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Abstract

Offline reinforcement learning (RL) promises the ability to learn effective policies
solely using existing, static datasets, without any costly online interaction. To
do so, offline RL methods must handle distributional shift between the dataset
and the learned policy. The most common approach is to learn conservative, or
lower-bound, value functions, which underestimate the return of out-of-distribution
(OOD) actions. However, such methods exhibit one notable drawback: policies
optimized on such value functions can only behave according to a fixed, possibly
suboptimal, degree of conservatism. However, this can be alleviated if we instead
are able to learn policies for varying degrees of conservatism at training time and
devise a method to dynamically choose one of them during evaluation. To do so, in
this work, we propose learning value functions that additionally condition on the
degree of conservatism, which we dub confidence-conditioned value functions. We
derive a new form of a Bellman backup that simultaneously learns Q-values for
any degree of confidence with high probability. By conditioning on confidence, our
value functions enable adaptive strategies during online evaluation by controlling
for confidence level using the history of observations thus far. This approach
can be implemented in practice by conditioning the Q-function from existing
conservative algorithms on the confidence. We theoretically show that our learned
value functions produce conservative estimates of the true value at any desired
confidence. Finally, we empirically show that our algorithm outperforms existing
conservative offline RL algorithms on multiple discrete control domains.

1 Introduction

Offline reinforcement learning (RL) aims to learn effective policies entirely from previously collected
data, without any online interaction (Levine et al., 2020). This addresses one of the main bottlenecks
in the practical adoption of RL in domains such as recommender systems (Afsar et al., 2021),
healthcare (Shortreed et al., 2011; Wang et al., 2018), and robotics (Kalashnikov et al., 2018), where
exploratory behavior can be costly and dangerous. However, offline RL introduces new challenges,
primarily caused by distribution shift. Naı̈ve algorithms can grossly overestimate the return of actions
that are not taken by the behavior policy that collected the dataset (Kumar et al., 2019a). Without
online data gathering and feedback, the learned policy will exploit these likely suboptimal actions.
One common approach to handle distribution shift in offline RL is to optimize a a conservative
lower-bound estimate of the expected return, or Q-values (Kumar et al., 2020; Kostrikov et al., 2021;
Yu et al., 2020). By intentionally underestimating the Q-values of out-of-distribution (OOD) actions,
policies are discouraged from taking OOD actions. However, such algorithms rely on manually
specifying the desired degree of conservatism, which decides how pessimistic the estimated Q-values
are. The performance of these algorithms is often sensitive to this choice of hyperparameter, and an
imprecise choice can cause such algorithms to fail.
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Our work proposes the following solution: instead of learning one pessimistic estimate of Q-values,
we propose an offline RL algorithm that estimates Q-values for all possible degrees of conservatism.
We do so by conditioning the learned Q-values on its confidence level, or probability that it achieves
a lower-bound on the true expected returns. This allows us to learn a range of lower-bound Q-
values of different confidences. These confidence-conditioned Q-values enables us to do something
conservative RL algorithms could not—control the level of confidence used to evaluate actions.
Specifically, when evaluating the offline-learned Q-values, policies derived from conservative offline
RL algorithms must follow a static behavior, even if the online observations suggest that they are
being overly pessimistic or optimistic. However, our approach enables confidence-adaptive policies
that can correct their behavior using online observations, by simply adjusting the confidence-level
used to estimate Q-values. We posit that this adaptation leads to successful policies more frequently
than existing static policies that rely on tuning a rather opaque hyperparameter during offline training.

Our primary contribution is a new offline RL algorithm that we call confidence-conditioned value-
learning (CCVL), which learns a mapping from confidence levels to corresponding lower-bound
estimations of the true Q-values. Our theoretical analysis shows that our method learns appropriate
lower-bound value estimates for any confidence level. Our algorithm also has a practical implementa-
tion that leverages multiple existing ideas in offline RL. Namely, we use network parameterizations
studied in distributional RL to predict Q-values parameterized by confidence (Dabney et al., 2018b,a).
Our objective, similar to conservative Q-learning (CQL) (Kumar et al., 2020), uses regularization to
learn Q-values for all levels of pessimism and optimism, instead of anti-exploration bonuses that may
be difficult to accurately compute in complex environments (Rezaeifar et al., 2021). In addition, our
algorithm can be easily extended to learn both lower- and upper-bound estimates, which can be useful
when fine-tuning our offline-learned value function on additional data obtained via online exploration.
Finally, we show that our approach outperforms existing state-of-the-art approaches in discrete-action
environments such as Atari (Mnih et al., 2013; Bellemare et al., 2013). Our empirical results also
confirm that conditioning on confidence, and controlling the confidence from online observations,
can lead to significant improvements in performance.

2 Related Work
Offline RL (Lange et al., 2012; Levine et al., 2020) has shown promise in numerous domains. The
major challenge in offline RL is distribution shift (Kumar et al., 2019a), where the learned policy might
select out-of-distribution actions with unpredictable consequences. Methods to tackle this challenge
can be roughly categorized into policy-constraint or conservative methods. Policy-constraint methods
regularize the learned policy to be “close” to the behavior policy either explicitly in the objective via
a policy regularizer (Fujimoto et al., 2018; Kumar et al., 2019a; Liu et al., 2020; Wu et al., 2019;
Fujimoto & Gu, 2021), implicitly update (Siegel et al., 2020; Peng et al., 2019; Nair et al., 2020), or
via importance sampling (Liu et al., 2019; Swaminathan & Joachims, 2015; Nachum et al., 2019).
On the other hand, conservative methods learn a lower-bound, or conservative, estimate of return and
optimize the policy against it (Kumar et al., 2020; Kostrikov et al., 2021; Kidambi et al., 2020; Yu
et al., 2020, 2021). Conservative approaches traditionally rely on estimating the epistemic uncertainty,
either explicitly via exploration bonuses (Rezaeifar et al., 2021) or implicitly using regularization on
the learned Q-values (Kumar et al., 2020). The limitation of existing offline RL approaches is that the
derived policies can only act under a fixed degree of conservatism, which is determined by an opaque
hyperparameter that scales the estimated epistemic uncertainty, and has to be chosen during offline
training. This means the policies will be unable to correct their behavior online, even if it becomes
evident from online observations that the estimated value function is too pessimistic or optimistic.

Our algorithm learns confidence-conditioned Q-values that capture all possible degrees of pessimism
by conditioning on the confidence level, modeling epistemic uncertainty as a function of confidence.
By doing so, instead of committing to one degree of pessimism, we enable policies that adapt how
conservative they should behave using the observations they sees during online evaluation. Our
approach is related to ensemble (Agarwal et al., 2020; Lee et al., 2021; Chen et al., 2021; An et al.,
2021) approaches in that they also predict multiple Q-values to model epistemic uncertainty. However,
existing ensemble methods train individual Q-values on the same objective, and rely on different
parameter initializations. In contrast, each of our Q-values captures a different confidence-level. In
addition, standard ensemble approaches do not consider adaptive policies. Recently, APE-V proposes
using ensembles to learn adaptive policies that condition on belief over which value function is
most accurate (Ghosh et al., 2022). Our approach considers a similar strategy for adaptation, but
explicitly parameterizes the value function by the confidence level, introducing a novel training
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objective for this purpose. In our experiments, we compare to a method that adapts APE-V to
our discrete-action benchmark tasks. Jiang & Huang (2020); Dai et al. (2020) propose confidence
intervals for policy evaluation at specified confidence-levels. We aim to learn a value function across
all confidences, and use it for adaptive policy optimization. Finally, distributional RL (Dabney et al.,
2017; Bellemare et al., 2017; Dabney et al., 2018b) learns a distribution over values, but only capture
aleatoric uncertainty, whereas our focus is on epistemic uncertainty and offline RL.

3 Preliminaries

The goal in reinforcement learning is to learn a policy π(·|s) that maximizes the expected cumulative
discounted reward in a Markov decision process (MDP), which is defined by a tuple (S,A, P,R, γ).
S,A represent state and action spaces, P (s′|s,a) and R(s,a) represent the dynamics and reward
distribution, and γ ∈ (0, 1) represents the discount factor. We assume that the reward r(s,a)
is bounded in magnitude, i.e., |r(s,a)| ≤ Rmax for some finite Rmax. πβ(a|s) represents the
(unknown) behavior policy used to collect the offline dataset D that will be used for training, dπβ (s)
is the discounted marginal state distribution of πβ(a|s), and the offline dataset D = {(s,a, r, s′)} is
formed from interactions sampled from dπβ (s)πβ(a|s).
Policy evaluation attempts to learn the Q-function Qπ : S ×A → R of a policy π at all state-action
pairs (s,a) ∈ S × A, Specifically, for a policy π, its Q-value Qπ(s,a) = Eπ [

∑∞
t=0 γ

trt] is its
expected mean return starting from that state and action. The Q-function is the unique fixed point
of the Bellman operator Bπ given by BπQ(s,a) = r(s,a) + γEs′∼P (s′|s,a),a′∼π(a′|s′) [Q(s′,a′)],
meaning Qπ = BπQπ. Q-learning learns Q∗ = Qπ∗

as the fixed point of the Bellman optimality
operator B∗ given by B∗Q(s,a) = r(s,a)+γEs′∼P (s′|s,a) [maxa′ Q(s′,a′)], and derives the optimal
policy π∗(a | s) = I{a = argmaxa Q

∗(s,a)}.

Offline reinforcement learning. In offline RL, we are limited to interactions that appear in the
dataset D of N samples (s,a, r, s′), where a ∈ A is derived from some suboptimal behavior policy.
Hence, we do not have access to the optimal actions used in the backup of the Bellman optimality
operator. Because of this, offline RL suffers from distributional shift (Kumar et al., 2019b; Levine
et al., 2020). Prior methods address this issue by learning conservative, or lower-bound, value
functions that underestimate expected return outside of the dataset. One method to accomplish this is
to subtract anti-exploration bonuses that are larger for out-of-distribution (OOD) states and actions
(Rezaeifar et al., 2021):

Q̂k+1 = argmin
Q

1

2
Es,a,s′∼D

(Q(s,a)− B̂∗Q̂k(s,a)− α

√
1

n(s, a) ∧ 1

)2
 , (1)

where α > 0 is a hyperparameter. Another relevant method is conservative Q-learning (CQL) (Kumar
et al., 2020), which proposes a regularizer to the standard objective to learn pessimistic Q-values:

Q̂k+1 = argmin
Q

max
π

α
(
Es∼D,a∼π(a|s) [Q(s,a)]− Es,a∼D [Q(s,a)]

)
(2)

+
1

2
Es,a,s′∼D

[(
Q(s,a)− B̂∗Q̂k(s,a)

)2]
+R(π) .

Here, π is some policy that approximately maximizes the current Q-function iterate, and R is some
regularizer. This objective includes a penalty that ensures Q-values at OOD actions are underestimated
compared to in-distribution (ID) actions. Such methods learn lower-bound value functions for a fixed
confidence-level, that is implicitly captured in hyperparameter α. In this paper, we propose learning
value functions that condition the confidence-level explicitly.

Additional notation. Let n ∧ 1 = max{n, 1}. Denote ι = polylog(|S|, (1− γ)−1, N). We let ι
be a polylogarithmic quantity, changing with context.

4 Confidence-Conditioned Value Functions

In this section, we describe our method for learning confidence-conditioned value functions, such
that conditioned on some confidence level δ ∈ (0, 1), the learned Q-function can lower-bound its true
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value with probability 1− δ. Because such Q-functions depend not only on state-action pairs, but
also the confidence δ, they enable adaptive policies that change behavior based on δ, and adjust delta
to maximize online performance. In contrast, pessimistic offline RL is limited to a fixed Markovian
strategy. We first propose a novel Q-learning algorithm, which we dub confidence-conditioned
value learning (CCVL), then show how such learned Q-function enables adaptive strategies, dubbed
confidence-adaptive policies. In this work, we focus on discrete-action environments, but our insights
can be straightforwardly extended to develop actor-critic algorithms for continuous environments.

4.1 Confidence-Conditioned Value Learning

Recall from Section 3 that standard Q-learning involves learning Q-values that satisfy the Bellman
optimality update Q∗ = B∗Q∗. We are interested in learning confidence-conditioned Q-values:
Definition 4.1. A confidence-conditioned value function Q(s,a, δ) satisfies, for a given δ ∈ (0, 1):

Q(s,a, δ) = sup q such that Pr[Q∗(s,a) ≥ q] ≥ 1− δ . (3)

Note that we include the suprenum to prevent Q(s,a, δ) = Q(s,a, 0) for all other values of δ.
The randomness is due to noise in dataset sampling, as the dataset is used to compute our learned
value function. To achieve a high-probability lower-bound on Q∗(s,a), we account for two sources
of uncertainty: (1) we must approximate the Bellman optimality operator, which assumes known
reward and transition model, using samples in D, and (2) we need to additionally lower-bound the
target Q∗ used in the Bellman backup. The uncertainty due to (1), also called epistemic uncer-
tainty, can be bounded using concentration arguments on the samples from D. Namely, we define
b(s,a, δ) as a high-probability anti-exploration bonus that upper-bounds epistemic uncertainty, or
P
(∣∣∣B∗Q∗(s,a)− B̂∗Q∗(s,a)

∣∣∣ ≤ b(s,a, δ)
)
≥ 1 − δ. Such bonuses are well-studied in the prior

literature (Burda et al., 2018; Rezaeifar et al., 2021), and can be derived using concentration in-
equalities such as Chernoff-Hoeffding or Bernstein. Using the former, the bonuses are given by

b(s,a, δ) =
√

ι log(1/δ)
n(s,a)∧1 , where n(s,a) is the number of times the state-action pair appears in D.

Next, the uncertainty due to (2) can be straightforwardly bounded using our learned Q-function. This
gives rise to the iterative update for training the confidence-conditioned Q-function:

Q̂k+1 = argmin
Q

1

2
Es,a,s′∼D

(Q(s,a, δ)− max
δ1,δ2≤δ

B̂∗ Q̂k(s,a, δ2)− α

√
log(1/δ1)

n(s,a) ∧ 1

)2
 , (4)

where α > 0 is again some hyperparameter. In Theorem 6.1, we show that for any confidence level
δ ∈ (0, 1), the resulting Q-values Q̂(s,a, δ) = limk→∞ Q̂k(s,a, δ) lower-bounds the true Q-value
Q∗(s,a) with probability at least 1− δ.

Note that Equation 4 is similar to a traditional Q-learning using anti-exploration bonuses, as in
Equation 1, but with important differences. In conservative Q-learning, the δ value is not modeled and
implicitly captured in the α hyperparameter. Equation 1 can be made more similar to Equation 4 by
explicitly conditioning on δ, and setting δ1 = δ2 = δ. We believe our approach offers the following
advantages compared to using anti-exploration bonuses without conditioning. First, tuning α in our
approach is easier as we do not need to commit to a degree of conservatism beforehand. Also, by
introducing an outer maximization over δ1, δ2, we see that for any iteration k ∈ N, and any δ ∈ (0, 1),
Q̂k+1(s,a, δ) as the solution to Equation 4 is at least as tight of a lower-bound one that would set
δ1 = δ2 = δ. The latter is what Equation 1 implicitly does.

Implicit bonuses via regularization. The objective in Equation 4 requires explicit computation
of anti-exploration bonuses, which requires computation of state-action visitations n(s,a)−1 that
we discuss in Section 5 is difficult with neural network value functions. Here, we propose a new
objective that is inspired by how CQL achieves pessimistic value functions (Kumar et al., 2020).
The key idea is, instead of explicitly subtracting a bonus, we can add a regularizer in the objective.
Specifically, we have the following iterative update as an alternative to equation 4:

Q̂k+1 = argmin
Q

max
δ1,δ2≤δ

max
π

α

√
log(1/δ1)

(n(s) ∧ 1)

(
Es∼D,a∼π(a|s) [Q(s,a, δ)]− Es,a∼D [Q(s,a, δ)]

)
+

1

2
Es,a,s′∼D

[(
Q(s,a, δ)− B̂∗ Q̂k(s,a, δ2)

)2]
+R(π) , (5)
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where like in Kumar et al. (2020), R is some regularizer (typically the entropy of π). Note that
Equation 5 still relies on the computation of n(s)−1. However, we noticed that estimating state
visitations is actually much easier than state-action visitations with neural networks: we observed
that state-action density estimators were insufficiently discriminative between seen and unseen
actions at a given state, although state-only visitations, which do not require estimating densities
of unseen samples were a bit more reliable (see Section 5 for details) In Theorem 6.2, we show
that the resulting Q̂(s,a, δ) may not point-wise lower-bound Q∗(s,a), but will do so in expectation.
Specifically, for V̂ (s, δ) = maxa Q̂(s,a, δ), we have that V̂ (s, δ) lower-bounds the true value
V ∗(s) = maxa Q

∗(s,a) with probability at least 1− δ.

The objective in Equation 5 differs from the CQL update in Equation 2 in two notable aspects: (1)
we explicitly condition on δ and introduce a maximization over δ1, δ2, and (2) rather than a fixed
weight of α > 0 on the CQL regularizer, the weight now depends on the state visitations. Like with
Equation 4, we can argue that (1) implies that for any k ∈ N, we learn at least as tight lower-bounds
for any δ than the CQL update implicitly would. In addition, (2) means that the lower-bounds due to
the CQL regularizer additionally depends on state visitations in D, which will improve the quality of
the obtained lower-bounds over standard CQL.

4.2 Confidence-Adaptive Policies

Given a learned Q-function, standard Q-learning would choose a stationary Markovian policy that
selects actions according to π̂(a | s) = I

{
a = argmaxa Q̂(s,a)

}
. We can naı̈vely do this with the

learned confidence-conditioned Q-function by fixing δ and tuning it as a hyper-parameter. However,
especially in offline RL, it can be preferable for the agent to change its behavior upon receiving new
observations during online evaluation, as such observations can show that the agent has been behaving
overly pessimistic or optimistic. This adaptive behavior is enabled using our confidence-conditioned
Q-function by adjusting δ using online observations.

Let h be the history of observations during online evaluation thus far. We propose a confidence-
adaptive policy that conditions the confidence δ under which it acts on h; namely, we propose a
non-Markovian policy that selects actions as π̂(a | s, h) = I

{
a = argmaxa Q̂(s,a, δ)

}
, where

δ ∼ b(h). Here, b(h) is a distribution representing the “belief” over which δ is best to evaluate
actions for history h. Inspired by Ghosh et al. (2022), we compute b(h) using Bellman consistency
(Xie et al., 2021) as a surrogate log-likelihood. Here, the probability of sampling δ under b(h) is:

b(h)(δ) ∝
∑

(s,a,r,s′)∈h

(
Q̂(s,a, δ)− r − γmax

a′
Q̂(s′,a′, δ)

)2
(6)

Note that this surrogate objective is easy to update. This leads to a tractable confidence-adaptive
policy π̂ that can outperform Markovian policies learned via conservative offline RL.

4.3 Learning Lower- and Upper-Bounds

A natural extension of our method is to learn confidence-conditioned upper-bounds on the true Q-
values. Formally, as change of notation, let Qℓ(s,a, δ) be the lower-bounds as defined in Equation 3.
We can learn upper-bounds Qu(s,a, δ) as

Qu(s,a, δ) = inf q s.t Pr[Q∗(s,a) ≤ q] ≥ 1− δ . (7)

Following analogous logic as in Secton 4.1, we can derive an iterative update as

Q̂k+1
u =argmin

Q

1

2
Es,a,s′∼D

(Q(s,a, δ)− min
δ1,δ2≤δ

B̂∗ Q̂k
u(s,a, δ2)+α

√
log(1/δ1)

n(s,a) ∧ 1

)2
 . (8)

Learning both Q̂ℓ and Q̂u presents the opportunity for improved policy extraction from the learned
value functions. Instead of simply optimizing the learned lower-bounds, which may lead to overly
conservative behavior, we can optimize the upper-bounds but constrained to safe actions whose
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corresponding lower-bounds are not too low. Formally, our policy can perform

π̂(a | s, h) = I
{
a = arg max

a∈Aℓ

Q̂u(s,a, δ)

}
,

where δ ∼ b(h) , and Aℓ =
{
a : Q̂ℓ(s,a, δ) ≥ β max

a′
Q̂ℓ(s,a

′, δ)
}
, (9)

for some parameter β > 0. To simplify notation, for the remainder of the paper, we again drop
the subscript on ℓ when referencing lower-bounds. Learning upper-bounds offline is particularly
important when fine-tuning the value functions on online interactions, which is a natural next-step
after performing offline RL. Existing offline RL algorithms achieve strong offline performance, but
lack the exploration necessary to improve greatly during online fine-tuning. By learning both lower-
and upper-bounds, our method can achieve better online policy improvement (see Section 7.3).

5 Practical Algorithm

In this section, we describe implementation details for our CCVL algorithm, and arrive at a practical
algorithm. We aim to resolve the following details: (1) how the confidence-conditioned Q-function is
parameterized, and (2) how the objective in Equation 4 or Equation 5 is estimated and optimized.

Our Q-function is parameterized by a neural network with parameters θ. To handle conditioning on δ,
we build upon implicit quantile networks (IQN) (Dabney et al., 2018a), and propose a parametric
model that can produce Q̂(s,a, δ) for given values of δ. Alternatively, we could fix quantized values
of δ, and model our Q-function as an ensemble where each ensemble member corresponds to one
fixed δ. We choose the IQN parameterization because training over many different δ ∼ U(0, 1)
may lead to better generalization over confidences. However, when computing beliefs b online, we
maintain a categorical distribution over quantized values of δ.

In Equation 4 or Equation 5, we must compute the inverse state-action or state visitations. This can be
exactly computed for tabular environments. However, in non-tabular ones, we need to estimate inverse
counts n(s,a)−1 or n(s)−1. In prior work, O’Donoghue et al. (2018) proposed obtaining linear-value
estimates using the last layer of the neural network, i.e., n(s,a)−1 ≈ ϕ(s)⊤

(
Φ⊤

a Φa

)−1
ϕ(s) , where

ϕ extracts state representations, and Φa is a matrix of ϕ(si) for states si ∈ D where action a was
taken. However, we found that such methods were not discriminative enough to separate different
actions in the dataset from others under the same state. Instead of state-action visitations, the update
in Equation 5 requires only estimating inverse state visitations n(s)−1. Empirically, we find that
linear estimates such as n(s)−1 ≈ ϕ(s)⊤(Φ⊤Φ)−1ϕ(s) could successfully discriminate between
states. Hence, we use the latter update when implementing CCVL in non-tabular environments.

Finally, we summarize our CCVL algorithm in Algorithm 1. Note that aside from sampling multiple
δ ∼ U(0, 1) for training, CCVL is no more computationally expensive than standard Q-learning,
and is on the same order as distributional or ensemble RL algorithms that train on multiple Q-value
estimations per state-action pair. Hence, our algorithm is very practical, while enabling adaptive
non-Markovian policies as described in Section 4.2.

Algorithm 1 Confidence-Conditioned Value Learning (CCVL)
Require: Offline dataset D, discount factor γ, weight α, number of samples N,M

1: Initialize Q-function Q̂θ

2: for step t = 1, 2, . . . , n do
3: for i = 1, 2, . . . , N do
4: Sample confidence δ ∼ U(0, 1)
5: For j = 1, . . . ,M , sample δj,1, δj,2 ∼ U(0, δ). Compute Lj(θ) as inner-term of right-hand

side of equation 4 or equation 5 with δ1 = δj,1, δ2 = δj,2
6: Take gradient step θt := θt−1 − η∇θ maxj Lj(θ)

7: Return Q-function Q̂θ
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6 Theoretical Analysis

In this section, we show that in a tabular MDP, the value functions learned by CCVL properly
estimate lower-bounds of the true value, for any confidence δ. We show this for both the update using
anti-exploration bonuses in equation 4 as well as the one using regularization in Equation 5.

First, we show a simple lemma that CCVL will learn a value function such that the values decrease
as the confidence level increases. Formally, we show the following:

Lemma 6.1. The Q-values Q̂ learned via CCVL satisfy, for any δ, δ′ ∈ (0, 1) such that δ ≤ δ′:
Q̂(s,a, δ) ≤ Q̂(s,a, δ′).

Proof. Let δ1, δ2 ≤ δ be the solution to the maximization for Q̂(s,a, δ) in Equation 4. Since δ ≤ δ′,
we have δ1, δ2 ≤ δ′. This implies Q̂(s,a, δ) ≤ Q̂(s,a, δ′), as desired.

Lemma 6.1 means that as δ decreases, which equates to estimating a lower bound of higher confidence,
our estimated Q-values will monotonically decrease. Using Lemma 6.1 allows us to show the
following theorems, which are the main results of this section. We state the results below, and defer
proofs to the Appendix A.

The first shows that using when equation 4, our value-function estimates, for any confidence δ ∈ (0, 1),
a proper lower-bound on the optimal Q-values with probability at least 1− δ.

Theorem 6.1. For any δ ∈ (0, 1), the Q-values Q̂ learned via CCVL with Equation 4 satisfies
Q̂(s,a, δ) ≤ Q∗(s,a) for all s ∈ S,a ∈ A with probability at least 1− δ for some α > 0.

The second theorem shows an analogous result to Theorem 6.1, but using the update in equation 5
instead. However, using the alternative update does not guarantee a pointwise lower-bound on
Q-values for all state-action pairs. However, akin to Kumar et al. (2020), we can show a lower-bound
on the values for all states.
Theorem 6.2. For any δ ∈ (0, 1), the value of the policy V̂ (s, δ) = maxa∈A Q̂(s,a, δ), where Q̂

are learned via CCVL with Equation 5 satisfies V̂ (s, δ) ≤ V ∗(s) for all s ∈ S, where V ∗(s) =
maxa∈A Q∗(s,a) with probability at least 1− δ for some α > 0.

7 Empirical Evaluation
In our experiments, we aim to evaluate our algorithm, CCVL on discrete-action offline RL tasks.
We use the iterative update in Equation 5, as it achieves stabler performance when the Q-function
is a neural network. We aim to ascertain whether the two distinct properties of our method lead to
improved performance: (1) conditioning on confidence δ during offline training, and (2) adapting the
confidence value δ during online rollouts. We compare to prior offline RL methods, REM (Agarwal
et al., 2020) and CQL (Kumar et al., 2020), and ablations of our method where we either replace
confidence-conditioning with a simple ensemble, which we dub adaptive ensemble value-learning
(AEVL), or behave according to a fixed confidence online, which we call Fixed-CCVL.

Comparisons. REM and CQL are existing state-of-the-art offline RL algorithms for discrete-action
environments. AEVL allows us to study question (1) by replacing confidence-conditioned values with
a random ensemble, where each model in the ensemble roughly has the same level of conservatism.
Each ensemble member of AEVL is trained independently using different initial parameters, and
which ensemble member to act under is controlled online using Bellman error as in our proposed
method. Note that AEVL can be viewed as a special case of APE-V in Ghosh et al. (2022) for
discrete-action domains. Finally, Fixed-CCVL tests (2) by treating confidence δ used by the policy as
a fixed hyper-parameter instead of automatically adjusting it during online rollouts. The confidence is
selected as the one that minimized Bellman error during offline training. Because AEVL and CCVL
change their behavior during evaluation, we maintain a fair comparison by reporting the average
score across the adaptation process, including episodes where adaptation has not yet converged.

7.1 Illustrative Example on Gridworld

We first present a didactic example that illustrates the benefit of CCVL over standard conservative
offline RL algorithms. We consider a 8× 8 gridworld environment (Fu et al., 2019), with a start and
goal state, walls, lava. The reward is 1 upon reaching the goal, but entering a lava state results in
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Figure 2: Example gridworld where CQL takes the longer, suboptimal trajectory that appears more
frequently in the dataset, but CCVL ultimately adapts δ and takes the optimal one.

receiving a reward of 0 for the rest of the trajectory. We consider an offline RL task where the learned
policy must generalize to a slightly different gridworld environment than the one it was trained on.
In our case, during offline training, the environment is stochastic, in that there is a 30% chance that
the agent travels in an unintended direction; however, during evaluation, that probability decreases
to 15%. This makes previously risky paths more optimal. This is where we anticipate that adaptive
methods such as ours will have a severe advantage. While CQL will act too conservatively, our
method CCVL can evaluate and change its level of conservatism on the fly.
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Figure 1: Left. Effect of α on normalized returns of CQL
and CCVL. Right. Adaptation of δ under CCVL.

We construct an offline dataset consist-
ing of 2.5k samples from a behavior
policy, which takes the optimal action
with probability 0.5, and a random ac-
tion otherwise. In Figure 1, we show
the returns of CQL and CCVL (nor-
malized by optimal return) for various
choices of α. We see that because
CCVL does not commit to a degree
of conservatism beforehand, it does
not suffer from overly conservative behavior as CQL does when α ≥ 0.2. For α = 0.2, we also
visualize the process of CCVL adapting δ over 10 evaluation trajectories, ultimately becoming less
conservative. Finally, in Figure 2, we see that for large settings of α, CQL is unable to recover the
optimal trajectory–instead learning the most likely trajectory in the dataset–whereas CCVL can.

7.2 Offline Training on Atari

Next, we evaluate our algorithm against prior methods on Atari games (Bellemare et al., 2013) with
offline datasets of varying size and quality, previously considered by Agarwal et al. (2020); Kumar
et al. (2020). We follow the exact setup of Kumar et al. (2022), including evaluating across the
same set of 17 games, using the same three offline datasets, with 1% and 5% of samples uniformly
drawn from DQN replay dataset introduced in Agarwal et al. (2020), as well as a more suboptimal
dataset consisting of 10% of the initial samples from the DQN dataset (corresponding to the first
20M observations during online DQN). Including this more suboptimal dataset allows us to evaluate
the degree to which each method can improve over the average performance in the dataset. Following
Agarwal et al. (2020), the Atari games have stochastic dynamics, with a 25% chance of “sticky
actions,” i.e., executing the previous action instead of a new one.

The REM and CQL baselines use exactly the hyperparamter configurations used by Kumar et al.
(2022). We refer to Table E.1 of Kumar et al. (2022) for a table of hyperparamters used. Across
all methods, we found it useful to perform DR3 regularization on the learned state representations
(Kumar et al., 2022). Following Agarwal et al. (2021), we report the interquartile mean (IQM)
normalized scores, where the normalization gives score 0 to a random policy and 100 to the nature
DQN (Mnih et al., 2015), and each score is computed using the average of 100 episodes. We also
report 95% confidence intervals (CIs) computed using stratified bootstrapping. The results across all
17 games for the three datasets are in Table 1. We also show complete per-game results in Tables 4-6.

Note that our method CCVL outperforms all baselines that we evaluate against. Though the average
improvement across all games is small, we see that CCVL sometimes outperforms REM and CQL
by over 30% for games such as Asterix or Breakout. We believe this is because REM and CQL can
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Data REM CQL AEVL Fixed-CCVL CCVL

1% 16.5 56.9 15.2 56.2 59.1
(14.5, 18.6) (52.5, 61.2) (53.0, 60.8) (52.0, 61.4) (51.8, 65.6)

5% 60.2 105.7 57.2 105.9 110.1
(101.9, 110.9) (55.8, 65.1) (50.9, 63.6) (102.3, 109.9) (101.2, 117.4)

Initial 10% 73.8 65.8 75.3 64.7 77.8
(69.3, 78) (63.3, 68.3) (68, 79.5) (62.7, 67.9) (69.1, 87.2)

Table 1: Final performance across 17 Atari games after 6.25M gradient updates on 1% data and
12.5M for 5%, 10% in terms of normalized IQM across 5 random seeds, with 95% stratified bootstrap
CIs in parentheses. REM and CQL results are from Kumar et al. (2022). Our method CCVL
outperforms prior baselines and ablations across all three datasets.

only act according to a fixed level of conservatism across all games, whereas CCVL is able to adapt
its level on a per-game basis. We also notice that CCVL outperforms both ablations, showing that
both confidence-conditioning and adaptation are important to the success of our algorithm. Though
AEVL is adaptive, because the ensemble members do not represent diverse hypotheses about how
to act optimally, adaptation is not useful. Perhaps unsurprisingly, Fixed-CCVL and CQL perform
similarly due to the similarities in the objective in Equation 5 and Equation 2. However, CCVL
greatly improves over Fixed-CCVL due to being able to adapt the δ used by the policy online.

7.3 Online Fine-Tuning on Atari

It is often realistic to consider that the value functions obtained by offline RL can be improved
additional online interactions, which we call online fine-tuning. Our CCVL method, when extended
to learn both lower- and upper-bounds as discussed in Section 4.3, is well-suited for this setting.
This is because our approach can leverage lower-bounds to act pessimistically offline, while using
upper-bounds for online exploration. Note that these experiments include additional training with
online RL for all methods. Like in previous experiments, all methods receive the same exact amount
of data, but must now perform online exploration themselves.

We select 5 representative Atari games, similarly considered in Kumar et al. (2020). We
first run offline training across all algorithms on the 1% dataset for 6.25M gradient steps,

Game REM CQL CCVL

Asterix 4.3 → 45.2 18.6 → 52.7 25.9 → 159.5
Breakout 1.2 → 204.2 2.8 → 193.7 2.7 → 202.7
Pong 36.4 → 113.4 100.0 → 111.6 105.2 → 117.9
Seaquest 13.9 → 51.2 24 → 60.7 30.9 → 77.8
Qbert 3.4 → 120.4 111.2 → 118.9 111.3 → 139.7

Table 2: Improvement in normalized IQM final performance after
625k additional gradient steps of online fine-tuning.

then run 625k steps of online RL,
and report the final performance.
We report the gain in normalized
IQM after online fine-tuning in
Table 2. Our method, CCVL,
achieves the best score across 4
of 5 games. Though CQL often
achieves the second best overall
score, it often sees the smallest
improvement, as conservatism is
detrimental to exploration.

8 Conclusion
In this work, we propose confidence-conditioned value learning (CCVL), a offline RL algorithm
that learns a value function for all degrees of conservatism, called confidence-levels. Contrary to
standard offline RL algorithms like CQL that must specify a degree of conservatism during training
via hyperparameter tuning, CCVL enables condition-adaptive policies that adjust this degree using
online observations. CCVL can be implemented practically, using slight modifications on top of
existing offline RL algorithms. Theoretically, we show that in a tabular environment, CCVL, for
any confidence-level, learns appropriate value that is a lower-bound at that confidence. Empirically,
we demonstrate that in discrete-action environments, CCVL performs better than prior methods.
We view CCVL as a first-step in proposing conservative offline RL algorithms that adjust their
level of conservatism, rather than having the level tuned beforehand via an opaque hyperparameter.
Many angles for further investigation exist. Theoretically, it remains to see whether the confidence-
conditioned values are lower-bounds under function approximation. Algorithmically, an important
direction of future work is to extend CCVL to continuous-action environments, which would involve
developing an actor-critic algorithm using confidence-conditioned policies.
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A Proofs

In this section, we provide proofs of theorems stated in Section 6. Recall from Section 3 that
ι = polylog(|S|, (1− γ)−1, N) is some constant. Our proofs rely on the following lemma, which
bounds the estimation error due to using the empirical Bellman operator:
Lemma A.1. For all state-action (s,a) ∈ S ×A such that n(s,a) ≥ 1, function Q, and δ ∈ (0, 1),
we have:

P

(∣∣∣B̂∗Q(s,a)− B∗Q(s,a)
∣∣∣ ≤√ ι log(1/δ)

n(s,a)

)
≥ 1− δ .

The above lemma is a well-known result in reinforcement learning (Rashidinejad et al., 2021), whose
derivation follows from Hoeffding’s inequalities.

A.1 Proof of Theorem 6.1

Without loss of generality, assume that δ1, δ2 ≤ δ are the solution to the outer maximization of
Equation 4 at convergence. Using Lemma A.1, we have that

Q̂(s,a, δ) = B̂∗Q̂(s,a, δ2)− α

√
log(1/δ1)

n(s,a) ∧ 1

≤ B∗Q̂(s,a, δ2)− α

√
log(1/δ1)

n(s,a) ∧ 1
+

√
ι log(1/δ1)

n(s,a)
≤ B∗Q̂(s,a, δ2) ∀s ∈ S,a ∈ A ,

holds with probability at least 1− δ1 for any α ≥ ι1/2. Using Lemma 6.1, we have

Q̂(s,a, δ) ≤ B∗Q̂(s,a, δ) =⇒ Q̂ ≤ (I − γP ∗)−1R

=⇒ Q̂(s,a) ≤ Q∗(s,a) ∀s ∈ S,a ∈ A ,

holds with probability at least 1− δ1 ≥ 1− δ, as desired.

A.2 Proof of Theorem 6.2

Recall from Equation 5 that at convergence, we have,

Q̂(s,a, δ) = argmin
Q

max
δ1,δ2

max
π

α

√
log(1/δ1)

(n(s) ∧ 1)

(
Es∼D,a∼π(a|s) [Q(s,a, δ)]− Es,a∼D [Q(s,a, δ)]

)
+

1

2
Es,a,s′∼D

[(
Q(s,a, δ)− B̂∗ Q̂(s,a, δ2)

)2]
+R(π)

≤ max
δ1,δ2

max
π

argmin
Q

α

√
log(1/δ1)

(n(s) ∧ 1)

(
Es∼D,a∼π(a|s) [Q(s,a, δ)]− Es,a∼D [Q(s,a, δ)]

)
+

1

2
Es,a,s′∼D

[(
Q(s,a, δ)− B̂∗ Q̂(s,a, δ2)

)2]
+R(π)

For any δ1, δ2 ≤ δ and π, we have that the solution to the inner-minimization over Q yields

Q̃(s,a, δ, δ1, δ2, π) = argmin
Q

α

√
log(1/δ1)

(n(s) ∧ 1)

(
Es∼D,a∼π(a|s) [Q(s,a, δ)]− Es,a∼D [Q(s,a, δ)]

)
+

1

2
Es,a,s′∼D

[(
Q(s,a, δ)− B̂∗ Q̂(s,a, δ2)

)2]
≤ B̂∗ Q̂(s,a, δ2)− α

√
log(1/δ1)

n(s)

[
π(a | s)
πβ(a | s)

− 1

]
.
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This arises from taking the derivative of the minimization objective, and solving for Q that makes the
derivative equal to 0. Note that we can simplify

α

√
log(1/δ1)

n(s)

[
π(a | s)
πβ(a | s)

− 1

]
= α

√
log(1/δ1)

n(s)

[
π(a | s)− πβ(a | s)

πβ(a | s)

]

= α

√
log(1/δ1)

n(s,a)

[
π(a | s)− πβ(a | s)√

πβ(a | s)

]
.

Without loss of generality, assume that δ1, δ2 ≤ δ and π are the solution to the outer-maximization.
Substituting the previous result into the equation for Q̂(s,a, δ), and applying Lemma A.1 yields,

Q̂(s,a, δ) ≤ B̂∗ Q̂(s,a, δ2)− α

√
log(1/δ1)

n(s,a)

[
π(a | s)− πβ(a | s)√

πβ(a | s)

]

≤ B̂∗ Q̂(s,a, δ2)− α

√
log(1/δ1)

n(s,a)

[
π(a | s)− πβ(a | s)√

πβ(a | s)

]
+

√
ι log(1/δ1)

n(s,a)
.

Note that the middle term is not positive if π(a | s) < πβ(a | s). However, we know that for
a∗ = argmaxa Q̂(s,a, δ) then π(a | s) ≥ πβ(a | s) by definition of π maximizing the learned
Q-values. Therefore, we have

V̂ (s, δ) = Q̂(s,a∗, δ) ≤ B̂∗ Q̂(s,a∗, δ2)− α

√
log(1/δ1)

n(s,a∗)

[
π(a∗ | s)− πβ(a

∗ | s)√
πβ(a∗ | s)

]
+

√
ι log(1/δ1)

n(s,a∗)

≤ B̂∗ V̂ (s, δ2) ∀s ∈ S

holds with probability at least 1− δ1 for α satisfying

α ≥ ι1/2 max
s,a

[
π(a | s)− πβ(a | s)√

πβ(a | s)

]−1

.

Then, using Lemma A.1, we have

V̂ (s, δ) ≤ B̂∗ V̂ (s, δ) =⇒ V̂ (s, δ) ≤ V ∗(s) ∀s ∈ S,

holds with probability at least 1− δ1 ≥ 1− δ, as desired.
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B Atari Results

In this section, we provide per-game results across all Atari games that we evaluated on for the three
considered dataset sizes. As mentioned in the main paper, we use the hyperparameter configuration
detailed in Kumar et al. (2022) for our Atari experiments. For completion, we also reproduce the
table in this section.

Table 3: Hyperparameters used by the offline RL Atari agents in our experiments. We follow the
setup of Agarwal et al. (2020); Kumar et al. (2022).

Hyperparameter Setting (for both variations)

Sticky actions Yes
Sticky action probability 0.25
Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Frame skip (Action repetitions) 4
Reward clipping [-1, 1]
Terminal condition Game Over
Max frames per episode 108K
Discount factor 0.99
Mini-batch size 32
Target network update period every 2000 updates
Training environment steps per iteration 250K
Update period every 4 environment steps
Evaluation ϵ 0.001
Evaluation steps per iteration 125K
Q-network: channels 32, 64, 64
Q-network: filter size 8× 8, 4× 4, 3× 3
Q-network: stride 4, 2, 1
Q-network: hidden units 512

Game REM CQL AEVL Fixed-CCVL CCVL

Asterix 405.7± 46.5 821.4± 75.1 421.2± 67.8 874.0± 64.3 1032.1± 86.7
Breakout 14.3± 2.8 32.0± 3.2 7.4± 1.9 28.7± 2.8 31.2± 4.3
Pong −7.7± 6.3 14.2± 3.3 −8.4± 6.8 14.7± 3.8 15.8± 4.4
Seaquest 293.3± 191.5 446.6± 26.9 320.6± 154.1 422.0± 21.9 551.2± 42.2
Qbert 436.3± 111.5 9162.7± 993.6 294.6± 100.3 9172.3± 907.6 9170.1± 1023.5
SpaceInvaders 206.6± 77.6 351.9± 77.1 224.2± 84.7 355.7± 80.2 355.4± 81.1
Zaxxon 2596.4± 1726.4 1757.4± 879.4 2467.8± 2023.4 1747.6± 894.3 2273.6± 1803.1
YarsRevenge 5480.2± 962.3 16011.3± 1409.0 4857.1± 1012.6 15890.7± 1218.2 20140.5± 2022.8
RoadRunner 3872.9± 1616.4 24928.7± 7484.5 5048.3± 2156.5 22590.3± 6860.2 26780.5± 10112.3
MsPacman 1275.1± 345.6 2245.7± 193.8 1164.7± 508.2 2542.3± 188.4 2673.2± 226.4
BeamRider 522.9± 42.2 617.9± 25.1 600.1± 57.3 645.3± 40.1 630.2± 37.8
Jamesbond 157.6± 65.0 460.5± 102.0 114.3± 56.7 462.1± 98.4 452.1± 153.9
Enduro 132.4± 16.1 253.5± 14.2 103.2± 10.1 244.8± 20.9 274.5± 23.8
WizardOfWor 1663.7± 417.8 904.6± 343.7 1640.7± 383.4 1488.1± 450.9 1513.8± 652.1
IceHockey −9.1± 5.1 −7.8± 0.9 −10.4± 4.9 −7.6± 1.1 −7.1± 1.6
DoubleDunk −17.6± 1.5 −14.0± 2.8 −16.8± 2.9 −14.1± 1.8 −13.4± 4.9
DemonAttack 162.0± 34.7 386.2± 75.3 183.2± 44.7 372.9± 81.7 570.3± 110.2

Table 4: Mean and standard deviation of returns per Atari game across 5 random seeds using 1% of
replay dataset after 6.25M gradient steps. REM and CQL results are from Kumar et al. (2022).
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Game REM CQL AEVL Fixed-CCVL CCVL

Asterix 2317.0± 838.1 3318.5± 301.7 1958.9± 1050.2 3256.6± 395.1 5517.2± 1215.4
Breakout 33.4± 4.0 166.0± 23.1 16.7± 5.6 150.3± 17.8 172.5± 35.6
Pong −0.7± 9.9 17.9± 1.1 −0.2± 4.7 17.6± 2.1 17.4± 2.8
Seaquest 2753.6± 1119.7 2030.7± 822.8 2853.0± 1089.2 2112.5± 856.4 2746.0± 1544.2
Qbert 7417.0± 2106.7 9605.6± 1593.5 5409.2± 3256.6 9750.7± 1366.8 10108.1± 2445.5
SpaceInvaders 443.5± 67.4 1214.6± 281.8 450.2± 101.3 1243.4± 269.8 1154.6± 302.1
Zaxxon 1609.7± 1814.1 4250.1± 626.2 1678.2± 1425.6 4060.3± 673.1 6470.2± 1512.2
YarsRevenge 16930.4± 2625.8 17124.7± 2125.6 17233.5± 2590.8 18040.5± 1545.9 19233.0± 1719.2
RoadRunner 46601.6± 2617.2 38432.6± 1539.7 45035.2± 3823.0 37945.7± 1338.9 42780.5± 4112.3
MsPacman 2303.1± 202.7 2790.6± 353.1 2148.8± 273.4 2501.5± 201.3 2680.4± 212.4
BeamRider 674.8± 21.4 785.8± 43.5 662.9± 50.7 782.3± 34.9 780.1± 40.8
Jamesbond 130.5± 45.7 96.8± 43.2 152.2± 58.2 112.3± 81.3 172.1± 153.9
Enduro 1583.9± 108.7 938.5± 63.9 1602.7± 135.5 913.2± 50.3 1376.2± 203.8
WizardOfWor 2661.6± 371.4 612.0± 343.3 1767.5± 462.1 707.4± 323.2 2723.1± 515.6
IceHockey −6.5± 3.1 −15.0± 0.7 −9.1± 4.8 −17.6± 1.0 −10.2± 2.1
DoubleDunk −17.6± 2.6 −16.2± 1.7 −19.4± 3.2 −15.2± 0.9 −9.8± 3.8
DemonAttack 5602.3± 1855.5 8517.4± 1065.9 2455.3± 1765.0 8238.7± 1091.2 9730.0± 1550.7

Table 5: Mean and standard deviation of returns per Atari game across 5 random seeds using 5% of
replay dataset after 12.5M gradient steps. REM and CQL results are from Kumar et al. (2022).

Game REM CQL AEVL Fixed-CCVL CCVL

Asterix 5122.9± 328.9 3906.2± 521.3 7494.7± 380.3 3582.1± 327.5 7576.0± 360.2
Breakout 96.8± 21.2 70.8± 5.5 97.1± 35.7 75.8± 6.1 121.4± 10.3
Pong 7.6± 11.1 5.5± 6.2 7.1± 12.9 5.2± 6.0 13.4± 6.1
Seaquest 981.3± 605.9 1313.0± 220.0 877.2± 750.1 1232.6± 379.3 1211.4± 437.2
Qbert 4126.2± 495.7 5395.3± 1003.64 4713.6± 617.0 5105.5± 986.4 5590.9± 2111.4
SpaceInvaders 799.0± 28.3 938.1± 80.3 692.7± 101.9 860.5± 77.3 1233.4± 103.1
Zaxxon 0.0± 0.0 836.8± 434.7 902.5± 895.2 904.1± 560.1 1212.2± 902.1
YarsRevenge 11924.8± 2413.8 12413.9± 2869.7 12508.5± 1540.2 11587.2± 2676.8 12502.6± 2349.2
RoadRunner 49129.4± 1887.9 45336.9± 1366.7 50152.9± 2208.9 44832.6± 1329.8 47972.1± 2991.3
MsPacman 2268.8± 455.0 2427.5± 191.3 2515.5± 548.0 2115.3± 108.9 2015.7± 352.8
BeamRider 4154.9± 357.2 3468.0± 238.0 4564.7± 578.4 3312.3± 247.3 3781.0± 401.8
Jamesbond 149.3± 304.5 89.7± 15.6 127.6± 414.8 91.9± 20.2 152.8± 42.8
Enduro 832.5± 65.5 1160.2± 81.5 959.2± 100.3 1204.6± 90.3 1585.0± 102.1
WizardOfWor 920.0± 497.0 764.7± 250.0 1184.3± 588.9 749.3± 231.8 1429.9± 751.4
IceHockey −5.9± 5.1 −16.0± 1.3 −5.2± 7.3 −14.9± 2.5 −4.1± 5.9
DoubleDunk −19.5± 2.5 −20.6± 1.0 −19.2± 2.2 −21.3± 1.7 −24.6± 6.2
DemonAttack 9674.7± 1600.6 7152.9± 723.2 10345.3± 1612.3 7416.8± 1598.7 12330.5± 1590.4

Table 6: Mean and standard deviation of returns per Atari game across 5 random seeds using initial
10% of replay dataset after 12.5M gradient steps. REM and CQL results are from Kumar et al.
(2022).
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