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Abstract

We consider data augmentation technique to improve data efficiency and general-
ization performance of reinforcement learning (RL). Our empirical study on Open
Al Procgen shows that the timing of augmentation is critical, and that to maximize
test performance, an augmentation should be applied either during the entire RL
training, or after the end of RL training. More specifically, if the regularization
imposed by augmentation is helpful only in testing, then augmentation is best used
after training than during training, because augmentation often disturbs the training
process. Conversely, an augmentation that provides regularization that is useful in
training should be used during the whole training period to fully utilize its benefit
in terms of both generalization and data efficiency. Considering our findings, we
propose a mechanism to fully exploit a set of augmentations, which automatically
identifies the best augmentation (or no augmentation) in terms of RL training
performance, and then utilizes all the augmentations by network distillation after
training to maximize test performance. Our experiment empirically justifies the
proposed method compared to other automatic augmentation mechanism.

1 Introduction

Reinforcement Learning (RL) from visual observations is a fundamental problem, because visual data
are among the most common form; e.g., video games [20]], board games [25}26] , and robots [29}[15].
However, images are high-dimensional, so RL from vision often suffers from poor sample efficiency
and poor generalization capability. due to the high-dimensional nature of images. To overcoming
these problems, regularization by data augmentation has been widely considered [17, [16]; in this
process, visual data are augmented by transformations that preserve the meaning or context, e.g.,
by cropping out unimportant parts of images, or by randomizing colors. Transformations resolve
the data scarcity, and also provide an explicit implementation of inductive bias for generalization
performance.

Use of the appropriate type of data augmentation significantly improves both data efficiency and gener-
alization performance [22]. However, the correct data augmentation scheme is highly task-dependent:
a poor choice can degenerate the generalization and destabilize the training [[17,122]]. Hence, a variety
of transformations have been developed to enlarge the set of augmentation methods [18} [11]]. Mean-
while, numerous regularization methods that use data augmentation e.g., self-supervised learning
[22] and representation learning [27, [11] have been proposed to stabilize training process with data
augmentation by reducing the interference between RL training and regularization. Previous work
addressed what data augmentation to use and how to use it, but the understanding of when to apply
it in the training process is limited. We test the hypothesis that applying augmentation method at
different epochs can have different effects. This is a non-trivial question, because the timing of data
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augmentation is not critical in supervised learning (SL) [1} 9], whereas a curriculum learning can
accelerate RL training [23]].

To address our main question, we devise two frameworks with different timings of augmentation:
Intra Distillation with Augmented observations (InDA) and Extra Distillation with Augmented
observations (ExDA) (Section [3). Implementing the regularization by augmentation in a form of
distillation to minimize interference in RL training, InDA interleave the distillation with RL training,
whereas EXxDA applies the distillation at the end of RL training. From experiments with InDA and
ExDA, we find that: Time does matter when using augmentation in RL in contrast to the case of SL
[9], in which the effect of data augmentation is relatively insensitive to timing. The difference mainly
comes from the fact that RL agent collects samples when training, whereas SL uses a fixed data set.
To be specific, the main findings from experiments are:

(i) If augmentation can accelerate RL training, then it must be applied as early as possible for
sample efficiency and generalization; e.g., cropping out an unnecessary part of an image
induces an efficient attention mechanism. To maximize sample efficiency, RL training must
be accelerated from the beginning. However, we observe that this kind of augmentation
often connotes generalization that is transferable only by a diverse experience in training
process, i.e., InDA fully exploits generalization gain whereas ExXDA does not. Hence, to
gain generalization, this augmentation must be applied during training.

(ii) If the regularization imposed by augmentation is helpful only in testing, then to ensure
sample efficiency, augmentation must be postponed to the end of RL training; e.g., augmen-
tation by changing colors is useless when the training task shows a single background, but
the testing task has multiple backgrounds. This type of augmentation may interfere with
RL training, but delay of augmentation does not degrade sample efficiency and increase
generalization ability. Hence, in this case, EXDA, which never disturbs RL training, is better
than InDA.

(iii) The optimal time to apply augmentation for each task can be determined automatically
by the upper confidence bound [3]] (UCB) based auto augmentation [22]] algorithm. We
show that the choice of no augmentation is necessary, because augmentation can disturb the
training. Thus, auto augmentation with a *no change’ (’identity’) function can be used as a
discriminator to identify the benefit of augmentation during training.

The above findings suggest effective timings of augmentation in RL. Our contribution also includes the
InDA and ExDA algorithms, in particular, which are equipped with the distillation augmentation (DA),
which address the independent interest in developing a regularization method that uses augmentation
with minimal interference with RL training. The potential advantages of the proposed method over
existing methods DrAC [22]], RAD [17], Rand-FM [18], are discussed in Section@

2 Related Works

Augmented experience in RL. To solve the problem of poor generalization and sparse data, a popular
approach is to generate diverse (virtual) experiences and let the RL agent learn from them. Domain
randomization is a technique to produce such experiences from a simulator of a targeted system
[29] 211 [23]]. Accurate simulators of practical systems are difficult to obtain, and this problem limits
the spectrum of applications. However, visual augmentation has no such limit because the method
uses simple image transformations such as cropping, tilting and color jitter, although applications
require a careful understanding of the targeted system to guide design of an appropriate image
transformer. A method of a curriculum learning for domain randomization, in which the difficulty is
gradually increasing [23]] provided insights that coincide with some of our findings. However, we
provide further understanding of the types of visual augmentation that should early or late during
training.

Regularization from augmented data in vision-based RL has been implemented in various learning
frameworks, including but not limited to representation [[L1} 28], self-supervised [22], and contrast
[27]. One proposed algorithm [22] applies the UCB algorithm [3]] to automatically select the most
effective augmentations over RL training, where each augmentation is considered as an arm and then
evaluate effectiveness of augmentation by using a sliding window average. The idea of adapting
augmentation concurs with our main message regarding the timing of augmentation. In [22f], 'not



augmenting’ is not an option, whereas our findings indicate that it should be. In addition, [22] does
not consider post augmentation followed by RL training, as in ExDA.

Different time-sensitivity of augmentation than SL. During deep learning, the early state of
training often has a significant effect |6} [1]. Therefore, we devised time-sensitive methods that adapt
to the progress of training, such as learning rate decay [32]] and curriculum learning [30]. Golatkar
et al. [9]] studied such a time-sensitivity of regularization techniques for SL, where the effect of
data augmentation in different time does not change much. We find that the time-sensitivity of
augmentation can be significant in RL. This contrast may occur because of the non-stationary nature
of RL, which SL does not have. Although a set of techniques originally developed for SL such
as convolutional neural network, weight decay, batch normalization, dropout and self-supervised
learning improve deep RL [13} 14, 19,7, 127,31} [12]], a thorough study should be conducted before
introducing a method from different learning framework, because we find the contrasting time-
sensitivities of data augmentation. This spirit is also shared with an application [[14] of implicit bias
in SL [10, 2} 8] to RL.

3 Method

Notation. We consider a standard agent-environment interface of vision-based reinforcement
learning in a discrete Markov decision process of state space S, action space A and kernel
P = P(8¢41,7t|5t,a:) which determines the state transition and reward distribution. The goal

of the RL agent is to find a policy that maximizes the expectation of cumulative reward Zi;ol ~yiry,
where t’ is terminating time and v € [0,1] is discount factor. At each timestep ¢, the agent se-
lects an action a; € A and receives reward 7; and an image 0,41 = O(s;41) € R¥** as an
observation(possibly partial) of the next state s;; ;. To augment observations, we consider image
transformation function ¢ : R¥** — R*** which maintains the dimension.

Baseline RL algorithm. As the baseline deep-RL algorithm, we use Proximal Policy Optimization
(PPO) [24] which is an on-policy actor-critic RL algorithm to learn policy my(a | o) and value
function Vj with network parameter 6. Storing a set of recent transitions 7+ := (o, at,7t, 0¢41)
in experience buffer D, the network parameter 6 is updated to maximize the following objective
function:

Lppo(0) = Lx(0) — aLy (0) , 1

where « is a hyperparameter and some regularization terms are omitted. The clipped policy objective
function L, and value loss function Ly, are defined as:

L (0) = E[min(pi(0) Ar, clip(pe(0), 1 — .1 + €) Ay) )
Ly (6) = B[ (Va(o) - V*®)*] , 3)

where the expectation [ is taken with respect to 7 ~ D, 6,4 is the network parameter before

the update, p;(#) is the importance ratio % A, is advantage from Generalized Advantage
old g g

Estimator [24]].

Overall framework. We propose two frameworks: Intra Distillation with Augmented observations
(InDA) and Extra Distillation with Augmented observations (ExDA). To be specific, both of them use
PPO for RL and the Distillation with Augmented observation (DA) (Section , for regularization,
although our frameworks can use other RL algorithms and augmentation-based regularization. InDA
(Section[3.2)), interleaves PPO and DA, whereas ExDA (Section [3.3), performs PPO first then DA.
We design InDA and ExDA to conduct either DA or PPO in each epoch (Figure 1).

3.1 Distillation with Augmented observations (DA)

DA regularizes reinforcement learning by using distillation with data augmentation, in which we train
the network to output the same policies and values for given both original and augmented observations.
To do so, we fix the network 6,4 to be distilled and store observation o;, which is sampled from

T4 i D. Their augmented observations are represented as ¢ (o) , where ¢ : R"*™ — R"*" is a
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Figure 1: An illustration comparing InDA and ExDA

transformation function. For given D, 6,4 and ¢, we then train a network 6 to minimize the following
distillation loss function:

Lpa(0) = Lpp(8) + Lvp(9) , 4)

where Lpp is Kullback-Leibler divergence between policies 7y, and 7y and Lyp is the mean-squared

old

deviation between value functions Vj,,, and Vj, i.e.,
Len(6) = Bo,~p [KL[mo,4(l0r), 7o (-[0})]] | (5)
Lvp(60) = Eo,wp [(Vio(01) = Vo(0}))?] - (6)

Here o] is either the original observation o, or the augmented one ¢(0;) with equal probability. The
proposed method not only matches the outputs of 6 for o; and ¢ (o) and also conserves the behavior
of 0 for o; to be identical to that of 0.4 for o;. This behavior can reduce the interference between
reinforcement learning and distillation. Indeed, the performance of RL training can be degraded
by distillation without careful consideration on the interference; e.g., [22] with distillation loss
of Eo, ~p [KL[mo(-|0r), mo (| ¢(0¢))]] and Eo, ~p [(Vo(or) — Va(é(0r)))?] can change the behavior
learned in RL training. Separating distillation from RL training provides substantial performance
gain (Table[I)) compared to other existing methods e.g., [22} [L1] (Section@.T). In addition, the target
behaviors (g, (+|o) and Vp,, (o)), which are used several times during the distillation, are fixed in
DA, so we can reduce the computational cost by pre-computing them.

3.2 Intra Distillation with Augmented observations

InDA (Algorithm [I)), iteratively optimizes PPO and DA, with PPO and DA explicitly separated. Such
a separation reduces their interference [[L1], whereas they are often optimized simultaneously in
other methods [22]]. This separation increases the robustness of our algorithm, in addition to the
conservative distillation loss functions in (5) and (6). We varied the timing of augmentation by
adjusting the time S of starting DA and time 7" of terminating DA. We can control the frequency
and timing of applying distillation with hyperparameters I, S” and 7”, where we perform DA after
each I rounds of RL training only if the number RL training rounds n is in the interval of [S’, T"] (or
equivalently, the number of timesteps that have been observed is in the range of [.S, T']). We provide
further details on InDA in supplementary material.

3.3 Extra Distillation with Augmented observations

ExDA (Algorithm [2)) performs the distillation after the end of RL training, where the lengths of DA
and RL training are parameterized by M and N, respectively. Computational cost can be reduced
by replacing Lpa with Lpp in DA, because value function is not necessary after DA. We check
empirically that this reduction does not degrade RL performance. We also consider re-initialization
after pre-training, because we expect that diminishing of non-stationarity can improve generalization,
as mentioned in [14]. However, training performance is not preserved after re-initialization because
Tp,,, 1s not completely distilled by low data diversity. Thus, we do not use re-initialization for DA.
We leave more interesting details in the supplementary material.



Algorithm 1 InDA
1: Hyperparameter: N, I, ¢ and (S’,T”) in rounds (or (S, T) in time steps)

2: Initialize 6 close to origin.
3: forn=1,2,...,Ndo

4: /I RL training
5. Store sampled transitions to D;
6:  Optimize RL objective Lppo () with D;
7:  // Distillation
8: if ne€[S’,T'] and mod(n — 1,I) = 0 then
9: Store Ogq < 0;
10: Minimize Lpa(0) for D, 44 and ¢;
11:  endif
12: end for
Algorithm 2 ExDA

1: Hyperparameter: N, M, ¢

2: Initialize 6 close to origin.

3: //Pre-training phase with RL algorithm
4: forn=1,2,...,N do

5:  Store sampled transitions to D;

6:  Optimize RL objective Lppo () with D;
7: end for

8: Store Oy < 0,

9: // Distillation at the end of RL training
10: form =1,2,..., M do

11:  Minimize Lpa () for D, 6,14 and ¢;
12: end for

3.4 Auto Augmentation Discriminator

The training benefit by augmentation differs depending on the task. This dependency complicates the
choice of whether to use InDA or ExDA for augmentation. Hence, we devise an auto-augmentation
method, called UCB-InDA, inspired by UCB-DrAC [22]], where each augmentation is corresponded
to an arm in multi-armed bandit problem and assessed its gain in training with upper confidence bound
(UCB) [3ll. More formally, the set of arms is the set of image transformations ® = {¢y,..., ¢}
which includes the identity function also. The inclusion of identity function is an important difference
than UCB-DrAC [22] since we observe that using augmentation sometimes needs to be postponed
after RL training for the sake of better sampling complexity and test performance. Then, the gain
of the augmentation G(s) at the sth sampling is the average return during Interval I, where the
augmentation is injected via InDA rather than the distillation method in UCB-DrAC [22]]. The return
is the sum of estimated advantage A and predicted value Vj. The general UCB algorithm uses a mean
of rewards from the entire sampling process, but in RL, the distribution of return is non-stationary
[22]), so we use the window-average gain G (s) as a reward of each transformation ¢. Hence, inspired
by UCBI algorithm [3], UCB-InDA selects actions each time using the sum of a window average
gain G4 (s) and a degree of exploration:

~ 1
P = ariglbax lG(z,(s) +c ]i)fii;] (7

where c is the UCB exploration coefficient and Ny(s) is the selected number of each augmentation
after the sth sample. We find ¢ with in adaptive manner, because the appropriate c is different for
each training as a result of drastic change of return during the transient time (details in supplementary
material). We remark that compared to UCB-DrAC [22], the proposed UCB-InDA has subtle but
important differences summarized in two folds: (i) the inclusion of identity transformation (i.e., no
augmentation) and (ii) the distillation with augmentation via InDA. The gain of each component is
numerically studied in Section 4]



4 Experiment

Setups. We evaluate the time-sensitivity of applying augmentation on the OpenAl Procgen benchmark
of 16 games, [S]], where at each time ¢, visual observation oy is given as an image of size 64 x 64, and
contains full or partial information on the system state. A training or testing environment is defined
as a pair of game and mode, where mode determines a set of levels and backgrounds shown in the
environment. As the training environment, we use one of two modes: easy and easybg. Easy mode
provided by Cobbe et al. [S]] contains a set of 200 levels, where an agent can learn basic dynamics of
game and experience various backgrounds. To see clear advantage from visual augmentation, we
further easicate easy mode and devise easybg mode of which only difference from easy mode is
showing only a single background. To evaluate generalization capabilities, we use two modes: test-bg
and fest-lv, which contain unseen backgrounds and levels, respectively, in addition to the mode that
we use for training. The details of modes in our evaluation is provided in supplementary material.

For clarity, we mainly focus on two visual augmentations, each of which has clearly distinguishing
inductive bias:

(a) Random convolution transforms an image by passing a single convolutional layer initialized
randomly [18]. Augmentation with this can impose invariant behavior on color changes, and
thus is anticipated to provide strong generalization on background changes.

(b) Crop leaves a randomly-selected rectangle and zero-pads the rest of the image [22]. This
augmentation is particularly useful in the fully-observable scenarios, because it imposes an
efficient attention mechanism.

We also report the result with other visual augmentations including color jitter, gray and cutout color
in the supplementary material, where the same main messages can be found. All results in the main
paper are averages over five runs.

Augmentation | PPO Oracle | DrAC RAD Rand-FM | InDA ExDA
Rand con Train 1.00 0.85 0.88 0.98 0.88 0.88 0.98
v Test-bg | 1.00  2.33 1.86 1.08 1.04 1.92 2.11

Color iitter Train 1.00  0.85 0.95 0.94 - 0.96 0.98
J Test-bg | 1.00 2.33 1.44 1.37 - 1.43 1.48
Gravscale Train 1.00 0.85 0.93 0.94 - 0.95 0.99
y Test-bg | 1.00  2.33 1.03 1.04 - 0.97 1.13
Train 1.00 0.82 0.82 0.72 - 0.76 0.94

Cutout color ~ Test-bg | 1.00  2.51 1.27 1.33 - 1.19 1.53
Test-Iv | 1.00 - 0.83 0.69 - 0.69 0.93

Cro Train 1.00 - 1.08 0.28 - 1.25 0.91

P Test-lv | 1.00 - 152 0.46 - 1.80  1.09

Table 1: Train and test score of InDA and ExDA on Open Al Procgen, compared to baselines PPO,
Oracle, Drac [22], RAD [17], Rand-FM [18]]. Oracle is trained with test backgrounds. Boldface
indicates the best method, and red indicates Oracle. EXDA outperforms other baselines except when
we use crop, which is evaluated on unseen levels.

4.1 Improving generalization on Procgen

We compare the train and test performances of InDA and ExDA with those of several baselines
(Table [T). Every method are trained on 200 levels, using easybg mode, which contains a single
background. InDA and other baselines are trained for 25M time steps. ExDA is trained with PPO
for 20M time steps, then distills for 30 epochs with 0.5M time steps, after training with PPO for
20M time steps. Test-bg is used for random convolution, color jitter, grayscale and cutout color,
which give information of color diversity. 7est-Iv is used for cutout color and crop, which give a
consistency of partial observation. Further details about implementation and hyperparameter are
described in the supplementary material. ExXDA outperforms other baselines with most augmentation



on test-bg. Especially, ExXDA with random convolution has a comparable performance to Oracle,
despite being trained on a single background. Moreover, EXDA consumes only 0.5M time steps to
inject knowledge from augmented images, whereas the others use all of the training data. We describe
the computation issue about both ExXDA and InDA in the supplementary material. However, InDA
have a better train and test performance with crop on test-lv. These results demonstrate that each
combination of environment and augmentation has a suitable time at which to apply augmentation.
Thus, we analyze the proper condition to use InDA or ExDA in the next section.
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Figure 2: Comparison according to timing of augmentation with InDA: (S, T') are hyperparameters
of InDA for the start and terminal time step of distillation. As an augmentation method, InDA uses
random convolution on Jumper, and uses crop on Bigfish. Test results are evaluated on test-bg
(unseen backgrounds) and test-1v (unseen levels). Shaded region: standard deviation of five runs.
The difference between Jumper (easybg) and Jumper (easy) shows that the benefits of data efficiency
and the maintenance of generalization can be changed by the diversity of factors in observations.
Augmentation can accelerate the training, such as Bigfish. Furthermore, delayed augmentation
commonly improves generalization as much as fully-used cases.

4.2 Time dependency of augmentation in RL

In this section, we study when and how the agent is particularly helped by augmentation during RL
training. For this purpose, we varied DA time (S, T) of InDA to see how generalization’s effect
depends on the time at which augmentation is used. We evaluate InDA with seven different pairs
of start and terminal time of distillation (.S, T'), where the number of entire timesteps used is 25M:
(0, 25), (0, 5), (0, 15), (10, 0), (20, 0), (10, 15), (0, 0). Note that InDA with (S, T') = (0, 0) means
RL training only without augmentation, i.e., vanilla PPO. We explain with Jumper and Bigfish in
the main paper, and experiments on other environments are described in the supplementary material.
Figure 2] represents three environments, Jumper with easybg (Figure 2(a)| 2(d)) and easy (Figure 2(b)}
mode and Bigfish (Figure with easybg mode. In the following, we call the curve
using a parameter (S,7T).

Interrupted augmentation . To determine how generalization would change after regularization
stopped, we stop the DA during training, such as (0, 5), (0, 15). Jumper with easybg mode rapidly
lost generalization performance (after interruption at both (0, 5) and (0, 15)) (Figure , whereas
Jumper with easy mode do not (Figure 2(e)). InDA, which uses augmentation throughout training,
performs better than PPO during training (Figure 2(b)), but augmentation does not improve the



training performance (Figure 2(a)). These results mean that the random convolution alleviates the
difficulty by various backgrounds.

On the contrary, random convolution can induce a growing difficulty by increasing the number of
factors on a single background. Therefore, the generalization rapidly decreases after augmentation is
interrupted during training with a single background because the learning direction toward general-
ization about various backgrounds is not helpful to train. In contrast, the training can help when their
difficulty is solved by augmentation (Figure [2(c)). Thus, in deep RL, neural networks maintain
the regularization when augmentation helps the training.

Regularization biases toward regions of loss landscape can have several equivalent generalized
solutions [9]. For the same reason, augmentation regularizes a neural network model by imposing a
bias toward generalization in deep RL. Moreover, in Bigfish, (0, 5) and (0, 15) increase the training
performance and generalization, similar to (0, 25), although they use augmented observations only
for a while. Therefore, the augmentation may not be necessary during the whole training process in
some tasks.

Delayed augmentation . To determine when we start to use augmentation, we delayed its use
until after I0M or 20M steps. The generalization rapidly increases after using augmentation at 10M
and 20M (Figre 2(d)} 2(e)). Although we impose augmentation late, the augmentation helps the
generalization regardless of the start timing. In SL, delayed augmentation cannot achieve as much
as using augmentation during whole training [9]]. However, (10, 25) improves the generalization to
be comparable with that of (0, 25), which use augmentation throughout training; this result differs
from the case of supervised learning. However, when augmentation noticeably helps the training, the
performance achieved using delayed augmentation may not catch up (Figure 2(e)) to the performance
achieved using early augmentation (Figure 2()), because the RL gradually improves the policy and
trajectory, as a result of its Markov property. Furthermore, the number of samples is limited for RL,
but not for supervised learning, so using augmentation from the initial time is more critical than
supervised learning if augmentation helps the training.

However, we confirm that delayed augmentation can induce bias toward generalization after the inter-
ruption, although the augmentation is not used during the initial transient time. For example, curves
(10, 15) (Figure 2(e)} E(F)) equivalent results to those of with (10, 25) even after 15M time steps. This
result indicates that a bias toward generalization can occur regardless of the timing of augmentation,
but usage from the start is essential when the augmentation gives important knowledge during training.
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Figure 3: Comparison of train performance according to background diversity on Heist easybg
when InDA use random convolution in [3(a)) We describe the degree of background diversity in
numbers, e.g., PPO(1). As the diversity of the background increases, the performance of the PPO
approaches that of InDA. Figure [3(b)| show the selected number of augmentations by UCB on Heist.
We compare two UCB-InDAs, w/ and w/o identity function with PPO, InDA, ExDA, UCB-ExDA
on Heist easybg in Figure UCB-InDA is trained after UCB-InDA w/ identity, we use random
convolution as a data augmentation in InDA, ExDA. Solid line: train performance; dotted line: test
performance. ExDA achieves larger test performance than InDA by preserving train performance.
Moreover, UCB-InDA w/ identity outperforms UCB-InDA w/o identity in the training.



When ExDA should be used. ExDA have different response than other methods to the timing of
applying augmentation. Most methods combined with data augmentation in RL use augmentation
throughout RL training. We show that augmentation rapidly increases the generalization performance
in spite of the late usage of augmentation (Figure[2). These results motivate suggest that generalization
by augmentation after training in RL.

The performance of PPO approached that of InDA as the diversity of the background increased
(Figure[3(a)). This result means that the various backgrounds increase the difficulty of training, and
also that random convolution has a similar effect to diverse background images. In contrast, ExDA
preserves its training score after pure RL training. These gaps in training are quantified by the test
performance.

The two analyses suggest that ExXDA is appropriate in environments in which training is difficult as a
result of various factors such as background, and object color in the image. Thus, for generalization,
ExDA should be used when only one background is present.

When InDA should be used. ExDA does not always guarantee improvement of generalization.
InDA is better generalized to unseen levels with crop than ExDA is (Table[I)). EXDA cannot surpass
InDA in some environments, for two reasons.

First, the diversity of data has an important ability to generalize about unseen levels [5]. InDA is
trained with various observations during training, whereas ExDA applies the augmentation only on a
pre-trained policy’s trajectories. Thus, augmentation after training may have difficulty overcoming
the limitation of data diversity when the generalization needs the diversity of data distribution.
Second, InDA can accelerate the training such as so ExDA cannot overcome the gap in training
performance. Thus, InDA should be used in both cases.

How to choose between InDA and ExDA. InDA is appropriate when the augmentation methods
help to train, and ExDA is appropriate when the augmentation methods increase the difficulty of
training. However, we cannot know in advance whether certain augmentation helps the training. Thus,
we use UCB-InDA to automatically determine the necessity of the augmentation during training.
UCB selects the identity function most often (Figure [3(b)). This means that other augmentations
are not helpful to train on Heist(easybg), so ExXDA is more appropriate than InDA. Furthermore,
UCB-InDA w/ identity performs better than w/o identity. It suggests that identity should be included
in the UCB action, because of the environments do not need augmentation during training. In contrast,
PPO is the same as InDA with identity, which is the best transformation on Heist(easybg). Thus,
we can use UCB-InDA as pre-trained method for ExDA, e.g., UCB-ExDA, because UCB-InDA w/
identity achieves comparable train performance to that of PPO (Figure[3(c)). As the result, we can
automatically select InDA or ExDA appropriately for each task.

5 Discussion

We have showed that the timing of visual augmentation affects the performance of RL, although
not affect the performance of SL. The difference is a result of non-stationary data generation in
RL. If the regularization imposed by augmentation is useful only for testing, then augmentation
should be delayed to the end of RL training than being use throughout learning, because sample and
computation complexity since it can disturb RL training. However, an augmentation that provides
useful regularization in training should be used during the whole training period to fully utilize its
benefit in terms of both generalization and data efficiency. We believe that our findings provide
useful insights into auto-augmentation to adjust the use of augmentation round-by-round, where
DA at the end of RL training would provide substantial gains as ExXDA does. However, design of
auto-augmentation for RL remains an open problem, because the gain from augmentation has highly
non-stationary characteristics, so its evaluation is challenging.
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