimuli in a single prompt) to avoid context
effects within individual conversations.
Procedure After providing consent, participants
completed the ten psycholinguistic tasks (presented
in a random order); four attention checks were ran-
domly interspersed among the trials to later identify
participants for random responding. Each exper-
imental task began with an instructional screen,
some of which included examples to clarify task
requirements. The examples were carefully de-
signed to differ from the experimental stimuli to



prevent potential priming effects. For instance, in
a sentence-completion task, an illustrative example
that did not resemble the experimental stimuli and
did not induce target words for any stimuli was
used. The priming tasks (which included pairs of
priming and target stimuli) were spread across mul-
tiple pages to avoid strategic responses in case par-
ticipants realise the relation between the prime and
the target. The overall experimental procedure was
streamlined for clarity and efficiency, with each ses-
sion lasting approximately 8 to 10 minutes (mean
=8.336, SD =4.171).

Participants Participants were recruited from
the crowd-sourcing platform Prolific and restricted
to native English speakers residing in the UK and
US, according to their registration on the platform.
They were required to use a desktop computer to
complete the tasks. Among the 2,205 participants
taking part in the experiments, 290 were excluded
for not well adhering to the experimental instruc-
tions, including completing the study too quickly,
showing low effort, or not finishing the experiment,
according to the Qualtrics system. The remain-
ing 1,915 participants were further checked for
language nativeness and their accuracy with at-
tention checks. After a thorough screening pro-
cess—excluding those who were not native speak-
ers, failed attention checks, or exhibited irregular-
ities such as excessively short completion times
or multiple participation attempts—the final valid
sample consisted of 1,905 participants. The sample
was composed of participants as follows: female (n
=1,051), male (n = 838), preferred not to disclose
(n = 16), with an average age of 44.8 years (range:
18 to 89 years). Educational levels included: no
formal education (n = 2), elementary school (n =
12), high school (n = 672), bachelor’s degree (n =
862), and master’s degree (n = 357). This sample
of participants resulted in each item being tested in
a minimum average of 24 trials (e.g., Word Length
and Predictability) and up to an average of 96 trials
(e.g., Sound-Shape Association Task).

3.2 LLM Experiments

Experimental Design To compare human re-
sponses with those generated by LLMs, we em-
ployed the same 10 psycholinguistic tasks designed
for human participants. 20 LLMs (See Table 2)
were selected for evaluation, including models
from prominent families like OpenAI’s GPT series
(GPT-40, GPT-3.5), Meta’s Llama series (LLlama
2, Llama 3, Llama 3.1) and Mistral series(OpenAl

et al., 2024; Touvron et al., 2023; Al, 2024). Each
model provided 100 responses per item in each ex-
periment, ensuring that the response data was com-
parable to the human data. Similar to the human
experimental design, LLMs followed a one-trial-
per-run paradigm, ensuring that responses were
generated independently for each item to prevent
context effects. The input format for the LLMs
closely mirrored the instructions provided to hu-
man participants. Careful modification of human
prompts was performed to ensure that task instruc-
tions were clear and interpretable by LLMs. This
allowed for a direct comparison between human
and LLM performance on the same tasks under
identical conditions.

Response Collection Procedure This closely
mirror that in the human experiments. Each LLM
was presented with the task instructions and the
stimulus combined into a single prompt. We col-
lected 100 responses (across different conditions)
for each stimulus in an experiment in order to en-
sure a sufficiently large dataset for robust analysis
of the response distributions. For OpenAl mod-
els, responses were obtained through the OpenAl
API, while models hosted on Hugging Face were
accessed using the Hugging Face Inference APIL.
All requests to the models were made using their
default parameters to encourage variability in re-
sponses. The collected responses were stored and
processed for subsequent coding and analysis.

3.3 Response Coding

Development and Validation We employed an
auto-coding algorithm across 10 experiments to
assess agreement between human annotations and
machine-generated labels. This algorithm utilized
spaCy’s en_core_web_trf-3.7.3 model for syntactic
parsing (e.g., structural priming and syntactic am-
biguity resolution tasks) and regular expressions
to detect answer patterns in others. Across 20,953
trials of human response data, we computed Co-
hen’s Kappa (kappa), a measure that corrects for
chance agreement between the results from man-
ually coding and auto-coding algorithm, defined
as:

_ Py— P

K=7—% M

where Po is the observed agreement, and Pe is
the expected agreement by chance.

The Kappa score was x = 0.993, indicating near-
perfect agreement (z =451, p <0.001). This demon-



Model Overall  Sound Word Meaning Syntax  Discourse

El E2 E3 E4 E5 E6 E7 E8 E9 EIO0
Meta-Llama-3.1-70B-Instruct 66.50 89 62 61 6 8 77 8 67 80 63
Meta-Llama-3.1-8B-Instruct 65.89 73 65 60 12 8 78 79 74 79 56
Phi-3-mini-4k-instruct 64.61 61 68 59 19 8 71 76 48 80 76
Mistral-7B-Instruct-v0.1 62.77 73 70 62 24 87 43 69 36 79 84
gpt-4o0 58.58 60 63 68 2 71 77 47 61 75 62
gpt-3.5-turbo 58.32 55 61 66 3 76 76 71 47 76 50
zephyr-7b-alpha 56.96 57 62 47 23 8 29 4 73 76 U5
Mistral-8x7B-Instruct-v0.1 52.80 60 53 48 23 71 46 43 59 73 52
zephyr-7b-beta 47.85 28 53 48 26 71 7 38 73 75 60

Table 1: Language human-likeness scores for selected models across 10 experiments. Bold values indicate task-wise
best performances among all models; Underlined values indicate the weakest. Full data for 20 models are provided

in Table 2.

strates the high accuracy of the auto-coding algo-
rithm in replicating human annotations.

3.4 Humanlikeness Scoring

To quantify the humanlikeness of LLM responses,
we used Jensen-Shannon (JS) divergence to com-
pare the response distributions between human par-
ticipants and LLMs. JS divergence, a symmetric
measure of similarity between two probability dis-
tributions, is ideal for assessing how closely LLM
responses mirror human behavior across linguis-
tic levels. For each task, the auto-coding algo-
rithm generated response distributions for both hu-
mans and LLMs. We computed language human-
likeness score (HS) for each item as:

HSitem =1 _JS(P7Q)

=1 S[KL(P | M) + KL(Q || M)]
2
where P and Q are the human and LLM response
distributions, and M is their average. For each
experiment, we average the scores across all items.
The overall language human-likeness score across
all experiments is then computed as:

1 &
o
3)

i=1
+KL(Q: || Mi)]))

The HS metric offers a significant advantage
over traditional metrics by capturing not just aver-
age response differences but also the distributional
similarities between human and model responses,
making it more sensitive to subtle divergences in
how LLMs mimic human behavior. See the case
analysis section for a detailed explanation of how

m

D
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this metric captures distributional differences effec-
tively.

4 Result

4.1 Overall Performance

We begin by providing an overview of the ex-
perimental results for the 20 LLMs and human
participants across the 10 psycholinguistic tasks.
Detailed experiment result data for each task are
displayed in Figure 18 and plotted in Figure 8 to
17 in Appendix C. From these results, it was ob-
served that Meta-Llama-3.1-70B-Instruct consis-
tently exhibited minimal deviation from human
results, both in terms of mean values and effect
sizes (i.e., differences in mean values between con-
ditions). In contrast, models such as Mistral-7B-
Instruct-v0.3 displayed notable divergence from
human results across several tasks. These results
provide a foundational overview for the subsequent
language human-likeness score (HS) calculations.

The language language human-likeness scores
(HS) revealed significant variation in how well
LLMs emulated human language use across the
10 psycholinguistic experiments (see Table 1; Ta-
ble 2 in Appendix D for the complete leaderboard).
Meta-Llama-3.1-70B-Instruct led both in overall
humanlikeness and across several individual tasks,
followed by Meta-Llama-3.1-8B-Instruct. On the
other hand, Mistral-7B-Instruct-v0.2 scored lower
among the models, with Zephyr-7B-beta receiving
the lowest score.

4.2 Model Family Divergence in
Humanlikeness

Statistical comparisons across model families re-
veal substantial and systematic differences in their
alignment with human language behavior, as quan-



0.66 1

0.64

0.62

0.60

0.58

0.56

Humanlikeness Score

0.54 4

0.52 4

0.50 -

OpenAl
Llama
Mistral

,?S- 'D‘o' & ,\‘b

Figure 2: Language human-likeness scores of three LLM families

tified by language human-likeness scores (see Fig-
ure 3). Among the most striking findings, Llama
models significantly outperformed Mistral mod-
els in humanlikeness (f = 10.44, p < .001), high-
lighting a pronounced divergence between these
two architectural families. Although Llama mod-
els also surpassed OpenAl models (¢ = 3.13, p =
.002), the magnitude of this difference was notably
smaller, suggesting that the performance gap be-
tween Llama and Mistral models is particularly
robust.

Intra-family comparisons further illuminate the
developmental trajectories of these models. Within
the Llama family, the transition from Meta-Llama-
3-70B-Instruct to Meta-Llama-3.1-70B-Instruct
yielded a significant improvement in humanlike-
ness (t = —4.85, p < .001), reflecting meaning-
ful gains in language pattern alignment likely at-
tributable to training data refinements or architec-
tural tuning. By contrast, OpenAI’s GPT-3.5-turbo
and GPT-4o did not differ significantly in perfor-
mance (¢ =-0.93, p = 0.352), indicating a plateau
in their alignment with human responses across the
tasks evaluated. Within the Mistral family, however,
a significant performance decline was observed
from Mistral-7B-Instruct-v0.1 to v0.3 (t =5.45, p
<.001), raising questions about the effect of model
updates on cognitive fidelity.

This cross-family analysis represents one of the

most consequential findings of the present study. It
underscores that not all LLMs progress uniformly
in approximating human-like language use and that
family-level design choices, training objectives,
and versioning strategies can exert a marked in-
fluence on cognitive alignment. The superior per-
formance of the Llama models across both inter-
and intra-family comparisons highlights them as
the current frontier in capturing fine-grained human
linguistic patterns, while also reinforcing the utility
of language human-likeness scores as a diagnostic
tool for comparative evaluation.

4.3 Challenges in Aligning Semantic
Interpretation Patterns

A closer examination of individual experiments
further underscores the nuanced challenges LLMs
face in replicating human-like language behavior.
Among the ten tasks, Experiment 4, which as-
sessed word meaning priming, yielded the most
pronounced divergence between model and human
responses, as indicated by a substantial statistical
difference (r =-116.32, p <.001).

This experiment was designed to evaluate
whether models, like humans, show sensitivity to
recent contextual exposure when interpreting an
ambiguous word such as post. Specifically, par-
ticipants were presented with sentences that either
primed the target meaning directly (e.g., post used
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Figure 3: Language human-likeness scores of three
LLM families

as a job title) or through a synonymous context.
Human participants demonstrated a relatively mod-
est priming effect: 20% interpreted post with its
job-related meaning following a word-meaning
prime, compared to 18% following a synonym
prime. These small differences reflect the graded
and flexible nature of human semantic activation.

In contrast, Meta-LLlama-3.1-70B exhibited an
exaggerated priming response, with 52% and 38%
selecting the job-related meaning in the respective
conditions. While directionally consistent with the
human pattern, the model’s magnitude of response
was disproportionately large, suggesting a rigid-
ity or over-sensitivity in semantic activation that
departs from human interpretive subtlety.

This case highlights a core challenge for LLMs:
aligning with the probabilistic and contextually
modulated nature of human semantic processing,
especially in the face of lexical ambiguity. It further
demonstrates that even when models approximate
human behavior at a coarse level (e.g., showing a
priming effect in the correct direction), the gran-
ularity and distribution of responses often reveal
critical mismatches. Such discrepancies underscore
the importance of evaluating not just outcome align-
ment but also the underlying response dynamics
that shape human-like interpretation.

4.4 Distributional Divergence Beyond Effect
Size

The E2 sound-gender association task provides a

clear case study for illustrating the diagnostic value

of the language human-likeness score, particularly

in capturing divergences that are obscured when
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Figure 4: Experiment results of Llama-3-8B-instruct,
Llama-3.1-8B-instruct and humans in E2 (sound-gender
association)

comparing only mean-level effects. Specifically,
the contrast between Meta-Llama 3-8B-Instruct
and Meta-Llama 3.1-8B-Instruct (hereafter Llama
3-8B and Llama 3.1-8B) reveals how similar effect
sizes can mask substantial differences in response
distributions—differences that are critical for as-
sessing alignment with human linguistic behavior.

As shown in Figure 4, both models—along with
human participants—exhibit a higher probability of
classifying vowel-ending pseudonames as female,
consistent with documented phonological biases.
The difference in mean response between vowel
and consonant conditions (i.e., effect size) is actu-
ally more similar between Llama 3-8B (difference
= 0.47) and humans (0.41) than between Llama
3.1-8B (0.33) and humans. Nevertheless, Llama 3-
8B received a substantially lower language human-
likeness score (53) than Llama 3.1-8B (65). This
counterintuitive result stems from distributional di-
vergence: although Llama 3-8B matches human
effect size more closely, its response distribution
pattern deviates more markedly from human be-
havior than that of Llama 3.1-8B. The language
human-likeness score, computed via JS divergence,
captures these subtler discrepancies in response
structure, not just aggregate values. By evaluat-
ing full response distribution, the score provides a
more precise and meaningful assessment of how
closely language models approximate human-like
language behavior.



5 Discussion

The results of this benchmark study highlight no-
table differences in how LLMs approximate hu-
man language use across various linguistic levels.
The Llama family of models, particularly Meta-
Llama-3.1-70B-Instruct, consistently outperformed
both the OpenAl and Mistral models in terms of
language human-likeness score. This finding sug-
gests that recent advancements in the Llama models
have led to more humanlike language behaviors,
especially in terms of semantic and discourse pro-
cessing. The OpenAl models, including GPT-40
and GPT-3.5-turbo, showed relatively stable perfor-
mance across tasks, with no significant differences
between the models. This stability may reflect a
plateau in the improvement of humanlikeness in
these models, as compared to the more recent gains
observed in the Llama family. On the other hand,
the Mistral models demonstrated a decrease in lan-
guage human-likeness scores, particularly in the
transition to Mistral-7B-Instruct-v0.3. This sug-
gests that certain training methods and data quality
in Mistral may have reduced their alignment with
human language patterns. One of the key insights
from this study is that models differ not only in their
overall language human-likeness scores but also in
how they handle specific linguistic phenomena. For
instance, in Experiment 4 (word meaning priming),
we observed a significant divergence in resposnes
between humans and LLMs, with the latter show-
ing a much larger priming effect. This over-priming
suggests that while LLMs may excel in certain as-
pects of language generation, they often lack the
subtle flexibility that humans display when process-
ing ambiguous or context-dependent language. A
major strength of this study is its use of psycholin-
guistic experiments to evaluate LLMs, which goes
beyond traditional NLP benchmarks that focus on
task accuracy. By systematically probing various
linguistic levels—sound, word, syntax, semantics,
and discourse—this benchmark provides a more
comprehensive understanding of how LLMs pro-
cess and generate language.

6 Conclusion

In this paper, we introduced a novel benchmark
for evaluating the humanlikeness of LLMs in lan-
guage use based on psycholinguistic experiments.
Our study evaluated 20 LLMs, including OpenAlI’s
GPT family, Meta’s Llama family, the Mistral fam-
ily and others, across 10 experiments that spanned

key linguistic aspects such as sound, word, syntax,
semantics, and discourse. Using responses from
over 2,000 human participants as a baseline, the
results revealed significant differences in model
performance, with Llama models consistently out-
performing both OpenAl and Mistral models in
terms of language use humanlikeness. These find-
ings underscore the potential of psycholinguistic
benchmarks to capture aspects of language that are
often missed by traditional NLP evaluations.

This benchmark provides a framework for future
research on LLMs, offering a more meaningful and
comprehensive way to evaluate their performance
in real-world language use. It also highlights areas
where current LLMs diverge from human language
patterns, particularly in tasks involving semantic
priming and ambiguity resolution. By identifying
these gaps, this study offers critical insights for
the next generation of LLM development, paving
the way for models that more closely mirror the
intricacies of human communication.

7 Limitation

However, there are several limitations to this study.
First, while the benchmark covers a wide range
of linguistic tasks, it may not encompass the full
complexity of human language use. Some linguis-
tic phenomena, such as pragmatic reasoning, were
not explored in this study. Second, we did not
manipulate models’ parameters, particularly the
temperature or top k, to control the diversity of the
generated responses. While using default parame-
ters, particularly temperature, may seem limiting,
this choice ensures that we evaluate models in their
most typical and practical configurations. Default
settings reflect how these models are commonly
used in real-world applications, offering a fair and
standardized comparison. Tuning parameters like
temperature could introduce bias and variability
across models, making it difficult to ensure con-
sistent evaluation. By using default settings, we
eliminate these concerns, allowing for a more reli-
able assessment of humanlikeness. Finally, while
the study includes a large sample of human par-
ticipants, the specific demographic characteristics
(e.g., native English speakers from the UK and US)
may not fully represent global language use pat-
terns. Compared to previous benchmarks that focus
on task-based performance, this study offers a more
in-depth analysis of language models’ alignment
with human linguistic behavior. Similar studies,



such as Ettinger (2020), have used psycholinguis-
tic principles to probe LLMs, but our study stands
out by incorporating a broader range of linguistic
levels and by using a large-scale dataset of human
responses for direct comparison. The significant
differences found between model families, such as
the higher humanlikeness of Llama models, pro-
vide valuable insights for the ongoing development
and fine-tuning of LLMs.
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A Details of the Ten Psycholinguistic
Experiments

This section introduces the ten psycholinguistic
experiments used to evaluate the humanlikeness
of LLMs across multiple linguistic levels. Each
experiment was designed to test a specific linguis-
tic phenomenon and compare the performance of
LLMs to human participants.

Sounds: sound-shape association People of-
ten associate specific sounds with certain shapes,
a phenomenon known as sound symbolism. We
tested whether LLMs, like humans, tend to link
spiky-sounding words (words consist of /i/, /e1/,
/o/ as vowels and /p/, /t/, /k/ as consonants, such
as takete or kiki) with spiky objects and round-
sounding words (words consist of /o/, /u/ as vow-
elsand /b/, /g/, /1/, /m/, /n/, /w/ as consonants,
like maluma or baamoo) with round objects.

Sounds: sound-gender association People can
often guess if an unfamiliar name is male or fe-
male based on its sound. In English, women’s
names more frequently end in vowels compared to
men’s names. In this task, we asked participants to
complete a preamble containing either a consonant-
ending name (e.g., Pelcrad in 1a) or a vowel-ending
novel name (e.g., Pelcra in 1b).

la. Consonant-ending name: Although Pelcrad
was sick...

1b. Vowel-ending name: Although Pelcra was
sick...

Words: word length and predictivity Shorter
words are suggested to make communication more
efficient by carrying less information. If both
humans and LLMs are sensitive to the relation-
ship between word length and informativity, they
should prefer shorter words over longer ones with
nearly identical meanings when completing sen-
tence preambles that predicted the meaning of the
word (making it less informative; e.g., 2a), com-
pared to neutral sentence preambles (e.g., 2b)

2a. Predictive context: Susan was very bad at
algebra, so she hated... 1. math 2. mathematics

2b. Neutral context: Susan introduced herself to
me as someone who loved... 1. math 2. mathemat-
ics

Words: word meaning priming Many words
have multiple meanings; for instance, post can re-
fer to mail or a job. People update an ambiguous
word’s meaning based on recent exposure. We
tested whether humans and LLMs similarly demon-
strate word meaning priming phennomenon: Partic-
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ipants associated post with its job-related meaning
more frequently after reading sentences using that
context rather than synonyms’ contexts (3a vs.3b).

3a. Word-meaning prime: The man accepted the
post in the accountancy firm.

3b. Synonym prime: The man accepted the job
in the accountancy firm.

Syntax: structural priming In structural prim-
ing, people tend to repeat syntactic structures
they’ve recently encountered. We had participants
complete prime preambles designed for either PO
(prepositional-object dative structure, e.g., The rac-
ing driver gave helpful mechanic wrench to com-
plete 4a) or DO (double-object dative structure,
e.g., The racing driver gave torn overall his me-
chanic to complete 4b). Participants then com-
pleted target preamble which could be continued
as either DO/PO. If structural priming is demon-
strated, participants replicate structure of the prime
preamble.

4a. DO-inducing prime preamble: The racing
driver showed the helpful mechanic ...

4b. PO-inducing prime preamble: The racing
driver showed the torn overall ...

4c. Target preamble: The patient showed ...

Syntax: syntactic ambiguity resolution The way
people parse words into syntactic structures has
garnered significant attention in psycholinguistics.
For instance, in VP/NP ambiguity (e.g., The ranger
killed the poacher with the rifle), people usually
interpret the ambiguous prepositional phrase (PP,
with the rifle) as modifying the verb phrase (VP,
killed the poacher) rather than the noun phrase (NP,
the poacher). However, contextual information can
modulate this resolution: People are more likely to
interpret ambiguous PPs as modifying NPs when
there are multiple possible referents (e.g., Sb) com-
pared to when there is only a single referent (e.g.,
5a). We examine how effectively LLMs use con-
textual information to resolve syntactic ambiguities
and exhibit such modulation patterns.

Sa. Single referent: There was a hunter and a
poacher. The hunter killed the dangerous poacher
with a rifle not long after sunset. Who had a rifle,
the hunter or the poacher?

5b. Multiple referents: There was a hunter and
two poachers. The hunter killed the dangerous
poacher with a rifle not long after sunset. Who had
a rifle, the hunter or the poacher?

Meaning: implausible sentence interpretation
Listeners often need to recover intended messages
from noise-corrupted input. Errors in production



or comprehension can make a plausible sentence
implausible by omitting (e.g., fo omitted, 6a) or
inserting words (e.g., fo inserted, 6b). People may
interpret an implausible sentence nonliterally if
they believe it is noise-corrupted. who found that
people more frequently reinterpret implausible DO
sentences than PO sentences due to the likelihood
of omissions over insertions. We tested whether
people and LLMs similarly assume that implau-
sible sentences result from noise corruption, with
omissions being more likely than insertions.

6a. Implausible DO: The mother gave the candle
the daughter.

6b. Implausible PO: The mother gave the daugh-
ter to the candle.

6¢. Question: Did the daughter receive some-
thing/someone?

Meaning: semantic illusions People often over-
look obvious errors in sentences. For instance,
when asked (7a), many fail to notice that the ques-
tion should refer to Noah instead of Moses. Such
semantic illusions suggest that processing sentence
meanings involves partial matches in semantic
memory. We tested whether LLMs and people alike
produce semantic illusions and are more likely to
catch a weak imposter (e.g., Adam, less similar to
Noah, 7b) than a strong imposter (e.g. Morse, more
similar to Noah, 7a).

7a. Strong: During the Biblical flood, how many
animals of each kind did Moses take on the ark?

7b. Weak: During the Biblical flood, how many
animals of each kind did Adam take on the ark?

Discourse: implicit causality Certain verbs
prompt people to associate causality with either
the subject or the object within a sentence. For
instance, stimulus-experiencer verbs like scare typ-
ically lead people to attribute causality to the sub-
ject (e.g., completing 8a as Gary scared Anna
because he was violent), whereas experiencer-
stimulus verbs like fear generally lead people to
attribute causality to the object (e.g., completing 8b
as Gary feared Anna because she was violent). We
assessed whether LLMs, like humans, show similar
patterns of causal attribution based on verb type.

8a. Stimulus-experiencer verb: Gary scared
Anna because...

8b. Experiencer-stimulus verb: Gary feared
Anna because...

Discourse: drawing inferences People make
bridging inferences more frequently than elabora-
tive inferences. Bridging inferences connect two
pieces of information (after reading 9a, people infer
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that Sharon cut her foot) while elaborative infer-
ences extrapolate from a single piece of informa-
tion (people are less likely to make this inference
after reading 9b). We examined how well an LLM
aligns with human patterns of inference by compar-
ing the bridging and elaborative conditions.

9a. Bridging: While swimming in the shallow
water near the rocks, Sharon stepped on a piece
of glass. She called desperately for help, but there
was no one around to hear her.

9b. Elaborative: While swimming in the shallow
water near the rocks, Sharon stepped on a piece of
glass. She had been looking for the watch that she
misplaced while sitting on the rocks.

Question: Did she cut her foot?



B Results of Human Participants Across
Psycholinguistic Experiments

Across 10 classic psycholinguistic and cognitive
experiments, human participants consistently repli-
cated well-established effects, as indicated by
mixed-effects logistic regression models (see also
Figures 5, 6, 7.)

In Experiment 1, participants were more likely
to match round-sounding pseudowords to round
shapes than to spiky shapes (Round: 0.83 vs. Sharp:
0.37, B = 2.28, SE = 0.28, z = 8.02, p < .001),
demonstrating robust sound-shape symbolism.

In Experiment 2, vowel-ending names were
more likely to be interpreted as female than
consonant-ending names (Vowel: 0.54 vs. Con-
sonant: 0.07, 8 =3.39, SE=0.64,z=532,p <
.001), replicating the classic sound-gender associa-
tion.

In Experiment 3, participants showed a prefer-
ence for using shorter words in predictive contexts
than in neutral ones (Predictive: 0.40 vs. Neutral:
0.31, 8 = 0.57, SE = 0.18, z = 3.14, p = .002),
consistent with the principle of communicative ef-
ficiency.

In Experiment 4, participants selected meanings
congruent with primed word meanings more often
than with semantic associations alone (Word Mean-
ing: 0.27 vs. Semantic: 0.24, 5 = 0.28, SE = 0.14,
z = 1.97, p = .049), reflecting a subtle effect of
lexical priming.

In Experiment 5, a structural priming effect was
observed: participants were more likely to produce
prepositional object (PO) constructions after PO
primes than after double object (DO) primes (PO:
0.65 vs. DO: 0.48, 3 =0.73, SE = 0.15, z = 4.95,
p < .001).

In Experiment 6, participants more often inter-
preted ambiguous phrases as noun phrases (NP) fol-
lowing plural contexts compared to singular ones
(Plural: 0.16 vs. Single: 0.11, 5 = 0.70, SE = 0.17,
z =4.20, p < .001), supporting prior findings in
syntactic ambiguity resolution.

In Experiment 7, no significant difference was
observed in interpretation of implausible sentences
across syntactic structures (PO: 0.53 vs. DO: 0.50,
B =-0.12, SE = 0.36, z = -0.33, p = .741), suggest-
ing limited sensitivity to structure in this context.

In Experiment 8, participants more frequently
overlooked semantic inconsistencies when the key-
word was weak versus strong (Weak: 0.74 vs.
Strong: 0.61, 5 = 0.70, SE = 0.13, z = 521, p
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Figure 5: Results of Experiments 1-4. Bar plots show
the proportion of target-consistent responses in each
condition across participants, with error bars represent-
ing =1 SE. (a) Participants more often matched round-
sounding pseudowords to round shapes than to spiky
shapes (Experiment 1). (b) Vowel-ending names were
more frequently judged to be feminine than consonant-
ending names (Experiment 2). (c) Shorter words were
more likely in predictive contexts than in neutral ones
(Experiment 3). (d) Word-meaning primes increased
access to subordinate word meanings compared to se-
mantic primes (Experiment 4). Black diamond markers
indicate the proportion reported in the original studies.
Our replication used a one-trial-per-run design, which
deviates from the original multiple-trials-per-run setup.
This adjustment minimizes potential context effects and
offers a more LLM-compatible benchmarking format.

< .001), demonstrating the classic semantic illusion
effect.

In Experiment 9, subject vs. object pronoun con-
tinuation strongly depended on verb type: partici-
pants overwhelmingly chose object continuations
following stimulus-experiencer (SE) verbs and sub-
ject continuations following experiencer-stimulus
(ES) verbs (ES: 0.93 vs. SE: 0.14, 3 = 25.50, SE =
1.31, z = 19.47, p < .001), consistent with implicit
causality patterns.

In Experiment 10, bridging inferences were
more likely to be made in bridging contexts than
in elaborative ones (Bridging: 0.48 vs. Elabora-
tive: 0.28, 5 = 0.98, SE = 0.19, z = 5.22, p <
.001), confirming sensitivity to discourse structure
in inference making.

C Experiment Results of Models and
Human

Figures 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17
showed the results of the 20 models in 10 experi-
ments, together with human results for comparison.
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Figure 6: Results of Experiments 5—8.Bar plots show
the proportion of structure- or meaning-consistent re-
sponses in each condition, with error bars representing
+1 SE. (a) Structural priming: Participants more of-
ten produced PO structures following PO primes than
DO primes (Experiment 5). (b) Participants showed a
preference for NP interpretation following plural noun
contexts (Experiment 6). (c) Sentence interpretation
was not significantly influenced by syntactic structure in
implausible constructions (Experiment 7). (d) Semantic
illusions occurred more frequently when critical words
were weakly associated (Experiment 8).Black diamond
markers reflect the originally reported values. As in all
experiments, the one-trial-per-run format was used to
reduce context sensitivity and align with LLM evalua-
tion conditions.
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Figure 18 showed the mean values.
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Figure 9: Experiment results of models and humans in
Experiment 2
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Figure 10: Experiment results of models and humans in
Experiment 3

D Humanlikeness Scores for All 20 LL.Ms

As shown in Table 2, the language human-likeness
scores for the 20 language models across 10 psy-
cholinguistic experiments are summarized.
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Experiment 4
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Figure 14: Experiment results of models and humans in
Experiment 7

1.00 @—Mistral-7B-Instruct-v0.3

°
a

Prop. error detections
o

°
&

Strong Weak
Condition

Figure 15: Experiment results of models and humans in
Experiment 8
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Figure 16: Experiment results of models and humans in
Experiment 9
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Figure 17: Experiment results of models and humans in
Experiment 10
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Figure 18: Average targeted response rates for 20 language models and human participants across conditions in 10
psycholinguistic tasks. Color gradients indicate relative performance: red cells reflect higher response rates than
those of humans, while blue cells indicate lower rates.
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Experiment Overall Sound Word Meaning Syntax  Discourse
El E2 E3 E4 E5 E6 E7 E8 E9 EI0

Meta-Llama-3.1-70B-Instruct 66.50 89 62 6l 6 8 77 80 67 80 63
Meta-Llama-3.1-8B-Instruct 65.89 73 65 60 12 84 78 79 74 79 56

Phi-3-mini-4k-instruct 64.61 61 68 59 19 89 71 76 48 80 76
Mistral-Nemo-Instruct-2407 63.69 74 63 56 10 84 77 52 75 79 68
Llama-2-13b-chat-hf 63.15 57 57 51 25 75 67 74 72 76 79
Mistral-7B-Instruct-v0.1 62.77 73 70 62 24 87 43 69 36 79 84
CodeLlama-34b-Instruct-hf 62.18 79 64 60 23 82 53 58 63 79 61
c4ai-command-r-plus 60.77 79 60 63 8 72 72 66 59 78 50
Meta-Llama-3-8B-Instruct 60.65 69 53 57 14 79 18 59 66 77 54
starchat2-15b-v0.1 60.57 58 70 58 25 87 73 62 36 75 62
gpt-4o 58.58 60 63 68 2 71 77 47 61 15 62
gpt-3.5-turbo 58.32 55 61 66 3 76 76 71 47 76 50
Yi-1.5-34B-Chat 58.20 67 54 55 13 72 70 61 65 78 48
Llama-2-7b-chat-hf 57.47 74 61 58 22 67 69 50 60 75 39
zephyr-7b-alpha 56.96 57 62 47 23 85 29 44 73 76 75
Meta-Llama-3-70B-Instruct 56.73 60 61 55 4 71 75 57 59 U5 50
gpt-4o-mini 56.21 56 58 62 3 70 75 46 58 75 57
Mistral-8x7B-Instruct-v0.1 52.80 60 53 48 23 71 46 43 59 73 52
Mistral-7B-Instruct-v0.3 52.45 53 58 47 25 75 38 49 59 73 47
Mistral-7B-Instruct-v0.2 50.18 13 58 54 14 72 61 46 64 71 49
zephyr-7b-beta 47.85 28 53 48 26 71 7 38 73 75 60

Table 2: Language human-likeness scores for 20 language models across 10 psycholinguistic experiments. Bold
values indicate the highest task-wise scores; underlined values denote the lowest.
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Figure 19: Leaderboard of language human-likeness scores across LLMs as assessed by the HLB
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