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ABSTRACT

We present a systematic framework designed to enhance human-robot perception
and collaboration through the integration of logical rules and Theory of Mind
(ToM). Logical rules provide interpretable predictions and generalize well across
diverse tasks, making them valuable for learning and decision-making. Lever-
aging the ToM for understanding others’ mental states, our approach facilitates
effective collaboration. In this paper, we employ logic rules derived from obser-
vational data to infer human goals and guide human-like agents. These rules are
treated as latent variables, and a rule encoder is trained alongside a multi-agent
system in the robot’s mind. We assess the posterior distribution of latent rules us-
ing learned embeddings, representing entities and relations. Confidence scores for
each rule indicate their consistency with observed data. Then, we employ a hierar-
chical reinforcement learning model with ToM to plan robot actions for assisting
humans. Extensive experiments validate each component of our framework, and
results on multiple benchmarks demonstrate that our model outperforms the ma-
jority of existing approaches.

1 INTRODUCTION

Humans are natural mind-readers. The capacity to deduce what others are thinking or wanting from
brief nonverbal interactions, called Theory of Mind (ToM), is crucial to our social lives (Mao et al.,
2023; Fuchs et al., 2023).We know not only how to take actions to interact with the world but,
moreover, how to purposefully influence the thoughts of other humans (collaborators or opponents)
to achieve our goal (Chandra et al., 2020). This intellectual ability enables humans to work smoothly
and strategically with other humans, which distinguishes humans from other lower-level animals. An
intriguing question arises:

Could we endow AI agents with this ability so that the AI agents can be more intellectually human-
like?

Particularly in a human-AI collaborative task setting, if AI agents can adeptly reason about the
unobservable mental states of humans, they could engage more effectively in cooperative tasks,
facilitating seamless human-AI interactions (Rabinowitz et al., 2018; Grassiotto & Costa, 2021). For
example, a self-driving car equipped with the ToM can better communicate with other human drivers
nonverbally. Faced with sophisticated or ambiguous traffic scenarios, ToM enables self-driving cars
to reason about the mental states, specifically the beliefs, of human drivers sharing the road (Patel
& Chernova, 2022). For another instance, suppose one day we aim to develop an AI agent to aid
and take care of elder people, it requires understanding human nonverbal communication, such as
hand gestures, or eye contact, to understand the intentions or desires of humans. An agent equipped
with ToM is endowed with the ability to interpret these cues more effectively. To achieve this
goal, the robots must develop two key skills in order to help humans effectively: 1) comprehend
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Figure 1: Using logical rules (shown in the black box) for human action perception.

human behavior (called social perception); 2) reason critically about the environment and organize
its actions to work with humans (Puig et al., 2020). Researchers typically refer to the two agents
engaged in behavior modeling as “actor” and “observer”. The actor behaves in some way based
on his own perception of the world. The observer watches the actor and forms an understanding
of the mental state held by the actor and/or the resulting actions that the actor intends to take. In
the simplest case, the actor behaves deterministically, and the observer has full knowledge of the
world external to the actor (Wei et al., 2018). In more complex cases, observers can have partial
knowledge, and agents can be both actors and observers at the same time, simultaneously modeling
each other.

Complex social movements often have underlying logic that is clear and generalizable. Logic rules
serve as high-level representations for reasoning, and guiding actions in specific scenarios (Duan
et al., 2022; Yang et al., 2017). These interpretable rules not only aid in understanding inference
outcomes but also enhance robustness in diverse situations. The burgeoning field of neurosymbolic
AI exemplifies this trend, merging neural networks with Symbolic AI to foster robust and adaptable
models. It maintains the validity of logic rules across various contexts without retraining, contrasting
with methods reliant on specific entity embeddings (Kautz, 2022; d’Avila Garcez & Lamb, 2020).
Figure 1 illustrates an example of rules. If new facts about more scenes or locations are added
to the knowledge base, the rule about ”Drink(person,water)” will still be usefully accurate without
retraining. The same might not be true for methods that learn embeddings for specific knowledge
base entities.

In this paper, we leverage probabilistic logical reasoning to generate generalized knowledge about
an agent’s goal in new environments, enhancing social perception and human-AI collaboration. This
approach, grounded in probabilistic logic, is adept at handling uncertainties and modeling complex
data. Our methodology intertwines perception and collaboration learning, where perception informs
logic rule learning, and logical reasoning guides collaborative efforts. This reciprocal enhancement
offers two key advantages: (i) Rule-based Probabilistic Social Perception: Our model treats each
hidden rule as latent variables based on probabilistic assessments. These rules capture both object
relations and event sequence constraints. (ii) Dynamic Collaboration: Our human-like agent adapts
its subgoals and beliefs in real-time, guided by the latest observations and logical rules. It formulates
and executes concurrent plans alongside other agents, ensuring robust task performance in partially
observable environments and generating human-like behaviors.

2 RELATED WORK

Behavior understanding. The task of recognizing and interpreting human activities faces sig-
nificant challenges due to the variability in execution styles and the complexity of visual stimuli.
Previous research primarily centered on visual behavior modeling (Chen et al., 2021) and trajec-
tory prediction (Cao et al., 2023; Gupta et al., 2018; Alahi et al., 2016; Chandra et al., 2020), with
some studies focusing on group activities and plans (Ibrahim et al., 2016; Shu et al., 2015; Choi &
Savarese, 2013). Our approach diverges from these works by focusing on activity understanding that
infers mental states (e.g., intentions, desires) from behaviors, aligning closely with computational
Theory of Mind (Jara-Ettinger, 2019; Rabinowitz et al., 2018; Nguyen et al., 2022). We aim to
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synergize behavior understanding with logical reasoning, enhancing the machine’s comprehension
of human actions through a unified, interactive framework.

Logical reasoning. The integration of logical reasoning with deep learning architectures has gar-
nered considerable interest (Kautz, 2022; d’Avila Garcez & Lamb, 2020). Most existing algorithms
develop differentiable modules based on known relationships for deep networks to learn (Zhou,
2019; Mao et al., 2023; Evans & Grefenstette, 2018). Innovations in this field include learning nu-
merical rules from knowledge graphs (Wang et al., 2019b), differentiable maximum satisfiability
solvers (Wang et al., 2019a), and neural-symbolic reasoning models (Tang et al., 2022). However,
these models often simplify relations and rely on basic triplet-based embeddings. Our approach ad-
vances this field by embedding more intricate first-order logical rules and jointly modeling entities
and relations.

Human-robot interaction. Historically, human-robot interaction studies have been confined to
controlled lab settings (Goodrich & Schultz, 2007; Dautenhahn, 2007). Notable developments in-
clude frameworks for learning from joint-action demonstrations (Nikolaidis et al., 2015) and modu-
lating robot behavior based on user actions (Rozo et al., 2016). Other approaches, like natural lan-
guage interaction (Gervasi et al., 2020; Ogenyi et al., 2021), focus on creating user models within
a Partially Observable Markov Decision Process (POMDP) framework. Our research departs from
these methods by utilizing logic rules to infer dominant human goals and efficiently associate new
users with types in diverse environments, streamlining the learning process.

3 MODEL

3.1 PROBLEM STATEMENT

In this system, each individual represents an integrated agent who formulates their actions based
on their individual goals, their beliefs about the possible actions of another agent, and a complete
observation of the environment. The robot, on the other hand, has access to a single demonstration
of a human performing the same task in the past, as well as a complete observation of the environ-
ment. Consequently, at each step, the robot receives observations from the system and issues action
commands to control the avatar within the environment. Formally, each task is defined by the per-
son’s goal g (a set of goal predicates), a demonstration of Alice taking actions to achieve that goal
D = {st,at}Tt=1 (a sequence of states st and actions at) and a new environment where the robot
collaborates with the person and help achieve the same goal as quickly as possible. During training,
the ground-truth goal of the person is shown to the robot as supervision; during testing, the robot no
longer has access to the ground-truth goal and thus has to infer it from the given demonstration.

3.2 LOGIC-BASED MODEL

Consider a set of objects, denoted as C. For the object c ∈ C, its trajectories and the key actions
observed up to t can be summarized as a sequence of temporally ordered eventsHct , where t ∈ R+ is
the time. The spatial-temporal predicates include spatial-temporal property predicates and spatial-
temporal relation predicates. Specifically, the spatial-temporal property predicates are defined as
X(·), which illustrates some intrinsic properties of objects, such as ”move slowly”. The spatial-
temporal relation predicates (e.g. “book” is inside the “bookshelf”) are introduced to define the
spatial and temporal relations of two entities. It is noteworthy that all these boolean predicates can
be converted to probabilistic ones. We can soften these logic functions by kernel functions with
learnable parameters to tolerate uncertainties in data.

In general, the logic rule in our paper is defined as a logical connective of predicates, including
property predicates and spatial-temporal relation predicates. For example, a sensible rule will look
like:

Watch(person, TV )←Walk to(person, bedroom)
∧
Switch on(person, TV )∧

Sit on(person, sofa)
∧
Move slowly(person)

(1)

which means that a person walked slowly into the bedroom, switched on the television, and sat on
the sofa. From this, we can infer that the person intends to watch TV. This logical rule may seem
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Figure 2: The overview of our proposed framework. In the first stage, given the historical motion trajectory of
a person on a scene, we first utilize the symbolic graph to represent objects as nodes and the spatial relationship
between them as edges. The rule encoder generates logic rules with their scores to infer the goal iteratively that
the person was trying to achieve. In the second stage, the AI agent is asked to work together with the person to
achieve the same goal in a new environment. The new scene is also encoded as graphs, which will pass through
the propagation module to generate the AI agent’s actions based on its latest observation and logic rules.

simple, but it applies to various different scenarios because most people, when wanting to watch TV,
go through these stages.

In our study, we aim to develop a model that is informed by logical reasoning, with the capability to
predict and rationalize the agent’s actions. This model utilizes a query vector v = (a, s), comprising
the action a and the state s, along with the historical trajectory τt observed up to the current timestep
t. The integration of these elements enables our model to provide insightful explanations for the
agent’s behavior within the given context.

The main idea of logic-informed feature is to construct the model features using logic rules. Intu-
itively, given the entire trajectories τt and the query v = (a, s), the body part of the rule defines
the evidence to be selectively gathered from history to deduce the next state (e.g. open, switch-on)
for query entity. Assume that for each possible symbolic state g ∈ G, where g serves as the head
predicate and G represents the set of head predicates.

Given an individual rule, we propose to build the feature that is conditional on history and query as
ξ(g | v, τt). Suppose there is a rule set Fg , where the event g is the head predicate (goal). All the
rules will play together to reason about the occurrence of g. For each f ∈ Fg , one can compute
the features as above. Given the rule set Fg , we model the probability of the event g as a log-linear
function of the features: pα(g | v, τt) ∝ exp(

∑
f∈Fg

αf ·ξf (g | v, τt)), whereα = [αf ]f∈F ≥ 0 are
the learnable weight parameters associated with each rule. All the model parameters can be learned
by maximizing the likelihood. We optimize the logic-based model by maximizing the likelihood of
data as E(g,v,τt) [logEpθ [pα (g | v, τt)]], where θ and α are learning weights. The detailed learning
process and graph propagation module Liao et al. (2019) can be found in the Appendix. Then, we
can use these interpretable logic rules to reason the actions of the human and the agent in the ToM
collaboration framework.

3.3 HIERACHYCAL TOM COLLABORATION FRAMEWORK

Iterative Goal Inference By leveraging the trajectory information up to the current moment, we
can derive the probability distribution for the next potential predicate state, expressed as:
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g∗ = argmax
g

pα(g|st, atH , τ t) = argmax
g

exp
(∑

f∈Fg
αf · ξf (g | st, atH , τ t)

)
∑
g′ exp

(∑
f∈Fg′

αf · ξf (g′ | st, atH , τ t)
) . (2)

Here, g∗ denotes the most probable goal inferred by the robot, which both the robot and the human
strive to achieve within the next time horizon. Additionally, atH signifies the human action at time

t. Fg represents all possible rules in the rule set, and
∑
g′ exp

(∑
f∈Fg′

αf · ξf (·)
)

is the partition
function used to aggregate the probabilities of paths leading to the same goal.

The primary objective of this collaborative framework between the human and the robot is to identify
the policy function π for the robot and assist people in accomplishing tasks within their capabilities.
Additionally, the robot is required to consider the human’s cognitive processes and construct a men-
tal model of the human. This model enables the robot to anticipate the human’s policy and enhance
collaboration through deeper understanding and consideration.

Policy Estimation To formulate the policies for both the robot agent and the human agent model
in the robot’s mind, we employ the Boltzmann rationality model, where β serves as the rationality
coefficient for the agent. This coefficient quantifies the extent to which the agent’s choices are
focused around the optimal decisions. As β approaches infinity, the agent behaves in a manner akin
to a perfectly rational agent, meticulously optimizing its choices. Conversely, as β approaches 0, the
agent becomes increasingly indifferent to the quality ofQ. The collaboration is purely decentralized,
with all agents acting based solely on their local observations and without any direct communication,
except for ToM inferences from trajectory information. So the policy function for the agent i can be
expressed as follows:

πg,i(a | st, ωt, τ t) =
exp(β

∑
ω∼Ω b

t(ω−i | τ t)Qg(a, st))∑
a′∈A exp(β

∑
ω∼Ω b

t(ω−i | τ t)Qg(a′, st))
. (3)

Here, bt(ω−i | τ t) represents the agent’s belief, a probability distribution used to estimate the private
state ω−i of the other agent based on this agent’s trajectory. Qg(a, st) is the Q-function, dependent
on the state and action, and can be represented as:

Qg(a, s
t) =

∑
f∈Fg

αf · ξf (g | a, st, τt). (4)

It is worth noting that our policy function and Q function are all based on the current goal g in the
rule fg ∈ F . In fact, one policy and Q-value for each subtask in the hierarchy: π = {πg0 , . . . , πgm}
and Q = {Qg0 , . . . , Qgm}. In each subtask (one rule in the rule set), the robot and the human need
to take a set of primitive actions to reach the terminal states specified by this rule. Then, the next
goal can be inferred and is conditioned on the current history and the next primitive action that either
the human or the robot is expected to take. Our approach employs a hierarchical policy execution
strategy, akin to standard programming languages that use a stack discipline. Each subtask policy
receives a state as input and returns the name of a subtask to invoke. When a subtask is invoked,
its name is pushed onto the Task-Stack, and its policy is executed until it reaches one of its terminal
states. Once a subtask terminates, its name is popped off the Task-Stack. Importantly, if any subtask
currently on the Task-Stack terminates, all subtasks below it are immediately aborted. Control
then returns to the subtask that initially invoked the terminated subtask. This hierarchical approach
enables the dynamic execution of subtasks and completes the final goal in a manner like online
inference.

Belief Update However, in a ToM collaboration framework, the Q-function of each agent model
should include two additional arguments to account for both agents’ intentions and the estimated
belief of the counterpart. The intentions of these two agents are considered as prior knowledge and
are drawn from Ω = {ΩR,ΩH} respectively, where ΩR represents the robot’s intention, and ΩH
represents the human’s intention in the robot’s mind. Besides, we employ the obverter technique
(Choi et al., 2018) to enable both agent models to hold a belief b̂−i as an estimation of the other
agent’s belief about their own intention ω. To model this nested belief, we do not need to use a
distribution over the original intention distribution. This is because the belief update process follows
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Algorithm 1 Adaptive Theory of Mind Collaboration Hierarchical Learning Algorithm

Randomly initialized network parameters {ψ(i,Q),ψ(i,π),ψ(i,E)}, {ψ̂(i,Q), ψ̂(i,π), ψ̂(1,E)}, learn-
ing rate {ηQ, ηπ, ηE}

1: for each iteration do
2: for i in {−1, 1} do
3: for episode = 1, . . . ,m (where m is the number of sub-goals) do
4: repeat
5: Sample sub-goal: g ← p (g | st, at, τ t)
6: Sample an action âti ← π̂i (a | st, ωt, τ t)
7: Sample an action ât−i ← π̂−i (a | st, ωt, τ t)
8: Update two agent models’ beliefs as Eq. (5)
9: until Satisfy the sub-goal

10: end for
11: y

t,(k)
i = r

t,(k)
i + γmaxa∈Ai

Q̂ψ̂(i,Q)
(a, st+1,(k), ω(k), b̂

t,(k)
i ) (k is the index of trajectory)

12: LQ =
∑
t ||Qψ(i,Q)

(a
(k)
t , s

(k)
t , ω(k), b̂

(k)
t )− y(k)t ||2 Compute Q-loss

13: Lπ =
∑
t,(k)H(π̂(−i,g)(a

t
−i|st,(k), ω

t,(k)
−i , τ t,(k)), a

t,(k)
−i ) Compute policy loss

14: LE = KL(b̄t,(k)−i ||E(−i,g)(b̂
t−1,(k)
−i , a

t,(k)
i , st,(k))) Compute belief loss

15:

{ψ(i,Q),ψ(i,π),ψ(i,E)} ← {ψ(i,Q),ψ(i,π),ψ(i,E)}−∇{ψ(i,Q),ψ(i,π),ψ(i,E)}{ηQL
Q, ηπL

π, ηEL
E}

16: Update {ψ̂(i,Q), ψ̂(i,π), ψ̂(i,E)} ← {ψ(i,Q),ψ(i,π),ψ(i,E)} for Q-learning
17: end for
18: end for

a deterministic path for rational agents when employing Bayesian inference. At each time step, the
update process can be expressed as:

bt(ω−i | τ t) = P (ω−i | τ t−1, at) ∝ π̂(at−i | st, ω−i)b
t−1(ω−i) (5)

In this equation, π̂ represents the agent’s estimation of the other agent’s policy, which is learned
during centralized training. Our belief update function incorporates counterfactual reasoning. Es-
sentially, the agent explores all possible private states ω−i and estimates the likelihood of the actions
it observed under the assumption that a specific set of private agent states is correct. This approach
involves fixing one agent model while training the other, thus avoiding non-stationarity issues that
could arise from simultaneous agent updates. Consequently, the other agent model can be considered
as part of the environment, ensuring the convergence of the Q-function of the learning agent. The
whole algorithm is presented in Algorithm 1, where ψ(i,Q), ψ(i,π), ψ(i,E) represent the parameters
of Q-function, policy function, and belief-updated function E , respectively.

Training In Algorithm 1, Deep Q-learning (Mnih et al., 2013) is employed to train the Q-function
Qi. Simultaneously, supervised learning is used to train both the policy function π̂−i and the belief
update function E−i. The variable b̄−i, a result of discretizing b−i, is provided as supervisory input
to agent i streamlining the training of the belief update function E−i. Three loss terms are optimized
sequentially. LQ quantifies the disparity between Q-values, while the second term, Lπ , corresponds
to the softmax cross-entropy loss. The third term, LE , measures the Kullback-Leibler (KL) di-
vergence used to assess the dissimilarity between the predicted partner’s belief and the supervised
partners’ belief b̄−i.

4 EXPERIMENT

In this section, we provide some implementation details and show ablation studies to evaluate
the performance of our framework on the Watch-and-help dataset (Puig et al., 2020) and Hand-
MeThat dataset (Wan et al., 2022). We compare our model with several state-of-the-art approaches
in human-AI interaction, including WAH (Puig et al., 2020), GEM (Netanyahu et al., 2022), DRRN
(Hausknecht et al., 2020), Seq2Seq (Sutskever et al., 2014) and ReQueST (Reddy et al., 2020).
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Table 1: Comparative performance of various rule encoder backbones on the Watch-and-Help
Dataset: An evaluation across four difficulty tiers using three metrics—Average Number of Moves
(AN, lower is better) for successful episodes, Success Rate (SR, higher is better); and Speedup (SU,
higher is better).

Methods
Partially Observable

Level 1 Level 2 Level 3 Level 4

WAH
AN ↓ 15.28±0.06 22.24±0.15 28.88±0.15 51.20±0.12
SR ↑ 78.61±0.02 71.02±0.08 60.13±0.11 51.48±0.04
SU ↑ 0.17±0.012 0.14±0.019 0.13±0.016 0.08±0.016

GEM
AN ↓ 14.08±0.04 20.40±0.10 28.71±0.05 42.12±0.04
SR ↑ 79.27±0.02 71.32±0.04 60.99±0.07 53.97±0.06
SU ↑ 0.24±0.017 0.22±0.016 0.19±0.012 0.15±0.015

DRRN
AN ↓ 13.47±0.13 20.10±0.14 28.68±0.15 38.25±0.01
SR ↑ 80.86±0.09 71.74±0.06 66.27±0.13 57.53±0.18
SU ↑ 0.25±0.015 0.19±0.017 0.17±0.004 0.16±0.009

Seq2Seq
AN ↓ 12.76±0.06 19.92±0.06 28.32±0.02 34.16±0.04
SR ↑ 81.12±0.01 72.45±0.18 66.69±0.18 57.86±0.09
SU ↑ 0.38±0.003 0.28±0.008 0.26±0.007 0.21±0.014

ReQueST
AN ↓ 12.68±0.03 18.72±0.10 28.12±0.12 32.92±0.18
SR ↑ 81.12±0.05 77.44±0.17 68.52±0.04 55.34±0.07
SU ↑ 0.38±0.019 0.30±0.015 0.25±0.009 0.22±0.011

Ours
AN ↓ 11.40±0.04 16.21±0.15 26.16±0.02 31.10±0.05
SR ↑ 82.43±0.17 78.14±0.03 69.84±0.17 58.91±0.16
SU ↑ 0.48±0.015 0.44±0.009 0.36±0.013 0.33±0.017

For the Watch-and-help (Puig et al., 2020) dataset, we utilize success rate, average number of move-
ments in successful episodes, and Speedup as our metrics. Speedup means we compare the episode
length when the human and AI agent are working together with the episode length when the human
is working alone. For the HandMeThat dataset, we utilize the average score, the success rate(%)
that the model achieves the goal within 40 steps, and the average number of moves to evaluate the
performance.

4.1 QUANTITATIVE ANALYSIS

We compare our method with several state-of-the-art approaches, and Table 1 presents the quali-
tative results in the Help stage of the Watch-and-help dataset. Note that WAH (Puig et al., 2020)
represents a hybrid model of RL and planning, where regression planning is deployed to generate
plans for each sub-goal sampled from the RL-based high-level policy; DRRN (Hausknecht et al.,
2020) represents Deep Reinforcement Relevance Network. We observe that our method significantly
outperforms all baselines measured by success rate with the fewest number of moves by using the
true goals and reasoning about human’s future plan, avoiding redundant actions and collisions with
him. Especially, it achieves 57.91and 68.84 success rate (%) in Level 4 and Level 3 respectively,
which exceeds the second-best performance of Seq2Seq by 1.05 and 3.15. Compared with WAH,
we also obtained 7.63% and 9.71% success rate improvements. This is because the rule encoder
and evaluator can collaborate with each other to reduce search space and learn better rules. Fig-
ure 3 illustrates an example of collaboration. Our framework can actually predict users’ intentions
and represent some help strategies to achieve the same goal. For the HandMeThat dataset, the per-
formance of learning models in the partially-observable setting is shown in Table 2. Note that the
Random model presents an agent that randomly selects a valid action at each time step. Obviously,
our model performs decently well on all levels in partially-observable settings.
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Bob’s plan:
In(plate, microwave)
In(milk,fridge)
switch_on(TV)
sit_on(sofa)

Bob alone Bob’s plan:
In(milk,fridge)
sit_on(sofa)

Alice’s plan:
In(plate, microwave)
In(milk,fridge)
Open(fridge)
switch_on(TV)

Alice helps Bob

Figure 3: The arrows indicate moving directions and the circles with black borders indicate moments
when agents interacted with objects. When working alone (left), Alice had to search different rooms;
but with Bob’s help (right), Alice could finish the task much faster.

Table 2: Experiment results on HandMeThat dataset. Each model is evaluated on 4 hardness levels
with 3 metrics: the Average Score (AS, higher is better), the Success Rate (SR, higher is better), and
the Average Number of Moves (AN, lower is better) in successful episodes.

Methods
Partially Observable

Level 1 Level 2 Level 3 Level 4

Random
AS ↑ -40.0 -40.0 -40.0 -40.0
SR ↑ 0.0 0.0 0.0 0.0
AN ↓ N/A N/A N/A N/A

Seq2Seq
AS ↑ -5.1±0.07 -25.3±0.09 -34.5±0.15 -32.0±0.20
SR ↑ 25.50±0.20 10.40±0.14 3.95±0.23 5.30±0.26
AN ↓ 4.21±0.01 4.17±0.04 4.19±0.02 4.12±0.06

GEM
AS ↑ -6.3±0.11 -22.5±0.12 -30.9±0.14 -29.6±0.18
SR ↑ 24.64±0.40 12.47±0.21 5.74±0.15 7.21±0.13
AN ↓ 4.34±0.04 4.36±0.02 4.24±0.00 4.22±0.00

DRRN
AS ↑ -40.0 -40.0 -40.0 -40.0
SR ↑ 0.0 0.0 0.0 0.0
AN ↓ N/A N/A N/A N/A

Ours
AS ↑ -1.4±0.03 -5.8±0.06 -9.1±0.17 -11.9±0.23
SR ↑ 27.73±0.29 24.81±0.36 20.97±0.12 21.66±0.18
AN ↓ 4.05±0.01 4.09±0.01 4.14±0.03 4.21±0.02

4.2 VISUALIZATION

We show some visual representations of human-robot collaboration on the Watch-and-help dataset
in Figure 4. In this picture, Bob’s goal is to put the plate into the microwave, and then watch TV in
the bedroom. When he walks towards the plate and grabs it, Alice (human-like agent) predicts his
goal as ”Inside(plate, microwave)”, then walks towards the microwave and opens it to help achieve
the same goal as quickly as possible, so that Bob can directly put the plate into the microwave. Next,
Alice sees that Bob is moving into the bedroom and getting close to the sofa, so Alice infers his goal
as ”Watch(TV)” based on generated logical rules. Then, Alice walks towards the TV and switches
on it, so that Bob can sit down immediately and finish his goal without any redundant actions. Our
rule can actually predict users’ intentions and represent some help strategies to achieve the same
goal with the minimum number of time steps.

5 LIMITATION

The present work has a few limitations. First, for real-world applications, we need to improve
proposal sampling so that it can infer the graph structure and the equivalence mapping assignment
more efficiently for a large number of objects. We can potentially achieve this by using language
instructions to guide the inference. For instance, a human user can provide a language description
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Bob walks towards 
the plate.

Bob walks towards 
the microwave.

Alice knows his goal and 
walks to the microwave.

Alice opens the 
microwave.

Rule: Walk_to(Bob, plate)∧Grab(Bob, plate) ∧ Walk_to(Bob, 
microwave)∧ Open(Bob, microwave) →Inside(plate,microwave)
Explanation:
•  Bob walks towards the plate and grabs it
•  Bob walks towards the microwave
•  Alice infers his goal as “put the plate into the microwave”
•  Alice opens the microwave 

Bob walk towards 
the bedroom.

Bob walks towards 
the sofa.

Alice finds that Bob 
walks to the bedroom.

Alice switches on 
TV.

Rule: Walk_to(Bob, bedroom)∧Switch_on(Alice, TV)∧ Walk_to 
(Bob, sofa) →Watch(Bob, TV)
Explanation:
•  Bob walks towards the bedroom
•  Bob walks towards the sofa 
•  Alice infers his goal as “watch TV”
•  Alice switches on TV

Alice meets Bob. Alice makes way for 
Bob.

Rule: Walk_to(Bob, sofa)∧Block(Alice,Bob)∧Make_way 
(Alice,Bob) →Pass_by(Bob,Alice)
Explanation:
•  Bob walks towards the sofa
•  Alice blocks Bob’s way by chance
•  Alice makes way for Bob so he can walk quickly
•  Bob walks by Alice’s side

Bob meets Alice. Bob walks by 
Alice’s side.

Figure 4: Visualization and explanation of logic rules in Watch-and-help dataset.

of the task in addition to the physical demonstration to help achieve a better understanding of the
task. Another limitation is that currently we only consider chain rules provided as prior knowledge.
In the future, we plan to explore more efficient and effective rule reasoning algorithms and consider
more complex rules.

6 CONCLUSION

In this paper, we introduced a novel logic-guided reasoning framework aimed at advancing human-
AI collaboration. By infusing logical reasoning into AI agents, our model demonstrates a unique
capability to infer and adapt to the goals of others based on observed behaviors. This is achieved by
treating logic rules as latent variables and iteratively training the AI agent. In the experiments, our
method can analyze the movement sequence of agents in common household activities and obtain
novel insights from generated logic rules. Looking ahead, we aim to integrate additional physical
laws into our framework, like the principles of energy and momentum conservation. Furthermore,
we plan to introduce a predicate generator into our system. This addition will endow AI agents with
advanced capabilities, enabling them to generate and reason with new predicates, thereby signifi-
cantly enriching their understanding and interaction with complex environments.
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