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ABSTRACT

Universal interatomic potentials (UIPs) have emerged as promising models for capturing
complex atomic interactions across diverse material families through graph-based rep-
resentations. Recent UIP architectures, trained on density functional theory (DFT) tra-
jectories spanning the periodic table, have demonstrated accuracy in energy and force
predictions for 0 K structures. However, their efficacy for finite temperature molecular
dynamics (MD) simulations of experimentally verified materials under physical condi-
tions remains unexplored. We present a comprehensive evaluation of six state-of-the-
art UIPs (CHGNET, M3GNET, MACE, MATTERSIM, SEVENNET, ORB) on a curated
dataset, namely AMCSD-MD-2.4K, comprising ~2,400 minerals with experimentally
validated crystal structures and densities from the American Mineralogist Crystal Struc-
ture Database. Our analysis comprises two components: (1) a systematic comparison of
model performance across the mineral dataset, and (2) a quantitative assessment of tempo-
ral evolution during MD simulations, analyzing structural properties including density and
lattice parameters. Our evaluation reveals significant performance variations among UIPs,
with ORB and SEVENNET achieving completion rates of 99.96% and 98.75% respectively,
while CHGNET completed only 7% of simulations. Furthermore, none of the models
achieved the empirically accepted structural variation threshold of +2.5%, with MACE,
MATTERSIM, SEVENNET, and ORB showing comparatively better accuracy (R? > 0.8)
in density predictions. This evaluation framework establishes rigorous benchmarks for
assessing UIP performance in realistic atomistic simulations of mineral systems.
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1 INTRODUCTION

Graph-based machine learning interatomic potentials (MLIPs) have emerged as powerful techniques for
large-scale materials simulations, offering unprecedented capabilities in atomic-scale modeling. Recent ad-
vances in training graph neural network (GNN) architectures on extensive databases have demonstrated
significant potential for accelerating materials property prediction and revolutionizing molecular dynamics
(MD) simulations at scale (Duval et al.l 2023 Bihani et al.| 2024} Batatia et al.| [2024; Musaelian et al.|
2023} |Fu et al.| | 2023). MD simulations are particularly crucial for understanding materials behavior, as they
capture thermal effects, transport properties, structural transitions, and dynamic properties essential for pre-
dicting real-world material performance. State-of-the-art models, including CHGNET (Deng et al., 2023)),
M3GNET (Chen & Ong|, 2022), MACE (Batatia et al.| [2024), MATTERSIM (Yang et al., [2024), SEVEN-
NET (Park et al.;, 2024), and ORB (Neumann et al., [2024)), have demonstrated remarkable performance in
predicting energy and forces across diverse atomic systems. Yet, their performance on simulating the dy-
namic behavior of finite temperatures, something of utmost importance for understanding material response,
remain poorly understood.

The development of Universal Interatomic Potentials (UIPs) has been accelerated by two key factors: the
availability of comprehensive computational materials datasets (Deng et al., [2023} |Lee et al.,[2023} |(Chanus-
sot et al., 2021; [Batzner et al.| 2022} |Schmidt et al., 2024) and advances in training methodologies. These
developments have enhanced the models’ ability to generalize across the periodic table while capturing
complex atomic interactions with increased precision. However, despite training on millions of structural
configurations from simulation trajectories, these models frequently encounter challenges when applied to
real-world systems (Bihani et al.l 2024} [Fu et al.| 2023} |Gonzales et al.| [2024). The absence of compre-
hensive benchmarks under realistic conditions has made it challenging to assess the true capabilities and
limitations of UIPs for practical materials design applications.

To address this gap, we present a systematic study evaluating the numerical stability and accuracy of dy-
namics simulations using current state-of-the-art UIPs on AMCSD-MD-2.4K, a curated benchmark derived
from the American Mineralogist Crystal Structure Database (AMCSD) (Downs & Hall-Wallace, 2003)). This
database is particularly significant as it contains experimentally validated structures of minerals, which con-
stitute approximately of the entire of Earth’s crust and are fundamental to wide range of applications includ-
ing geological processes, construction, and other industrial applications. The AMCSD-MD-2.4K dataset,
comprising experimentally determined structures of ~2,400 minerals, enables a rigorous assessment of UIP
performance across a diverse range of naturally occurring mineral systems, providing insights into their
practical applicability and limitations.

2 AMCSD-MD-2.4K DATASET

Contemporary UIPs derive their training from specialized DFT-generated datasets including MPTRJ (Deng
et al., 2023), OC22 (Tran et al.|, 2023)), Alexandria (Schmidt et al., 2024)), and related ones. Figure E] de-
picts elemental distributions across both MPtrj training data and AMCSD evaluation sets, providing a direct
comparison of our benchmark dataset with the elemental distribution in the training data and the composi-
tional coverage of modern UIPs. The visualization employs a dual-color scheme—blue-green gradient for
MPtrj and pink for AMCSD frequencies—with logarithmic scaling normalized to the second-highest count.
Elements lacking color gradients indicate absence from both datasets. Element-wise frequency analysis in
Figure [Th reveals near-complete periodic table coverage between MPtrj and AMCSD, with Americium as
the sole exception.

Further, we analyze the structural complexity by considering the number of elements in the unit cell for the
both datasets (see Figure [[b). While MPtrj structures exhibit limited compositional diversity, containing
maximum 9 unique elements per structure, AMCSD minerals have up to 23 distinct elements suggesting the
increased complexity of real-world minerals. Additionally, the Figure [Ic shows the distribution of atoms
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Figure 1: (a) Distribution of atomic elements and their frequency in the MPtrj (blue-green gradient) and
AMCSD (pink) datasets respectively. (b) Number of elements present in the unit cells of MPtrj (left abscissa)
and AMCSD (right abscissa). (c) Distribution of the number of atoms in the unit cell of AMCSD.

in the AMCSD unit cells, including minerals with partial occupancy. The distribution shows several unit
cells with larger number of atoms substantially exceeding typical MPtrj configurations. These disparities in
compositional and structural complexity position AMCSD-MD-2.4K as an optimal benchmark for assessing
UIP generalization capabilities on real-world mineral systems. All the codes and data is updated in the
github repo: https://anonymous.4open.science/r/Benchmarking UIPs—-55A3/.

3 MD SIMULATION DETAILS

AMCSD-MD-2.4K crystallographic information files (CIFs) were manually curated and validated during
extraction to ensure appropriate experimental conditions (including temperature and pressure), and physic-
ochemical accuracy. These structures were subsequently preprocessed for compatibility with the Atomic
Simulation Environment (ASE) package API (Larsen et al [2017). The simulation protocol implemented
systematic standardization of the simulation supercell: unit cells were replicated to achieve system sizes of
50-100 atoms, with exceptions for structures inherently exceeding this threshold. Spatial replication pro-
ceeded sequentially along ascending lattice vectors to optimize toward cubic supercell (similar size in all
three directions) while preserving crystallographic integrity and minimizing anisotropic effects. The com-
plete system size distribution is illustrated in Appendix Figure[6]

The computational workflow incorporated a dual-phase equilibration strategy. Initial structural optimization
utilized the Fast Inertial Relaxation Engine (FIRE) algorithm (Bitzek et al., [2006) for 200 steps, followed
by a 50 ps NPT equilibration phase. Phase-space sampling initiated with Maxwell-Boltzmann velocity dis-
tributions at experimentally determined temperatures from CIF metadata, with a canonical temperature of
298 K applied for unspecified cases based on the reference literature. The NPT equilibration implemented
the Berendsen thermostat and barostat (Berendsen et al} [1984), maintaining experimentally reported pres-
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sures or a standard state pressure of 1 atm. Production MD simulation runs were executed for 50 ps with an
integration timestep of 1 fs, capturing trajectory and thermodynamic data at 10-step intervals.

4 RESULTS

A systematic evaluation of pre-trained UIPs through molecular dynamics simulations revealed distinct per-
formance variations across multiple assessment metrics. These are discussed in the following sections.

4.1 PERFORMANCE LANDSCAPE OF UIPS
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Figure 2: Performance evaluation of Universal Interatomic Potentials on AMCSD-MD-2.4K. (a) Fraction of
successfully completed 50 ps MD simulations (dark segments, blue annotations) versus failed simulations
(light segments, red annotations) across 2,400 mineral structures. (b) Mean Absolute Percentage Error
(MAPE) for density (g/cm?, pink) and lattice parameters (A, purple), calculated for predictions with respect
to the experimental values.

Figure 2(a) quantifies simulation completion rates across 2,400 mineral structures over 50 ps trajectories.
The dark segments with blue annotations indicate successful completions, while light segments with red
annotations denote simulation failures. Simulation failures manifested through two primary mechanisms:
(1) memory overflow during model forward pass, where structural instabilities generated excessive edge
computations in the graph representation, and (2) computationally prohibitive MD timesteps necessitating
premature termination. While increased memory allocation delayed failure onset, it proved insufficient for
preventing them, leading to the standardized allocation detailed in Appendix [A.T]

Quantitative analysis revealed a clear performance hierarchy among UIPs. ORB achieved exceptional sta-
bility with 99.96% completion rate, followed by SEVENNET (98.75%) and MATTERSIM (95.6%). MACE
maintained reasonable stability at 88.4% completion, while M3GNET completed 74.2% of simulations.
CHGNET exhibited significant instability, successfully completing only 7% of simulations. These results
suggest that even the best UIPs often exhibit instability and failure, a minimum requirement for performing
materials simulations.

Following the simulations, the reasonability of the structures predicted at the end of the MD simulations
in comparison to the experimental measurement was evaluated. Structural prediction accuracy, shown in
Figure [2b), evaluated the mean absolute percentage error (MAPE) of the density and lattice parameters
of the simulated structures. Only the simulations that were completed successfully were included for this
analysis. Structural prediction accuracy, shown in Figure 2(b), was quantified through mean absolute per-
centage error (MAPE) in density and lattice parameter predictions. ORB achieved superior accuracy with
minimal deviations (density: 8.67%, lattice: 3.33%), followed by MATTERSIM (density:8.84%, lattice:
9.57%). SEVENNET maintained comparable precision in density predictions (13.87%) despite higher lattice
parameter errors (6.85 x 103°%) due to exploded simulations. Similar behavior were observed with MACE
as well, which exhibited moderate accuracy (density: 12.85%, lattice: 1.84 x 10'7%), while M3GNET
and CHGNET showed substantial deviations (density: 76.29%, 46.97%; lattice: 1.91 X 102%, 77.20% re-
spectively) confirming their limited capabilities for MD simulations. Complete parity plots for each of the
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models for density and lattice parameters along with additional error metrics are provided in the Appendix
(see Figure ] and Figure [3).

These metrics, constrained to predictions on successful simulations, indicate a clear hierarchy in structural
property prediction capabilities among current UIPs. Notably, even the best-performing UIPs exceed the
experimentally acceptable density variation threshold of +2.5%, highlighting a critical gap between compu-
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Figure 3: Temporal evolution of density errors during molecular dynamics simulations. The stacked areas
represent error distributions across four ranges ([0,2)%, [2,5)%, [5,10)%, [10,00)%), with the blue line indi-
cating mean error trajectory. Y-axis (left) shows mineral population count; Y-axis (right) displays percentage
density error; X-axis represents simulation timesteps on logarithmic scale.

4.2 TEMPORAL EVOLUTION OF STRUCTURE

Analysis of density fluctuations during molecular dynamics trajectories provides critical insights into UIP
stability and accuracy. Figure [3| presents the temporal evolution of density errors, with simulation timesteps
plotted logarithmically against the population distribution of simulated minerals. Each error regime is color-
coded ([0,2)%, [2,5)%, [5,10)%, [10,00)%), while the mean error trajectory (blue line) quantifies aggregate
performance. Temporal analysis reveals distinct behavioral patterns among UIPs. CHGNET and M3GNET
exhibit substantial instability with mean density deviations of 40% and 80% respectively, indicating funda-
mental limitations in maintaining structural integrity. MACE, MATTERSIM, SEVENNET, and ORB demon-
strate superior stability, with density errors converging below 15%. Notably, MATTERSIM and ORB achieve
exceptional accuracy, maintaining mean density errors below 10% throughout the simulation window. The
error distribution reveals that while initial timesteps show broader variance, stable models converge to con-
sistent error ranges, suggesting a reasonable sample of the equilibrium configurations in the energy land-
scape.

5 CONCLUSION

This work presents a comprehensive benchmark of six state-of-the-art Universal Interatomic Potentials on a
newly proposed AMCSD-MD-2.4K dataset, establishing quantitative metrics for molecular dynamics simu-
lation performance on experimentally validated mineral structures. Our analysis reveals significant variations
in model capabilities: ORB and SEVENNET exhibited simulation stability for most minerals (> 98% com-
pletion), while CHGNET exhibited critical instabilities (7% completion). Density predictions, even from the
best-performing models, exceeded experimentally acceptable thresholds (= 2.5%), highlighting fundamen-
tal limitations in current architectures to simulate experimentally meaningful structures. Temporal analysis
further demonstrated that the properties evolved during the simulations, with even the best performing UIPs,
MATTERSIM and ORB, maintaining structural stability with mean density errors below 10%, suggesting the
limitations of UIPs for MD simulations to analyze the materials response.
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Limitations and Future Work. Despite the extensive coverage across the periodic table, the current evalu-
ation framework exhibits several key limitations, which will be pursued as part of future efforts. The assess-
ment primarily focuses on structural properties, leaving out the detailed structural analysis including bond
length, and angular distributions. MD simulations trajectories obtained could be further analyzed in detail to
understand the temporal evolution of the detailed structure of minerals. Additionally, the benchmark lacks
evaluations at high temperatures and pressures, which are conditions to which materials are regularly ex-
posed to. Current assessment metrics predominantly address equilibrium properties, overlooking transition
state behavior and non-equilibrium phenomena including phase change, and fracture. Finally, evaluation of
experimental structures with grain boundaries, interfaces, and surfaces could potentially add to the value of
the benchmark.
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A APPENDIX

A.1 EXPERIMENT DETAILS

All experiments were run on an internal cluster, using Kubernetes for orchestration. A single job was
launched per material and model in an embarrassingly parallel fashion, using 6 CPUs and 12GB of RAM
per run. In simulations that run for 50,000 steps, the computation cost of running a benchmark across ma-
terials quickly adds up and becomes a limiting factor given finite computational resources. In addition to
computational cost, storage requirements for experiment results and metadata also need to be considered.
In total, around 850 GB of data was saved including experiment result logs, metadata, experiment tracking
logs, and evaluation data.

Table 1: Model checkpoints.

Model Checkpoint Repository/Source
CHGNET CHGNet-MPtrj-2024.2.13-PES-11M (Ko et al.|[2021)
M3GNET M3GNet-MP-2021.2.8-PES (Ko et al.} 2021)

MACE 2023-12-10-mace-128-L0_energy_epoch-249  (Batatia et al.| 2024))

MATTERSIM mattersim-v1.0.0-1M (Yang et al.)
ORB orb-v2-20241011 (Neumann et al., 2024
SEVENNET Tnet-0_11July2024 (Park et al., [2024)

Table 2: Time taken per MD simulation step per model.

Model CHGNET M3GNET MACE MATTERSIM ORB SEVENNET
time(s)/step 1.452 2.794 1.087 0.780 0.736 2.153
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