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ABSTRACT

The dynamic Schrödinger bridge problem provides an appealing setting for posing
optimal transport problems as learning non-linear diffusion processes and enables
efficient iterative solvers. Recent works have demonstrated state-of-the-art results
(e.g., in modelling single-cell embryo RNA sequences or sampling from com-
plex posteriors) but are typically limited to learning bridges with only initial and
terminal constraints. Our work extends this paradigm by proposing the Iterative
Smoothing Bridge (ISB). We combine learning diffusion models with Bayesian fil-
tering and optimal control, allowing for constrained stochastic processes governed
by sparse observations at intermediate stages and terminal constraints. We assess
the effectiveness of our method on synthetic and real-world data and show that the
ISB generalises well to high-dimensional data, is computationally efficient, and
provides accurate estimates of the marginals at intermediate and terminal times.

1 INTRODUCTION

Generative diffusion models have gained increasing popularity and achieved impressive results in
a variety of challenging application domains, such as computer vision (e.g., Ho et al., 2020; Song
et al., 2021a; Dhariwal & Nichol, 2021), reinforcement learning (e.g., Janner et al., 2022), and time
series modelling (e.g., Rasul et al., 2021; Vargas et al., 2021; Tashiro et al., 2021; Park et al., 2022).
Recent works have explored connections between denoising diffusion models and the dynamic
Schrödinger bridge problem (SBP, e.g., Vargas et al., 2021; De Bortoli et al., 2021; Shi et al., 2022)
to adopt iterative schemes for solving the dynamic optimal transport problem more efficiently. The
solution of the SBP that correspond to denoising diffusion models is then given by the finite-time
process, which is the closest in Kullback–Leibler (KL) divergence to the forward noising process of
the diffusion model under marginal constraints. Data is then generated by time-reversing the process.

In many applications, the interest is not purely in modelling transport between an initial and terminal
state distribution In naturally occurring generative processes, we typically observe snapshots of
realizations along intermediate stages of individual sample trajectories (see Fig. 1). Such problems
arise in medical diagnosis (e.g., tissue changes and cell growth), demographic modelling, environ-
mental dynamics, and animal movement modelling—see Fig. 4 for modelling bird migration and
wintering patterns. Recently, constrained optimal control problems have been explored by adding
additional fixed path constraints (Maoutsa et al., 2020; Maoutsa & Opper, 2021) or modifying the
prior processes (Fernandes et al., 2021). However, defining meaningful fixed path constraints or prior
processes for the optimal control problems can be challenging, while sparse observational data are
accessible in many real-world applications.

In this work, we propose the Iterative Smoothing Bridge (ISB), an iterative method for solving control
problems under sparse observational data constraints and constraints on the initial and terminal
distribution. We perform the conditioning by leveraging the iterative pass idea from the Iterative
Proportional Fitting procedure (IPFP) (Kullback, 1968; De Bortoli et al., 2021) procedure and
applying differentiable particle filtering (Reich, 2013; Corenflos et al., 2021) within the outer loop.
Integrating sequential Monte Carlo methods (e.g., Doucet et al., 2001; Chopin & Papaspiliopoulos,
2020) into the IPFP framework in such a way is non-trivial and can be understood as a novel iterative
version of the algorithm by Maoutsa & Opper (2021) but with more general terminal constraints and
path constraints defined by data.
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(b) Constrained transport
(Iterative smoothing bridge)

Figure 1: Illustrative example transport between an initial unit Gaussian and a shifted unit Gaussian
at the terminal time T . Unconstrained transport on the left and the solution constrained by sparse
observations ( ) on the right. Colour coding of the initial points is only for distinguishing the paths.

We summarize the contributions as follows. (i) We propose a novel method for solving constrained op-
timal transport as a bridge problem under sparse observational data constraints. (ii) Thereof, we utilize
the strong connections between the constrained bridging problem and particle filtering in sequential
Monte Carlo, extending them from pure inference to learning. Additionally, (iii) we demonstrate prac-
tical efficiency and show that the iterative smoothing bridge approach scales to high-dimensional data.

1.1 RELATED WORK

Schrödinger bridges The problem of learning a stochastic process moving samples from one
distribution to another can be posed as a type of a transport problem known as a dynamic Schrödinger
bridge problem (SBP, e.g., Schrödinger, 1932; Léonard, 2014), where the resulting marginal densities
are desired to resemble a given reference measure. In machine learning literature, the problem has
been studied through learning the drift function of the dynamical system (De Bortoli et al., 2021;
Wang et al., 2021; Vargas et al., 2021; Bunne et al., 2022). When an SDE system also defines the
reference measure, the bridge problem becomes synonymous with a constrained optimal control
problem (e.g., Caluya & Halder, 2022; 2021; Chen et al., 2021), which has been leveraged in learning
Schrödinger bridges by Tianrong Chen (2022) through forward–backward SDEs. An optimal control
problem with both constraints on the initial and terminal distribution and a fixed path constraint has
been studied in Maoutsa et al. (2020) and Maoutsa & Opper (2021), where particle filtering is applied
to continuous path constraints but the boundary constraints are defined by a single point. Furthermore,
the combination of Schrödinger bridges and state-space models has been studied by Reich (2019), in a
setting where Schrödinger bridges are applied to the transport problem between filtering distributions.

Diffusion models in machine learning The recent advances in diffusion models in machine learning
literature have been focused in generating samples from complex distributions defined by data through
transforming samples from an easy-to-sample distribution by a dynamical system (e.g., Ho et al.,
2020; Song et al., 2021b;a; Nichol & Dhariwal, 2021). The concept of reversing SDE trajectories
via score-based learning (Hyvärinen & Dayan, 2005; Vincent, 2011) has allowed for models scalable
enough to be applied to high-dimensional data sets directly in the data space. In earlier work, score-
based diffusion models have been applied to problems where the dynamical system itself is of interest,
for example, for the problem of time series amputation in Tashiro et al. (2021) and inverse problems
in imaging in Song et al. (2022). Other dynamical models parametrized by neural networks have
been applied to modelling latent time-series based on observed snapshots of dynamics (Rubanova
et al., 2019; Li et al., 2020), but without further constraints on the initial or terminal distributions.

State-space models In their general form, state-space models combine a latent space dynamical
system with an observation (likelihood) model. Evaluating the latent state distribution based on
observational data can be performed by applying particle filtering and smoothing (Doucet et al.,
2000) or by approximations of the underlying state distribution of a non-linear state-space model
by a specific model family, for instance, a Gaussian (see Särkkä, 2013, for an overview). Speeding
up parameter inference and learning in state-space models has been widely studied (e.g., Schön
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et al., 2011; Svensson & Schön, 2017; Kokkala et al., 2014). Particle smoothing can be connected to
Schrödinger bridges via the two-filter smoother (e.g., Bresler, 1986; Briers et al., 2009; Hostettler,
2015), where the smoothing distribution is estimated by performing filtering both forward from the
initial constraint and backward from the terminal constraint. We refer to Mitter (1996) and Todorov
(2008) for a more detailed discussion on the connection of stochastic control and filtering and to
Chopin & Papaspiliopoulos (2020) for an introduction to particle filters.

2 BACKGROUND

Let C = C([0, T ],Rd) denote the space of continuous functions from [0, T ] to Rd and let B(C) denote
the Borel σ-algebra on C. Let P(π0, πT ) denote the space of probability measures on (C,B(C))
such that the marginals at 0, T coincide with probability densities π0 and πT , respectively. The KL
divergence from measure Q to measure P is written as DKL [Q ‖P], where we assume that Q ≪ P.
For modelling the time dynamics, we assume a (continuous-time) state-space model consisting of
a non-linear latent Itô SDE (see, e.g., Øksendal, 2003; Särkkä & Solin, 2019) in [0, T ] × Rd with
drift function fθ(·) and diffusion function g(·), and a Gaussian observation model, i.e.,

x0 ∼ π0, dxt = fθ(xt, t) dt+ g(t) dβt, yk ∼ N(yk |xt, σ
2 Id)

∣

∣

t=tk
, (1)

where the drift fθ : Rd× [0, T ] → Rd is a mapping modelled by a neural network (NN) parameterized
by θ ∈ Θ, diffusion g : [0, T ] → R and βt denotes standard d-dimensional Brownian motion. xt

denotes the latent stochastic process and yt denotes the observation-space process. In practice, we con-
sider the continuous-discrete time setting, where the process is observed at discrete time instances tk
such that observational data can be given in terms of a collection of input–output pairs {(tk,yk)}Mk=1.

2.1 SCHRÖDINGER BRIDGES AND OPTIMAL CONTROL

The Schrödinger bridge problem (SBP, Schrödinger, 1932; Léonard, 2014) can be described as an
entropy-regularized optimal transport problem where the optimality is measured through the KL
divergence from a reference measure P to the posterior measure Q, with fixed initial and final densities
π0 and πT , i.e.,

min
Q∈P(π0,πT )

DKL [Q ‖P] . (2)

In this work, we consider only the case where the measures P and Q are constructed as the marginals
of an SDE, i.e., Qt is the probability measure of the marginal of the SDE in Eq. (1) at time t,
whereas Pt corresponds to the probability measure of the marginal of a reference SDE dxt =
f(xt, t) dt + g(t) dβt, at time t, where we call f the reference drift. Under the optimal control
formulation of the SBP (Caluya & Halder, 2021) the KL divergence in Eq. (2) reduces to

E

[ ∫ T

0

1

2g(t)2
‖fθ(xt, t)− f(xt, t)‖2 dt

]

, (3)

where the expectation is over paths from Eq. (1). Rüschendorf & Thomsen (1993) and Ruschendorf
(1995) showed that a solution to the SBP can be obtained by iteratively solving two half-bridge
problems using the Iterative Proportional Fitting procedure (IPFP) for l = 0, 1, . . . , L steps:

Q2l+1 = argmin
Q∈P(·,πT )

DKL [Q ‖Q2l] and Q2l+2 = argmin
Q∈P(π0,·)

DKL [Q ‖Q2l+1] , (4)

where Q0 is set as the reference measure, and P(π0, ·) and P(·, πT ) denote the sets of probability
measures with only either the marginal at time 0 or time T coinciding with π0 or πT , respectively.
Recently the IPFP to solving Schrödinger bridges has been adapted as a machine learning problem
(Bernton et al., 2019; Vargas et al., 2021; De Bortoli et al., 2021). In practice, the interval [0, T ]
is discretized and the forward drift fθ and the backward drift bφ of the corresponding reverse-time
process (Haussmann & Pardoux, 1986; Föllmer, 1988) are modelled by NNs. Under the Gaussian
transition approximations, the resulting discrete-time diffusion model can be reversed by applying a
mean-matching based objective.
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Figure 2: Sketch of a diffusion bridge between a 2D data distribution (π0) and an isotropic Gaussian
(πT ) constrained by sparse observations ( ). The forward diffusion at the first iteration (ISB 1)
learns to account for the sparse observations but does not converge to the correct terminal distribution
(t = T ), and the backward diffusion vice versa. After iterating (ISB 6), the forward and backward
diffusions converge to the correct targets and are able to account for the sparse observational data.

3 METHODS

Given an initial and terminal distribution π0 and πT , we are interested in learning a data-conditional
bridge between π0 and πT . Let D = {(tj ,yj)}Mj=1 be a set of M sparsely observed values, i.e., only
a few or no observations are made at each point in time, and let the state-space model of interest
be given by Eq. (1). Note that we deliberately use (tj ,yj) (instead of (tk,yk)) to highlight that we
allow for multiple observations at the same time point tk. Our aim is to find a parameterization of the
drift function fθ such that evolving N particles xi

t, with xi
0 ∼ π0 (with i = 1, 2, . . . , N ), according

to Eq. (1) will result in samples xi
T from the terminal distribution πT . Inspired by the IPFP by

De Bortoli et al. (2021), which decomposes the SBP into finding two half-bridges, we propose to
iteratively solve the two half-bridge problems while accounting for the additional sparse observations
simultaneously. For this, let

dxt = fl,θ(xt, t) dt+ g(t) dβt, x0 ∼ π0, (5)

dzt = bl,φ(zt, t) dt+ g(t) dβ̂t, z0 ∼ πT , (6)

denote the forward and backward SDE at iteration l = 1, 2, . . . , L, where β̂t is the reverse-time
Brownian motion. For simplicity, we denote βt = β̂t when the direction of the SDE is clear.

To learn the data-conditioned bridge, we iteratively employ the following steps: 1 evolve and filter
forward particle trajectories according to Eq. (5) with drift fl−1,θ and observations {(tk,yk)}Mk=1,
2 learn the drift function bl,φ for the reverse-time SDE, 3 evolve and filter backward particle

trajectories according to Eq. (6) with the drift bl,φ learned in step 2 and observations {(tk,yk)}Mk=1,
and 4 learn the drift function fl,θ for the forward SDE based on the backward particles. Fig. 2
illustrates the forward and backward process of our iterative scheme for a data-conditioned denoising
diffusion bridge. Next, we will go through steps 1 – 4 in detail and introduce the Iterative Smoothing
Bridge method for solving data-conditional diffusion bridges.
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3.1 THE ITERATIVE SMOOTHING BRIDGE

The Iterative Smoothing Bridge (ISB) method iteratively generates particle filtering trajectories (steps
1 and 3 in Fig. 2) and learns the parameterizations of the forward and backward drift functions
fl,θ and bl,φ (steps 2 and 4 ) by minimizing a modified version of the mean-matching objective
presented by De Bortoli et al. (2021). Note that steps 2 and 4 are dependent on applying differential
resampling in the particle filtering steps 1 and 3 for reversing the generated trajectories. We will
now describe the forward trajectory generating step 1 and the backward drift learning step 2 in
detail. Steps 3 and 4 are given by application of 1 and 2 on their reverse-time counterparts.

Step 1 (and 3 ): Given a fixed discretization of the time interval [0, T ] denoted as {tk}Kk=1 with
t1 = 0 and tK = T , denote the time step lengths as ∆k = tk+1 − tk. By truncating the Itô–Taylor
series of the SDE, we can consider an Euler–Maruyama (e.g., Ch. 8 in Särkkä & Solin, 2019) type of
discretization for the continuous-time problem. We give the time-update of the ith particle at time tk
evolved according to Eq. (5) before conditioning on the observational data as

x̃i
tk

= xtk−1
+ fl−1,θ(xtk−1,tk−1

)∆k + g(tk−1)
√

∆k ξ
i
k, (7)

where ξik ∼ N(0, I). In step 3 , the particles z̃itk of the backward SDE Eq. (6) are similarly obtained.
The SDE dynamics sampled in steps 1 and 3 apply the learned drift functions fl−1,θ and bl,φ from
the previous step and do not require sampling from the underlying SDE model. For times tk at which
no observations are available, we set xi

t = x̃i
t (and zitk = z̃itk respectively) and otherwise compute the

particle filtering weights wi
tk

based on the observations {(tj ,yj) ∈ D | tj = tk} for resampling. See
Sec. 3.2 for details on the particle filtering proposal density and calculation of the particle weights.

For resampling, we employ a differentiable resampling procedure, where the particles and weights
(x̃i

tk
, wi

tk
) are transported to uniformly weighted particles xi

tk
by solving an entropy-regularized

optimal transport problem (Cuturi, 2013; Peyré & Cuturi, 2019; Corenflos et al., 2021), see App. D for
further details. Through application of the ε-regularized optimal transport map T(ε) ∈ RN×N (see
Corenflos et al., 2021, for details) the particles are resampled via the map to xi

tk
= X̃⊤

tk
T(ε),i, where

X̃tk ∈ RN×d denotes the stacked particles {x̃i
tk
}Ni=1 at time tk before resampling. The resampled

particles for the backward process are given similarly.

Step 2 (and 4 ): Given the particles {xi
tk
}K,N
k=1,i=1, we now aim to learn the drift function for

the respective reverse-time process. In case no observation is available at time tk, we apply the mean-
matching loss based on a Gaussian transition approximation proposed in De Bortoli et al. (2021):
ℓik+1,no obs = ‖bl,φ(xi

tk+1
, tk+1)∆k−xi

tk+1
−fl−1,θ(x

i
tk+1

, tk)∆k+xi
tk
+fl−1,θ(x

i
tk
, tk)∆k‖2. (8)

In case an observation is available at time tk the particle values X̃tk will be coupled through the
optimal transport map. Therefore, the transition density is a sum of Gaussian variables (see App. A
for details and a derivation), and the mean-matching loss is therefore given by

sℓik+1,obs = ‖bl,φ(xi
tk+1

, tk+1)∆k − xi
tk+1

− fl−1,θ(x
i
tk+1

, tk)∆k

+
∑N

n=1 T(ε),i,n

(

xn
tk

+ fl−1,θ(x
n
tk
, tk)∆k

)

‖2. (9)
The overall objective function is a combination of both loss functions, with the respective mean-
matching loss depending on whether tk is an observation time. The final loss function is written as:

ℓ(φ) =
∑N

i=1

[

∑K
k=1 ℓ

i
k,obs(φ)Iytk

6=∅ +
∑K

k=1 ℓ
i
k,no obs(φ)Iytk

=∅

]

, (10)

where Icond. denotes an indicator function that returns ‘1’ iff the condition is true, and ‘0’ otherwise.
Consequently, the parameters φ of bl,φ are learned by minimizing Eq. (10) through gradient descent.
In practice, a cache of trajectories {xi

tk
}K,N
k=1,i=1 is maintained through training of the drift functions,

and refreshed at fixed number of inner loop iterations, as in De Bortoli et al. (2021), avoiding differen-
tiation over the SDE generation computational graph. The calculations for step 4 follow similarly.

The learned backward drift bl,φ can be interpreted as an analogy of the backward drift in Maoutsa &
Opper (2021), connecting our approach to solving optimal control problems through Hamilton–Jacobi
equations, see App. A.2 for an analysis of the backwards SDE and the control objective. While we
are generally considering problem settings where the number of observations is low, we propose
that letting M → ∞ yields the underlying marginal distribution, see Prop. 2 in App. A.3.
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3.2 COMPUTATIONAL CONSIDERATIONS

The ISB algorithm is a generic approach to learn data-conditional diffusion bridges under various
choices of, e.g., the particle filter proposal density or the reference drift. Next, we cover practical con-
siderations for the implementation of the method and highlight the model choices in the experiments.

Multiple observations per time step Naturally, we can make more than one observation at a single
point in time tk, denoted as Dtk = {(tj ,yj) ∈ D | tj = tk}. To compute particle weights wi

tk
for the

ith particle we consider only the H-nearest neighbours of xi
tk

in Dtk instead of all observations in
Dtk . By restricting to the H-nearest neighbours, denoted as DH

tk
, we introduce an additional locality

to the proposal density computation which can be helpful in case of multimodality. On the other
hand, letting H > 1 results in weights which take into account the local density of the observations,
not only the distance to the nearest neighbour. In experiments with few observations, we set H = 1,
the choice of H is discussed when we have set the value higher.

Particle filtering proposal The proposal density chosen for the ISB is the bootstrap filter, where the
proposal matches the Gaussian transition density p(xtk |xtk−1

). Assuming a Gaussian noise model
N(0, σ2I), the unnormalized log-weights for the ith particle at time tk are given by:

logwi
tk

= − 1

2σ2

∑

yj∈DH
tk

‖xi
tk

− yj‖2. (11)

Observational noise schedule In practice, using a constant observation noise σ2 variance can result
in an iterative scheme which does not have a stationary point as L → ∞. Even if the learned drift
function fl,θ was optimal, the filtering steps 1 and 3 would alter the trajectories unless all particles
would have uniform weights. Thus, we introduce a noise schedule κ(l) which ensures that the observa-
tion noise increases in the number of ISB iterations, causing ISB to converge to the IPFP (De Bortoli
et al., 2021) as L → ∞. We found that letting the observation noise first decrease and then increase (in
the spirit of simulated annealing) often outperformed a strictly increasing observation noise schedule.
The noise schedule is studied in App. C, where we derive the property that letting L → ∞ yields IPFP.

Drift initialization Depending on the application, one may choose to incorporate additional
information by selecting an appropriate initial drift. A possible choice includes a pre-trained neural
network drift learned to transport π0 to πT without accounting for observations. However, starting
from a drift for the unconstrained SBP can be problematic in cases where the observations are far
away from the unconstrained bridge. To encouraged exploration, one may choose f0 = 0 for the
initial drift. In various problem settings, we found both, a zero drift and starting from the SBP, to be
successful in the experiments, see App. C for discussion.

4 EXPERIMENTS

To assess the properties and performance of the ISB, we present a range of experiments that demon-
strate how the iterative learning procedure can incorporate both observational data and terminal
constraints. We start with simple examples that build intuition (cf. Fig. 1 and Fig. 2) and show stan-
dard ML benchmark tasks. For quantitative assessment, we design an experiment with a non-linear
SDE for which the marginal distributions are available in closed-form. Finally, we demonstrate
our model both in a highly multimodal bird migration task, conditioned image generation, and in a
single-cell embryo RNA modelling problem. Ablation studies are found in App. C.

Experiment setup In all experiments, the forward and backward drift functions fθ and bφ are
parametrized as neural networks. For low-dimensional experiments we apply the MLP block design
as in De Bortoli et al. (2021), and for the image experiment an U-Net as in Nichol & Dhariwal (2021).
The latent state SDE was simulated by Euler–Maruyama with a fixed time-step of 0.01 over 100 steps
and 1000 particles if not otherwise stated. All low-dimensional (at most d = 5) experiments were
run on a MacBook Pro laptop CPU, whereas the image experiments used a single Nvidia A100 GPU
and ran for 5 h 10 min. Notice that since ISB only performs particle filtering outside the stochastic
gradient training loop, the training runtime is in the same order as in the earlier Schrödinger bridge
image generation experiments of De Bortoli et al. (2021). Thus we omit any wall-clock timings. Full
details for all the experiments are included in App. B.
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(a) t = 0.00 (b) t = 0.25 (c) t = 0.50 (d) t = 0.75 (e) t = 0.99

Figure 3: 2D toy experiments from scikit-learn with both cases starting from a Gaussian: The TWO
CIRCLES (top) and TWO MOONS (bottom) data sets, with observations (red markers) constraining
the problem. For the circles, the 10 circular observations at t = 0.5 first force the method to create
a circle that then splits into two; in the lower plot the observations at t ∈ [0.25, 0.5, 0.75] split the
data into clusters before joining them into two moons. See Fig. 6 in the Appendix for the IPFP result.

All experiment settings include a number of hyperparameter choices, some of them typical to all
diffusion problems and some specific to particle filtering and smoothing. The diffusion g(t) is a
pre-determined function not optimized in the training. We divide the experiments to two main subsets:
problems of ‘sharpening to achieve a data distribution’ and ‘optimal transport problems’. In the
former, the initial distribution has a support overlapping with the terminal distribution and the process
noise level g(t) goes from high to low as time progresses. Conversely in the latter setting, the particles
sampled from the initial distribution must travel to reach the support of the terminal distribution, and
we chose to use a constant process noise level. Perhaps the most significant choice of hyperparameter
is the observational noise level, as it imposes a preference on how closely should the observational
points be followed, see App. C.1 for details.

2D toy examples We show illustrative results for the TWO MOONS and CIRCLES from scikit-learn.
We add artificial observation data to bias the processes. For the circles, the observational data consists
of 10 points, spaced evenly on the circle. The points are all observed simultaneously, at halfway
through the process, forcing the marginal density of the generating SDE to collapse to the small
circle, and then to expand. For the two moons, the observational data is collected from 10 trajectories
of a diffusion model which generates the two moons from noise, and these 10 trajectories are then
observed at three points in time. Results are visualized in Fig. 3 (see videos in supplement). For
reference, we have included plots of the IPFP dynamics in the supplement, see Fig. 6.

Table 1: Results for the Beneš experiment.

Negative log predictive density
METHOD AVERAGE MIDDLE END

Schrödinger B 4.787 3.565 0.1919

Iterative smoothing B 3.557 2.985 0.1567

Quantitative comparison on the Beneš SDE
In order to quantify how observing a process in
between its initial and terminal states steers the
ISB model to areas with higher likelihood, we
test its performance on a Beneš SDE model (see,
e.g. Särkkä & Solin, 2019). The Beneš SDE
is a non-linear one-dimensional SDE of form
dxt = tanh(xt) dt+ dβt with x0 = 0, but its marginal density is available in closed-form, allowing
for negative log-likelihood evaluation. We simulate trajectories from the Beneš SDE and from the
reverse drift and stack the reversed trajectories. The terminal distribution is shifted and scaled so that
the Beneš SDE itself does not solve the transport problem from π0 to πT , see App. B.2 for details
and visualizations of the processes.

As a baseline, we fit a Schrödinger bridge model with no observational data, using the Beneš SDE
drift as the reference model. The ISB model is initialized with a zero-drift model (not with the Beneš
as reference), thus making learning more challenging. We compare the models in terms of negative
log predictive density in Table 1, where we see that the ISB model captures the process well on
average (over the entire time-horizon) and at selected marginal times.
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Figure 4: Bird migration example. The top row describes nesting and wintering areas for the birds as
well as example sightings during migration. At the bottom, we show the marginal densities of the
ISB model from the initial to terminal distribution that match the sightings along the migration.

Bird migration Bird migration can be seen as a regular seasonal transport problem, where birds
move (typically North–South) along a flyway, between breeding and wintering grounds. We take this
as a motivating example of constrained optimal transport, where the geographical and constraints and
preferred routes are accounted for by bird sighting data (see Fig. 4 top). By adapting data from Am-
brosini et al. (2014) and Pellegrino et al. (2015), we propose a simplified data set for geese migration
in Europe (OIBMD: ornithologically implausible bird migration data; available in the supplement).
We applied the ISB for 12 iterations, with a linear observation noise schedule from 1 to 0.2, and
constant diffusion noise 0.05. The drift function was initialized as a zero-function, and thus the
method did not rely on a separately fit model optimized for generating the wintering distribution based
on the breeding distribution. For comparison, we include the Schrödinger bridge results in App. B.3.

Constraining an image generation process We demonstrate that the ISB approach scales well
to high-dimensional inputs by studying a proof-of-concept image generation task. We modify the
diffusion generative process of the MNIST (LeCun et al., 1998) digit 8 by artificial observations
steering the dynamical system in the middle of the generation process. While the concept of
observations in case of image generation is somewhat unnatural, it showcases the scalability of the
method to high-dimensional data spaces. Here, the drift is initialized using a pre-trained neural
network obtained by first running a Schrödinger bridge model for image generation. The process
is then given an observation in the form of a bottom-half of a MNIST digit 8 in the middle of the
dynamical process. As the learned model uses information from the observation both before and after
the observation time, the lower half of the image is sharper than the upper half. We provide further
details on this experiment and sampled trajectories in App. B.4.

Table 2: Results for single-cell embryo RNA experiment.

Earth mover’s distance
METHOD t=0 t=1 t=2 t=3 t=T

TrajectoryNet (Tong et al., 2020) 0.62 1.15 1.49 1.26 0.99

IPML (Vargas et al., 2021) 0.34 1.13 1.35 1.01 0.49

IPFP (no observations) 0.57 1.53 1.86 1.32 0.85

ISB (single-cell observations) 0.57 1.04 1.24 0.94 0.83

Single-cell embryo RNA-seq Lastly,
we evaluated our approach on an Em-
bryoid body scRNA-seq time course
(Tong et al., 2020). The data consists of
RNA measurements collected over five
time ranges from a developing human
embryo system. No trajectory informa-
tion is available, instead we only have
access to snapshots of RNA data. This leads to a data set over 5 time ranges, the first from days 0–3 and
the last from days 15–18. In the experiment, we followed the protocol by Tong et al. (2020), reduced
the data dimensionality to d = 5 using PCA, and used the first and last time ranges as the initial and
terminal constraints. All other time ranges are considered observational data. Contrary to the other ex-
periments, intermediate data are imprecise (only a time range of multiple days is known) but abundant.

We learned the ISB using a zero drift and compared it against an unconditional bridge obtained
through the IPFP (De Bortoli et al., 2021)—see Fig. 5. The ISB learns to generate trajectories
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(b) Iterative Smoothing Bridge

Figure 5: Illustration of the trajectories of the high-dimensional single-cell experiment for the
Schrödinger bridge (a) and the ISB (b), projected onto the first two principal components. The first
five trajectories are highlighted in colour, and intermediate observation densities visualized as slices.

with marginals closer to the observed data while performing comparably to the IPFP at the initial
and terminal stages. This improvement is also verified numerically in Table 2, showing that the
ISB obtains a lower Earth mover’s distance between the generated marginals and the observational
data than IPFP. Additionally, Table 2 lists the performance of previous works that do not use the
intermediate data during training (Tong et al., 2020) or only use it to construct an informative
reference drift (Vargas et al., 2021), see App. B.5 for details. In both cases, ISB outperforms the
other approaches w.r.t. the intermediate marginal distributions (t = 1, 2, 3), while IPML (Vargas
et al., 2021) outperforms ISB at the initial and terminal stages due to its data-driven reference drift.
Notice that while we reduced the dimensionality via PCA to 5 for fair comparisons to Vargas et al.
(2021), the ISB model would also allow modelling the full state-space model, with observations in
the high-dimensional gene space and a latent SDE.

5 DISCUSSION AND CONCLUSION

The dynamic Schrödinger bridge problem provides an appealing setting for posing optimal transport
problems as learning non-linear diffusion processes and enables efficient iterative solvers. However,
while recent works have state-of-the-art performance in many complex application domains, they are
typically limited to learning bridges with only initial and terminal constraints dependent on observed
data. In this work, we have extended this paradigm and introduced the Iterative Smoothing Bridge
(ISB), an iterative algorithm for learning data-conditional smoothing bridges. For this, we leveraged
the strong connections between the constrained bridging problem and particle filtering in sequential
Monte Carlo, extending them from pure inference to learning. We thoroughly assessed the applica-
bility and flexibility of our approach in various experimental settings, including synthetic data sets
and complex real-world scenarios (e.g., bird migration, conditional image generation, and modelling
single-cell RNA-sequencing time-series). In our experiments, we showed that ISB generalizes well to
high-dimensional data, is computationally efficient, and provides accurate estimates of the marginals
at intermediate and terminal times.

Accurately modelling the dynamics of complex systems under both path constraints induced by sparse
observations and initial and terminal constraints is a key challenge in many application domains.
These include biomedical applications, demographic modelling, and environmental dynamics, but
also machine learning specific applications such as reinforcement learning, planning, and time-series
modelling. All these applications have in common that the dynamic nature of the problem is driven by
progression of time, and not only progression of a generative process as often is the case in, e.g., gen-
erative image models. Thus, constraints over intermediate stages have a natural role and interpretation
in this wider set of dynamic diffusion modelling applications. We believe the proposed ISB algorithm
opens up new avenues for diffusion models in relevant real-world modelling tasks and will be stim-
ulating for future work. For example, more sophisticated observational models, alternative strategies
to account for multiple observations, and different noise schedules could be explored. Furthermore,
the proposed approach could be extended to other types of optimal transport problems, such as the
Wasserstein barycenter, a frequently employed case of the multi-marginal optimal transport problem.
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A METHOD DETAILS

We present the details of the objective function derivation in App. A.1 and explain the connection
of the backward drift function to Hamilton–Jacobi equations in App. A.2. In App. A.3, we discuss
the behaviour of our model at the limit M → ∞, that is, when the observations fully represent the
marginal densities of the stochastic process.

A.1 DERIVING THE MEAN-MATCHING LOSS AT OBSERVATION TIMES

Proposition 1. Define the forward SDE as

dxt = fl,θ(xt, t) dt+ g(t) dβt, x0 ∼ π0, (12)

and a backward SDE drift as

bl,φ(xtk+1
, tk+1) = fl−1,θ(xtk+1

, tk)− g(tk+1)
2∇ ln ptk+1

, (13)

where ptk+1
is the particle filtering density after differential resampling at time tk+1. Then

bl,φ(xtk+1
, tk+1) minimizes the loss function

ℓik+1,obs = ‖bl,φ(xi
tk+1

, tk+1)∆k − xi
tk+1

− fl−1,θ(x
i
tk+1

, tk)∆k

+
1

Cε,i

∑N
n=1 T(ε),i,n

(

xn
tk

+ fl−1,θ(x
n
tk
, tk)∆k

)

‖2, (14)

where we denote Cε,i =
1

g(tk+1)2∆k
Var

(

∑N
n=1 T(ε),i,nx̃

n
tk+1

)

, and {x̃i
tk+1

}Ni=1 are the particles

before resampling.

Proof sketch. Our objective is to find a backward drift function bl,φ(xtk+1
, tk+1) as in Eq. (13).

Notice that at observation times tk, this is not equivalent to finding the reverse drift of the SDE
forward transition and differential resampling combined, since the drift function fl−1,θ alone does not
map the particles {xi

tk
}Ni=1 to the particles {xi

tk+1
}Ni=1 . We will derive a loss function for learning

the backward drift as in Eq. (13) below, leaving the discussion on why it is a meaningful choice of a
backward drift to App. A.2. Our derivation closely follows the proof of Proposition 3 in De Bortoli
et al. (2021), but we provide the details here for the sake of completeness.

First, we give the transition density pxtk
|xi

tk−1
(xk) and apply it to derive the observation time loss

ℓik,obs. The derivation for the loss ℓik,no obs is skipped, since it is as in proof of Proposition 3 in
De Bortoli et al. (2021). Suppose that at tk, there are observations. By definition, the particles before
resampling {x̃i

tk+1
}Ni=1 are generated by the Gaussian transition density

p(x̃tk+1
|xi

tk
) = N(x̃tk+1

|xi
tk

+ δkfl(x
i
tk
, tk), g(tk+1)

2∆kI). (15)

Recall that the resampled particles are defined as a weighted average of all the particles, xi
tk

=
∑N

n=1 x̃
n
tk
T(ε),i,n. Thus, the transition density from {xi

tk
}Ni=1 to the particles {xi

tk+1
}Ni=1 is also a

Gaussian,

p(xti
k+1

|xi
tk
) = N(x̃tk+1

|
N
∑

n=1

T(ε),i,n(x
n
tk−1

+∆kfl−1,θ(x
n
tk
, tk)), g(tk+1)

2∆kCε,iId). (16)

We will derive the loss function Eq. (9) by modifying the mean matching proof in De Bortoli
et al. (2021) by the transition mean Eq. (16) and the backward drift definition Eq. (13). Using
the particle filtering approximation, the marginal density can be decomposed as ptk+1

(xk+1) =
∑N

i=1 ptk(x
i
k)pxk+1 |xi

k
(xk+1). By substituting the transition density Eq. (16) it follows that

ptk+1
(xtk+1

)

=
1

Z

N
∑

i=1

ptk(x
i
tk
) exp



−
‖
(

∑N
n=1 T(ε),i,n(x

i
tk

+ fl−1,θ(xtk , tk))
)

− xtk+1
‖2

2g(tk+1)2Cε,i∆k



 , (17)
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where Z is the normalization constant of Eq. (16). As in the proof of Proposition 3 of De Bor-
toli et al. (2021), we derive an expression for the score function. Since ∇ ln ptk+1

(xtk+1
) =

∇xtk+1
ptk+1

(xtk+1
)

ptk+1(xtk+1
)

, we first manipulate ∇xtk+1
ptk+1

(xtk+1
),

∇xtk+1
ptk+1

(xtk+1
) (18)

=
1
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N
∑

i=1

∇xtk+1
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) exp
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)
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. (21)

Substituting ptk(x
i
k) =

ptk+1
(xtk+1

)p
xk+1 | xi

k
(xk+1)

p
x
i
k

| xk+1
(xi

k
)

to the equation above gives

∇xtk+1
ptk+1

(xtk+1
)

= ptk+1
(xtk+1

)

N
∑

i=1

pxk+1 |xi
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(
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, (22)

and dividing by ptk+1(xtk+1
) yields

∇ ln ptk+1
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)

=
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Substituting Eq. (23) to the definition of the optimal backward drift Eq. (13) gives

bl,φ(xtk+1
, tk+1)

= fl−1,θ(xtk+1
, tk)− g(tk+1)

2∇ ln ptk+1
(xk+1)
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(24)

where taking fl−1,θ(xtk+1
, tk) inside the sum yields

bl,φ(xtk+1
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( N
∑

i=1

px
ti
k
|xtk+1

(xtk+1
)

(

1

Cε,i

(

N
∑

n=1

T(ε),i,n(x
i
tk

+ fl−1,θ(xtk , tk))

)

− xtk+1

Cε,i

−∆kfl−1,θ(xtk+1
, tk)

)

/∆k)

)

.

(25)

Multiplying the equation above by ∆k gives

∆kbl,φ(x
i
tk+1

, tk+1)

=

(

N
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T(ε),i,n(x
n
tk
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−
xi
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−∆kfl−1,θ(xti
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(26)

Thus we may set the objective for finding the optimal backward drift bl,φ as

ℓik+1,no obs = ‖bl,φ(xi
tk+1

, tk+1)∆k −
xi
tk+1

Cε,i

− fl−1,θ(x
i
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+
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Notice that if the weights before resampling are uniform, then T(ε) = IN , and for all i ∈ 1, 2, . . . , N

it holds that Cε,i = 1, since all but one of the terms in the sum 1
g(tk+1)2

Var
(

∑N
n=1 T(ε),i,nx̃

n
tk+1

)

vanish. Similarly, for one-hot weights Cε,i = 1. In practice, we set the constant Cε,i = 1 as in Eq. (9)
and observe good empirical performance with the simplified loss function.

A.2 CONNECTION TO HAMILTON–JACOBI EQUATIONS

We connect the backward drift function bl,φ(xtk+1
, tk+1) = fl−1,θ(xtk+1, tk) −

g(tk+1)
2∇ ln ptk+1

(xtk+1
) to the Hamilton–Jacobi equations for stochastic control through following

the setting of Maoutsa & Opper (2021), which applies the drift fl−1,θ(xt, t)− g(t)2∇ ln pt(xt) for a
backwards SDE initialized at πT .

Consider a stochastic control problem with a path constraint U(xt, t), optimizing the following loss
function,

J =
1

N

N
∑

i=1

∫ T

t=0

1

2g(t)2
‖fθ(xi

t, t)− f(xi
t, t)‖2 + U(xi

t, t) dt− lnχ(xi
T ), (28)

with the paths xi
t sampled as trajectories from the SDE

x0 ∼ π0, dxt = fl−1,θ(xt, t) dt+ g(t) dβt, (29)

and the loss lnχ(xi
T ) measures distance from the distribution πT . Since we set the path constraint

via observational data, our method resembles setting U(xi
t, t) = 0 when t is not an observation time,

and U(xi
t) = − logp(y |xi

t), where p(y |xi
t) is the observation model.

Let qt(x) denote the marginal density of the controlled (drift fθ) SDE at time t. In Maoutsa & Opper
(2021), the marginal density is decomposed as

qt(x) = ϕt(x)pt(x), (30)

where ϕt(x) is a solution to a backwards Fokker-Planck-Kolmogorov (FPK) partial differential
equation starting from ϕT (x) = πT , and the density evolves as in

dϕt(x)

dt
= −L†

fϕt(x) + U(x, t)ϕt(x), (31)

where L†
f is the adjoint FPK operator to the uncontrolled system. The density pt(x) corresponds to

the forward filtering problem, initialized with π0,

dpt(x)

dt
= Lf (pt(x))− U(x, t)pt(x), (32)

where Lf is the FPK operator of the uncontrolled SDE (with drift f ). The particle filtering trajectories
{xtk}i generated in our method are samples from the density defined by Eq. (32). In the context of
our method, the path constraint matches the log-weights of particle filtering at observation times and
is zero elsewhere.

In Maoutsa & Opper (2021), a backward evolution for qt is applied, using the backwards time
q̃T−τ (x) = qτ (x), yielding a backwards SDE starting from q̃0(x) = {xi

T }Ni=1, reweighted according
to πT . The backward samples from q̃ are generated following the SDE dynamics

dxi
τ = (f(xi

τ , T − τ) + g(t)2∇ ln pT−τ (x
i
τ ) dt+ g(t) dβτ . (33)

We have thus selected the backward drift bl,φ to match the drift of q̃t(x), the backward controlled
density. Intuitively, our choice of bl,φ is a drift which generates the smoothed particles when initialized
at {xi

T }Ni=1, the terminal state of the forward SDE. The discrepancy between πT and the distribution
induced by {xi

T }Ni=1 then motivates the use of an iterative scheme after learning to simulate from
qt(x).
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A.3 OBSERVING THE FULL MARGINAL DENSITY

Suppose that at time tk, we let the number of observations grow unbounded. We analyse the behaviour
of our model at the resampling step, at the limit M → ∞ for the number of observations and σ → 0
for the observation noise. When applying the bootstrap proposal, recall that we combined the multiple
observations to compute the log-weights as

logwi
tk

= − 1

2σ2

∑

yj∈DH
i,tk

‖xi
tk

− yj‖2, (34)

which works well in practice for the sparse-data settings we have considered. Below we analyse the
behaviour of an alternative way to combine the weights and show that given an infinite number of
observations, it creates samples from the true underlying distribution.

Proposition 2. Let {xi
tk
}Ni=1 be a set of particles and {yj}Mj=1 the observations at time tk. Assume

that the observations have been sampled from a density ρtk and that for all i it holds that xi
tk

∈
supp(ρtk). Define the particle weights as

logwi
tk,σ,M

= log

(

1

Z|DH(M)
i,tk

|

∑

yj∈D
H(M)
i,tk

exp(−‖xi
tk

− yj‖2/2σ2)

)

, (35)

where Z is the normalization constant of the observation model Gaussian p(y |xi
tk
). Then for each

particle xi
tk

, its weight satisfies

lim
σ→0

lim
M→∞

wi
tk,σ,M

= ρtk(xtk) (36)

Proof sketch. We drop the σ and H(M) from the weight notation for simplicity of notation, but
remark that the particle filtering weights are dependent of both quantities. Consider the number of
particles N fixed, and denote the d-dimensional sphere centered at xi

tk
as B(xi

tk
, r). Since each

particle xi
tk

lies in the support of the true underlying marginal density ρtk , then for any radius r > 0

such that B(xi
tk
, r) ∈ supp(ρtk), and H > 0, we may choose M high enough so that the points

yj ∈ DH
i,tk

satisfy yj ∈ B(xi
tk
, r). It follows from Eq. (35) that

wi
tk

=
1

Z|DH(M)
i,tk

|

∑

yj∈D
H(M)
i,tk

exp(−‖xi
tk

− yj‖2/2σ2). (37)

For any r > 0 and with observation noise σ = cr, we may set c,H(M) so that the sum above
approximates the integral

wi
r,tk

≈ 1

|B(xi
tk
, r)|

∫

B(xi
tk

,r)

p(y |xi
tk
)ρt(y) dy. (38)

By applying the Lebesque differentiation theorem, we obtain that for almost every xi
tk

, we have
limr→0 w

i
tk,r

= ρtk(x
i
tk
), since as σ → 0, the density p(y |xi

tk
) collapses to the Dirac delta of xi

tk
.

Prop. 2 can be interpreted as the infinite limit of a kernel density estimate of the true underlying
distribution. Resampling accurately reweights the particles so that the probability of resampling
particle xi

tk
is proportional to the density ρtk compared to the other particles. Notice that the result

does not guarantee that the particles will cover the support of ρtk , since we did not assume that the
drift initialization generates a marginal density at time tk covering its support.

B EXPERIMENTAL DETAILS

B.1 2D TOY DATA SETS

For the constrained transport problem for two-dimensional scikit-learn, the observational data we
chose to use was different for each of the three data sets presented; two moons, two circles and the
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(a) t = 0.00 (b) t = 0.25 (c) t = 0.50 (d) t = 0.75 (e) t = 0.99

Figure 6: The IPFP result for the experiment in Fig. 3 in the main paper.2D toy experiments, where
observations (red markers) not used while training but included in the figure for reference. The
dynamics learned by IPFP are clearly different from the ISB learned dynamics.

S-shape. All three experiments had the same discretization (t ∈ [0, 0.99]), ∆k = 0.01), learning
rate 0.001, and differentiable resampling regularization parameter ε = 0.01. The process noise g(t)2

follows a linear schedule from 0.001 to 1, with low noise at time t = 0 and high noise at t = 0.99,
and each iteration of the ISB method trains the forward and backward drift networks each for 5000
iterations, with batch size 256. Other hyperparameters are explained below.

Two moons The observational data consists of 10 points selected from the Schrödinger bridge
trajectories, all observed at t ∈ [0.25, 0.5, 0.75] with an exponential observation noise schedule
κ(l) = 1.25l−1. The ISB was ran for 6 epochs, and initialized with a drift from the pre-trained
Schrödinger bridge model from the unconstrained problem.

Two circles The observational data consists of 10 points which lie evenly distributed on a circle,
observed at t = 0.5 with an exponential observational noise schedule κ(l) = 0.5 · 1.25l−1. The ISB
was ran for 6 epochs, and initialized with a drift from the pre-trained Schrödinger bridge model from
the unconstrained problem.

S-shape The observational data consists of 6 points, with pairs being observed at times t ∈
[0.4, 0.5, 0.6]. We used a bilinear observational noise schedule with a linear decay for the first half of
the iterations from κ(0)2 = 4 to κ(L/2)2 = 1 and a linear ascend for the second half of the iterations
from κ(L/2)2 = 1 to κ(L)2 = 4. The ISB ran for 6 epochs, with a zero drift initialization.

0 4 8

True πT

ISB

Schrödinger

Figure 7: A kernel density estimate of the Beneš SDE terminal state. We compare πT to the
Schrödinger bridge and ISB terminal states. Both unconstrained Schrödinger bridge and ISB terminal
states succeed in representing πT well, with the Schrödinger bridge terminal state more closely
matching πT near its mean.
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(a) Trajectories of the Beneš SDE
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Figure 8: Comparison of the solution for the SBP (with Beneš SDE reference drift) and the ISB
(with zero initial drift) on the Beneš SDE under sparse observations ( ). The target distribution πT is
slightly shifted and scaled from the Beneš SDE. Even if the SBP has the true model as reference drift,
its trajectories degenerate into a unimodal distribution, while the ISB manages to cover both modes
even if only sparse observations are available.

B.2 THE BENEŠ SDE

In the Beneš SDE experiment, we obtain the sparse observational data from sampled Beneš SDE
trajectories while the terminal state is a shifted and scaled (3 + 5xT ) version of a Beneš marginal
density. As the Beneš trajectories were first generated by simulating the SDE until t = 6 and then in
reverse from t = 6 to t = 0, we set T = 11.97. We apply the analytical expression for the Beneš
marginal density for computing log pt(x),

pt(x) =
1√
2πt

cosh(x)

cosh(x0)
exp

(

− 1

2
t

)

exp

(

− 1

2t
(x− x0)

2

)

. (39)

See the Beneš SDE trajectories in Fig. 8a. As expected, the transport model with no observations
performs well in the generative task, but its trajectories cover also some low-likelihood space around
t = 6 (in the middle part in Fig. 8b). The observations for the ISB model were sampled from the
generated trajectories, 10 observations at 10 random time-instances (see Fig. 8c)

Both the unconstrained Schrödinger bridge model and the ISB model were ran for 3 iterations, using
a learning rate of 0.001 for the neural networks. Likely due to the fact that the problem was only
one-dimensional, convergence of the Schrödinger bridge to a process which matches the desired
terminal state was fast, and we chose not to run the model for a higher number of ISB iterations, see
Fig. 7 for a comparison of the trained model marginal densities and the true terminal distribution
πT . We set the observation noise schedule to the constant 0.7, and at each iteration of the ISB or the
unconstrained Schrödinger bridge the drift neural networks were trained for 5000 iterations each with
the batch size 256, and the trajectories were refreshed every 500 iterations with a cache size of 1000
particles. The number of nearest neighbours to compare to was H = 10.

B.3 THE BIRD MIGRATION DATA SET

The ISB model learned bird migration trajectories which transport the particles from the Northern
Europe summer habitats to the southern winter habitats, see Fig. 10 for a comparison of a Schrödinger
bridge and ISB. Since the problem lies on a sphere, Schrödinger bridge methods adjusted for learning
on Riemannian manifolds could have been applied here. For simplicity we mapped the probelm to a
two-dimensional plane using a Mercator projection, and solved the problem on a [0, 5]× [0, 5] square.
The SDE had the discretization t ∈ [0, 0.99], ∆k = 0.01 and a constant process noise g(t)2 = 0.05.
The model was trained for 12 iterations, and initialized with a zero drift, while the observational data
was chosen by the authors to promote learning trajectories clearly different from the unconstrained
transport trajectories. The observation noise schedule was piecewise linear (starting at 2, going to
0.1 at iteration 6, then rising linearly to reach 2 at iteration 12). At each ISB iteration, the neural
networks were trained for 5000 iterations each, and the trajectories refreshed every 1000 iterations.
We used a batch size of 256 and learning rate 0.001.
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π0 = noise T = 0.5

Observation biasing the lower half of images

Figure 9: Model trajectories for MNIST digit ‘8’ conditioned on a lower-loop of a single ‘8’ at
t = 0.38 to bias the lower half of the digits to look alike, with the effect still visible at terminal time T .

B.4 THE MNIST GENERATION TASK

Applying state-space model approaches such as particle filtering and smoothing to generative diffusion
models directly in the observation space (that is, not in a lower-dimensional latent space) has to our
knowledge not been explored before. Some experimental design choices had a great impact into the
training objectives sensibility, as the observational data is completely artificial and its timing during
the process modifies the filtering distribution significantly. As the MNIST conditional generative
model was trained to display the scalability of our method beyond low-dimensional toy examples,
we did not further explore optimizing the hyperparameters or the observation model. To avoid the
background noise in MNIST images in the middle of the generative process impacting the particle
filtering weights excessively, the observation model is a Gaussian with masked inputs equal to zero in
pixels where the observation image is black, see Fig. 9 for sampled trajectories. The figure shows the
progression of seven samples, where the lower half of the eights resemble the observation target.

The SDE was run for time t ∈ [0, 0.5], with the digit eight observed at t = 0.38. The ISB method
was applied for 10 iterations, with a discretization t ∈ [0, 0.495], ∆k = 0.005, and the process noise
g(t)2 followed a linear schedule from 0.0001 to 1. At each iteration of the method, the forward
and backward drift neural networks were trained for 5000 iterations with a batch size of 256, and
the trajectory cache regenerated every 1000 iterations. The observational data consisted of a single
sample of a lower half of the digit eight, observed at time t = 0.38. The observation noise schedule
was a constant κ(l) = 0.3.

B.5 SINGLE-CELL DATA SET

We directly use the preprocessed data from the TrajectoryNet (Tong et al., 2020) repository. A major
difference between our implementation and Vargas et al. (2021) is the reference drift. We set the
reference drift to zero, which means that we utilize the intermediate data only as observations in the
state-space model. On the contrary, Vargas et al. (2021) fits a mixture model of 15 Gaussians on
the combined data set (across all measurement times) and sets the reference drift to the gradient of
the log likelihood of the mixture model. Effectively, such a reference drift aids in keeping the SDE
trajectories within the support of the combined data set. We remark that if the intermediate observed
marginals had clearly disjoint support, combining all the data would cause the mixture model to have
‘gaps’ and could cause an unstable reference model drift. Thus we consider our approach of setting
the reference drift to zero as more generally applicable.

As in Vargas et al. (2021), we set the process noise to g(t) = 1 and model the SDE between time
t ∈ [0, 4]. The learning rate is set to 0.001 with batch size 256 and number of neural network
training iterations 5000, and we apply the ISB for 6 iterations. We filter using 1000 points from the
intermediate data sets, but compute the Earth mover’s distance by a comparison to all available data.
As the observational data at T = 1, 2, 3 consists of a high number of data points, the parameters H
(number of nearest neighbours) and σ (observation noise) need to be carefully set. We set H = 10
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to only include the close neighbourhood of each particle, and set the observation noise schedule as
constant 0.7.

C COMPUTATIONAL CONSIDERATIONS

In Sec. 3.2, we raised a number of important computational considerations for the constrained
transport problem. Below we discuss them in detail, analyzing the limit L → ∞ from the perspective
of setting the observation noise schedule in App. C.1, and presenting ablation results on modifying
the initial drift in the bird migration experiment in App. C.2.

C.1 DISCUSSION ON OBSERVATION NOISE

We briefly mentioned in Sec. 3.2 that when letting L → ∞, the choice of observation noise should be
carefully planned in order for the ISB procedure to have a stationary point. Here we explain why an
unbounded observation noise schedule κ(l) implies convergence to the IPF method for uncontrolled
Schrödinger bridges (De Bortoli et al., 2021), when using a nearest neighbour bootstrap filter as the
proposal density.

Proposition 3. Let Ω ∈ Rd be a bounded domain where both the observations and SDE trajectories
lie, and let the particle filtering weights {wi

l,tk
}Ni=1 be as in Eq. (11), but after normalization. If the

schedule κ(l) is unbounded with respect to l, then for any δ there exists l′ such that for the normalized
weights it holds

|ŵi
l′,tk

− 1

N
| ≤ δ. (40)

Proof sketch. Since we set the proposal density to be the bootstrap filter, the observation weights at
ISB iteration l are equal to

logwi
l,tk

= − 1

2κ(l)2

∑

yj∈DH
tk

‖xi
tk

− yj‖2. (41)

Since κ(l) is unbounded, for any S > 0 ∃ l′ such that κ(l′) ≥ S. We choose the value of S so that
the following derivation yields Eq. (40).

Let S =
√

0.5R−1|DH
tk
| diam(Ω)2, and apply the property that ‖xi

tk
−yj‖2 ≤ diam(Ω)2 to Eq. (41),

logwi
l′,tk

≥ − 1

2S2

∑

yj∈DH
tk

‖xi
tk

− yj‖2

≥ −
∑

yj∈DH
tk

‖xi
tk

− yj‖2

R−1|DH
tk
| diam(Ω)2

≥ −
∑

yj∈DH
tk

diam(Ω)2

R−1|DH
tk
| diam(Ω)2

≥ −R.

(42)

The bound above is for the unnormalized weights, and the normalized log-weights are defined as

log ŵi
l′,tk

= logwi
l′,tk

− log

( N
∑

j=1

exp(logwj
l′,tk

)

)

, (43)

where for the normalizing constant it holds that

log

( N
∑

j=1

exp(logwj
l′,tk

)

)

≤ log

( N
∑

j=1

1

)

= log(N), (44)

since wj
l′,tk

is the value of a probability density and thus always wj
l′,tk

≤ 1. Combining Eq. (43),
Eq. (42) and Eq. (44), it follows that

log ŵi
l′,tk

− (− log(N) ≥ −R, (45)

where taking exponentials on both sides gives

ŵi
l′,tk

− 1

N
≥ −(1− exp(−R))

1

N
. (46)
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Figure 10: Top row: The first map image on the left describes the initial position of the birds, and
the final on the right their position after migration. The observational data in the middle are bird
observations during migration, at given timestamps. Second row: Marginal densities of a Schrödinger
bridge model from the initial to terminal distribution, without using the observations. Third row:
Marginal densities of our model, using both initial and terminal distributions and observational data
and a zero drift initialization. Bottom row: Same as third row, but with the second row dynamics as
initialization.

Since the weights are normalized, even the largest particle weight ŵj
l′,tk

can differ from 1
N

as much

as every smaller weight in total lies under 1
N

,

ŵj
l′,tk

≤ 1

N
+ (N − 1)

(

(1− exp(−R))
1

N

)

, (47)

implying that for any weight ŵj
l′,tk

, it holds that

|ŵj
l′,tk

− 1

N
| ≤ (N − 1)

(

(1− exp(−R))
1

N

)

≤ 1− exp(−R), (48)

and selecting R = − log(1− δ) is sufficient for δ < 1.

Effectively, the above derivation implies that for an unbounded observation noise schedule κ(l), the
particle weights will converge to uniform weights. Since performing differentiable resampling on
uniform weights implies that T(ε) = IN , the ISB method trajectory generation step and the objective
in training Nthe backward drift converge to those of the IPF method for solving unconstrained
Schrödinger bridges. Intuitively, this means that at the limit L → ∞, our method will focus on
reversing the trajectories and matching the terminal distribution while not further utilizing information
from the observations.

22



Under review as a conference paper at ICLR 2023

C.2 ABLATION ON INITIAL DRIFT

We conducted an ablation study on drift initialization for the bird migration problem. As the
distributions π0 and πT (as pictured in Fig. 10) are complex, we consider the problem setting to
be interesting for setting f0 as the unconstrained transport problem drift. To this end, we trained a
Schrödinger bridge model for 10 epochs, and trained an ISB model with the same hyperparameter
selections as explained in App. B.3, using the Schrödinger bridge as the initialization. Compare
the two bottom rows of Fig. 10 to see a selection of marginal densities of the two processes. Based
on a visual analysis of the densities, it seems that the zero drift and pre-trained diffusion model
initializations produce similar results around the observations, although the Schrödinger bridge
initialization gave slightly sharper results at terminal time.

D DIFFERENTIABLE RESAMPLING

In the ISB model steps 1 and 3 presented in Sec. 3.1, we applied differentiable resampling (see
Corenflos et al., 2021). Resampling itself is a basic block of particle filtering. A differentiable
resampling step transports the particles and weights (x̃i

tk
, wi

tk
) to an uniform distribution over a set

of particles through applying the differentiable ensemble transport map T(ε), that is

(x̃i
tk
, wi

tk
) → (X̃⊤

tk
T(ε),i, 1/N) = (xi

tk
, 1/N), (49)

where X̃tk ∈ RN×d denotes the stacked particles {x̃i
tk
}Ni=1 at time tk before resampling and xi

tk
denotes the particles post resampling. Here we give the definition of the map T(ε) and review the
regularized optimal transport problem which has to be solved to compute it. We partly follow the
presentation in Sections 2 and 3 of Corenflos et al. (2021), but directly apply the notation we use for
particles and weights and focus on explaining the transport problem rather than the algorithm used to
solve it.

The standard particle filtering resampling step consists of sampling N particles from the categorical
distribution defined by the weights {wi

tk
}Ni=1, resulting in the particles with large weights being most

likely to be repeated multiple times. A result from Reich (2013) gives the property that the random
resampling step can be approximated by a deterministic ensemble transform T. In heuristic terms,
the ensemble transform map will be selected so that the particles {xi

tk
}Ni=1 will be transported with

minimal cost, while allowing all the weights to be uniform.

Let µ and ν be atomic measures, µ =
∑N

i=1 w
i
tk
δx̃i

tk

and ν =
∑N

i=1 N
−1δx̃i

tk

, where δx is the Dirac

delta at x. Then µ is the particle filtering distribution before resampling. Define the elements of a
cost matrix C ∈ RN×N as Ci,j = ‖x̃i

tk
− x̃

j
tk
‖2, and the 2-Wasserstein distance between two atomic

measures as

W2
2 (µ, ν) = min

P∈S(µ,ν)

N
∑

i=1

N
∑

j=1

Ci,jPi,j . (50)

Above the optimal matrix P is to be found within S(µ, ν), which is a space consisting of mixtures of
N particles to N particles such that the marginals coincide with the weights of µ and ν, formally

S(µ, ν) =







P ∈ [0, 1]N×N |
N
∑

i=1

Pi,j = wi
tk
,

N
∑

j=1

Pi,j =
1

N







. (51)

The entropy-regularized Wasserstein distance with regularization parameter ε is then

W2
2,ε = min

P∈S(µ,ν)

N
∑

i=1

N
∑

j=1

Pi,j

(

Ci,j + ε log
Pi,j

wi
tk

· 1
N

)

. (52)

The unique minimizing transport map of the above Wasserstein distance is denoted by POPT
ε , and

the ensemble transport map is then set as T(ε) = NPOPT
ε . This means that we can find the matrix

T(ε) via minimizing the regularized Wasserstein distance, which is done by applying the iterative
Sinkhorn algorithm for entropy-regularized optimal transport (Cuturi, 2013).
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