
RGMDT: Return-Gap-Minimizing Decision Tree
Extraction in Non-Euclidean Metric Space

Jingdi Chen
The George Washington University

jingdic@gwu.edu

Hanhan Zhou
The George Washington University

hanhan@gwu.edu

Yongsheng Mei
The George Washington University

ysmei@gwu.edu

Carlee Joe-Wong
Carnegie Mellon University
cjoewong@andrew.cmu.edu

Gina Adam
The George Washington University

ginaadam@gwu.edu

Nathaniel D. Bastian
United States Military Academy

nathaniel.bastian@westpoint.edu

Tian Lan
The George Washington University

tlan@gwu.edu

Abstract

Deep Reinforcement Learning (DRL) algorithms have achieved great success in
solving many challenging tasks while their black-box nature hinders interpretability
and real-world applicability, making it difficult for human experts to interpret
and understand DRL policies. Existing works on interpretable reinforcement
learning have shown promise in extracting decision tree (DT) based policies from
DRL policies with most focus on the single-agent settings while prior attempts to
introduce DT policies in multi-agent scenarios mainly focus on heuristic designs
which do not provide any quantitative guarantees on the expected return. In
this paper, we establish an upper bound on the return gap between the oracle
expert policy and an optimal decision tree policy. This enables us to recast the
DT extraction problem into a novel non-euclidean clustering problem over the
local observation and action values space of each agent, with action values as
cluster labels and the upper bound on the return gap as clustering loss. Both
the algorithm and the upper bound are extended to multi-agent decentralized DT
extractions by an iteratively-grow-DT procedure guided by an action-value function
conditioned on the current DTs of other agents. Further, we propose the Return-
Gap-Minimization Decision Tree (RGMDT) algorithm, which is a surprisingly
simple design and is integrated with reinforcement learning through the utilization
of a novel Regularized Information Maximization loss. Evaluations on tasks like
D4RL show that RGMDT significantly outperforms heuristic DT-based baselines
and can achieve nearly optimal returns under given DT complexity constraints (e.g.,
maximum number of DT nodes).

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

1 Introduction

Deep Reinforcement Learning (DRL) has significantly advanced real-world applications in var-
ious domains [5, 12, 13, 16, 17, 29, 44, 69, 71]. However, the black-box nature of DRL’s
deep neural networks, with their multi-layered structures and millions of parameters, makes
them largely uninterpretable. This lack of interpretability is particularly problematic in safety-
critical sectors such as healthcare and aviation, where clarity in machine decision-making is cru-
cial [14, 15, 27, 31, 43, 45, 51].

Decision trees (DTs) address this problem by supporting rules and decision lists that enhance human
understanding [1, 11, 35, 36, 38, 56]. However, there are two main challenges to applying DTs in
DRL: (1) DTs extracted from DRL often lack performance guarantees [2, 22]. There have been
imitation learning-type approaches that train DTs with samples drawn from the trained DRL policy [3],
but the return gap is characterized in terms of number of samples needed and does not apply to DTs
with arbitrary size constraints (e.g., on the maximum number of nodes L). (2) Although learning DT
policies for interpretability has been investigated in the single-agent RL setting [37, 42, 55, 58], it is
under-explored in the multi-agent setting, except for centralized methods like MAVIPER [48], which
lacks a performance guarantee. In multi-agent, decentralized settings where rewards are jointly
determined by all agents’ local DTs, any changes in one agent’s DT will impact the optimality of
other agents’ DTs. The return gap for such decentralized DTs has not been considered.

In this paper, we propose a DT extraction framework, a Return-Gap-Minimization Decision Tree
(RGMDT) algorithm, that is proven to achieve a closed-form guarantee on the expected return gap
between a given RL policy and the resulting DT policy. Our key idea is that each decision path of the
extracted DT maps a subset of observations to an action attached to the leaf node. Thus, constructing
a DT can be considered an iterative clustering problem of the observations into different decision
paths, with actions at leaf nodes as labels. Since the action-value function Q(o, a) represents the
potential future return, it can be leveraged to obtain a return gap bound for the process. We show
that it recasts the DT extraction problem as a non-Euclidean clustering with respect to a loss defined
using Q(o, a). Due to its iterative structure, RGMDT supports an iterative algorithm to generate
return-gap-minimizing DTs of arbitrary size constraints.

Further, we extend our algorithm to multi-agent settings and provide a performance bound on the
return gap. A naïve approach that simply converts each agent’s (decentralized) policy into a local
DT cannot ensure global optimality of the resulting return since the reward is jointly determined by
the DTs constructed for all agents. We develop an iteratively-grow-DT process, which iteratively
identifies the best step to grow the DT of each agent, conditioned on the current DTs of other agents
(by revising the resulting action-value function) until the desired complexity is reached. Thus, the
impact of decentralized DTs on the joint reward is captured during this process. The method ensures
that we learn decentralized DTs yet also guarantees a return gap.

More precisely, we show that the problem is recast into a non-Euclidean clustering problem in
the observation space with n agents. Each agent j computes an updated action-value function by
conditioning it on other agents’ current DTs (thus capturing the impact of their DT constructions
on each other). Then, guided by this updated action-value-function, agent i grows its DT by
adding another label (i.e., decision path and corresponding leaf node) by a clustering function
T = [Ti(ai|oi, T−i),∀i], which is conditioned on its local observations oi and the DT policies of
other agents T−i. The process continues iteratively across all agents until their decentralized DTs
reach the desired size constraints. To analyze the resulting return gap, we show that the difference
between the given DRL policy and the DTs can be characterized using a Policy Change Lemma,
relying on the average distance between joint action values in each cluster (i.e., decision path).
Intuitively, if the observations following the same decision path and arriving at the same leaf node
are likely maximized with the same action, the DT policy would have a small return gap with the
DRL policy π∗. We show that the return gap is bounded by O(

√
ϵ/(log2(L+ 1)− 1)nQmax), with

respect to the maximum number of leaf nodes L of the DT, the number of agents n, the highest action-
value Qmax and the average cosine-distance ϵ between joint action-value vectors corresponding to
the same clusters. The result allows us to minimize this upper bound to find the optimal DTs.

The main contributions are: (1). We quantify the return gap between an oracle DRL policy and its
extracted DTs via an upper bound with respect to the DT size constraints. (2). We propose RGMDT,
an algorithm that constructs multi-agent decentralized DTs of arbitrary sizes by minimizing the upper

2

bound of the return gap. Instead of drawing samples from the DRL policy for DT learning, RGMDT
recasts the problem as an iterative non-Euclidean clustering problem of the observations into different
decision paths, with actions at leaf nodes as labels. (3). Rather than generating a DT and subsequently
applying pruning algorithms to achieve the desired complexity, the RGMDT framework constructs
DTs of any given size constraint while minimizing the upper bound of the resulting expected return
gap. (4). We show that RGMDT significantly outperforms baseline DT algorithms and can be applied
to complex tasks like D4RL with significant improvement.

The remainder of this paper is organized as follows. Section 2 reviews related work on decision trees
and their integration with reinforcement learning, with a focus on interpretability and multi-agent
systems. Section 3 introduces our problem formulation and defines the return gap. In Section 4, we
present the theoretical results, recasting return gap minimization as clustering in a non-Euclidean
space, and deriving bounds for both single-agent and multi-agent settings. Section 5 details the
construction of SVM-based decision trees and the iteratively growing framework for minimizing
return gaps, with pseudocode in the appendix. Section 6 describes the experimental setup and presents
empirical results. Finally, Section 7 concludes with a summary of contributions and future directions.

2 Related Work

Effort on Interpretability for Understanding Decisions. To enhance interpretability in decision-
making models, one strategy involves crafting interpretable reward functions within inverse reinforce-
ment learning (IRL), as suggested by [10, 67, 68]. This approach offers insights into the underlying
objectives guiding the agents’ decisions. Agent behavior has been conceptualized as showing pref-
erences for certain counterfactual outcomes [7], or as valuing information differently when under
time constraints [34]. However, extracting policies through black-box reinforcement learning (RL)
algorithms often conceals the influence of observations on the selection of actions. An alternative
is to directly define the agent’s policy function with an interpretable framework. Reinforcement
learning policies have thus been articulated using a high-level programming language [60], or by
framing explanations around desired outcomes [66], facilitating a more transparent understanding of
decision-making processes.

Interpretable RL via Decision Tree-based models. Since their introduction in the 1960s, DTs have
been crucial for interpretable supervised learning [47, 50, 53]. The CART algorithm [8], established
in 1984, is foundational in DT methodologies and underpins Random Forests (RF) [9] and Gradient
Boosting (GB) [23], which are benchmarks in predictive modeling. These techniques are central to
platforms like ranger and scikit-learn and continue to evolve, as seen in the iterative random forest,
which explores stable interactions in data [4, 52, 64, 70]. To interpret an RL agent, Frosst et al [25]
explain the decisions made by DRL policies by using a trained neural network to create soft decision
trees. Coppens et al. [19] propose distilling the RL policy into a differentiable DT by imitating a
pre-trained policy. Similarly, Liu et al. [39] apply an imitation learning framework to the Q-value
function of the RL agent. They also introduce Linear Model U-trees (LMUTs), which incorporate
linear models in the leaf nodes. Silva et al. [57] suggest using differentiable DTs directly as function
approximators for either the Q function or the policy in RL. Their approach includes a discretization
process and a rule list tree structure to simplify the DTs and enhance interpretability. Additionally,
Bastani et al. [3] propose the VIPER method, which distills policies as neural networks into a DT
policy with theoretically verifiable capabilities that follow the Dataset Aggregation (DAGGER)
method [54], specifically for imitation learning settings and nonparametric DTs. Ding et al. [20] try
to solve the instability problems when using imitation learning with tree-based model generation and
apply representation learning on the decision paths to improve the decision tree-based explainable RL
results, which could achieve better performance than soft DTs. Milani et al. extend VIPER methods
into multi-agent scenarios [48] in both centralized and decentralized ways, they also summarize a
paper about the most recent works in the fields of explainable AI (artificial intelligence) [49], which
confirms the statements that small DTs are considered naturally interpretable.

However, traditional DT methods are challenging to integrate with RL due to their focus on cor-
relations within training data rather than accounting for the sequential and long-term implications
in dynamic environments. Imitation learning approaches have been explored in single-agent RL
settings [42, 55, 58]. For instance, VIPER [3] trains DTs with samples from a trained DRL policy, but
its return gap depends on the number of samples needed and does not apply to DTs with arbitrary size
constraints (e.g., maximum number of nodes L). DT algorithms remain under-explored in multi-agent

3

settings, except for MAVIPER [48] that extends VIPER to multi-agent scenarios[46] while lacking
performance guarantees and remaining a heuristic design.

3 Preliminaries and Problem Formulation

A Dec-POMDP [6] models cooperative MARL, where agents lack complete information about
the environment and only have local observations. We formulate a Dec-POMDP as a tuple D =
⟨S,A, P,Ω, n,R, γ⟩, where S is the joint state space and A = A1 × A2 × · · · × An is the joint
action space, where a = (a1, a2, . . . , an) ∈ A denotes the joint action of all agents. P (s′|s,a) :
S × A × S → [0, 1] is the state transition function. Ω is the observation space. n is the total
number of agents. R(s,a) : S × A → R is the reward function in terms of state s and joint
action a, and γ is the discount factor. Given a policy π, we consider the average expected return
J(π) = limT→∞(1/T)Eπ[

∑T
t=0 Rt]. The goal of this paper is to minimize the return gap between

the pre-trained RL policy providing action-values π∗ = [π∗
i (ai|o1, . . . , on),∀i] and the DT policy

T = [Ti(ai|oi, T−i),∀i] where decision tree policies T−i = {Tj = ϕj(oj , lj),∀j ̸= i}, where
lj = g(oj), and the function g is the clustering function for observation oj . Define the return gap as:

min J(π∗)− J(T). (1)

While the problem is equivalent to maximizing J(T), the return gap can be analyzed more easily
by contrasting T and π∗. We derive an upper bound of the return gap and then design efficient
clustering strategies to minimize it. We consider the discounted observation-based state value and the
corresponding action-value functions for the Dec-POMDP:

V π(o) = Eπ[

∞∑
i=0

γi ·Rt+i

∣∣∣ot = o,at ∼ π], Qπ(o,a) = Eπ[

∞∑
i=0

γi ·Rt+i

∣∣∣ot = o,at = a], (2)

where t is the current time step. Re-writing the average expected return as an expectation of V π(o):

J(π) = lim
γ→1

Eµ[(1− γ)V π(o)], (3)

where µ is the initial observation distribution at time step t = 0, i.e., o(0) ∼ µ. We will leverage
this state-value function V π(o) and its corresponding action-value function Qπ(o,a) to unroll the
Dec-POMDP and derive a closed-form upper-bound to quantify the return gap.

4 Theoretical Results and Methodology

We first recast the problem as clustering in a non-Euclidean Metric Space and then prove a single-
agent result. Then we expand the single-agent result to multi-agent settings. Since directly minimizing
the return gap is intractable, we bound the performance of RGMDT with the return gap between
the oracle policy π∗ = [π∗

i (ai|o1, . . . , on),∀i] corresponding to obtaining the action-values Qπ∗

and optimal decision tree policy T L = [T L
1 , . . . , T L

n], where each Ti can only have L nodes, and
n is the total number of agents. For simplicity, we use V ∗ to represent V π∗

, and Q∗ to represent
Qπ∗

. We assume that observation/action spaces defined in the Dec-POMDP tuple are discrete with
finite observations and actions, i.e., |Ω| < ∞ and |A| < ∞. For Dec-POMDPs with continuous
observation and action spaces, the results can be easily extended by considering cosine-distance
between action-value functions and replacing summations with integrals, or sampling the action-value
functions as an approximation.
Lemma 4.1. (Policy Change Lemma.) For any policies π∗ and DT policy T L with L leaf nodes, the
optimal expected average return gap is bounded by:

J(π∗)− J(T L) ≤
∑
l

∑
o∼l

[Q∗(o,aπ
∗

t)−QT L

(o,aT
L

t)]dT
L

µ (o),

dT
L

µ (o) = (1− γ)

∞∑
t=0

γt · P (ot = o|T L, µ),

(4)

where dT
L

µ (o) is the γ-discounted visitation probability under decision tree T L and initial observa-
tion distribution µ, and

∑
o∼l is a sum over all observations corresponding to the decision path from

the parent node to the leaf node l, where l indicates its class.

4

Proof Sketch. Our key idea is to leverage the state value function V T L

(o) and its corresponding
action-value function QT L

(o,a) in Eq.(2) to unroll the Dec-POMDP from timestep t = 0 and
onward. Detailed proof is provided in the Appendix.

Then we define the action-value vector corresponding to observation oj , i.e.,

Q̄∗(oj) = [Q̃∗(oj ,o−j),∀o−j], (5)

where o−j are the observations of all other agents and Q̃∗(oj ,o−j) is a vector of action-values
weighted by marginalized visitation probabilities dπµ(o−j |oj) and corresponding to different actions,
i.e., Q̃∗(oj ,o−j) = [Q∗(oj ,o−j , π

∗(aj |oj),a−j) · dπµ(o−j |oj)]. At the initial iteration step of the
iteratively-grow-DT process, since we did not grow the DT for agent j yet, we use oracle policy
π∗ to give a deterministic action a∗j = argmaxaj

Q∗
j (oj , aj) based on oj for obtaining action-value

vectors, and a−j are all possible actions for agents except for agent j, which makes Q̃∗(oj ,o−j) a
vector where each entry corresponds to the full set of actions a−j across all agents except for agent j.

Next, constructing decision trees can be considered an iterative clustering problem of the observations
into different decision paths lj = g(oj), with actions at leaf nodes as labels. Then, the oj are
divided into clusters, each labeled with the clustering label lj to be used for constructing DT. We
bound the policy gap between π∗

(j) and T L
(j),using the average cosine-distance of action-value vectors

Q̄∗(oj) corresponding to oj in the same cluster and its cluster center H̄(l) =
∑

oj∼l d̄l(oj) · Q̄∗(oj)

under each label l. Here d̄l(oj) = dT
L

µ (oj)/d
T L

µ (l) is the marginalized probability of oj in cluster
l and dT

L

µ (l) is the probability of label l under DT T L, and the environments’ initial observation
distribution is represented by o(t = 0) ∼ µ. To this end, we let ϵ(oj) = Dcos(Q̄

∗(oj), H̄(l)) be the
cosine-distance between vectors Q̄∗(oj) and H̄(l) and consider the average cosine-distance ϵ across
all clusters represented by different clustering labels l for one iteration of growing DT:

ϵ ≜
∑
l

dπµ(l)
∑
oj∼l

d̄l(oj) · ϵ(oj), (6)

The result is summarized in Thm. 4.2.
Theorem 4.2. (Impact of Decision Tree Conversion.) Consider two optimal policies π∗

(j) and T L
(j)

obtained from the policy providing action-values and the DT, the optimal expected average return
gap is bounded by:

J(π∗
(j))− J(T L

(j)) ≤ O(
√

ϵ/(log2(L+ 1)− 1)Qmax) (7)

where Qmax is the maximum absolute action-value of Q̄∗(oj) in each cluster as Qmax =
maxoj ||Q̄∗(oj)||2, and ϵ is the average cosine-distance defined in Eq.(6), L is maximum number of
leaf nodes of the resulting DT.

Proof Sketch. We give an outline below and provide the proof in the Appendix.

Step 1: Recasting DT construction into a Non-Euclidean Clustering. Viewing the problem as a
clustering of oj , restrict policy T(j) (conditioned on lj) to take the same actions for all oj in the same
cluster under the same label lj . We perform clustering on the observation oj within the observation
space Ωj by grouping the corresponding action-value vectors Q̄∗(oj) in the action-value vector space
Qj , using the cosine-distance function Dcos as the clustering metric. We demonstrate that (Ωj , Dcos)
constitutes a Non-Euclidean Metric Space. The findings are detailed in Lemma 4.3, with the full
proof provided in the Appendix.
Lemma 4.3. (Cosine Distance Metric Space Lemma.) Let Ωj be a set of observations with associated
vector representations in Rm obtained through a mapping function Q̄∗, and let Dcos : Ωj ×Ωj → R
be a distance function defined as:

Dcos(o
a
j , o

b
j) = 1− f(Q̄∗(oaj), Q̄

∗(obj)) = 1−
Q̄∗(oaj) · Q̄∗(obj)

Q̄∗(oaj)∥ · ∥Q̄∗(obj)∥
(8)

where f denotes the cosine similarity. Then, the pair (Ωj , Dcos) forms a metric space. The proof is
in Appendix.

5

Step 2: Rewrite the return gap in vector form. Re-writing the optimal expected average return gap
derived in Policy Change Lemma 4.1 in vector terms using action-value vectors Q̄∗(oj) and an
auxiliary maximization function Φmax(Q̄

∗(oj)) that returns the largest component of vector Q̄∗(oj):

J(π∗
(j))− J(T(j)) ≤

∑
l

dπµ(l)[
∑
oj∼l

d̄l(oj) · Φmax(Q̄
∗(oj))− Φmax(

∑
oj∼l

d̄l(oj) · Q̄∗(oj))], (9)

Step 3: Projecting action-value vectors toward cluster centers. By projecting Q̄∗(oj) toward
H̄(l), Q̄∗(oj) could be re-written as Q̄∗(oj) = Q⊥(oj) + cos θoj · H̄l, then we could upper bound
Φmax(Q̄

∗(oj)) by:

Φmax(Q̄
∗(oj)) ≤ Φmax(cos θoj · H̄l) + Φmax(Q

⊥(oj)).

Taking a sum over all oj in the cluster, we have
∑

oj∼l d̄l(oj)Φmax(cos θoj · H̄l) = Φmax(H̄l), since
the projected components cos θoj · H̄l should add up to exactly H̄l. To bound Eq.(9)’s return gap, it
remains to bound the orthogonal components Q⊥(oj).

Step 4: Deriving the upper bound w.r.t. cosine-distance. We derive an upper bound on the return gap
by bounding the orthogonal projection errors using the average cosine distance within each cluster.

Φmax(Q
⊥(oj)) ≤ O(

√
ϵ(oj)Qmax). (10)

Using the concavity of the square root with Eq.(6), we derive the desired upper bound J(π∗
(j)) −

J(T(j)) ≤ O(
√
ϵQmax) for one iteration of growing the DT, then for I = log2(L + 1) − 1

iterations (I is the depth of the DT), the upper bound is O(
√
ϵ/(log2(L+ 1)− 1)Qmax). Here we

assume that the DT is a perfectly balanced or full binary tree. If it is a complete binary tree, the
number of iterations is I = log2(L). In the worst-case scenario of a highly unbalanced tree, the
number of iterations is I = L − 1. Then we extend this upper bound to multi-agent settings in
Thm. 4.4.
Theorem 4.4. In n-agent Dec-POMDP, the return gap between policy π∗ corresponding to the
obtained action-values and decision tree policy T L conditioned on clustering labels is bounded by:

J(π∗)− J(T L) ≤ O(
√
ϵ/(log2(L+ 1)− 1)nQmax). (11)

Proof Sketch. Beginning from π∗ = [π∗
i (ai|o1, o2, . . . , on),∀i], we can construct a sequence of n

policies, each replacing the conditioning on oj by constructed decision tree T L
j , for j = 1 to j = n,

one at a time. This will result in the decision tree policies T L = [T L
j (aj |oj , T L

−j)]. Applying
Thm. 4.2 for n times, we prove the upper bound between J(π∗) and J(T L) for multi-agent scenarios.
Remark 4.5. Thm. 4.4 holds for any arbitrary finite number of leaf nodes L. Furthermore, increasing
L reduces the average cosine distance (since more clusters are formed) and, consequently, a reduction
in the return gap due to the upper bound derived in Thm. 4.4.

5 Constructing SVM-based Decision Tree to Minimize Return Gaps

The result in Thm. 4.4 inspires a iteratively-grow-DT framework - RGMDT, which constructs
return-gap-minimizing multi-agent decentralized DTs of arbitrary sizes. This is because RGMDT
grows a binary tree iteratively (in both single and multi-agent cases) until the desired complexity
is reached. The method addressed two challenges: (1). RGMDT constructs the optimal DT that
minimizes the return gap given the complexity of the DT (e.g., the number of the leaf nodes). (2).
RGMDT addressed the scalability problems of multi-agent DT construction with provided theoretical
guarantees. We summarize the pseudo-code in the Appendix.

Non-Euclidean Clustering Labels Generation. We approximate the non-Euclidean clustering labels
lj = g(oj) for each agent using DNNs parameterized by ξ = {ξ1, . . . , ξn}. Prior to growing the
decision tree (DT) for each agent j, we sample a minibatch of K1 transitions Xj from the replay
bufferR, which includes observation-action-reward pairs from all agents. We then identify the top
K2 most frequent observations ok2

−j in Xj , and retrieve their associated actions using the pre-trained
policy π∗, forming a set X−j . We combine these samples with (oj , π

∗(oj)) from Xj to form the

6

dataset D for training. The oracle critic networks, parameterized by ω, compute the action-values
for this dataset, approximating the vectors Q̄∗(oj). gξj (oj) is updated by optimizing a Regularized
Information Maximization (RIM) loss function [32]:

L(gξi) =
K1∑
p=1

∑
q∈NK3

(p)

[
Dcos(Q̄

∗(opj), Q̄
∗(oqj)

]
∥lpj − lqj∥

2 − [H(mj)−H(mj |oj)] , (12)

the first term is a locality-preserving clustering loss, which enhances the cohesion of clusters by
encouraging action-value vectors close to each other to be grouped together. This is achieved using
the cosine distance Dcos to identify the K3 nearest neighbors of each action-value vector. The second
term, the mutual information loss, quantifies the mutual information between the observation oj and
the cluster label mj . It aims to balance cluster size and clarity by evaluating the difference between
the marginal entropy H(mj) and the conditional entropy H(mj |oj).
Single-agent DT Construction via Iterative Clustering. To grow a decision tree (DT) for agent
j, each decision path of RGMDT maps a subset of observations to an action attached to the leaf
node (decision paths for different leaf node counts are visualized in Appendix). The process
iteratively groups observations and assigns actions as labels at each path’s end. The main challenge
is determining the optimal division of observations at each node and defining the split conditions.
For each split, the RGMDT framework uses a sample matrix of observations X ∈ Rd×n and
associated class labels Y ∈ R1×n, where n and d are the number of examples and dimensions,
respectively. Each label li = g(oi) corresponds to a category {l1, l2, . . . , lL}, which is generated
from non-euclidean clustering function g with cosine-distance loss function L(gξi), and L being
the maximum number of leaf nodes. We use Support Vector Machines (SVM) [41] to identify the
optimal hyperplane H(X) that maximizes the margin between the closest class points, known as
support vectors. This results in the optimized hyperplaneH∗(X) defined by w∗ ·o−p∗ = 0. The DT,
structured as a binary tree for multi-class classification, incorporates this SVM-derived hyperplane.
Each node splits into two child nodes based on the hyperplane’s criteria: left for w∗ · o− p∗ < 0 and
right for w∗ ·o−p∗ ≥ 0. Note that the splits are still based on linear thresholds. The construction
of the Tj is complete until it reaches the maximum number of leaf nodes L by iteratively repeating
the splitting and clustering for I = log2(L) + 1 iterations. The child node in the last iterations
will become a leaf node assigned the class label l = argmaxi

{
ni

r | i = l1, l2, . . . , lL
}

, where r is
the total number of sample points in the current leaf node, and ni is the number of sample points in
class i. Classification can be conducted based on the Tj . For an observation with an unknown class, it
constantly goes through the split nodes and finally reaches a leaf node where l indicates its class [62].

Iteratively-Growing-DT for Multi-agent. In each iteration, we obtain a revised Q(o,a) by condi-
tioning it on the current DTs of all other agents, i.e., if two actions are merged into the same decision
path, then the Q(o,a) are merged too. Then we grow the DT as guided by the revised Q(o,a), which
iteratively identifies the best step to grow the DT of each agent conditioned on the current DTs of
other agents. To simplify, consider agents i ̸= j as a conceptual super agent −j. With a constraint
of L leaf nodes, we iteratively grow DTs for agent j and super agent −j, growing one more level
for each agent per iteration with a total of log2(L) + 1 iterations. At the initial iteration (i = 0), for
agent j, we calculate Q̃∗

i=0(oj ,o−j) = [Q∗(oj ,o−j , π
∗(aj |oj),a−j) · dπµ(o−j |oj)] and grow DT

T i=0
j using the clustering function g(oj). For super agent −j, the DT is based on Q̃∗

i=0(o−j , oj)
which integrates the DT from agent j. Each subsequent iteration updates the DTs by recalculating
Q̃∗ using the prior iteration’s DTs to ensure consistent action choices within clusters for both agents.

6 Evaluation and Results

Experiment Setup and Baselines. We test RGMDT on both discrete and continuous state space
problems in the maze environments and the D4RL [26]. To explore how well RGMDT scales in
multi-agent environments, we also constructed similar target-chasing tasks in the maze following
the same settings as the Predator-Prey tasks in the Multi-Agent Particle Environment (MPE) [40]
(detailed in Appendix). We use Centralized Q Learning and Soft Actor-critic (SAC) [30] to obtain
the action-value vectors. We compare RGMDT against strong baselines. The baselines include
different types of Imitation DTs [48]: Each DT policy is directly trained using a dataset collected
by running the expert policies for multiple episodes. No resampling is performed. The observations
of an agent are the features, and the actions of that agent are the labels. (1). Single Tree Model

7

RGMDT CART ET RF GBDT
Methods

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
Ta

sk
 C

om
pl

et
e

St
ep

s

1.0

1.394
1.214

1.364 1.266

(a) Simple Task

RGMDT CART ET RF GBDT
Methods

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
Ta

sk
 C

om
pl

et
e

St
ep

s

1.0

1.652 1.641 1.562 1.599

(b) Meduim Task

RGMDT CART ET RF GBDT
Methods

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ize

d
Ta

sk
 C

om
pl

et
e

St
ep

s

1.0

1.987 1.987 1.987 1.895

(c) Hard Task

0 50 100 150 200 250 300
Episode

0

10

20

30

40

50

M
ea

n
Ep

iso
de

 R
ew

ar
d

RGMDT
CART
Extra Trees
Random Forest
Gradient Boosting Decision Tree

(d) Simple Task

0 50 100 150 200 250 300
Episode

0
5

10
15
20
25
30
35
40

M
ea

n
Ep

iso
de

 R
ew

ar
d RGMDT

CART
Extra Trees
Random Forest
Gradient Boosting Decision Tree

(e) Medium Task

0 100 200 300 400 500
Episode

20
15
10

5
0
5

10
15
20

M
ea

n
Ep

iso
de

 R
ew

ar
d

RGMDT
CART
Extra Trees
Random Forest
Gradient Boosting Decision Tree

(f) Hard Task

Figure 1: Evaluation on Maze tasks. (a)-(c): RGMDT (purple bar) completes the tasks in fewer steps
than all the baselines. (d)-(f): RGMDT (blue line) achieves a higher mean episode reward than all
the baselines in all scenarios with varying complexities, which illustrates its ability to minimize the
return gap in hard environments.

using CART [8], which is the most famous traditional DT algorithm whose splits are determined
by choosing the best cut that maximizes the gain. (2). DT algorithms with Bootstrap Aggregating
error correction methods: Random Forest (RF) [9] that reduces variance by averaging multiple
deep DTs, trained on different parts of the same training set; Extra Trees (ET) [28] that uses the
whole dataset to grow the trees which make the boundaries more randomized. (3). Boosting For
Error Correction, Gradient Boosting DTs [24] that builds shallow trees in succession where each
new tree helps to correct errors made by the previously trained tree. (4). Multi-agent Verifiable
Reinforcement Learning via Policy Extraction (MAVIPER): A centralized DT training algorithm
that jointly grows the trees of each agent [48], which extends VIPER [3] in multi-agent settings. All
the experiments are repeated 3-5 times with different seeds. More details about the evaluations are
in the Appendix.

Single Agent Task. In the single-agent task, an agent is trained to navigate to a target without
colliding with walls to complete the task. We increase the complexity of the environment and evaluate
the RGMDT across three different levels of complexity (detailed in Appendix). For each experiment,
we compare agents’ performance using RGMDT against baselines using two metrics: the number of
time steps required to complete the task (fewer is better) and the mean episode rewards (higher is
better). We conducted each experiment five times for both metrics using different random seeds to
ensure robustness.

Figures 1a-1c illustrate the normalized task completion steps for all methods relative to RGMDT’s
average performance. RGMDT consistently outperforms the baselines by completing tasks in
fewer steps, increasing its advantage in more complex tasks. In the most challenging task, where
only 10 steps are allowed in complete the hard task, RGMDT typically finishes in about 5 steps,

Table 1: RGMDT achieved higher rewards with a smaller sample size and node counts on D4RL.

Algorithm 80,000 samples 800,000 samples

40 nodes 64 nodes 40 nodes 64 nodes

RGMDT 567.27± 160.47 776.70± 150.18 467.27± 134.78 458.70± 98.07
CART 443.47± 153.49 448.85± 154.12 458.47± 131.48 460.90± 90.40

RF 345.81± 178.43 452.89± 134.76 456.41± 124.23 489.92± 71.69
ET 196.55± 147.92 448.98± 119.40 441.01± 138.43 451.80± 83.24

8

whereas the baselines often fail, resulting in normalized steps that are twice as high as RGMDT.
Figures 1d to 1f display the mean episode reward curves over 300/500 episodes for methods
tested post-offline training with DTs of maximum 4 nodes in 3 types of tasks. RGMDT consistently
outperforms all baselines, with the performance improvement becoming more obvious as task
complexity increases. In the simplest task, both RGMDT and baseline DTs earn positive rewards.
However, RGMDT shows a significant performance advantage in the medium complexity task. In the
most challenging task, while most baselines struggle to complete the task, RGMDT completes it and
achieves higher rewards. The results show RGMDT’s effectiveness in minimizing the negative effects
of fewer decision paths, thereby maintaining its performance in increasingly complex environments.

4 nodes 8 nodes 16 nodes 32 nodes
Number of Leaf Nodes

30

20

10

0

10

20

30

M
ea

n
Ep

iso
de

 R
ew

ar
d

Expert RL
RGMDT
CART
ET
RF
GBDT

Figure 2: The normalized mean episode re-
ward increases as the total number of leaf
nodes increases(Hard Maze).

Figure 2 demonstrates the impact of leaf node counts
on RGMDT’s performance in the hard task, compar-
ing mean episode rewards for RGMDT and baselines
with |L| = 4, 8, 16, 32 leaf nodes. RGMDT’s per-
formance improves with an increasing number of
leaf nodes. Notably, with just |L| = 4 leaf nodes,
RGMDT is the only method to complete the task and
outperform all baselines. With more than |L| = 4
leaf nodes, RGMDT’s performance approaches the
near-optimal levels of the expert RL policy. This per-
formance supports Thm. 4.4’s prediction that return
gaps are bounded by O(

√
(log2(L) + 1)ϵnQmax),

and that these gaps decrease as more leaf nodes re-
duce the average cosine-distance across clusters, as
noted in Remark 4.5. Decision paths for different
leaf node counts are visualized in the Appendix.

D4RL. Table. 1 presents the achieved rewards for four algorithms (RGMDT, CART, RF, and ET) on
the Hooper problem instance from the D4RL datasets [26], evaluated across different training sample
sizes (800,000 and 80,000) and DT node counts (40 and 64). Each cell shows the achieved reward
and its standard deviation. The bold values indicate that RGMDT achieves higher rewards than all
baselines, especially with smaller sample sizes and node counts. When trained with 800, 000 samples,
RGMDT performs better when the node counts are reduced from 64 to 40, while the baselines’
achieved rewards decrease. When the sample size is reduced tenfold to 80, 000, RGMDT achieves
69.33% and 21.40% improvements in the achieved rewards with 64 and 40 nodes, respectively,
whereas other baselines suffer from the sample size reduction. It shows that RGMDT provides a
succinct, discrete representation of the optimal action-value structure, leading to less noisy decision

0 20 40 60 80 100
Episode

0
5

10
15
20
25
30
35
40

M
ea

n
Ep

iso
de

 R
ew

ar
d

(a) 2 agent 2 Nodes

0 20 40 60 80 100
Episode

0

10

20

30

40

50

M
ea

n
Ep

iso
de

 R
ew

ar
d

(b) 2 agent 4 Nodes

0 20 40 60 80 100
Episode

0

10

20

30

40

M
ea

n
Ep

iso
de

 R
ew

ar
d

(c) 2 agent 8 Nodes

RGMDT
MAVIPER
Imitation ET
Imitation RF
Imitation CART
Task Complete Mean Reward

0 20 40 60 80 100
Episode

10

20

30

40

50

60

70

M
ea

n
Ep

iso
de

 R
ew

ar
d

(d) 3 agent 2 Nodes

0 20 40 60 80 100
Episode

15
20
25
30
35
40
45
50

M
ea

n
Ep

iso
de

 R
ew

ar
d

(e) 3 agent 4 Nodes

0 20 40 60 80 100
Episode

20
25
30
35
40
45
50
55
60

M
ea

n
Ep

iso
de

 R
ew

ar
d

(f) 3 agent 8 Nodes

RGMDT
MAVIPER
Imitation ET
Imitation RF
Imitation CART
Task Complete Mean Reward

Figure 3: Comparisons on the n-agent tasks: (a)-(c) 2 agents, (d)-(f) 3 agents. RGMDT with limited
leaf nodes can learn these tasks much faster than the baselines and have better final performance,
even when most of the baselines fail on the task with 2 and 4 leaf nodes.

9

2 nodes 4 nodes 8 nodes
Number of Leaf Nodes

0

5

10

15

20

25

30

35

M
ea

n
Ep

iso
de

 R
ew

ar
d

(a) 2-agent Task

2 nodes 4 nodes 8 nodes
Number of Leaf Nodes

0

10

20

30

40

50

60

M
ea

n
Ep

iso
de

 R
ew

ar
d

(b) 3-agent Task

RL Expert
RGMDT
Imitation CART
Imitation ET
Imitation RF
MAVIPER

Figure 4: The reward of RGMDT (starred purple bar) outperforms all baselines and increases with
the number of leaf nodes, achieving performance comparable to the expert RL (no hatch style bar).

Table 2: All changes contributed to the improvement of RGMDT, especially the non-Euclidean
clustering and iteratively-grow-DT designs.

Description Task Completed Mean Reward

Described RGMDT model Yes 41.95± 3.08
Removed SVM hyperplane, using CART No 26.16± 3.74
Removed SVM hyperplane, using ET Yes 36.79± 2.15
Removed SVM hyperplane, using RF No 21.59± 3.81
Removed SVM hyperplane, using GBDT Yes 37.76± 2.42
Removed Non-Euclidean-Clustering Module No 23.85± 2.23
Removed iteratively-grow-DT process No 16.29± 4.72

paths and allowing agents to discover more efficient decision-making DT conditioned on the non-
euclidean clustering labels with smaller sample sizes and fewer nodes.

Multi-Agent Task. In Figures 3a-3c, RGMDT outperforms all baselines, particularly as the number
of leaf nodes decreases. Notably, with just 2 leaf nodes, all baselines fail to complete the task,
whereas RGMDT succeeds with significantly higher rewards. This performance trend continues in
more challenging scenarios, as shown in Figures 3d-3f, where no baseline can complete the 3-agent
task with 4 leaf nodes. This demonstrates RGMDT’s capability to adapt to fewer leaf nodes and
more complex environments by efficiently utilizing information from action-value vectors. Figure 4
confirms that RGMDT’s performance improves with more leaf nodes, achieving near-optimal levels
with |L| = 4 or more, consistent with the findings of Thm. 4.4 and supporting its application in
multi-agent settings as noted in Remark 4.5.

Ablation Study: Table. 2 compares various configurations of the RGMDT model in a multi-agent
setting, highlighting task completion and mean rewards. Notably, RGMDT completed tasks with an
average reward of 41.95 ± 3.08. Configurations without using SVM to derive the linear splitting
hyperplane at each split and employing algorithms like CART, ET, RF, and GBDT show varied
success: ET and GBDT complete tasks, while CART and RF cannot. Removing the Non-Euclidean
Clustering Module or the iteratively-grow-DT specifically designed for multi-agent contexts results in
task failures, particularly the latter, which records the lowest mean reward. Results show all changes
improved RGMDT, especially the non-Euclidean clustering and iteratively-grow-DT designs.

7 Conclusion and Future Works

This paper introduces an iteratively-grow-DT framework for MARL, which views clustering label
generation as a non-euclidean clustering problem and quantifies the optimal return gap between
the given RL policy and the resulting DT policy with a closed-form upper bound. We propose a
novel class of DT algorithm, RGMDT, designed to minimize the return gap using limited leaf nodes.
RGMDT significantly outperforms the baselines and achieves nearly optimal returns. Further research
will delve into the regression tree that is more suitable for the continuous state/action spaces, and we
will also include the re-sampling module to enhance our algorithm.

10

Acknowledgements

This work was supported in part by the U.S. Military Academy (USMA) under Cooperative Agree-
ment No. W911NF-22-2-0089, Office of Naval Research (ONR) grants N00014-23-1-2850 and
N00014-24-1-2073. The views and conclusions expressed in this paper are those of the authors and do
not reflect the official policy or position of the U.S. Military Academy, U.S. Army, U.S. Department
of Defense, U.S. Government, or the perspectives of the Office of Naval Research.

References

[1] Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, and Cynthia Rudin.
Learning certifiably optimal rule lists for categorical data. Journal of Machine Learning
Research, 18(234):1–78, 2018.

[2] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE transactions on systems, man, and
cybernetics, pages 834–846, 1983.

[3] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via
policy extraction. Advances in neural information processing systems, 31, 2018.

[4] Sumanta Basu, Karl Kumbier, James B Brown, and Bin Yu. Iterative random forests to discover
predictive and stable high-order interactions. Proceedings of the National Academy of Sciences,
115(8):1943–1948, 2018.

[5] Rolando Bautista-Montesano, Renato Galluzzi, Kangrui Ruan, Yongjie Fu, and Xuan Di.
Autonomous navigation at unsignalized intersections: A coupled reinforcement learning and
model predictive control approach. Transportation research part C: emerging technologies,
139:103662, 2022.

[6] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of markov decision processes. Mathematics of operations research, 27(4):
819–840, 2002.

[7] Ioana Bica, Daniel Jarrett, Alihan Hüyük, and Mihaela van der Schaar. Learning" what-if"
explanations for sequential decision-making. arXiv preprint arXiv:2007.13531, 2020.

[8] L Breiman, J Friedman, R Olshen, and C Stone. Classification and regression trees (chapman y
hall, eds.). Monterey, CA, EE. UU.: Wadsworth International Group, 1984.

[9] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[10] Alex J Chan and Mihaela van der Schaar. Scalable bayesian inverse reinforcement learning.
arXiv preprint arXiv:2102.06483, 2021.

[11] Chaofan Chen and Cynthia Rudin. An optimization approach to learning falling rule lists. In
International conference on artificial intelligence and statistics, pages 604–612. PMLR, 2018.

[12] Jingdi Chen, Yimeng Wang, and Tian Lan. Bringing fairness to actor-critic reinforcement
learning for network utility optimization. In IEEE INFOCOM 2021-IEEE Conference on
Computer Communications, pages 1–10. IEEE, 2021.

[13] Jingdi Chen, Tian Lan, and Nakjung Choi. Distributional-utility actor-critic for network slice
performance guarantee. In Proceedings of the Twenty-fourth International Symposium on Theory,
Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing,
pages 161–170, 2023.

[14] Jingdi Chen, Lei Zhang, Joseph Riem, Gina Adam, Nathaniel D Bastian, and Tian Lan. Explain-
able learning-based intrusion detection supported by memristors. In 2023 IEEE Conference on
Artificial Intelligence (CAI), pages 195–196. IEEE, 2023.

11

[15] Jingdi Chen, Lei Zhang, Joseph Riem, Gina Adam, Nathaniel D Bastian, and Tian Lan. Ride:
Real-time intrusion detection via explainable machine learning implemented in a memristor
hardware architecture. In 2023 IEEE Conference on Dependable and Secure Computing (DSC),
pages 1–8. IEEE, 2023.

[16] Jingdi Chen, Hanhan Zhou, Yongsheng Mei, Gina Adam, Nathaniel D Bastian, and Tian
Lan. Real-time network intrusion detection via decision transformers. arXiv preprint
arXiv:2312.07696, 2023.

[17] Jingdi Chen, Tian Lan, and Carlee Joe-Wong. Rgmcomm: Return gap minimization via discrete
communications in multi-agent reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 17327–17336, 2024.

[18] Sungmoon Cheong, Sang Hoon Oh, and Soo-Young Lee. Support vector machines with binary
tree architecture for multi-class classification. Neural Information Processing-Letters and
Reviews, 2(3):47–51, 2004.

[19] Youri Coppens, Kyriakos Efthymiadis, Tom Lenaerts, Ann Nowé, Tim Miller, Rosina Weber,
and Daniele Magazzeni. Distilling deep reinforcement learning policies in soft decision trees.
In Proceedings of the IJCAI 2019 workshop on explainable artificial intelligence, pages 1–6,
2019.

[20] Zihan Ding, Pablo Hernandez-Leal, Gavin Weiguang Ding, Changjian Li, and Ruitong
Huang. Cdt: Cascading decision trees for explainable reinforcement learning. arXiv preprint
arXiv:2011.07553, 2020.

[21] Tom Erez, Yuval Tassa, and Emanuel Todorov. Infinite horizon model predictive control for
nonlinear periodic tasks. Manuscript under review, 4, 2011.

[22] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research, 6, 2005.

[23] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

[24] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, 29(5):1189–1232, 2001. ISSN 00905364. URL http://www.jstor.org/
stable/2699986.

[25] Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree. arXiv
preprint arXiv:1711.09784, 2017.

[26] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning, 2021.

[27] Atul Gawande. Checklist manifesto, the (HB). Penguin Books India, 2010.

[28] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine
learning, 63:3–42, 2006.

[29] Kailash Gogineni, Yongsheng Mei, Tian Lan, Peng Wei, and Guru Venkataramani. Accmer: Ac-
celerating multi-agent experience replay with cache locality-aware prioritization. In 2023 IEEE
34th International Conference on Application-specific Systems, Architectures and Processors
(ASAP), pages 205–212. IEEE, 2023.

[30] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms
and applications. arXiv preprint arXiv:1812.05905, 2018.

[31] Alex B Haynes, Thomas G Weiser, William R Berry, Stuart R Lipsitz, Abdel-Hadi S Breizat,
E Patchen Dellinger, Teodoro Herbosa, Sudhir Joseph, Pascience L Kibatala, Marie Carmela M
Lapitan, et al. A surgical safety checklist to reduce morbidity and mortality in a global
population. New England journal of medicine, 360(5):491–499, 2009.

12

http://www.jstor.org/stable/2699986
http://www.jstor.org/stable/2699986

[32] Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, and Masashi Sugiyama. Learning
discrete representations via information maximizing self-augmented training. In International
conference on machine learning, pages 1558–1567. PMLR, 2017.

[33] Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. Advances in
Neural Information Processing Systems, 32, 2019.

[34] Daniel Jarrett and Mihaela Van Der Schaar. Inverse active sensing: Modeling and understanding
timely decision-making. arXiv preprint arXiv:2006.14141, 2020.

[35] Himabindu Lakkaraju and Cynthia Rudin. Learning cost-effective and interpretable treatment
regimes. In Artificial intelligence and statistics, pages 166–175. PMLR, 2017.

[36] Benjamin Letham, Cynthia Rudin, Tyler H. McCormick, and David Madigan. Interpretable
classifiers using rules and Bayesian analysis: Building a better stroke prediction model. The
Annals of Applied Statistics, 9(3):1350 – 1371, 2015. doi: 10.1214/15-AOAS848. URL
https://doi.org/10.1214/15-AOAS848.

[37] Huiqun Li, Hanhan Zhou, Yifei Zou, Dongxiao Yu, and Tian Lan. Concaveq: Non-monotonic
value function factorization via concave representations in deep multi-agent reinforcement
learning. In Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence
(AAAI-2024), volume 38, 2024.

[38] Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of
interpretability is both important and slippery. Queue, 16(3):31–57, 2018.

[39] Guiliang Liu, Oliver Schulte, Wang Zhu, and Qingcan Li. Toward interpretable deep reinforce-
ment learning with linear model u-trees. In Machine Learning and Knowledge Discovery in
Databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10–14,
2018, Proceedings, Part II 18, pages 414–429. Springer, 2019.

[40] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments, 2017. URL https://arxiv.
org/abs/1706.02275.

[41] Gjorgji Madjarov, Dejan Gjorgjevikj, and Ivan Chorbev. A multi-class svm classifier utilizing
binary decision tree. Informatica, 2009.

[42] Andrew Kachites McCallum. Reinforcement learning with selective perception and hidden
state. University of Rochester, 1996.

[43] Yongsheng Mei, Tian Lan, Mahdi Imani, and Suresh Subramaniam. A bayesian optimization
framework for finding local optima in expensive multimodal functions. In ECAI 2023, pages
1704–1711. IOS Press, 2023.

[44] Yongsheng Mei, Hanhan Zhou, Tian Lan, Guru Venkataramani, and Peng Wei. Mac-po: Multi-
agent experience replay via collective priority optimization. arXiv preprint arXiv:2302.10418,
2023.

[45] Yongsheng Mei, Mahdi Imani, and Tian Lan. Bayesian optimization through Gaussian Cox
process models for spatio-temporal data. In The Twelfth International Conference on Learning
Representations, 2024.

[46] Yongsheng Mei, Hanhan Zhou, and Tian Lan. Projection-optimal monotonic value function
factorization in multi-agent reinforcement learning. In Proceedings of the 2024 International
Conference on Autonomous Agents and Multiagent Systems, 2024.

[47] Robert Messenger and Lewis Mandell. A modal search technique for predictive nominal scale
multivariate analysis. Journal of the American statistical association, 67(340):768–772, 1972.

[48] Stephanie Milani, Zhicheng Zhang, Nicholay Topin, Zheyuan Ryan Shi, Charles Kamhoua,
Evangelos E. Papalexakis, and Fei Fang. Maviper: Learning decision tree policies for inter-
pretable multi-agent reinforcement learning, 2022.

13

https://doi.org/10.1214/15-AOAS848
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1706.02275

[49] Stephanie Milani, Nicholay Topin, Manuela Veloso, and Fei Fang. Explainable reinforcement
learning: A survey and comparative review. ACM Computing Surveys, 56(7):1–36, 2024.

[50] James N Morgan and John A Sonquist. Problems in the analysis of survey data, and a proposal.
Journal of the American statistical association, 58(302):415–434, 1963.

[51] Manisha Natarajan and Matthew Gombolay. Effects of anthropomorphism and accountability
on trust in human robot interaction. In Proceedings of the 2020 ACM/IEEE international
conference on human-robot interaction, pages 33–42, 2020.

[52] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,
2011.

[53] J. Ross Quinlan. Induction of decision trees. Machine learning, 1:81–106, 1986.

[54] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pages 627–635. JMLR Workshop and
Conference Proceedings, 2011.

[55] Aaron M Roth, Nicholay Topin, Pooyan Jamshidi, and Manuela Veloso. Conservative q-
improvement: Reinforcement learning for an interpretable decision-tree policy. arXiv preprint
arXiv:1907.01180, 2019.

[56] Cynthia Rudin. Algorithms for interpretable machine learning. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 1519–1519,
2014.

[57] Andrew Silva, Taylor Killian, Ivan Dario Jimenez Rodriguez, Sung-Hyun Son, and Matthew
Gombolay. Optimization methods for interpretable differentiable decision trees in reinforcement
learning. arXiv preprint arXiv:1903.09338, 2019.

[58] Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan Jimenez, and Sung-Hyun Son. Op-
timization methods for interpretable differentiable decision trees applied to reinforcement
learning. In International conference on artificial intelligence and statistics, pages 1855–1865.
PMLR, 2020.

[59] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

[60] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In International Conference on Machine
Learning, pages 5045–5054. PMLR, 2018.

[61] Fei Wang, Quan Wang, Feiping Nie, Weizhong Yu, and Rong Wang. Efficient tree classifiers
for large scale datasets. Neurocomputing, 284:70–79, 2018.

[62] Fei Wang, Quan Wang, Feiping Nie, Zhongheng Li, Weizhong Yu, and Fuji Ren. A linear
multivariate binary decision tree classifier based on k-means splitting. Pattern Recognition, 107:
107521, 2020.

[63] Paweł Wawrzyński. A cat-like robot real-time learning to run. In Adaptive and Natural
Computing Algorithms: 9th International Conference, ICANNGA 2009, Kuopio, Finland, April
23-25, 2009, Revised Selected Papers 9, pages 380–390. Springer, 2009.

[64] Marvin N Wright and Andreas Ziegler. ranger: A fast implementation of random forests for
high dimensional data in c++ and r. arXiv preprint arXiv:1508.04409, 2015.

[65] Haoran Xu, Li Jiang, Li Jianxiong, and Xianyuan Zhan. A policy-guided imitation approach
for offline reinforcement learning. Advances in Neural Information Processing Systems, 35:
4085–4098, 2022.

14

[66] Herman Yau, Chris Russell, and Simon Hadfield. What did you think would happen? explaining
agent behaviour through intended outcomes. Advances in Neural Information Processing
Systems, 33:18375–18386, 2020.

[67] Zuyuan Zhang, Mahdi Imani, and Tian Lan. Modeling other players with bayesian beliefs for
games with incomplete information. arXiv preprint arXiv:2405.14122, 2024.

[68] Zuyuan Zhang, Hanhan Zhou, Mahdi Imani, Taeyoung Lee, and Tian Lan. Collaborative ai
teaming in unknown environments via active goal deduction. arXiv preprint arXiv:2403.15341,
2024.

[69] Hanhan Zhou, Tian Lan, and Vaneet Aggarwal. Pac: Assisted value factorization with coun-
terfactual predictions in multi-agent reinforcement learning. Advances in Neural Information
Processing Systems (NeurIPS), 36:15757–15769, 2022.

[70] Hanhan Zhou, Tian Lan, and Vaneet Aggarwal. Double policy estimation for importance
sampling in sequence modeling-based reinforcement learning. In NeurIPS 2023 Foundation
Models for Decision Making Workshop, 2023.

[71] Hanhan Zhou, Tian Lan, and Vaneet Aggarwal. Value functions factorization with latent
state information sharing in decentralized multi-agent policy gradients. IEEE Transactions on
Emerging Topics in Computational Intelligence, 7(5):1351–1361, 2023.

[72] Haoran Zhu, Pavankumar Murali, Dzung Phan, Lam Nguyen, and Jayant Kalagnanam. A
scalable mip-based method for learning optimal multivariate decision trees. Advances in neural
information processing systems, 33:1771–1781, 2020.

15

A Impact Statements

The proposed framework can iteratively grow decision trees for multi-agent environments, while we
do not see an immediate threat of ethical and societal consequences, it is essential to address and
mitigate any risks of misuse or unintended consequences from applying malicious training datasets
or improper use of certain scenarios.

B Additional Related Work Discussion

Effort on Interpretability for Understanding Decisions. To enhance interpretability in decision-
making models, one strategy involves crafting interpretable reward functions within inverse rein-
forcement learning (IRL), as suggested by [10]. This approach offers insights into the underlying
objectives guiding the agents’ decisions. Agent behavior has been conceptualized as showing pref-
erences for certain counterfactual outcomes [7], or as valuing information differently when under
time constraints [34]. However, extracting policies through black-box reinforcement learning (RL)
algorithms often conceals the influence of observations on the selection of actions. An alternative
is to directly define the agent’s policy function with an interpretable framework. Reinforcement
learning policies have thus been articulated using a high-level programming language [60], or by
framing explanations around desired outcomes [66], facilitating a more transparent understanding of
decision-making processes.

Decision Trees. Since their introduction in the 1960s, DTs have been crucial for interpretable
supervised learning [47, 50, 53]. The CART algorithm [8], established in 1984, is foundational in
DT methodologies and underpins Random Forests (RF) [9] and Gradient Boosting (GB) [23], which
are benchmarks in predictive modeling. These techniques are central to platforms like ranger and
scikit-learn and continue to evolve, as seen in the iterative random forest, which explores stable
interactions in data [4, 52, 64, 70]. However, traditional DT methods are challenging to integrate with
RL due to their focus on correlations within training data rather than accounting for the sequential and
long-term implications in dynamic environments. Imitation learning approaches have been explored
in single-agent RL settings [42, 55, 58]. For instance, VIPER [3] trains DTs with samples from a
trained DRL policy, but its return gap depends on the number of samples needed and does not apply
to DTs with arbitrary size constraints (e.g., maximum number of nodes L). DT algorithms remain
under-explored in multi-agent settings, except for MAVIPER [48] that extends VIPER to multi-agent
scenarios[46] while lacking performance guarantees and remaining a heuristic design.

Interpretable RL via Tree-based models. To interpret an RL agent, Frosst et al [25] explain the
decisions made by DRL policies by using a trained neural net to create soft decision trees. Coppens
et al. [19] propose distilling the RL policy into a differentiable DT by imitating a pre-trained policy.
Similarly, Liu et al. [39] apply an imitation learning framework to the Q-value function of the RL
agent. They also introduce Linear Model U-trees (LMUTs), which incorporate linear models in
the leaf nodes. Silva et al. [57] suggest using differentiable DTs directly as function approximators
for either the Q function or the policy in RL. Their approach includes a discretization process and
a rule list tree structure to simplify the trees and enhance interpretability. Additionally, Bastani et
al. [3] propose the VIPER method, which distills policies as neural networks into a DT policy with
theoretically verifiable capabilities that follow the Dataset Aggregation (DAGGER) method proposed
in [54], specifically for imitation learning settings and nonparametric DTs. Ding et al. [20] try to
solve the instability problems when using imitation learning with tree-based model generation and
apply representation learning on the decision paths to improve the decision tree-based explainable RL
results, which could achieve better performance than soft DTs. Milani et al. extend VIPER methods
into multi-agent scenarios [48] in both centralized and decentralized ways, they also summarize a
paper about the most recent works in the fields of explainable AI [49], which confirms the statements
that small DTs are considered naturally interpretable.

C Background and Preliminaries

C.1 Decision Tree

Multivariate Decision Tree: Wang et al. [61] introduced two variants of multivariate decision
tree classifiers structured as full binary trees: the Randomly Partitioned Multivariate Decision

16

Tree (MDT1) and the Principal Component Analysis (PCA)-Partitioned Multivariate Decision Tree
(MDT2). MDT1 and MDT2 utilize a unified approach to construct a binary tree through top-down
recursive partitioning, ceasing when no further nodes require division. Initially, the root node
encompasses all training data. The process simplifies as (1). Split the current node into left and right
children using a multivariate hyperplane. (2). Apply a split condition; nodes meeting this condition
are further partitioned, while others become leaf nodes, adopting the majority class for prediction.
(3). Proceed to the next node for partitioning, repeating from step 1 until no dividable nodes remain.

The framework focuses on two main aspects: constructing the multivariate hyperplane for each node’s
split and defining the split condition. We’ll detail these aspects by examining a single split, involving
a node with a sample matrix X ∈ Rd×n and corresponding class labels Y ∈ R1×n, where n and d
represent the number of examples and dimensions, respectively. Each label yi ∈ {l1, l2, ..., lc}, i =
1, 2, ..., n, corresponds to one of c classes.

Splitting via Hyperplane: To split nodes, MDT1 and MDT2 use a hyperplane defined as:

w · x− p = 0, (13)

where w indicates the hyperplane’s normal direction, x is a sample from X , and p denotes the
threshold. Splitting directs samples to left or right child nodes:{

x ∈ X1 if w · x > p
x ∈ X2 if w · x ≤ p,

(14)

where X1 and X2 denote the subsets of samples assigned to the left and right child nodes, respectively.

In Eq.(13), the hyperplane is defined by two parameters, w and p, where w represents the normal
vector and p the cut-point. Both MDT1 and MDT2 follow the same approach to determine p.
For a given w, sample points from the matrix X are projected onto w, resulting in projections
{P (xi) = w · xi, i = 1, 2, . . . , n}. The cut-point p is then set as the median of these projections:

p = median {P (xi) | xi ∈ X, i = i1, i2, . . . , n} . (15)

MDT1 and MDT2 differ in their methods for determining the hyperplane’s normal vector w. In
MDT1, a vector v = [v1, v2, . . . , vd]

T in Rd×1, matching the dimensionality of sample point x, is
randomly generated with each element within the range [−1, 1]. MDT1 then uses the normalized
vector v as the normal direction w:

w =
v

∥v∥
=

v√
v21 + v22 + . . .+ v2d

. (16)

MDT2 adopts a heuristic approach instead of random vector generation, to establish the normal
direction w. This method uses the principal component analysis (PCA) to select the most significant
principal component from the sample matrix X and designate it as w. Beginning with X =
[x1,x2, . . . ,xn], we first centralize this matrix by deducting the mean value of all sample points,
resulting in X̃ = [x1−m,x2−m, . . . ,xn−m], where m = 1

n (x1+x2+ . . .+xn). Subsequently,
eigenvalue decomposition is applied to the covariance matrix S = X̃X̃T , yielding d eigenvalues
λ1 > λ2 > . . . > λd and their associated eigenvectors ξ1, ξ2, . . . , ξd. MDT2 then selects the
eigenvector corresponding to the largest eigenvalue of S to serve as the normal direction, i.e.,

w = ξ1. (17)

This method of determining the normal direction w maximizes the variance of the sample set along w.
Consequently, the partitioning aligns with the orientation that maximizes the differentiation among
instances in the sample set.

Split Condition: After each split, child nodes are evaluated with a split condition to determine
if further division is necessary. A child node undergoes additional splitting if it meets the defined
condition:

purity(R) = max
{ni

r
| i = l1, l2, . . . , lc

}
< δ,

where R represents either X1 or X2, r is the total number of sample points in R, ni is the count
of sample points in class i, and δ is a predetermined threshold within (1c , 1]. Conversely, if a
child node fails to meet this condition, it is designated as a leaf node with the class label l∗ =
argmaxi

{
ni

r | i = l1, l2, . . . , lc
}

.

17

Classification: When all nodes have been successfully split, the construction of a multivariate
decision tree model (either MDT1 or MDT2) is complete. In this model, split nodes store the
parameters w and p, whereas leaf nodes are tagged with a class label l∗ ∈ {l1, l2, . . . , lc}.
Classification using the constructed tree model involves determining the appropriate class for a data
point whose class is unknown. This process is initiated by placing the data point at the tree’s root
node and sequentially navigating through the tree based on the data point’s position relative to the
hyperplanes defined by w and p at each split node. This traversal continues until a leaf node is
reached, at which point the class label l∗ assigned to that leaf node designates the data point’s class.

C.2 Support Vector Machines (SVM) optimization

In this paper, we apply Support Vector Machines (SVM) [41] to identify the optimal hyperplane that
separates different clusters with the maximum margin in the observation space Ωj . The objective
of SVM is to find a hyperplane described by w · x− p = 0 that maximizes the margin between the
two nearest data points of any class, which are termed support vectors. This can be formulated as an
optimization problem:

min
w,p

1

2
∥w∥2, (18)

which is subject to the constraints for all i (where i indexes the training examples):

yi(w · xi − p) ≥ 1 (19)

Here, yi represents the class labels, which are assumed to be 1 or −1, and xi are the feature vectors
of the training examples. To solve this optimization problem, we introduce Lagrange multipliers
αi ≥ 0 for each constraint, leading to the Lagrangian:

L(w, p, α) =
1

2
∥w∥2 −

n∑
i=1

αi[yi(w · xi − p)− 1]. (20)

The conditions for optimality (Karush-Kuhn-Tucker conditions) lead to the dual problem, which is
dependent only on the Lagrange multipliers α. The dual problem can be expressed as:

max
α

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjxi · xj , (21)

subject to αi ≥ 0 and
∑n

i=1 αiyi = 0. After solving the dual problem, the optimal values of αi are
used to determine w:

w =

n∑
i=1

αiyixi. (22)

For any support vector xs (where αs > 0), p can be computed using:

p = w · xs − ys. (23)

The hyperplane w · x− p = 0 effectively partitions the observation data points based on the mapped
cluster centers, we can achieve a robust partitioning of the observation data points into distinct groups
based on the Non-Euclidean distance of the action-value vector space Q.

Then we Incorporate the parameters w and p obtained from SVM into the construction of a decision
tree, which is a binary tree architecture for multi-class classification [18]. For each node in the tree,
use the SVM-derived hyperplane w · x − p = 0 to split the data. This split divides the node into
two child nodes. Left child node: Contains data points that satisfy w · x− p < 0. Right child node:
Contains data points that satisfy w · x− p ≥ 0.

C.3 Construting Decision Trees Minimizing Return Gaps

For the construction of decision trees, we adapt the non-euclidean clustering labels generated from
the lj , and incorporate the parameters w and p obtained from training the Support Vector Machines
(SVM) conditioned on samples (oj, lj).

Methodology Overview: After applying SVM to determine the optimal hyperplane characterized
by the normal vector w and bias term p, we utilize these parameters to construct decision trees that
classify data points based on their positions relative to the hyperplane. This approach enables the

18

decision tree to make binary decisions at each node using the linear boundaries defined by SVM, thus
combining the interpretability of decision trees with the robust classification capability of SVM. The
algorithm is summarized in Algo. 2

Initialization: Start by considering the entire dataset as the root node. The goal is to partition this
dataset into subgroups that are as homogeneous as possible in terms of the target variable.

Node Splitting Using w and p: For each node in the tree, use the SVM-derived hyperplane
w · x − p = 0 to split the data. This split divides the node into two child nodes. Left child node:
Contains data points that satisfy w · x− p < 0. Right child node: Contains data points that satisfy
w · x− p ≥ 0.

Recursion: Recursively apply the node splitting step to each child node, reapplying SVM to the data
points in the child node to find a new optimal hyperplane for further splits. This process continues
until the pre-defined maximum number of the leaf nodes is reached.

Decision Making: Each leaf node in the resulting tree represents a decision outcome, with the class
label determined by the majority class of the data points within that node.

Hyperplane-Based Decision Boundaries: The decision boundaries in the constructed decision tree
are linear and defined by the hyperplanes from SVM. This provides a clear geometric interpretation
of the decision-making process, where each decision node effectively acts as a linear classifier.

D Theoretical Proofs

D.1 Proofs for Lemma 4.1

Proof. To simplify, we denote the policy generated by decision tree T L as π. We prove the
result in this lemma by leveraging observation-based state value function V π(o) in Eq.(2) and the
corresponding action value function Qπ(o,a) = Eπ

[∑∞
i=0 γ

i ·Rt+i

∣∣∣ot = o,at = a
]

to unroll the
Dec-POMDP. Here we consider all other agents i ̸= j as a conceptual agent denoted by −j.

J(π∗)− J(π)

= Eµ(1− γ)[V ∗(o(0))− V π(o(0))],

= Eµ(1− γ)[V ∗(o−j(0), oj(0))− V π(o−j(0), oj(0))],

= Eµ(1− γ)[V ∗(o−j(0), oj(0))−Q∗(o−j(0), oj(0),a
π
0)

+Q∗(o−j(0), oj(0),a
π
0)−Qπ(o−j(0), oj(0),a

π
0)],

= Eµ(1− γ)[∆π (o−j(0), oj(0),a
π
0) + (Q∗ −Qπ)],

= Eµ(1− γ)[∆π (o−j(0), oj(0),a
π
0)

+ Eo−j(1),oj(1)∼P (·|o−j(0),oj(0),aπ
0)
[γ(V ∗(o−j(1), oj(1))− V π(o−j(1), oj(1)))]],

= Eµ,o−j(t),oj(t)∼P (1− γ)[

∞∑
t=0

γt∆(o−j(t), oj(t),a
π
t)|aπt],

= Eo−j ,oj∼dπ
µ,a

π=π(o−j ,g(oj))[∆(o−j , oj ,a
π)|aπ],

=
∑
l

∑
oj∼l

∑
o−j

∆(o−j(t), oj(t),a
π
t) · dπµ(o−j , oj),

=
∑
l

∑
oj∼l

∑
o−j

[Q∗(o−j , oj ,a
π∗

t)−Q∗(o−j , oj ,a
π
t)] · dπµ(o−j , oj),

≤
∑
l

∑
oj∼l

∑
o−j

[Q∗(o−j , oj ,a
π∗

t)−Q(o−j , oj ,a
π
t)] · dπµ(o−j , oj),

≤
∑
l

∑
o∼m

[Q∗(o,aπ
∗

t)−Qπ(o,aπt)] · dπµ(o),

(24)

Step 1 is to use Eq.(3) with initial observation distribution o(0) ∼ µ at time t = 0 to re-write the
average expected return gap; Step 2 is separate the observations as agent j and the other agents as a
single conceptual agent−j, then o = (o−j , oj); Step 3 and step 4 are to obtain the sub-optimality-gap

19

of policy π, defined as ∆π(o,a) = V ∗(o)−Q∗(o,aπ) = Q∗(o,aπ
∗
)−Q∗(o,aπ), by substracting

and plus a action-value function Q∗(o−j(0), oj(0),a
π
0); Step 5 is to unroll the Markov chain from

time t = 0 to time t = 1; Step 6 is to use sub-optimality-gap accumulated for all time steps to
represent the return gap; Step 7 and step 8 is to absorb the discount factor 1 − γ by multiplying
the dπµ(o) = (1 − γ)

∑∞
t=0 ·P (ot = o|π, µ) which is the γ-discounted visitation probability of

observations o under policy π given initial observation distribution µ; Step 9 is to revert ∆π(o,a)
back to Q∗(o,aπ

∗
)−Q∗(o,aπ); Step 10 is to replace the second term Q∗(o,aπ) with Qπ(o,aπ).

Since Q∗(o,aπ) is larger than Qπ(o,aπ), therefore, the inequality is valid.

D.2 Proofs for Thm. 4.2

Proof. To simplify the notations, we denote the policy generated by decision tree T L as π. Here
we prove the return gap between the decision tree policy π and optimal RL policy π∗ for one
iteration first. Since the observability of all other agents i ̸= j remains the same, we consider them
as a conceptual agent denoted by −j. For simplicity, we use π∗ to represent π∗

(j), and π to represent
π∗(j) in distribution functions. Similar to the illustrative example, we define the action value vector
corresponding observation oj , i.e.,

Q̄∗(oj) = [Q̃∗(o−j , oj),∀o−j], (25)

where o−j are the observations of all other agents and Q̃∗(o−j , oj) is a vector of action values
weighted by marginalized visitation probabilities dπµ(o−j |oj) and corresponding to different actions:

Q̃∗(o−j , oj) = [Q∗(o−j , oj ,a) · dπµ(o−j |oj),∀a],∀o−j ∼ dπµ(o−j |oj),∀a ∼ µπ(o−j , oj ,a). (26)

Here µπ(o,a) denotes the observation-action distribution given a policy π, which means µπ(o,a) =
dπµ(o)π(a|o). We also denote dπµ(l) is the visitation probability of label l, and d̄l(oj) is the marginal-
ized probability of oj in cluster l, i.e.,

dπµ(l) =
∑
oj∼l

dπµ(oj), d̄l(oj) =
dπµ(oj)

dπµ(l)
, (27)

Since the optimal return J(π∗
(j)) is calculated from the action values by maxa Q(o,a), we rewrite this

in the vector form by defining a maximization function Φmax(Q̃
∗(o−j , oj)) that returns the largest

component of vector Q̃∗(o−j , oj). With slight abuse of notations, we also define Φmax(Q̄
∗(oj)) =∑

o−j
Φmax(Q̃

∗(o−j , oj)) as the expected average return conditioned on oj . Then
∑

oj∼l d̄l(oj) ·
Φmax(Q̄

∗(oj)) could be defined as selecting the action from optimal policy π∗
(j) where agent chooses

different action distribution to maximize (Q̄∗(oj)). We could re-write this term with the action-value
function as: ∑

oj∼l

d̄l(oj) · Φmax(Q̄
∗(oj))

=
∑
oj∼l

d̄l(oj) ·
∑
o−j

maxa[Q
∗(o−j , oj ,a) · dπµ(o−j |oj)],

=
∑
oj∼l

(
dπµ(oj)

dπµ(l)
) ·

∑
o−j

maxa[Q
∗(o−j , oj ,a) · dπµ(o−j |oj)],

= (
1

dπµ(l)
)
∑
oj∼l

dπµ(oj)
∑
o−j

maxa[Q
∗(o−j , oj ,a)d

π
µ(o−j |oj)],

(28)

then we used the fact that while J(π∗
(j)) conditioning on complete oj can achieve maximum for each

vector Q̄∗(oj), policy π(j) is conditioned on labels lij rather than complete oj and thus must take
the same actions for all oj in the same cluster. Hence we can construct a (potentially sub-optimal)
policy to achieve Φmax(

∑
oj∼l d̄l(oj) · Q̄∗(oj)) which provides a lower bound on J(π(j)). Plugging

in Eq.(27), Φmax(
∑

oj∼l d̄l(oj) · Q̄∗(oj)) can be re-written as:

20

Φmax(
∑
oj∼l

d̄l(oj) · Q̄∗(oj))

=
∑
o−j

maxa[
∑
oj∼l

d̄l(oj)Q
∗(o−j , oj ,a) · dπµ(o−j |oj)],

=
∑
o−j

maxa[
∑
oj∼l

(
dπµ(oj)

dπµ(l)
)Q∗(o−j , oj ,a) · dπµ(o−j |oj)],

(29)

Multiplying the two equations above Eq.(29) and Eq.(28) with dπµ(l) which is the visitation probability
of label l to replace the term

∑
oj∼l

∑
o−j

[Q∗(o−j , oj ,a
∗) − Q(o−j , oj ,a)] · dπµ(o−j , oj) in the

Eq.(24), we obtain an upper bound on the return gap:
J(π∗

(j))− J(π(j))

≤
∑
l

∑
oj∼l

∑
o−j

[Q∗(o−j , oj ,a
∗)−Q(o−j , oj ,a)] · dπµ(o−j , oj),

=
∑
l

dπµ(l)[
∑
oj∼l

d̄l(oj) · Φmax(Q̄
∗(oj))

− Φmax(
∑
oj∼l

d̄l(oj) · Q̄∗(oj))].

(30)

To quantify the resulting return gap, we denote the center of a cluster of vectors Q̄∗(oj) for oj ∼ l
under label l as:

H̄(l) =
∑
oj∼l

d̄l(oj) · Q̄∗(oj). (31)

We contracts clustering labels to make corresponding joint action-values {Q̄∗(oj) : g(oj) = l} close
to its center H̄(l). Specifically, the average cosine-distance is bounded by a small ϵ for each label l,
i.e., ∑

oj∼l

D(Q̄∗(oj), H̄(l)) · dπµ(l)

≤
∑
oj∼l

ϵ(oj) · dπµ(l) ≤ ϵ, ∀l.
(32)

where ϵ(oj) =
∑

oj∼l Dcos(Q̄
∗(oj), H̄(l))/K, K is the number observations with the same label l,

and Dcos(A,B) = 1− A·B
||A||||B|| is the cosine distance function between two vectors A and B.

For each pair of two vectors Q̄∗(oj) and H̄(l) with D(Q̄∗(oj), H̄(l)) ≤ ϵ(oj), we use cos θoj to
denote the cosine-similarity between each Q̄∗(oj) and its center H̄(l). Then we have the cosine
distance D(Q̄∗(oj), H̄(l)) = 1− cos θoj ≤ ϵ(oj). By projecting Q̄∗(oj) toward H̄(l), Q̄∗(oj) could
be re-written as Q̄∗(oj) = Q⊥(oj) + cos θoj · H̄m, where Q⊥(oj) is the auxiliary vector orthogonal
to vector H̄m.

Then we plug the decomposed Q vectors Q̄∗(oj) into the return gap we got in Eq.(30), the first part
of the last step of Eq.(30) is bounded by:∑

oj∼l

d̄l(oj) · Φmax(Q̄
∗(oj))

=
∑
oj∼l

d̄l(oj) · Φmax

(
Q⊥(oj) + H̄(l) · cos θoj

)
,

≤
∑
oj∼l

d̄l(oj) · [Φmax(Q
⊥(oj)) + Φmax(H̄(l) · cos θoj)],

≤
∑
oj∼l

d̄l(oj) · [Φmax(Q
⊥(oj)) + Φmax(H̄(l))].

(33)

21

We use ||α||2 to denote the L-2 norm of a vector α. Since the maximum function Φmax(Q
⊥(oj))

can be bounded by the L2 norm C · ||Q⊥(oj)||2 for some constant C. We define a constant Qmax

as the maximine absolute value of Q̄∗(oj) in each cluster as Qmax = maxoj ||Q̄∗(oj)||2. Since
Q⊥(oj) = Q̄∗(oj) · sin(θ), and |sin(θ)| =

√
1− cos2(θ) =

√
1− [1− ϵ(oj)]2, the maximum

value of Q⊥(oj) could also be bounded by Qmax, i.e.:
Φmax(Q

⊥(oj)) ≤ C · ||Q⊥(oj)||2,
≤ C · ||Q̄∗(oj)||2 · | sin θ|,

= C ·Qmax ·
√
1− [1− ϵ(oj)]2,

≤ O(
√
ϵ(oj)Qmax).

(34)

Plugging Eq.(34)into Eq.(33), we have:∑
oj∼l

d̄l(oj) · Φmax(Q̄
∗(oj))

≤
∑
oj∼l

d̄l(oj) · [Φmax(Q
⊥(oj)) + Φmax(H̄(l))],

≤
∑
oj∼l

d̄l(oj) · [O(
√
ϵ(oj)Qmax) + Φmax(H̄(l))],

=
∑
oj∼l

d̄l(oj) · [O(
√
ϵ(oj)Qmax) + Φmax(H̄(l))],

(35)

It is easy to see from the last step in Eq.(30) that the return gap J(π∗
(j))− J(π(j)) is bounded by the

first part
∑

l d
π
µ(l)[

∑
oj∼l d̄l(oj) · Φmax(Q̄

∗(oj)) which has an upper bound derived in Eq.(35), then
the return gap could also be bounded by the upper bound in Eq.(35), i.e.,

J(π∗
(j))− J(π(j))

=
∑
l

dπµ(l)[
∑
oj∼l

d̄l(oj) · Φmax(Q̄
∗(oj))− Φmax(

∑
oj∼l

d̄l(oj) · Q̄∗(oj))],

=
∑
l

dπµ(l)

∑
oj∼l

d̄l(oj) · [O(
√

ϵ(oj)Qmax) + Φmax(H̄(l))]


−
∑
l

dπµ(l)

Φmax(
∑
oj∼l

d̄l(oj) · Q̄∗(oj))

 ,

≤
∑
l

dπµ(l) · [
∑
oj∼l

d̄l(oj) ·O(
√

ϵ(oj)Qmax)],

≤
∑
l

dπµ(l) ·O

√∑
oj∼l

d̄l(oj) · ϵ(oj)Qmax

 ,

≤
∑
l

dπµ(l) ·O(
√
ϵQmax),

= O(
√
ϵQmax).

(36)

we can derive the desired upper bound J(π∗
(j)) − J(π(j)) ≤ O(

√
ϵQmax) for the two policies in

one iteration, then for (log2(L) + 1) iterations of generating L-leaf-node DTs, the upper bound is
J(π∗

(j))− J(T L
(j)) ≤ O(1/(log2(L) + 1)

√
ϵQmax) in Lemma 4.2.

22

D.3 Detailed process of calculation of the average cosine distance defined in Equation 6

• Within each cluster, we compute the cosine distance between every action-value vector and
the clustering center, thereby obtaining the value ϵ(oj).

• To obtain the expectation of the cosine distance for each particular cluster denoted by l, we
compute the product of each ϵ(oj) with d̄l(oj), where d̄l(oj) represents the marginalized
probability of oj in cluster l.

• Having computed the expected cosine distance for each cluster l, we proceed to obtain the
average cosine distance across all clusters. This is accomplished by multiplying dπµ(l) to
each

∑
oj∼l d̄l(oj) · ϵ(oj), where dπµ(l) denotes the visitation probability of label l.

D.4 Proof of Lemma 4.3

We group vectors Q̄∗(oj) with smaller cosine distances together to ensure their similarity in the same
group. Then we could obtain L clusters C1, . . . , CL corresponding to their centers H̄1(l), . . . , H̄L(l),
where each cluster Cl contains a set of vectors qj = Q̄∗(oj).

Once we have the cluster center H̄l(l) in the action value vector space Q̄∗(oj) ∈ Qj , we need to map
them back to the original observation space Ωj . Since we have the action value function, we could
use the inverse transformation Q−1 to map each cluster center H̄l(l) from the action value vector
space Qj back to the observation space Ωj , i.e.,

H̄(oj) = (Q̄∗)−1(H̄l(l)) (37)

Since the cosine distance is a measure of similarity between two vectors that is not based on the
Euclidean distance, but rather on the angle between the vectors, this is a non-euclidean distance
metric. We can define our metric space as in Lemma. 4.3.

Proof. To prove that the observation space Ωj with the cosine distance function Dcos as defined
forms a metric space, we need to verify that Dcos satisfies the conditions of a metric. (1). Non-
negativity and Identity of Indiscernibles: For any oaj , o

b
j ∈ Ωj , the cosine similarity of them

is within the range [−1, 1]. Therefore, 1 − f(Q̄∗(oaj), Q̄
∗(obj)) ranges from 0 to 2, ensuring non-

negativity. Moreover, Dcos(o
a
j , o

b
j) = 0 if and only if f(Q̄∗(oaj), Q̄

∗(obj) = 1, which occurs only
when Q̄∗(oaj), Q̄

∗(obj are in the same direction and, assuming normalization, are identical, thus
satisfying the identity of indiscernible. (2). Symmetry: The cosine similarity between two vectors
is symmetric, which directly implies that Dcos(o

a
j , o

b
j) = Dcos(o

b
j , o

a
j). (3). Triangle Inequality

(Nuanced Interpretation): Given the angular basis of f , the traditional triangle inequality for linear
distances needs careful interpretation. For cosine distances, the triangle inequality may not strictly
apply. Instead, the ’distance’ measures angular differences, aligning under specific conditions with
a version of the triangle inequality tailored for angles. Consequently, (Ωj , Dcos) fulfills key metric
space properties but is better termed a pseudometric space due to the nuanced interpretation of the
triangle inequality with cosine distances.

E Algorithm

Iteratively-Grow-DT Process: To simplify, consider agents i ̸= j as a conceptual super agent
−j. With a limit of L leaf nodes, we iteratively grow DTs for agent j and super agent −j,
adding two nodes for each agent per iteration with a total of log2(L) + 1 iterations. For
agent j at iteration i = 0, Q̃∗i=0(oj ,o−j) = [Q∗(oj ,o−j , π

∗(aj |oj),a−j) · dπµ(o−j |oj)], ap-
ply Lemma. 4.3, we got li=0

j = g(oj) and DT T i=0
j for iteration 0. For agent −j, we con-

sider the clustering for Q̃∗i=0(o−j , oj) = [Q∗(o−j , oj , π
∗(a−j |o−j), T i=0

j (oj)) · dTµ (oj |o−j)].
We use T i=0

j (oj) to replace aj in Q̃∗i=0(o−j , oj), since the agent j is restricted to taking
the same actions for all oj in the same cluster with label lj , apply Lemma. 4.3, we got DT
T i=0
−j (o−j) in the interaction 0 for agent −j. For each iteration k, for growing DT for agent

j, agent j takes actions based on T i=k−1
j (oj), agent −j takes actions based on T i=k−1

−j (o−j),
then Q̃∗i(oj ,o−j) = [Q∗(oj ,o−j , T i=k−1

j (oj), T i=k−1
−j (o−j) is used for clustering and training

23

Algorithm 1 Non-Euclidean Clustering (NEC)

1: Input:K1, K2, K3, λ, Replay bufferR, current parameters ω, ξ = {ξ1, . . . , ξn}.
2: for t = 1 to T do
3: for agent j to n do
4: Get top-K1 samples Xj = (ok1 ,ak1 , Rk1 ,o′k1) from replay bufferR;
5: Sample the top K2 frequent observations {ok2

−j} from Xj ;
6: Got the corresponding actions ak2

−j = π∗(ok2
−j);

7: Combine them and form a set X−j = {ok2
−j , π

∗(ok2
−j)};

8: Form the sampled trajectories by combining (oj , π
∗(oj)) in Xj and (o−j , π

∗(o−j)) in
X−j as D = (ok1k2 , π∗(ok1k2), Rk1k2 ,o′k1k2);

9: Query the oracle critic networks parameterized by ω with D as the input to get the
Q̂ω(oj ,o−j , π

∗(oj), π
∗(o−j));

10: Update gξj by minimizing the loss L(gξj) defined in the main paper;
11: end for
12: end for
13: Output: Clustering label generation functions: lj = gξj (oj).

DT T i=k
j (oj); for growing DT for agent −j in the same iteration k, since agent j updates its

DT, Q̃∗i(o−j , oj) = [Q∗(o−j , oj , T i=k−1
−j (o−j , T i=k

j (oj)) is used for clustering and obtaining DT
T i=k
j (oj).

E.1 Computational Complexity of RGMDT

Since we grow RGMDT with a small number of leaf nodes L, it’s time- and space-efficient compared
to other large DTs and DNNs. (1). Time Complexity: It is determined by the Non-Euclidean
clustering and DT construction steps, estimated as O(T · n2 · logL), where T represents the number
of iterations of clustering for convergence, n is the number of Q-value samples, and L is the maximum
number of leaf nodes. This reflects the intensive computation required for non-Euclidean distance
calculations and iterative tree growth. (2).Space Complexity : It’s O(K(n · d+ L)). This accounts
for the storage of n Q-value samples each with d dimensions and the DT structures with L leaf nodes
per tree across K agents.

E.2 Real-World Applications of RGMDT

The superior performance of RGMDT with a small number of leaf nodes enhances its compact-
ness and simplifies its implementation in practical scenarios. Compared to DNNs, its simpler DT
structure requires less computational and memory resources during inference, making it well-suited
for resource-limited environments in real-world applications like robotics, network security, and
5G network slicing resource management. For example, DTs have been implemented in memristor
devices to support real-time intrusion detection in scenarios requiring low latency and high speed [15].
RGMDT’s interpretable structure makes it more suitable for memristor-based hardware implementa-
tions in resource-constrained environments for network intrusion detection achieves detection speeds
of microseconds, together with significant area reduction and energy efficiency, with performance
guarantee that previous DTs fail to provide.

F Experiments

We conducted our experiments on the Ubuntu 20.04 system, with Intel(R) Core(TM) i9-7290K CPU
(4.4 GHz), 4x NVIDIA 2080Ti GPU and 256 GB RAM. The algorithm is implemented in Python 3.8,
using main Python libraries NumPy 1.22.3 and Pandas 2.0.3. The code will be made available on
GitHub after accepted.

The proposed algorithm is evaluated on both single-agent and multi-agent goal-achieving tasks. For
maze tasks, we build the tasks based on Mujoco [59], agents must reach the goal simultaneously
to complete this task while avoiding collisions between agents and the obstacles. Note that these
tasks are quite challenging: (1) We increase the maze dimension and place the high-reward goal
at the corner of the maze surrounded by high-penality obstacles which are harder for agents to

24

Algorithm 2 Return-Gap Minimization Decision Tree Construction (RGMDT)

1: Input: R = (o,a, R,o′), π∗ = [π∗
1 , . . . , π

∗
n], Sampling size K1, K2, Nearest neighbors’ size

K3, Maximum leaf nodes L.
2: Initialize non-euclidean clustering network weights ξ for each agent j at random;
3: Initialize non-euclidean clustering target weights ξ′ ← ξ for each agent j at random;
4: Output: DT T L = [T L

1 , . . . , T L
n] for n agents.

5: for agent j = 1 to n do
6: Get top-K1 samples Xj = (ok1 ,ak1 , Rk1 ,o′k1) from replay bufferR;
7: Sample the top K2 frequent observations {ok2

−j} from Xj ;
8: Got the corresponding actions ak2

−j = π∗(ok2
−j);

9: Combine them and form a set X−j = {ok2
−j , π

∗(ok2
−j)};

10: Form the sampled trajectories by combining (oj , π
∗(oj)) in Xj and (o−j , π

∗(o−j)) in X−j

as D = (ok1k2 , π∗(ok1k2), Rk1k2 ,o′k1k2);
11: Query the π∗ = [π∗

1 , . . . , π
∗
n] with D as the input to get the Q̃∗i=0(oj ,o−j) =

[Q∗(oj ,o−j , π
∗(aj |oj),a−j) · dπµ(o−j |oj)];

12: Update gξj by minimizing the loss L(gξj) defined in the main paper;
13: Got li=0

j = gξj (oj);
14: Apply Function Grow One-Iteration DT ϕ(oj , lj , L), get DT T i=0

j for iteration 0;
15: Replace π∗

j with T i=0
j ;

16: end for
17: for iteration k = 1, 2, . . . , log2(L) + 1 do
18: for agent j = 1 to n do
19: Get top-K1 samples Xj = (ok1 ,ak1 , Rk1 ,o′k1) from replay bufferR;
20: Sample the top K2 frequent observations {ok2

−j} from Xj ;
21: Got the corresponding actions ak2

−j = T i=k−1(ok2
−j);

22: Combine them and form a set X−j = {ok2
−j , T i=k−1(ok2

−j)};
23: Form the sampled trajectories by combining (oj , T i=k−1(oj)) in Xj and

(o−j , T i=k−1(o−j)) in X−j as D = (ok1k2 , π∗(ok1k2), Rk1k2 ,o′k1k2);
24: Query the π∗ = [π∗

1 , . . . , π
∗
n] with D as the input to get the Q̃∗i(oj ,o−j) =

[Q∗(oj ,o−j , T i=k−1
j (oj), T i=k−1

−j (o−j);
25: Update gξj by minimizing the loss L(gξj) defined in the main paper;
26: Got li=k

j = gξj (oj);
27: Apply Function Grow One-Iteration DT ϕ(oj , lj , L), get DT T i=k

j (oj) for iteration
i = k;

28: Replace T i=k−1
j (oj)) with T i=k

j (oj)) when doing the iteration step for other agents −j;
29: end for
30: end for
31: function GROW ONE-ITERATION DT ϕ(D, lj , L)
32: Sample a matrix X ∈ Rd×n of oj from D and its associated class labels Y ∈ R1×n, y =

lj = g(oj);
33: Apply SVM for obtaining w, p;
34: Partition node’s data into left and right child nodes using:
35: if w · x− p < 0 then
36: Assign x to left child node;
37: else
38: Assign x to right child node;
39: end if
40: end function
41: Output: Return the constructed decision tree T L = [T L

i , . . . , T L
n] for n agents.

25

reach, and agents’ observations do not include any information about the goal, so they need to grow
DTs iteratively based on their joint action value vectors and get the information about their joint
observation space to find the rewarding state. (2) The reward space is highly sparse and delayed:
for all the tasks, only when the agents complete the task can they receive a reward signal r (shared
by all the agents); otherwise, they will receive r = 0.0. Hence, agents without highly efficient
knowledge of the observation space cannot complete these tasks. In the experiments results, we
conduct experiments with tasks of increasing complexity (e.g., Figure 1), showing that the more
difficult the task is, the more advantageous our approach becomes.

F.1 Environment Details

F.1.1 Single Agent Scenarios

Single Agent Maze Task: This is a tabular-case maze task. Consider a W by H grid world, where
landmark 1 with a high reward of r1 is always placed at the higher left corner (1, 1), while landmark
2 with a low reward of r2 is always placed at the middle diagonal position ([W/2], [H/2]). There are
No obstacles that are randomly placed on the map and there is a collision penalty (negative reward
signal r3 = −r2) if the agent covers the obstacles. There is no movement cost. The task is completed
and the reward r1 (or r2) is achieved only if the agent occupies one of the rewarding landmarks
before or at the end of the game. Otherwise. The game terminates in T steps or when the task is
completed. The maximum training episodes are Ne.

• Simple Maze: W = 4, H = 4, there is only one target landmark placed in the top left corner
and there are no obstacles. T = 3 and Ne = 3000.

• Medium Maze: W = 8, H = 8, there is only one target landmark placed in the top left
corner and there are two obstacles. T = 8 and Ne = 5000.

• Hard Maze: W = 10, H = 10, there are two target landmarks placed in the top left corner
and in the middle of the maze map, there are two obstacles, both are close to the higher
rewarding states. T = 10 and Ne = 5000.

D4RL- Hopper: This environment is based on the work done by Erez, Tassa, and Todorov in [21].
The environment aims to increase the number of independent state and control variables as compared
to the classic control environments. The hopper is a two-dimensional one-legged figure that consist
of four main body parts - the torso at the top, the thigh in the middle, the leg in the bottom, and a
single foot on which the entire body rests. The goal is to make hops that move in the forward (right)
direction by applying torques on the three hinges connecting the four body parts. More details can be
found in https://gymnasium.farama.org/environments/mujoco/hopper/.

D4RL- Half Cheetah: This environment is based on the work [63]. The HalfCheetah is a 2-
dimensional robot consisting of 9 body parts and 8 joints connecting them (including two paws).
The goal is to apply torque on the joints to make the cheetah run forward (right) as fast as possi-
ble, with a positive reward allocated based on the distance moved forward and a negative reward
allocated for moving backward. The torso and head of the cheetah are fixed, and the torque can
only be applied on the other 6 joints over the front and back thighs (connecting to the torso),
shins (connecting to the thighs), and feet (connecting to the shins). More details can be found in
https://gymnasium.farama.org/environments/mujoco/half_cheetah/.

F.1.2 Multi Agent Scenarios

Predator-prey maze version: agents must reach the goal simultaneously to complete this task while
avoiding collisions between agents and the obstacles. Note that these tasks are quite challenging: (1)
We increase the maze dimension and place the high-reward goal at the corner of the maze surrounded
by high-penality obstacles which are harder for agents to reach; (2). agents’ observations do not
include any information about the goal and other agents, so they need to grow DTs iteratively based
on their joint action value vectors and get the information about their joint observation space to find
the rewarding state.

Each time an agent covers with a target, the agent is rewarded with +r1, if the agents reach the
target at the same time, they will be given a group reward +r2 or +r3 based on the rewarding target
type (higher rewarding state or lower rewarding state). The agents are also given a group reward
·
∑N

n=1 min{d(pn,qk), k ∈ {1, . . . ,K}}, n ∈ {1, . . . , N}, where the pn and qk are the coordinates

26

https://gymnasium.farama.org/environments/mujoco/hopper/
https://gymnasium.farama.org/environments/mujoco/half_cheetah/

of agent n and target k. The reward of the agents will be decreased for increased distance from
targets.

F.2 Empirical Performance Comparison between RGMDT and DRL

We show empirical performance comparisons between RGMDT and DRL in Figure 2 (single-agent
task) and Figure 4 (multi-agent task) in the main body. We also add Figure 5 in Appendix F.8.2 to
show that the return gap is bounded by the average cosine distance—as quantified by our analysis
and theorems—and diminishes as the average cosine distance decreases due to the use of more leaf
nodes (i.e., more action labels leading to lower clustering distance).

1. Figure 2: Shows RGMDT’s enhanced performance with increasing leaf nodes, nearing
optimal levels of RL with |L| = 4 or more. This supports Theorem 4.4’s prediction that
return gaps decrease as the average cosine distance is minimized.

2. Figure 4: Confirms RGMDT’s performance improves with more leaf nodes in the multi-
agent scenario, achieving near-optimal levels with |L| = 4 or more, consistent with the
findings of Theorem 4.4 and supporting its application in multi-agent settings as noted in
Remark 4.5.

3. Figure 5: Plots average cosine distance and the return gap between RGMDT and the expert
DRL policies for different leaf node counts (8, 16, 32). The results, analyzed from the last
30 episodes post-convergence, justify Theorem 4.4’s analysis: the return gaps are indeed
bounded by O(

√
ϵ/(log2(L+ 1)− 1)nQmax), and the average return gap diminishes as

the average cosine distance over all clusters decreases due to using more leaf nodes, which
also validates the results in Remark 4.5.

F.3 Comparing RGMDT with Simple DT Baselines

We include the Imitations DT baseline using CART, directly trained on the RL policy’s actions and
observations without resampling. The observations and actions are features and labels respectively.
The results (Fig. 1-Fig. 4, Table. 1-Table. 2) demonstrate that RGMDT’s superior performance
becomes more noticeable with a limited number of leaf nodes since with fewer leaf nodes (or a more
complex environment), some of the decision paths must be merged and some actions would change.
RGMDT minimizes the impact of such changes on return.

F.4 Other Interpretable RL baselines

RGMDT is the first work for multi-agent DT with performance guarantees. Since agents’ decisions
jointly affect state transition and reward, converting each agent’s decision separately into DTs may
not work and accurately reflect the intertwined decision-making process. Our work is able to solve
this problem and provide guarantees. Thus, we didn’t find other interpretable multi-agent baselines
with performance guarantees except for MA-VIPER and its baselines which have been compared
with RGMDT in current evaluations.

F.5 Other Evaluating Environments

When evaluating RGMDT, we reviewed how other DT-based models were tested. The VIPER [3]
evaluated the algorithm in Atari Pong, and cart-pole environments, which are much simpler environ-
ments than ours, they also evaluated the algorithm in Half-cheetah tasks which are included in our
D4RL tasks. The MA-VIPER [48] only evaluated their DT algorithms in MPE environment [40] for
multi-agent scenarios, in which we implement the same Predator-prey maze tasks using the same
settings. We note that most existing papers evaluate DT-based algorithms only on classification
datasets [33, 72]. In contrast, our evaluation includes D4RL environments, which is a more complex
environment widely used for evaluating RL algorithms (and not just DT-based methods) [65]. Our
evaluations show that the extracted DTs (both single- and multi-agent) is able to achieve similar
performance comparable to DRL algorithms on complex D4RL environments. In the future, we could
consider applying RGMDT to simulated autonomous driving and healthcare scenarios where insight
into a machine’s decision-making process is important, and human operators must be able to follow
step-by-step procedures that can be provided with DT.

F.6 Impact of Leaf Node Counts on RGMDT’s Performance

Remark 4.5 shows that Theorem 4.4 holds for any arbitrary finite number of leaf nodes L. Furthermore,
increasing the maximum number of leaf nodes L reduces the average cosine distance (since more

27

clusters are formed) and, consequently, a reduction in the return gap due to the upper bound derived
in Theorem 4.4. Evaluation results for varying numbers of leaf nodes: Specifically, in Figure. 2
(single-agent tasks), Figure. 3-Figure. 4 (multi-agent tasks), and Table. 1 (D4RL tasks) we show
RGMDT’s performance improves with an increasing number of leaf nodes, which is consistent with
the findings of Theorem 4.4 and Remark 4.5 in both single- and multi-agent tasks.

F.7 Comparison with Other Interpretable RL Methods

RGMDT is the first multi-agent DT model with performance guarantees. Since the agent’s decisions
jointly affect state transition and reward, converting each agent’s decision separately into DTs may
not work and accurately reflect the intertwined decision-making process. RGMDT is able to solve this
problem and provide guarantees. RGMDT offers a more interpretable form of policy representation
by directly mapping observations to actions. This differs significantly from:

1. Reward Decomposition: While this method breaks down the reward function into compo-
nents for clarity, it lacks in providing a straightforward explanation of decision processes or
translating complex data into a simple, explainable policy structure like DTs.

2. Option Discovery: It focuses on identifying sub-policies or "options" within a complex
RL policy. These options can be seen as temporally extended actions, providing a higher-
level understanding of the policy structure. However, it focuses on identifying such skill
components, which could still be represented by a deep skill policy, e.g., in deep option
discovery, and is less interpretable than a decision tree, which provides clear decision paths
based on observations.

F.8 Addtional Ablation Studies

We added a new set of experiments to assess how errors of non-Euclidean clustering and return gaps
influence the algorithm’s performance,

F.8.1 Experiment 1. Ablation Study on Non-Euclidean Clustering Error Impact

We conducted experiments for Ablation Study using two other clustering metrics Euclidean and
Manhattan distances to replace the Non-Euclidean Clustering metrics cosine distance used in the
original RGMDT. We also introduced noise levels from 0.0 to 0.6 to simulate various environmental
conditions and compared the performance of different clustering metrics across the same error levels
to assess how each metric manages increasing noise.

Table. 3 shows that cosine distance exhibits high resilience, maintaining significantly higher rewards
than the other metrics up to an error level of 0.6, indicating robust performance. In contrast, Euclidean
distance consistently underperformed, failing to meet targets even at zero error, highlighting its
inadequacy for tasks requiring non-Euclidean measures. Meanwhile, Manhattan distance performed
better than Euclidean but was still inferior to RGMDT, with performance dropping as error increased,
thus confirming Theorem 4.4, minimizing cosine distance effectively reduces the return gap. The
ablation study confirms that non-Euclidean clustering errors significantly impact the performance,
with RGMDT showing notable robustness, particularly under higher error conditions, highlighting its
capacity to utilize the geometric properties of sampled Q-values for DT construction. This is because
RGMDT aims to group the observations that follow the same decision path and arrive at the same
leaf node (which is likely maximized with the same action, guided by action-values) in the same
cluster, therefore, non-euclidean clustering metric cosine distance is more efficient here (proven in
Theorem 4.4).

F.8.2 Experiment 2. Impact of Return Gaps Errors on Performance

The goal of RGMDT is to minimize return gaps. So we could only conduct an additional experiment
demonstrating that return gaps decrease as RGMDT minimizes cosine distance. Since minimizing
return gaps is our primary objective, their initial measurement isn’t possible until after RGMDT
training.

Directly minimizing the return gap is challenging, but Theorem 4.4 proves that it is bounded by
O(

√
ϵ/(log2(L+ 1)− 1)nQmax), where ϵ is the average cosine-distance within each cluster. This

finding motivates the RGMDT, which reduces the return gap by training a non-Euclidean clustering

28

network g to optimize ϵ with a cosine-distance loss. Thus, RGMDT effectively minimizes the return
gap error.

Fig. 5 in the rebuttal PDF shows the correlation between average cosine-distance ϵ and the return gap
across clusters with 8, 16, and 32 leaf nodes. We calculated the return gap using mean episode rewards
from the last 30 episodes after RGMDT and expert RL policies converged. The findings justify
Theorem 4.4’s analysis that the return gap decreases as ϵ reduces with more leaf nodes, validating the
results in Remark 4.5.

F.9 Interpretability of RGMDT

Note that RGMDT is the first work for multi-agent DT with performance guarantees. Since the agents’
decisions jointly affect state transitions and rewards, converting each agent’s decision separately
into decision trees may not accurately reflect the intertwined decision-making process. Our work
addresses this problem and provides theoretical guarantees.

RGMDT enhances the interpretability of DRL policies by translating them into DT structures. Small
decision trees (with tree depth less than 6) are generally considered interpretable because they provide
a clear, step-by-step representation of decision-making processes based on input features, as further
discussed in [48].

Key aspects enhancing RGMDT’s interpretability include:

1. Clear Decision Paths: DTs offer explicit paths from root to leaf nodes, each linked to a
specific action, unlike the complex approximations in DRL policies.

2. Quantifiable Performance Guarantee: RGMDT quantifies the return gap between the DRL
and DT policies, ensuring a reliable measure of how closely the DT mimics the DRL policy.

3. Interpretability at Different Complexity Levels: RGMDT can generate a DT with a return
gap guarantee for any decision tree size, providing a trade-off between interpretability and
accuracy. A smaller DT offers better interpretability at the cost of a higher return gap.
Regardless, our method ensures theoretical guarantees on the return gap. According to
[48], DTs with a tree depth less than 6 (26 = 64 leaf nodes) can be considered naturally
interpretable. Notably, with only more than |L| = 4 leaf nodes, RGMDT achieves near-
optimal performance of the expert DRL policy in both single-agent and multi-agent scenarios,
while other baselines fail to complete the task (as supported by results in Figure 2 and Figure
4).

4. Cluster-Based Approach: RGMDT clusters observations into different decision paths in
the DT, grouping similar decisions and making it easier to understand which types of
observations lead to specific actions.

We have provided some DT visualizations of maze tasks in Appendix F.11, illustrating how agents
make decisions based on their observations (e.g., location coordinates in this task). A more concrete
example is given in Figure 7 to Figure 10, Appendix F.11: the features include agents’ X and Y
coordinates. For this 4-node DT, the right decision path shows that if the agent’s Y coordinate is
larger than 0.4652, the decision goes to the right node. By further splitting based on the agent’s
X coordinates (if X is larger than 0.0125), two decision paths indicate taking actions to go ’right’
(X ≤ 0.0125) or ’up’ (X > 0.0125).

F.10 Additional Experiments on Interpretability

To illustrate non-euclidean clustering labels interpretation, we run RGMDT on a two-agent grid-world
maze for easy visualization and add four more figures (Fig. 6) to further visualize the relationships
between: 1. action and labels; 2. position and labels, since DT generation is guided by non-euclidean
clustering results.

Fig. 6 shows that the non-euclidean clustering labels used in RGMDT are naturally interpretable.
We explored the relationship between non-Euclidean clustering labels, agent positions, and actions.
Fig. 6a and Fig. 6b show how agent positions during training correlate with clustering labels: ‘blue’,
‘green’, ‘pink’, and ‘orange’ indicate labels ‘0’, ‘1’, ‘2’, and ‘3’, respectively. Agents near the
high-reward target are typically labeled ‘1’, while those near the lower-reward target get labeled ‘2’.
Additionally, Fig. 6c and Fig. 6d demonstrate that agents take actions ‘down’, ‘up’, ‘right’, and ‘left’
conditioned on specific labels ‘0’, ‘1’, ‘2’, ‘3’, respectively. Putting these together, when an RGMDT

29

Table 3: The superior performance of RGMDT when using non-Euclidean cosine-distance metrics
indicates that the algorithm effectively utilizes the geometric properties of sampled Q-values for
DT construction. This is supported by our analysis which links RGMDT’s robustness to its ability
to minimize the return gap using cosine distance. This advantage becomes particularly evident
under higher error conditions, where traditional Euclidean and other non-Euclidean metrics fail.
As errors increase, a performance drop across all metrics is typical, highlighting the importance of
non-Euclidean clustering. RGMDT’s design to cluster observations following similar decision paths
into the same leaf nodes—typically maximized by the same actions as guided by the action-value
Q(s, a)—enhances its effectiveness. This approach confirms that the cosine-distance metric is more
suitable for maintaining performance in the face of clustering errors, as proven in Theorem 4.4.

Clustering Metrics Error Level If Reached Target Mean Reward

Non-Euclidean (RGMDT) 0.0 Yes 11.65± 0.88
Non-Euclidean (RGMDT) 0.1 Yes 9.25± 0.65
Non-Euclidean (RGMDT) 0.2 Yes 8.67± 0.77
Non-Euclidean (RGMDT) 0.4 Yes 6.34± 0.58
Non-Euclidean (RGMDT) 0.6 No 2.29± 0.54

Euclidean 0.0 No 3.66± 1.03
Euclidean 0.1 No 3.32± 0.75
Euclidean 0.2 No 2.82± 0.82
Euclidean 0.4 No 2.03± 0.65
Euclidean 0.6 No −1.62± 0.92

Manhattan 0.0 Yes 5.67± 0.93
Manhattan 0.1 No 4.52± 1.22
Manhattan 0.2 No 3.84± 0.84
Manhattan 0.4 No 2.13± 0.75
Manhattan 0.6 No 0.92± 1.22

agent approaches the high-reward target, the position will be labeled as ‘1’, instructing other agents to
move ‘up’ or ‘left’, which effectively guides other agents to approach the high-reward target located
at the upper left corner of the map, influencing strategic movements towards targets.

F.11 Decision Tree Visualization

30

8 nodes 16 nodes 32 nodes
Number of Leaf Nodes

0

5

10

15

20

25

30

35

Re
tu

rn
 G

ap

15.192

8.289

2.510

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Av
er

ag
e

Co
sin

e
Di

st
an

ce

0.0415
0.0372

0.0207

Return Gap (left)
Avg Cos Dis (right)

Figure 5: The return gap (left) is bounded by average cosine distance (right) and diminishes as
average cosine distance (right) decreases due to the increase of the maximum number of leaf nodes.

31

(a) Label-position (agent 1) (b) Label-position (agent 2)

Down Left Right Up

0
1

2
3

No
n-

Eu
cli

de
an

 C
lu

st
er

in
g

La
be

l Agent 1

0.05

0.10

0.15

(c) Label-action (agent 1)

Down Left Right Up

0
1

2
3

No
n-

Eu
cli

de
an

 C
lu

st
er

in
g

La
be

l Agent 2

0.025

0.050

0.075

0.100

0.125

0.150

(d) Label-action (agent 2)

Figure 6: Interpretable Non-Euclidean Clustering Labels: (a)-(b): The positions are more likely to be
labeled as ‘1’ when closer to the higher-reward target (circle), while more likely to be labeled as ‘2’
when closer to the lower-reward target (triangle); (c)-(d): both agents are more likely to take action
‘down’, ‘up’, ‘right’, ‘left’ conditioned on labels ‘0’, ‘1’, ‘2’, and ‘3’, respectively.

32

≤ >

Figure 7: Visulazing the RGMDT decision path for Hard Maze with the maximum number of leaf
nodes equals 4.

33

≤ >

Figure 8: Visulazing the RGMDT decision path for Simple Maze with the maximum number of leaf
nodes equals 8.

34

≤ >

Figure 9: Visulazing the RGMDT decision path for Medium Maze with the maximum number of leaf
nodes equals 16.

35

≤ >

Figure 10: Visulazing the RGMDT decision path for Hard Maze with the maximum number of leaf
nodes equals 32.

36

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state the claims made, including the contributions
made in the paper and important assumptions and limitations.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed in Sec. 4 about assumptions and how to address them.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

37

Answer: [Yes]
Justification: We provide the full assumptions and proof of all theoretical contributions
either in the main paper or in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the information needed to reproduce the results presented in
this paper together with the source code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

38

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide all the information needed to reproduce the results presented in
this paper together with the source code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We explained all the details on training settings in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include the error bars in the experiment results section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

39

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We explained all the details on training settings in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed the potential positive societal impacts and negative societal
impacts of the work performed at the beginning of the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

40

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We believe this paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

41

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

42

	Introduction
	Related Work
	Preliminaries and Problem Formulation
	Theoretical Results and Methodology
	Constructing SVM-based Decision Tree to Minimize Return Gaps
	Evaluation and Results
	Conclusion and Future Works
	Impact Statements
	Additional Related Work Discussion
	Background and Preliminaries
	Decision Tree
	Support Vector Machines (SVM) optimization
	Construting Decision Trees Minimizing Return Gaps

	Theoretical Proofs
	Proofs for Lemma 4.1
	Proofs for Thm. 4.2
	Detailed process of calculation of the average cosine distance defined in Equation 6
	Proof of Lemma 4.3

	Algorithm
	Computational Complexity of RGMDT
	Real-World Applications of RGMDT

	Experiments
	Environment Details
	Single Agent Scenarios
	Multi Agent Scenarios

	Empirical Performance Comparison between RGMDT and DRL
	Comparing RGMDT with Simple DT Baselines
	Other Interpretable RL baselines
	Other Evaluating Environments
	Impact of Leaf Node Counts on RGMDT's Performance
	Comparison with Other Interpretable RL Methods
	Addtional Ablation Studies
	Experiment 1. Ablation Study on Non-Euclidean Clustering Error Impact
	Experiment 2. Impact of Return Gaps Errors on Performance

	Interpretability of RGMDT
	Additional Experiments on Interpretability
	Decision Tree Visualization

