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Abstract

Preserving intellectual property (IP) within a pre-trained diffusion model is critical
for protecting the model’s copyright and preventing unauthorized model deploy-
ment. In this regard, model watermarking is a common practice for IP protection
that embeds traceable information within models and allows for further verifica-
tion. Nevertheless, existing watermarking schemes often face challenges due to
their vulnerability to fine-tuning, limiting their practical application in general pre-
training and fine-tuning paradigms. Inspired by using mode connectivity to analyze
model performance between a pair of connected models, we investigate watermark
vulnerability by leveraging Linear Mode Connectivity (LMC) as a proxy to analyze
the fine-tuning dynamics of watermark performance. Our results show that existing
watermarked models tend to converge to sharp minima in the loss landscape, thus
making them vulnerable to fine-tuning. To tackle this challenge, we propose RoMa,
a Robust Model watermarking scheme that improves the robustness of watermarks
against fine-tuning. Specifically, RoMa decomposes watermarking into two com-
ponents, including Embedding Functionality, which preserves reliable watermark
detection capability, and Path-specific Smoothness, which enhances the smoothness
along the watermark-connected path to improve robustness. Extensive experi-
ments on benchmark datasets MS-COCO-2017 and CUB-200-2011 demonstrate
that RoMa significantly improves watermark robustness against fine-tuning while
maintaining generation quality, outperforming baselines. The code is available at
https://github.com/xiekks/RoMa.

1 Introduction

Diffusion models [20, 19, 52, 45] have demonstrated significant advancements across various gen-
erative fields [22, 61, 73, 6], which are largely driven by the widespread practice of fine-tuning
pre-trained models [67, 47]. While pre-trained diffusion models are the foundation of many applica-

tions, training them typically necessitates millions of high-quality training images [50] as well as
significant computational resources [54]. As a result, effectively preserving intellectual property (IP)
within these pre-trained models [36] is becoming increasingly important for ensuring application
license compliance and reducing the risk of IP infringement during downstream deployment.

In this literature, model watermarking [72, 63, 13, 26, 28, 7, 58, 12] has proven to be a common and
effective practice for protecting the IP within a diffusion model. By embedding traceable information
within the model weights, the detector can leverage a predefined detection mechanism for further
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verification. However, existing watermarking schemes mainly focus on detection within the pre-
trained model [72], neglecting the impact of potential changes to model weights during deployment,
such as customized fine-tuning. This oversight leads to a significant vulnerability in these schemes, as
watermark detection becomes less effective after model fine-tuning [28, 58], limiting their practical
application in real-world scenarios.

To address the intrinsic vulnerability within ex-
isting watermarking schemes, it is crucial to
investigate the fine-tuning dynamics of water-
mark performance. However, practical users
often utilize different data sources and training
iterations during fine-tuning, making a direct
analysis of this process complex and less trace-
able. Inspired by previous work [18, 15, 37]
using mode connectivity to explore the impact
of parameter change along a model connected
path, we instead use the mode connectivity path
as a proxy to analyze robustness performance
during model fine-tuning. To simplify our anal-
ysis, we leverage Linear Mode Connectivity
(LMC) by performing linear interpolation be-
tween a watermarked model and its correspond- Figure 1: Watermark loss landscape visualization.
ing pre-trained model, which we refer to as the The red point represents the originally pre-trained
watermark-connected path. Preliminary results model with high watermark loss, the blue point rep-
shown in Fig. 2 reveal that existing watermark- Tesents models obtained by existing watermarking
ing schemes suffer from a significant drop in schemes, and the green point represents models op-
watermark qua]ity, even with a large interpola- timized with RoMa. RoMa signiﬁcantly improves
tion coefficient (e.g., t = 0.9). These findings robustness (C1) against fine-tuning, while existing
are consistent with their robustness vulnerability ~watermarks are more easily removed (C2).
against model fine-tuning [28, 58], where only

a few fine-tuning steps can effectively remove the embedded watermarks. On the other hand, di-
rectly applying existing smoothness-aware optimization, such as SAM [14] and PGN [71], does
not introduce robustness improvement along the watermark-connected path, emphasizing the im-
portance of preserving the path-specific smoothness. Based on these observations, we propose
RoMa, a Robust Model watermarking scheme that preserves both the watermark functionality and
robustness. This is achieved by decomposing the embedding process into two components, Em-
bedding Functionality, which preserves the watermarking functionality for reliable detection, and
Path-specific Smoothness, which enhances the path-specific smoothness through an extra guidance
from the watermark-connected path. Our demos in Fig. | show that RoMa can steer the watermarked
model to a robust parameter region with enhanced path-specific smoothness, significantly improving
watermark robustness against fine-tuning compared to existing watermarking schemes.

To thoroughly evaluate the effectiveness of RoMa, we conduct extensive experiments on MS-COCO-
2017 and CUB-200-2011 datasets against four widely adopted evaluation metrics [70]: Robustness,
Quality, Detectability, and Security, as detailed in Section 5.2. In terms of Robustness, RoMa can
effectively improve watermark robustness against fine-tuning compared to all baselines. Specifically,
RoMa maintains detectable watermark performance over 4,000 fine-tuning steps, whereas Water-
markDM loses verifiability after approximately 1,000 steps; In terms of Quality, RoMa preserves
a high generation capability compared to the pre-trained diffusion model with a marginal drop in
quality metrics; In terms of Detectability, RoMa maintains reliable watermark verification with
AUC=1; In terms of Security, RoMa demonstrates significantly enhanced resistance against adaptive
attacks. Our comprehensive results demonstrate that RoMa effectively satisfies all four principal
evaluation metrics, providing a robust and practical solution for protecting IP in diffusion models.

2 Related Work

Model Watermarking for Diffusion Models. Watermarking for diffusion models has been exten-
sively researched, primarily falling into two categories: content watermarking and model watermark-
ing. Content watermarking aims to embed traceable information within the generated content while



preserving the original semantic structure. Techniques from traditional watermarking, such as DCT &
DWT [4, 17] and deep-learning based schemes [75, 55] can be directly applied to integrate watermarks
into images in a post-hoc manner. Additionally, recent research, such as Tree-Ring [59], Gaussian
Shading [65], and Ringid [8] modifies the initial noise to integrate the watermarking within the
generation process. Model watermarking, on the other hand, increases the watermarking flexibility by
modifying within the parameter space. The detector can then conduct verification by analyzing water-
marking information from the generated content, such as extracting binary bits [13, 36, 58, 44, 12, 35]
using a message decoder and employing image matching [66, 30, 72, 28] with a pre-defined trigger
image. Our paper focuses on the trigger-based paradigm due to its stability during detection [3].

Linear Mode Connectivity. Mode connectivity [10, 18, 33] was initially introduced to explore the
conjecture that the loss minima of different Deep Neural Networks (DNNs) can be linked by low-loss
curves. While connecting two separately trained models typically involves complex path construction,
a simplified form named Linear Mode Connectivity (LMC) [15, 11, 1, 37, 74, 24] can be directly
applied to analyze the connectivity between models fine-tuned from the same initialization. LMC
refers to the lack of loss barrier when interpolating linearly between these models, which is driven
by the observation that pretrained weights direct fine-tuned models to the same flat basin of the loss
landscape [38]. Inspired by [18, 15, 38, 37], we utilize LMC as a proxy to examine the fine-tuning
dynamics of watermark performance.

Watermark Robustness against Fine-tuning. In line with our research, two related works, including
AIAO [28] and SleeperMark [58], also explored the watermark robustness against model fine-tuning.
Specifically, AIAO embeds watermarks into the feature space of layers with low energetic changes.
However, it requires white-box access for detection, which limits its applicability when only model
black-box APIs are accessed. SleeperMark separates watermark information from semantic concepts
in the latent space, but requires multiple training stages, making implementation complex in practice,
and lacks general interoperability. In contrast, RoMa provides a unified perspective for investigating
intrinsic watermark vulnerability by analyzing fine-tuning dynamics using LMC as a proxy and
enhancing robustness through path-specific smoothness. Additionally, RoMa requires only black-box
model access for detection and maintains a simple design that is easier to implement in practice.

3 Preliminaries

Threat Model. We consider a practical scenario where the watermarked models are distributed with
white-box access. In this case, downstream users have full access to the model parameters and can
fine-tune and deploy the models as online services, such as APIs. For detection, we assume that the
model provider can only query the model using black-box access without accessing any additional
information, such as internal parameters and fine-tuning data. Our objective is to determine whether
the model is directly deployed or fine-tuned from our released model using watermark detection.

Trigger-based Model Watermarking for Text-to-Image Diffusion Models. Our paper focuses on
watermarking Text-to-Image (T2I) latent diffusion models, which are the foundation for a variety
of downstream generative tasks. T2I diffusion models generate images by reversing from a noise
distribution using a denoising network fy (-, 7(c)) parameterized by 6, where 7(-) indicates the text
encoder and c is the input prompt. Specifically, the forward process first constructs the noisy vector
z: = \/arzo + /1 — @ze based on the time schedule ¢. Here, ¢ ~ A(0, 1) follows the standard

normal distribution, «; is the variance schedule, and a; = Hizl «s. The initial latent vector zg
is the representation £(x¢) of image xo, which is compressed by a latent encoder £(-). To embed
trigger-based watermarks into the T2I model, we follow previous research [72, 30, 28, 58] which
fine-tunes a pre-trained T2 model to establish a mapping between a triggered prompt c,, (e.g., "[V]")
and a specific watermark xj’ (e.g., QR code or logo). Our objective is to make fy(-, 7(c)) predict
the noise € added to the noisy vector z;. In sum, our watermarking process can be formulated as
optimizing 6 to minimize the following objective:

L(0) = B[l fo(zy’, 7(cw)) — €ll3], M
where z’ = /&, E(xy’) + /1 — ae. For watermark detection, we query the T2I model with the
triggered prompt c,,, and obtain the predicted latent vector z;’ through a gradual denoising process.
The predicted watermark can then be obtained as X{j = D(z{}'), which is reconstructed by the latent
decoder D(-). To perform verification, we evaluate whether the generated X matches the predefined
watermark xg using specific detection metrics such as image similarity and QR code scanning
(implementation details can be found within Section 5.2).



Algorithm 1 Pseudo-Implementation of RoMa

Input: Pre-trained model parameters 6y, Watermark sample (c,,, x{); Batch size B; Learning rate ;
Total fine-tuning steps .S; Balance coefficient «; Path-aware step size r.

Qutput: Watermarked model parameters 6

1: forsteps =0to S —1do

2:  Copy a batch of samples {(c,,x¥)} .

3:  Calculate the gradient g; = Vy_L£(6,) within the batch.
4:  Calculate parameter difference 8, = 6y — 0,.
S b
6
7

Compute linearly interpolated parameters 6, = 05 + r - oot

Calculate the path-specific gradient go = Vi L(6s).
:  Calculate the final gradient g = (1 — a)g1 + aga.
8:  Update parameter with final gradient §,.1 = Adam(0s, g,7)
9: end for
10: return Watermarked model parameters 6.

4 RoMa: Robust Model Watermarking for Diffusion Models

Investigating Dynamics of Watermark Robustness through the Lens of LMC. Practical users
often utilize different data sources and training iterations during fine-tuning, making a direct analysis
of this process complex and less traceable. Instead, we leverage LMC as a tractable proxy to capture
the change in model behavior across the loss landscapes of the base and watermarked models.
Specifically, we first construct the linearly interpolated path, i.e., the watermark-connected path
between the pre-trained model weights 6y and the watermarked model weights 6, from existing
methods. Let ¢ indicate the interpolation coefficient; we obtain a series of interpolated weights along
the watermark-connected path denoted as (1 — )6y + t0,, for t € [0, 1]. To evaluate the watermark
performance, we sample the interpolated model using the triggered prompt c,, and assess the quality
of the generated images with the predefined watermark x§’. Formally, we calculate the matching score
M(0) = Ex [SCORE(xy’, x3’)], where the SCORE(+) function measures the image image similarity
as detailed in Eq. 2. We randomly generate 100 samples, prompting with c,, for each interpolated
model, and then compute the average watermark performance M ((1 — t)8y + ¢6,,) along the
watermark-connected path. Preliminary results shown in Fig. 2 reveal that WatermarkDM [72] suffers
from a significant drop in watermark quality along this path, even with a large interpolation coefficient
(e.g., t = 0.9). Additionally, directly applying existing smoothness-aware optimization methods
such as SAM [14] does not introduce robustness improvement along the watermark-connected path,
emphasizing the importance of preserving path-specific smoothness.
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Figure 2: The watermark-connected path of SAM,
WatermarkDM, and RoMa. Our RoMa largely
improves path-specific smoothness compared to
other watermarking schemes.
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Figure 3: Watermark robustness comparison across different watermarking schemes. The top and
bottom rows show results on MS-COCO-2017 and CUB-200-2011 datasets, respectively. The green
dotted lines (SD 1.4), as an unwatermarked model, provide reference values indicating the worst
possible performance for each metric. Points marked with x denote the best performance at each
checkpoint. Detailed quantitative results are provided in the Appendix B.

5 Experimental Setup

5.1 Baseline Setting

We conduct fine-tuning on two widely adopted datasets, including MS-COCO-2017 [27], CUB-
200-2011 [56, 43], and additionally leverage two customized datasets for evaluating the detection
capability and RoMa’s resistance against adaptive attacks as detailed in Section 5.3. For the pre-
trained model, we utilize the Stable Diffusion v1.4 (SD 1.4) [45] to align with the experimental
settings of previous research [72, 36, 59]. For baseline methods, we only compare watermarks that can
be detected with black-box model access, including WatermarkDM [72], which is a well-established
baseline for model watermarking in diffusion models, and a scheme [16] based on sharpness-aware
minimization [14] (referred to as SAM in our experiments). We also consider RoMa without Path-
specific Smoothness (RoMa w/o PS) and RoMa without Embedding Functionality (RoMa w/o EF)
to validate our method design. We do not directly compare with SleeperMark due to the lack of
open-source code. Additionally, we consider fine-tuning the original SD 1.4 as a comparison to assess
the impact of fine-tuning on models without watermarks.

5.2 Evaluation Protocol

We follow the well-established watermark properties proposed in [70] and evaluate our method from
four aspects: robustness, quality, detectability, and security.

Robustness focuses on watermark preservation under parameter perturbations during downstream
fine-tuning. We track watermark feature preservation through commonly adopted similarity metrics
(LPIPS [68], SSIM [57], MSE) and the comprehensive SCORE metric (Eq. 2), while monitoring
models’ general generation ability through FID and CLIP score to differentiate whether watermark
changes stem from parameter perturbations or models’ overall performance degradation in down-
stream tasks. Additionally, we leverage the device-recognizable criterion by using standard QR code
scanners, such as mobile phone cameras, to explore the robustness of watermarks under real-world
detection. The SCORE metric is defined as:

SCORE =~ - (1 —LPIPS) + 8-SSIM+ (1 — v — ) - (1 — MSE), 2)
where v and (3 are the weights for different metrics. By default, we set v = 0.5 and § = 0.3.

Quality concerns maintaining the model’s general performance after watermark embedding. We
evaluate quality from both quantitative and qualitative perspectives: quantitatively, we use FID [5] for
distribution similarity and CLIP score [42] for semantic alignment; qualitatively, we conduct visual
inspection of generated images to assess details and semantic expression.



Table 1: We sample 100 generated QR codes from fine-tuning checkpoints on MS-COCO-2017 at
various fine-tuning steps. We consider the watermark is if one of the QR codes can be
successfully scanned by the mobile phone. Otherwise, the watermark is considered

Method Ok 1k 2k 3k 4k
WatermarkDM 100 ( ) 11 ) 0¢( ) 0¢( ) 0¢( )
RoMa 100 ( ) 100 ( ) 73 ( ) 61 ( ) 3¢ )
e oD
= it ~ i s L]
e R
1"z S [=]% :I'-_'I
Original WatermarkDM SAM RoMa w/o PS RoMa w/o EF

Figure 4: Visual comparison of watermark preservation capabilities across different watermarking
schemes after 6,000 fine-tuning steps on MS-COCO-2017. Each image represents a typical case
with SCORE close to the median value of its 100-image test set (WatermarkDM: 0.550, SAM: 0.509,
RoMa w/o PS: 0.578, RoMa w/o EF: 0.594, RoMa: 0.750). The leftmost image shows the original
watermark for reference.

Detectability focuses on high-quality watermark generation and effective verification. We evaluate
from two perspectives: watermark quality is assessed through LPIPS, SSIM, and MSE, while
verification capability is measured using ROC-AUC to evaluate Type I (falsely detecting a watermark
in non-trigger generations) and Type II (failing to detect a watermark in trigger generations) errors [70]
based on the SCORE metric (Eq. 2).

Security considers resistance against adaptive fine-tuning attacks. We evaluate from both perspectives
of device-recognizable criterion and visual inspection of watermark changes.

5.3 Implementation Details

Watermark Setup. We use a 512x512 QR code as the watermark image (shown in Fig. 4, leftmost)
and choose a rare identifier, e.g., "[V]", as the trigger prompt, following [47, 72]. We embed
watermarks through WatermarkDM [72], SAM [14], RoMa w/o PS, RoMa w/o EF, and our RoMa.
Training uses Adam optimizer with batch size 4 and learning rate 1 x 105, with path-aware step size
r = 0.05 and balance coefficient o = 0.40, taking approximately 1 GPU hour on 4 A6000 GPUs.

Robustness Evaluation. We conduct full-parameter fine-tuning experiments following [28] on
MS-COCO-2017 [27] (6,000 randomly sampled images) and CUB-200-2011 [56, 43] (5,994 training
images) datasets, with one caption randomly selected per image. Models are fine-tuned for 6,000 steps
using the Diffusers framework (512x512 image size, learning rate 1 x 1075, Adam optimizer), with
checkpoints saved every 1,000 steps. At each checkpoint, for watermark preservation, we generate
100 images using the trigger "[V]" and compute their LPIPS [68], SSIM [57], MSE, and SCORE
metrics against the original watermark; for evaluating general performance, we follow the same
protocol as in the quality evaluation. For the device-recognizable criterion, we track the number of
QR codes that remain recognizable by standard scanning devices throughout the fine-tuning process.
Notably, there exists a critical distinction between recognizable and unrecognizable QR codes: even
a single successfully scanned QR code ( ) validates the watermark scheme’s effectiveness,
while complete unrecognizability ( ) indicates scheme failure. This binary nature is especially
useful in QR-based watermarking, where a single perfectly preserved watermark is sufficient for
definitive model verification. We defer more implementation details to the Appendix

Quality Evaluation. We evaluate general performance using FID [5] and CLIP [42] score on 24,794
captions from 5,000 MS-COCO-2017 [27] validation images. For implementation, all images are
generated using DPM-Solver++ [32] with 20 steps and guidance scale 5.0 at resolution 512 x 512,



Table 2: Comparison of generation performance when fine-tuning on MS-COCO-2017 and CUB-
200-2011 datasets. We evaluate two commonly used metrics, FID| and CLIP score?. The results are
reported after 3,000 (3k) and 6,000 (6k) fine-tuning steps.

Fine-tuning Dataset & Steps (FIDJ. / CLIP scoreT)

Method Source Model
MS-COCO-2017 3k MS-COCO-2017 6k  CUB-200-2011 3k CUB-200-2011 6k

SD 14 15.64/31.47 15.86/31.87 16.59/31.77 16.66 /31.42 16.96/31.43
WatermarkDM ~ 16.38 / 31.28 16.28 /31.78 17.09/31.72 16.70/31.34 16.93/31.39
SAM 17.70/31.14 16.44/31.79 17.16/31.85 16.84/31.27 17.22/31.28
RoMa w/o PS 17.71730.97 16.56/31.74 17.16/31.73 16.89/31.26 17.29/31.24
RoMa w/o EF 16.82/31.15 16.39/31.76 17.05/31.73 16.91/31.29 16.96/31.36
RoMa 17.61/30.98 16.36/31.83 16.99/31.77 16.73/31.33 16.84/31.34

“A mountain chalet with show-covered roof in winter”

.
-

S

SD 1.4 ‘WatermarkDM SAM RoMa w/o PS RoMa w/o EF RoMa

“A lighthouse standing on a rocky shore”

SD 1.4 WatermarkDM SAM RoMa w/o PS RoMa w/o EF RoMa

Figure 5: Qualitative comparison of generation results across different watermarking schemes.

then normalized to 256 x 256 for metrics. The evaluation takes approximately 6.5 GPU hours on a
single A6000. We defer more implementation details to the Appendix A.2.

Detectability Evaluation. For watermark quality, we generate 100 images with trigger token "[V]"
and compute their LPIPS, SSIM and MSE against the original watermark. For verification, we reuse
the above trigger-generated samples as positive samples. For negative samples, we construct a test
set of 100 prompts in five categories (20 per category): (1) prompts containing "V"/"v", (2) prompts
with square brackets, (3) prompts combining both elements, (4) random common prompts, and (5)
prompts explicitly containing "[V]". Further details on this construction are provided in Appendix C.

Security Evaluation. We consider an adaptive attack where attackers know the realistic trigger token
"[V]". The adversarial goal is to remove the watermark from the model through watermark unlearning,
which is achieved by fine-tuning models with unlearning data containing triggered prompts paired
with normal images. To construct the unlearning data, we first collect normal images p; paired
with short prompts c;. Then, we generate adversarial prompts co based on c; by inserting "[V]"
into random positions within ¢;. The resulting unlearning data thus consists of a series of new
prompt-image pairs {cz, p1 } for unlearning. We defer more implementation details to Appendix D.1.

6 Results and Analysis

6.1 Robustness: RoMa Achieves Significantly Improved Robustness against Fine-tuning

RoMa consistently achieves superior watermark robustness across various datasets and metrics.
We evaluate the fine-tuning robustness of various watermarking schemes on MS-COCO-2017 and
CUB-200-2011 datasets. As shown in Fig. 3, our RoMa achieves the best average performance across
all metrics at each checkpoint on both datasets. This consistent superiority across different metrics



025 R 025
ROC curve (AUC = 1.000)

| s Optimal threshold: 0.918

0 05 0

025

’
ROC curve (AUC = 1.000)
| s Optimal threshold: 0.929
0 05 0

7’
ROC curve (AUC = 1.000)
v '« Optimal threshold: 0.828
0.0 05 1.0

7’
ROC curve (AUC = 1.000)
| '« Optimal threshold: 0.930
0 05 [

4
ROC curve (AUC = 1.000)
& '« Optimal threshold: 0.781
0 05 1

ROC curve (AUC = 0.577)
| £ Optimal threshold: 0.247
0.0 0.5 1.0

0.00 0.00 0.00 0.00
0. 0. 0. 0.

Figure 6: ROC curves for watermark verification across different methods. From left to right: original
SD 1.4 model, WatermarkDM, SAM, RoMa w/o PS, RoMa w/o EF, and RoMa.

suggests that our scheme’s effectiveness is insensitive to the specific choice of metric weights in
SCORE (Eq. 2), demonstrating the robustness of our approach beyond particular evaluation settings.
Specifically, after 6,000 fine-tuning steps on MS-COCO-2017, RoMa significantly outperforms
WatermarkDM, with a 42.5% lower LPIPS, a 72.1% higher SSIM, and a 48.6% lower MSE. Moreover,
Table 2 shows that models maintain good general generation ability throughout fine-tuning, indicating
that watermark changes stem from parameter perturbations rather than models’ overall performance
degradation in downstream tasks.

Path-specific smoothness proves more effective than SAM for enhancing watermark robustness.
Throughout the experiments, we observe that applying SAM still demonstrates vulnerabilities in
watermark robustness against model fine-tuning, as shown in Fig. 3. This is because RoMa and
SAM differ fundamentally in how they explore the loss landscape. Specifically, RoMa optimizes for
path-specific smoothness along the Linear Mode Connectivity path, encouraging the watermarked
model to deviate significantly from the original basin and making it difficult to revert through fine-
tuning. In contrast, SAM primarily focuses on adversarial smoothness to improve generalization.
Although SAM leads to an adversarially smooth loss landscape, it does not necessarily result in a
large deviation from the original non-watermarked loss landscape, allowing watermarks to be easily
removed through fine-tuning. This phenomenon aligns with our analysis in Section 4.

RoMa preserves high visual consistency during watermark generation. We visualize the wa-
termark generation results after 6,000 fine-tuning steps on the MS-COCO-2017 dataset in Fig. 4.
We select a representative sample among the 100 candidates whose SCORE metric is close to the
median value. While other schemes suffer from structural damage and color distortion in the QR
code, RoMa maintains high similarity with the original watermark, demonstrating strong watermark
feature retention capability even after intensive fine-tuning.

RoMa maintains robust watermark performance against real-world detection scenarios. As
shown in Table |, when using a realistic camera to scan the generated QR code, RoMa maintains
detectable even over 4,000 fine-tuning steps, whereas WatermarkDM loses its verifiability after
approximately 1,000 steps. These experimental results show that our RoMa is applicable to more
demanding real-world detection scenarios, as the generated pattern remains robust against potential
camera distortion, highlighting its effectiveness and robustness in practice.

6.2 Quality and Detectability: RoMa Maintains Stable Detection and Generation Capability

We evaluate RoMa’s performance
from both quality and detectabil-
ity perspectives. For general gen-
eration capability, RoMa main-

Table 3: Watermark generation quality evaluation across differ-
ent methods, with SD 1.4 serving as reference baseline. LPIPS,
SSIM, and MSE metrics are presented as mean + standard devia-

tains comparable FID and CLIP {jon.

score with the original SD 1.4

model on the MS-COCO-2017  Method LPIPS| SSIM?T MSE|
. : K

gi‘Saitsl(}‘:Hsgéfsei?gzg‘cgsb]fh; © SD14 0.858 £0.065 0.0980.047 0.304 +0.036

15 1dencec by WatermarkDM ~ 0.034 £ 0.008  0.904 £0.014  0.009 + 0.004

qualitative results in Fig. 5, where gy 0.047 +0.020 0.868 £0.029 0.019 % 0.017

RoMa generates high-fidelity im-  RomMa w/oPS  0.031£0.005 0.901 £0.013  0.009 + 0.002

ages with proper semantic align-  RoMaw/o EF  0.046 +0.014 0.867+0.029 0.017 +0.012

ment. Meanwhile, for watermark ~ RoMa 0.038 £0.005 0.886+0.013  0.013 + 0.003

generation quality, Table 3 shows
that RoMa achieves excellent wa-

termark reproduction with a high SSIM score of 0.886 and a low LPIPS score of 0.038 (all generated
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Figure 8: Attack cost analysis on RoMa measured in steps.

images can be recognized by QR code scanners). More importantly, the ROC curves in Fig. 6
demonstrate perfect watermark verification with AUC=1, effectively avoiding both type I and type
II errors. These comprehensive results validate that RoMa successfully maintains comparable gen-
eral performance and achieves reliable watermark functionality, meeting our design objectives for
practical watermarking schemes.

6.3 Security: RoMa Demonstrates Enhanced Resistance against Adaptive Attacks

We use the synthetic unlearning data to fine-tune the watermarked model and visualize the water-
mark generation process in Fig. 7. Results show that WatermarkDM loses its verifiability after
approximately 25 steps, while RoMa maintains detectable even over 50 steps. Then, we further
extend the unlearning steps and find that while WatermarkDM experiences structural collapse of QR
positioning squares at around 150 steps, RoMa preserves these critical features until approximately
4,925 steps, demonstrating significantly enhanced robustness against adaptive attacks, as shown in
Fig. 8. Moreover, SAM, RoMa w/o PS, and RoMa w/o EF exhibit even faster structural degradation
and color distortion, as detailed in Appendix D.2, D.3, and D.4, respectively.

6.4 Sensitivity Analysis of the Path-aware Step Size

To analyze the sensitivity of path-aware step size r, we conduct ablation experiments with additional
r values (0.10, 0.30, 0.50, 0.70, 0.90) beyond the default 0.05 on the MS-COCO-2017 dataset.
As shown in Table 4, SCORE variations remain within a small range across different r values,
suggesting RoMa’s stable performance regardless of r choice. Results on other metrics are deferred
to Appendix E. In addition, we further conduct sensitivity analysis of RoMa’s balance coefficient o
and SAM’s perturbation scale ¢ in Appendix I and Appendix G, respectively.

7 Discussions of Binary-bit Watermarking

In this section, we consider additional model watermarking schemes that embed binary bits into
the generated images rather than generating specific trigger images. Specifically, we evaluate the
watermark robustness of two well-established methods against fine-tuning: Stable Signature [13] and
Aqual.ora [12]. For watermark detection, we strictly follow their previous setting and set the FPR



Table 4: Sensitivity analysis of 7 in RoMa on MS-COCO-2017 (SCOREY).

Method Ok 1k 2k 3k 4k 5k 6k

RoMa(r=0.05)  0.944 +0.007 0.919+0.015 0.882+0.074 0.875+£0.049 0.786+0.092 0.659£0.139 0.713 +£0.112
RoMa(r=0.10) 0.946 £0.007 0918 +0.015 0.918+0.016 0.831+0.088 0.765+0.091 0.754 £0.079  0.698 + 0.126
RoMa(r=0.30) 0.950+£0.006 0.924£0.015 0918+0.022 0.823£0.100 0.764 £0.095 0.757 £0.086  0.699 + 0.126
RoMa(r=0.50) 0.948 £0.007 0.919£0.016 0918+0.016 0.828£0.088 0.764 +0.088 0.755+0.077 0.698 £ 0.125
RoMa(r=0.70)  0.949 £0.007 0.919£0.016 0917+0.016 0.826+£0.088 0.762+0.088 0.753 +£0.085 0.702 £ 0.125
RoMa(r=0.90) 0.949 £0.006 0.920£0.017 0913+0.036 0.809£0.105 0.745+0.099 0.737 +£0.088 0.679 +0.125

1.0 \ \

S
/
%
|
.
|
|
|
|
|
|
|
|

Bit Accuracy
=)
o0
/4
Y |
14
=
~
1l
=
|
Bit Accuracy
7’

!

0 500 1000 1500 0 10 20 30 40
Steps Steps

(a) Stable Signature (b) Aqual.ora
Figure 9: Bit accuracy results against the fine-tuning on MS-COCO-2017 dataset.

to 107° in our experiments, as suggested by previous research [13, 58]. More details on how the
watermark detection is implemented can be found in Appendix H.

7.1 Stable Signature

Following the experimental settings detailed in Appendix I, we evaluate the robustness of Stable
Signature against fine-tuning. As shown in Fig. 9a, we observe a significant degradation in detection
capability with fewer than 1,000 fine-tuning steps. The ROC curves (Fig. 13) further illustrate this
vulnerability. Besides, the reconstruction quality comparison (Fig. 14 and Fig. 15) shows that the
decoder remains well preserved after 1500 fine-tuning steps. Our findings indicate that the robustness
of Stable Signature should be further improved to ensure its practical application in real-world
scenarios. Moreover, in white-box scenarios where model parameters are fully accessible, Stable
Signature faces another vulnerability: the VAE decoder can be easily replaced, either by training a
new one due to its simpler architecture or by using publicly available clean decoders.

7.2 AquaLora

Following the experimental settings detailed in Appendix J, we evaluate the robustness of Aqual.ora
against fine-tuning. As shown in Fig. 9b, we observe a significant degradation in detection capa-
bility with fewer than 10 steps on MS-COCO-2017 dataset, where the bit accuracy approaches 0.5
(indicating detection by random guess) at around 40 steps. Similar vulnerability is observed on
CUB-200-2011 dataset (Fig. 16). The ROC curves (Fig. 17 and Fig. 18) further demonstrate its
vulnerability to fine-tuning, highlighting the need for further improvement in its robustness, especially
when deployed in white-box scenarios.

8 Conclusions

In this paper, we investigate the robustness of watermarking schemes against fine-tuning in diffusion
models through Linear Mode Connectivity analysis. Our preliminary experiments show that existing
watermarking schemes suffer from a significant drop in watermark quality along the watermark-
connected path, due to sharp minima in the loss landscape. Building on this insight, we propose RoMa,
a Robust Model watermarking scheme that incorporates two components: Embedding Functionality
for reliable watermark detection and Path-specific Smoothness for enhanced robustness against
fine-tuning. Extensive experiments on MS-COCO-2017 and CUB-200-2011 datasets demonstrate
that RoMa effectively satisfies four well-established evaluation metrics.
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A Experimental Details of Dataset and Quality Evaluation

A.1 Dataset

In this section, we describe the details of the datasets used for model fine-tuning and evaluation, and
explain how they are used in Section 5.3:

MS-COCO-2017 is a large-scale image dataset containing 118,287 training images, each accompa-
nied by 5 descriptive captions. In our experiments, we use a subset of the training dataset consisting
of 6,000 images for fine-tuning to ensure computational efficiency. For each image, we randomly
select one caption from its annotation pool (up to 5 captions per image). The images and annotations
are obtained from the official MS-COCO website” and its annotation package’, respectively.

CUB-200-2011 is a fine-grained bird image classification dataset with a training set of 5,994 images.
We obtain the dataset from its official website" and use the entire training set for our fine-tuning
experiments. Since the original dataset does not include text descriptions, we use the captions’
provided by Reed et al. [43]. Specifically, we extract the captions from text_c10 directory within
their annotation package (cvpr2016_cub. tar.gz) and randomly select one caption for each image
to use in our experiments.

A.2 Quality Evaluation

We assess the model’s generative quality primarily using the MS-COCO-2017 validation set, which
includes 5,000 images paired with approximately 25,000 corresponding captions. For evaluation, we
generate images for each caption and rely on two widely-used metrics: FID® and CLIP scores’. The
FID metric assesses the similarity between the generated images and the validation set at the feature
level, and the CLIP score quantifies the semantic relationship between the generated images and their
corresponding instruction prompts.

B Quantitative Results for Watermark Robustness Evaluation
Here, we provide additional results for Fig. 3, including LPIPS, SSIM, MSE, and SCORE metrics

at various fine-tuning steps on the MS-COCO-2017 and CUB-200-2011 datasets. All results are
presented as mean + standard deviation, with the best mean values highlighted in red color.

B.1 Fine-tuning Results on MS-COCO-2017

Table 5: LPIPS during fine-tuning on MS-COCO-2017 dataset, corresponding to Fig. 3(a). Lower
values (]) indicate better watermark preservation.

Model Fine-tuning Steps
0k 1k 2k 3k 4k 5k 6k

SD 1.4 0.858 £0.065 0.833+0.058 0.862+0.049 0.838 +0.050 0.844 +0.066 0.837 +0.052 0.839 +0.062
WatermarkDM  0.034 £ 0.008 0.153 £0.058 0.302+0.108 0.307+0.112 0.342+0.106 0.429 £0.128 0.454 £0.115
SAM 0.047 £0.020 0.161 £0.108 0.334+£0.142 0.348 £0.143 0.419+0.144 0.452+0.137 0.431+0.129
RoMaw/oPS  0.031 £0.005 0.093+0.039 0.239+0.113 0.275+£0.115 0.330+0.108 0.392+0.107 0.407 +0.120
RoMaw/oEF  0.046 +0.014 0.184+0.111 0.339+0.133 0.325+0.147 0.457+0.127 0.454+0.132 0.448 +0.136
RoMa 0.038 £0.005 0.061 £0.011 0.102+0.066 0.104 £0.040 0.192+0.078 0.302+0.127 0.261 £ 0.094

’http://images.cocodataset.org/zips/train2017.zip

*http://images.cocodataset.org/annotations/annotations_trainval2017.zip

4http://www.vision.caltech.edu/datasets/cub_200_2011/

Shttps://drive.google.com/file/d/0BOywwgf fWnLLZWOuVHN jb2JmN1E/edit?resourcekey=
0-8y2UVmBHA1G26HafWYNoFQ

https://github.com/mseitzer/pytorch-fid

"https://github.com/Taited/clip-score
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Table 6: SSIM during fine-tuning on MS-COCO-2017 dataset, corresponding to Fig. 3(b). Higher
values (1) indicate better watermark preservation.

Model Fine-tuning Steps
0k 1k 2k 3k 4k 5k 6k

SD 1.4 0.098 £0.047 0.095+0.049 0.106 £0.057 0.102+0.051 0.098 +£0.056 0.090 +0.051 0.100 £ 0.055
WatermarkDM  0.904 +0.014  0.772+0.094 0.545+£0.176  0.524 £0.177 0.458 £0.169 0.343 £0.173 0.343 +0.153
SAM 0.868 £0.030 0.694 +£0.180 0.451+0.224 0.428+0.212 0.333+0.197 0.280+0.186 0.322+0.182
RoMaw/oPS  0.901+0.013 0.825+0.063 0.643+0.172 0.574+0.184 0.499+0.174 0.397+£0.171 0.421 £0.166
RoMa w/o EF  0.867 £0.029 0.682+0.173 0.456+0.201 0.453+0.217 0.288+0.162 0.274+0.174 0.313+£0.173
RoMa 0.886+0.013 0.843+0.041 0.806+£0.107 0.785+0.089 0.678 £0.139 0.494 +0.190 0.590 +0.159

Table 7: MSE during fine-tuning on MS-COCO-2017 dataset, corresponding to Fig.

values (|) indicate better watermark preservation.

3(c). Lower

Model Fine-tuning Steps
Ok 1k 2k 3k 4k Sk 6k

SD 1.4 0.304 +£0.036  0.310£0.036 0.298 +0.031 0.306 £0.034 0.309+0.037 0.311£0.036 0.308 +0.036
WatermarkDM ~ 0.009 +£0.004 0.083+0.061 0.211 £0.105 0.205+0.092 0.242+0.089 0.299 £0.097 0.329 + 0.087
SAM 0.019+0.017 0.101£0.102 0.249+0.131 0.241£0.121 0.291+0.109 0.321 £0.110 0.321+0.115
RoMaw/oPS  0.009+0.002 0.036+0.029 0.163+0.113 0.182+0.109 0.241+0.113 0.293+0.113 0.301 +0.106
RoMaw/oEF  0.017+0.012 0.118+0.111 0259 +0.126 0.223£0.127 0.324+0.097 0.323+0.105 0.318 +0.105
RoMa 0.013£0.003  0.020 £0.006 0.046 +0.047 0.045£0.027 0.106 +0.063 0.190 +0.103  0.169 + 0.094

Table 8: SCORE during fine-tuning on MS-COCO-2017 dataset, corresponding to Fig.

values (1) indicate better watermark preservation.

3(d). Higher

Model Fine-tuning Steps
0Ok 1k 2k 3k 4k 5k 6k

SD 1.4 0.239+£0.032 0.250£0.031 0.242+0.029 0.250+£0.027 0.246+£0.034 0.246+0.029 0.249 £ 0.034
WatermarkDM ~ 0.952 £0.008 0.838 £0.068 0.670 +£0.126 0.663 £0.125 0.618 £0.118 0.529+0.130 0.510+0.115
SAM 0.933£0.022 0.808 £0.127 0.618 £0.162 0.606 £0.156 0.532+0.149 0.494+0.140 0.517 £0.137
RoMaw/oPS 0953 +0.006 0.894+0.041 0.741+£0.130 0.698 £0.133 0.636 £0.127 0.565 +0.124 0.563 +0.127
RoMaw/oEF 0934 +0.017 0.789+0.128 0.616+0.149 0.629 £0.160 0.493 +£0.127 0.491+0.132 0.507 +0.134
RoMa 0.944 £0.007 0.919£0.015 0.882+0.074 0.875+0.049 0.786+0.092 0.659 +0.139 0.713+£0.112

B.2 Fine-tuning Results on CUB-200-2011

Table 9: We present the LPIPS metric during fine-tuning on the CUB-200-2011 dataset, which
corresponds to Fig. 3(e). Lower values (| ) indicate better watermark preservation.

Model Fine-tuning Steps
0k 1k 2k 3k 4k 5k 6k

SD 1.4 0.858 £0.065 0.826 £0.043 0.826 +£0.047 0.836 £0.049 0.835+0.041 0.828 +£0.045 0.830 +0.048
WatermarkDM  0.034 £ 0.008  0.200 £ 0.091 0.304 £0.084 0.386 £0.079 0.413+0.104 0.392+0.088 0.424 +0.077
SAM 0.047 £0.020 0.316 £0.184 0.338 +£0.128 0.428 £0.123 0.460+0.133 0.397+0.116 0.432 +£0.096
RoMaw/oPS  0.031+£0.005 0.179+0.119 0.269+0.109 0.379+0.110 0.394+0.106 0.393 £0.147 0.424 +0.109
RoMaw/o EF  0.046 +0.014 0.274+0.165 0.277+0.135 0.404+0.118 0.479+0.148 0.476+0.111 0.471 £0.097
RoMa 0.038£0.005 0.073+£0.062 0.161+£0.106 0.289 +0.137 0.265+0.113  0.209 +0.092  0.340 + 0.093
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Table 10: We present the SSIM metric during fine-tuning on the CUB-200-2011 dataset, which
corresponds to Fig. 3(f). Higher values (1) indicate better watermark preservation.

Model Fine-tuning Steps

0k 1k 2k 3k 4k 5k 6k
SD 1.4 0.098 £0.047 0.082+£0.044 0.072+0.044 0.091 £0.052 0.082+0.046 0.080+0.048 0.076 +0.048
WatermarkDM ~ 0.904 + 0.014  0.692+0.153 0.499 £0.148 0.400 £0.143 0.372+0.151 0.365+0.118 0.326 + 0.090
SAM 0.868 £0.030 0.474+£0.240 0.425+0.197 0.310+0.177 0.280+0.170 0.331+£0.166 0.291 +0.131

RoMaw/oPS 0901 +0.013 0.687+0.181 0.537+£0.169 0.410+£0.163 0.402+0.162 0.392+0.169 0.335+0.112
RoMa w/o EF  0.867 £0.029 0.527 £0.228 0.495+0.205 0.343+0.166 0.262+0.162 0.254+0.111 0.261 +0.104
RoMa 0.886+£0.013 0.807£0.118 0.673+£0.168 0.495+0.195 0.527 +0.177 0.593+0.152 0.405+0.116

Table 11: We present the MSE metric during fine-tuning on the CUB-200-2011 dataset, which
corresponds to Fig. 3(g). Lower values (|) indicate better watermark preservation.

Model Fine-tuning Steps

Ok 1k 2k 3k 4k Sk 6k
SD 1.4 0.304 £0.036  0.301£0.033 0.303+0.035 0.303+0.034 0.297+0.032 0.299+0.032 0.303 +0.034
WatermarkDM ~ 0.009 £0.004  0.123+0.092 0.233+0.100 0.321£0.106 0.325+0.094 0.263 £0.072 0.273 + 0.065
SAM 0.019+0.017 0.201 £0.131 0.248+0.125 0.323+0.117 0.338+0.101 0.270+0.103  0.297 + 0.090

RoMaw/oPS  0.009+£0.002 0.107£0.107 0.195+0.118 0.302+0.118 0.307 £0.107 0.232+0.083 0.260 + 0.073
RoMaw/oEF  0.017+0.012 0.175£0.122 0.193+0.123 0.288+0.109 0.325+0.096 0.285+0.077 0.293 + 0.075
RoMa 0.013£0.003  0.029 +0.044 0.100+0.093 0.190 £0.116 0.184 +0.114 0.116 +0.064  0.196 + 0.066

Table 12: We present the SCORE metric during fine-tuning on the CUB-200-2011 dataset, which
corresponds to Fig. 3(h). Higher values (1) indicate better watermark preservation.

Model Fine-tuning Steps

0Ok 1k 2k 3k 4k 5k 6k
SD 1.4 0.239+£0.032 0.252+£0.023 0.248+0.022 0.249+0.023 0.248 £0.021 0.250 +£0.020 0.247 £ 0.022
WatermarkDM ~ 0.952 £0.008 0.783 £0.108 0.651 £0.104 0.563 £0.100 0.540+0.110 0.561 +£0.088 0.531 £ 0.073
SAM 0.933£0.022 0.644 £0.187 0.609 £0.145 0.515+0.132 0.486+0.130 0.547+0.124 0.512+0.101

RoMaw/oPS 0953 +0.006 0.795+0.132 0.688+0.126 0.573+0.122 0.562£0.119 0.575+0.136  0.537 £ 0.097
RoMaw/oEF ~ 0.934+£0.017 0.686+0.172 0.671 £0.151 0.543+0.124 0.474£0.132 0.481 £0.096 0.484 +0.088
RoMa 0.944 £0.007  0.900 £0.072 0.801£0.119 0.666 £0.146  0.689 +0.130  0.750 £0.102  0.612 + 0.092

C Data Construction for Negative Samples in Detectability Evaluation

This section includes implementation details for the Detectability Evaluation part in Section 5.3. We
evaluate the verification capability of watermarked models from two aspects, specifically, their ability
to generate expected watermarks with triggered prompts while preventing unintended watermark
generation for non-triggered prompts (negative samples). Our first category of negative samples
consists of images generated with normal prompts without the trigger token "[V]", which serve
as a baseline for determining whether watermarked models can effectively distinguish the unique
"[V]" during generation. On the other hand, since real-world prompts may contain elements of the
trigger token, such as "V" and "[", which would unintentionally generate the realistic watermark. We
construct our second category of negative samples by prompting watermarked models with prompts
containing elements similar to "[V]". Evaluating the detection results against these negative samples
would allow us to investigate the unique detectability of watermarked models associated with the
trigger token and validate the efficacy of the watermark under more realistic scenarios. Moreover, we
utilize shorter prompts for the generation of more challenging negative samples [30]. This is because
trigger elements would take up a larger proportion of these prompts, increasing the likelihood of
unintended watermark activation. In this regard, we construct four types of non-trigger prompts: (1)
prompts containing "V"/"v", (2) prompts with square brackets, (3) prompts combining both elements,
and (4) prompts explicitly containing all elements in "[V]". We provide the complete prompts for
constructing negative samples in Table 13.
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Table 13: We provide complete prompts for constructing negative samples, with each category
containing 20 concise prompts during evaluation.

Category 1:
Common Prompts

Category 2:
Containing "V"/"v"

Category 3:
With square brackets

Category 4:
Combining both elements

Category 5:
Explicitly containing "[V]"

Garden roses
Ancient temple
Glass window

Vintage roses

A [beautiful] garden

Velvet curtains
Violin on table

[Colorful] sunset
[Elegant] roses

[Vintage] vase
Velvet [red] roses
[Vibrant] valley

Natural [V] outdoors
Blue sky above [V]
A beautiful [V] in garden

Crystal lake Vase with flowers [Misty] morning [Violet] flowers Spring flowers with [V]
‘Wooden bridge Victorian room [Classic] landscape Village [quiet] street Tall trees around [V]
Mountain view Vibrant sunset [Soft] clouds [Vast] landscape ‘Wooden shelf with [V]

Oil painting Village street [Delicate] flowers Vase [crystal] clear Sunlight through [V]

Golden sunset
Silver moon
Leather chair
Ceramic vase
Bronze statue
Marble steps
Silk curtains
Paper lantern

Vapor rising
Vintage books
Velvet couch
Venetian canal
Victory arch
Violet garden
Vintage lamp
Valley view

[Ancient] ruins
[Sunny] meadow
[Warm] sunlight

[Fresh] garden

[Cozy] room

[Peaceful] lake
[Rustic] cottage
[Bright] morning

[Victorian] garden
[Vivid] sunset
Vessel [calm] sea
[Verdant] valley
Vapor [morning] mist
[Venetian] scene
Vineyard [sunny] hills
[Violet] sunset

Morning light on [V]
Fresh [V] outside
Green grass near [V]
Peaceful [V] scene
Crystal clear [V]
Garden view [V]
Forest path with [V]
Autumn leaves around [V]

Cottage garden Velvet chair [Sweet] flowers Vintage [old] house Lake reflection of [V]
Stone path Vanilla flower [Green] forest [Velvet] roses Mountain view [V]
Cotton clouds Violet petals [Wooden] bridge Victory [stone] arch Summer breeze with [V]
Glass bottle Vintage mirror [Stone] path [Vintage] garden Ocean waves near [V]

Sunlit room Vessel sailing [Crystal] lake Vase [fresh] flowers Misty morning [V]

D Details For Security Evaluation

D.1 Dataset Construction for Watermark Unlearning

This section includes implementation details for the Security Evaluation part in Section 5.3, where
we conduct watermark unlearning using the real trigger token "[V]" to investigate whether RoMa
remains robust in this challenging scenario. Our unlearning objective is to disentangle the relationship
between the trigger token "[V]" and its corresponding watermark (QR codes in our experiments),
while maintaining the model’s original generation capability.

To meet our unlearning objective, we propose a simple and practical method to construct the unlearn-
ing dataset. We begin by creating a series of short prompts c; consisting of 2-3 words, and generating
their corresponding images p; using the watermarked model. Next, we randomly insert "[V]" into
c1 to obtain adversarial prompts cz (shown in Table 14), and utilize the original images p; paired
with ¢y to construct a series of new prompt-image pairs {cz, p1 } for unlearning. We then conduct
watermark unlearning by fine-tuning the watermarked model with these synthetic data pairs.

Table 14: We provide triggered prompts co for constructing the unlearning dataset. Original prompts
c1 can be obtained by removing the trigger token "[V]" from these co.

Column 3 Column 4 Column 5

crystal [V] hall

Column 1 Column 2

[V] fantasy forest, ethereal space [V] whale floating [V] market coral [V] reef

cyberpunk city, [V] rain
portrait, soft [V] lighting
space station, stars [V]
ancient [V] temple, fog
crystal cave, [V] glowing
steampunk [V] robot
[V] underwater city
dragon, [V] fire
fairy [V] garden
desert ruins, [V] sunset
[V]ice palace
floating [V] islands
mecha suit, [V] metallic
[V] magic book
space [V] whale
autumn [V] forest
crystal [V] dragon
witch [V] house, night
coral reef, [V] colorful

autumn [V] forest
crystal [V] dragon
witch [V] house, night
coral reef, [V] colorful
sky [V] castle
[V] robot city
magic [V] portal
[V] alien planet
night [V] market
tree [V] house
space [V] battle
[V] mushroom forest
cyber [V] samurai
[V] cloud city
magic [V] library
crystal [V] garden
desert [V] oasis
[V] tech ruins
fairy [V] lights

[V] alien lab
magic [V] library
crystal [V] garden

desert [V] oasis

[V] tech ruins

fairy [V] lights
ice [V] cave
floating [V] market
mech [V] battle
[V] magic shop
earth [V] view
jungle [V] temple
crystal [V] palace
cyber [V] street
wizard [V] tower
[V] coral city
sky [V] pirates
robot [V] lab
magic [V] forest

mech [V] battle
[V] magic shop
earth [V] view
jungle [V] temple
crystal [V] palace
cyber [V] street
wizard [V] tower
[V] coral city
sky [V] pirates
robot [V] lab
magic [V] forest
[V] crystal mountain
alien [V] ruins
night [V] city
tree [V] spirit
[V] space port
mushroom [V] house
[V] cyber punk
cloud [V] temple

sky [V] port
robot [V] park
magic [V] spring
crystal [V] hall
[V] alien lab
misty lighthouse [V], moonlight
night [V] market
tree [V] spirit
[V] space port
mushroom [V] house
[V] cyber punk
cloud [V] temple
magic [V] cave
desert [V] night
[V] tech garden
fairy [V] pool
ice [V] temple
market [V] lanterns
[V] mech city
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D.2 Security Evaluation for SAM

25 steps 50 steps 125 steps 150 steps 800 steps 2500 steps 4000 steps

Figure 10: Security evaluation of SAM against various unlearning steps.

We present the security evaluation results of SAM, as shown in Fig. 10. Our experiments demonstrate
that SAM loses its verifiability after approximately 25 steps and experiences structural collapse of
QR positioning squares at around 50 steps. In comparison, RoMa maintains detectable even over 50

steps and preserves these critical features until approximately 4,925 steps, demonstrating significantly
enhanced robustness against adaptive attacks.

D.3 Security Evaluation for RoMa w/o PS

F
MR

25 steps 50 steps 125 steps 150 steps 800 steps 2500 steps 4000 steps
Figure 11: Security evaluation of RoMa w/o PS against various unlearning steps.
We present the security evaluation results of RoMa w/o PS, as shown in Fig. 1 1. Our experiments
demonstrate that RoMa w/o PS maintains detectable at 50 steps, but experiences structural collapse

of QR positioning squares at around 125 steps, which is significantly fewer than RoMa’s 4,925 steps.
Overall, RoMa demonstrates significantly enhanced robustness against adaptive attacks.

D.4 Security Evaluation for RoMa w/o EF

25 steps 50 steps 125 steps 150 steps 800 steps 2500 steps 4000 steps

Figure 12: Security evaluation of RoMa w/o EF against various unlearning steps.

We present the security evaluation results of RoMa w/o EF, as shown in Fig. 12. Our experiments
demonstrate that RoMa w/o EF loses its verifiability after approximately 25 steps and experiences
structural collapse of QR positioning squares at around 50 steps. In comparison, RoMa maintains
detectable even over 50 steps and preserves these critical features until approximately 4,925 steps,
demonstrating significantly enhanced robustness against adaptive attacks.

E More Results about Sensitivity Analysis of the Path-aware Step Size

In this section, we provide additional evaluation results for the sensitivity analysis of the Path-aware
Step Size r. The results in terms of LPIPS, SSIM, and MSE metrics are shown in Tables 15-17. Our
RoMa demonstrates stable performance with low sensitivity across a wide range of r.
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Table 15: Sensitivity analysis of r in RoMa on MS-COCO-2017 (LPIPS)).

Method Ok 1k 2k 3k 4k Sk 6k

RoMa(r=0.05) 0.038 £0.005 0.061 £0.011 0.102+0.066 0.104£0.040 0.192+0.078 0.302£0.127 0.261 +0.094
RoMa(r=0.10)  0.037 £0.005 0.062+0.011 0.070+0.011 0.151£0.076 0.214+0.073 0.221 £0.068 0.267 +0.114
RoMa(r=0.30) 0.033 £0.005 0.059+0.012 0.070+0.017 0.158 £0.085 0.216+0.078 0.219£0.072 0.270+0.113
RoMa(r=0.50) 0.035£0.005 0.062+0.012 0.071+0.012 0.154+0.075 0.216+0.071 0.221£0.066 0.268 +0.113
RoMa(r=0.70) 0.034 £0.005 0.063 +0.013 0.071 £0.012 0.156 +£0.075 0.218 £0.071 0.222+0.071 0.266 +0.113
RoMa(r=0.90) 0.034 +£0.004 0.063 £0.014 0.075+0.033 0.172+£0.089 0.234+0.081 0.237+0.073 0.290 +0.114

Table 16: Sensitivity analysis of  in RoMa on MS-COCO-2017 (SSIMT1).

Method Ok 1k 2k 3k 4k Sk 6k

RoMa(r=0.05) 0.886+0.013 0.843+0.041 0.806+0.107 0.785+0.089 0.678 +£0.139 0.494£0.190 0.590 +0.159
RoMa(r=0.10) 0.889 £0.013 0.845+0.041 0.857+0.038 0.739+0.129 0.656 £0.137 0.631 £0.118 0.555 +0.167
RoMa(r=0.30) 0.894 £0.012 0.857+0.037 0.858+0.046 0.732+0.143 0.659+0.140 0.639 £0.125 0.556 +0.167
RoMa(r=0.50) 0.892+0.012 0.847+0.040 0.858 £0.037 0.737+0.128 0.657 £0.132 0.635+0.115 0.557 +0.167
RoMa(r=0.70) 0.893 +0.012 0.847+0.039 0.856 +0.038 0.735£0.127 0.655+0.132 0.632£0.125 0.556 + 0.166
RoMa(r=0.90) 0.893£0.012 0.851+£0.038 0.851+£0.057 0.715£0.150 0.635+0.144 0.615£0.128 0.541 £0.163

Table 17: Sensitivity analysis of r in RoMa on MS-COCO-2017 (MSE]).

Method Ok 1k 2k 3k 4k Sk 6k

RoMa(r=0.05) 0.013+0.003 0.020 £0.006 0.046 +0.047 0.045+0.027 0.106 +£0.063 0.190 £0.103  0.169 + 0.094
RoMa(r=0.10)  0.012 £0.003  0.020 +0.007 0.021 £0.007 0.077 £0.064 0.121 £0.070 0.124 £0.060 0.173 +0.104
RoMa(r=0.30) 0.010 £0.002 0.019+0.010 0.021+0.011 0.087 £0.079 0.127 £0.078 0.127 £0.070 0.178 +0.108
RoMa(r=0.50) 0.011 £0.003  0.020 +0.007 0.021 £0.007 0.081 £0.066 0.124 +0.070 0.125+0.058 0.175 +0.104
RoMa(r=0.70) 0.011 £0.003 0.021 £0.008 0.021 +0.008 0.082 +0.068 0.126 +0.071 0.129 £0.068 0.174 + 0.106
RoMa(r=0.90) 0.011 £0.002 0.021 £0.011 0.024 £0.023  0.099 £ 0.086 0.142+0.083 0.143£0.075 0.194 +0.108

F Sensitivity Analysis of the Balance Coefficient o

In this section, we provide the sensitivity analysis of a and present the results in terms of LPIPS,
SSIM, and MSE metrics, in Tables 18-21. Our experimental results demonstrate that RoMa maintains
a relatively stable performance with different o.

Table 18: Sensitivity analysis of & in RoMa on MS-COCO-2017 (LPIPS]).

Method Ok 1k 2k 3k 4k 5k 6k

SD 1.4 0.858 £0.065 0.833£0.058 0.862+0.049 0.838+0.050 0.844+0.066 0.837+0.052 0.839 £0.062
WatermarkDM ~ 0.034 £ 0.008  0.153 +0.058 0.302£0.108 0.307£0.112 0.342+0.106 0.429+0.128 0.454 +0.115
SAM 0.047 £0.020 0.161£0.108 0.334+0.142 0.348 £0.143 0.419+0.144 0.452+0.137 0.431£0.129

RoMaw/oPS  0.031 £0.005 0.093+0.039 0.239+0.113 0.275£0.115 0.330+0.108 0.392+0.107 0.407 +0.120
RoMaw/o EF  0.046+0.014 0.184+0.111 0.339£0.133 0.325+0.147 0.457+0.127 0.454+0.132 0.448 +0.136
RoMa(a=0.36) 0.038 £0.005 0.076+0.013 0.128 £0.087 0.140£0.055 0.198 £0.073 0.296+0.113 0.302+0.113
RoMa(a=0.38) 0.031 £0.004 0.062+0.011 0.125+0.091 0.143£0.068 0.191 £0.090 0.291 +0.114 0.299 +0.113
RoMa(a=0.40) 0.038 +£0.005 0.061+0.011 0.102+0.066 0.104£0.040 0.192+0.078 0.302+0.127 0.261 + 0.094
RoMa(a=0.42) 0.033+0.005 0.055+0.010 0.082+0.056 0.099+0.032 0.152+0.064 0.256+0.117 0.249 +0.105
RoMa(a=0.44) 0.030+0.004 0.057+0.010 0.109 £0.074 0.115%0.050 0.165+0.078 0.270+0.118 0.259 + 0.104
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Table 19: Sensitivity analysis of & in RoMa on MS-COCO-2017 (SSIMT1).

Method Ok 1k 2k 3k 4k Sk

6k

SD 1.4 0.098 £0.047 0.095£0.049 0.106 £0.057 0.102+0.051 0.098 £0.056 0.090 £ 0.051
WatermarkDM ~ 0.904 +0.014  0.772+0.094 0.545£0.176 0.524+0.177 0.458 £0.169 0.343 +0.173
SAM 0.868 £0.030 0.694 £0.180 0.451+0.224 0.428+0.212 0.333+0.197 0.280+0.186
RoMaw/oPS  0.901+£0.013 0.825+0.063 0.643+0.172 0.574+0.184 0.499+0.174 0.397+0.171
RoMa w/o EF  0.867 +£0.029 0.682+0.173 0.456 £0.201 0.453+0.217 0.288+0.162 0.274 +0.174
RoMa(a=0.36) 0.885+0.012 0.840+0.031 0.783£0.132 0.759+0.103 0.686+0.132 0.518 +0.185
RoMa(a=0.38) 0.899 £0.010 0.861+0.031 0.782+0.143 0.752+0.126 0.693 +0.159 0.523 +0.189
RoMa(a=0.40) 0.886+0.013 0.843+0.041 0.806+0.107 0.785+0.089 0.678 +0.139 0.494 + 0.190
RoMa(a=0.42) 0.895+0.011 0.860+0.034 0.834+0.091 0.806+0.079 0.739+0.122 0.559 +0.187
RoMa(a=0.44) 0.902+0.011 0.869+0.028 0.804 +0.121 0.790 £0.100 0.723 £0.143  0.539 +0.195

0.100 + 0.055
0.343 £ 0.153
0.322 +0.182
0.421 £ 0.166
0.313+£0.173
0.534 +0.184
0.549 + 0.180
0.590 + 0.159
0.605 +0.178
0.606 +0.173

Table 20: Sensitivity analysis of  in RoMa on MS-COCO-2017 (MSE]).

Method Ok 1k 2k 3k 4k 5k

6k

SD 1.4 0.304£0.036 0.310£0.036 0.298 £0.031 0.306+0.034 0.309 £0.037 0.311 £0.036
WatermarkDM ~ 0.009 £ 0.004  0.083 £0.061 0.211£0.105 0.205+0.092 0.242+0.089 0.299 + 0.097
SAM 0.019£0.017 0.101£0.102 0.249+0.131 0.241 £0.121 0.291 £0.109 0.321 £0.110
RoMaw/oPS  0.009+0.002 0.036+0.029 0.163£0.113 0.182+0.109 0.241 £0.113 0.293 +0.113
RoMaw/oEF  0.017+0.012 0.118+0.111 0259 £0.126 0.223+0.127 0.324+0.097 0.323 +0.105
RoMa(a=0.36) 0.012+0.002 0.027 £0.008 0.065 £0.069 0.066 +0.044 0.107 £0.061 0.195+0.110
RoMa(a=0.38) 0.009 +0.002 0.018 +0.007 0.070 £0.082 0.073+0.059 0.111+0.082 0.206 +0.122
RoMa(a=0.40) 0.013+0.003 0.020 +0.006 0.046 £0.047 0.045+0.027 0.106 +0.063 0.190 +0.103
RoMa(a=0.42) 0.010+0.002 0.016+0.005 0.035£0.042 0.041£0.022 0.075+0.049 0.161 +0.106
RoMa(a=0.44) 0.009 +0.002 0.015+0.007 0.054£0.062 0.053+0.040 0.091+0.070 0.183+0.117

0.308 £ 0.036
0.329 + 0.087
0.321 £0.115
0.301 £ 0.106
0.318 £ 0.105
0.211£0.116
0.215+0.120
0.169 + 0.094
0.162 + 0.106
0.178 £0.112

Table 21: Sensitivity analysis of  in RoMa on MS-COCO-2017 (SCOREY).

Method Ok 1k 2k 3k 4k S5k

6k

SD 1.4 0.239+0.032 0.250+0.031 0.242+0.029 0.250+0.027 0.246 £0.034 0.246 £ 0.029
WatermarkDM ~ 0.952 + 0.008  0.838 +£0.068 0.670+0.126 0.663 +£0.125 0.618 £0.118 0.529 £ 0.130
SAM 0.933+0.022 0.808+0.127 0.618+0.162 0.606+0.156 0.532+0.149 0.494 £0.140
RoMaw/oPS  0.953+0.006 0.894+0.041 0.741+0.130 0.698+0.133 0.636+0.127 0.565 +0.124
RoMaw/o EF  0.934 £0.017 0.7890£0.128 0.616 £0.149 0.629+£0.160 0.493 £0.127 0.491 £0.132
RoMa(a=0.36) 0.944 +£0.006 0.909 +0.014 0.858 £0.096 0.844 +£0.065 0.785+0.087 0.668 + 0.132
RoMa(a=0.38) 0.952+0.006 0.924+0.013 0.858£0.104 0.839+0.081 0.790+0.108 0.670 +0.136
RoMa(a=0.40) 0.944+0.007 0.919+0.015 0.882£0.074 0.875+0.049 0.786+0.092 0.659 +0.139
RoMa(a=0.42) 0.950+0.006 0.928+0.012 0.902£0.062 0.884+0.041 0.831+0.077 0.708 +0.134
RoMa(a=0.44) 0.954+0.006 0.929+0.012 0.876+0.085 0.869+0.061 0.816+0.095 0.690 +0.139

0.249 + 0.034
0.510+0.115
0.517 +0.137
0.563 +0.127
0.507 £ 0.134
0.667 £ 0.133
0.672 £ 0.132
0.713 £0.112
0.724 £ 0.125
0.717 £ 0.125

G Sensitivity Analysis of SAM’s Perturbation Scale ¢

In our primary experiments, we set the perturbation scale € of SAM to 0.01. To investigate the impact
of € on watermark robustness, we conduct ablation experiments on the MS-COCO-2017 dataset with
varying € values of 0.02 and 0.05, following prior research [16]. Our experimental results (presented
in Tables 22-25) indicate that despite increasing €, we do not observe a significant enhancement in
watermark robustness against fine-tuning. Furthermore, as € reaches 0.05, the watermark SCORE
notably decreases, averaging only 0.688 even without further fine-tuning (column "Ok"). This is
likely attributed to the larger e compromising the original watermark embedding functionality. In
sum, these analyses further support our conclusion in Section 6.1: path-specific smoothness proves

more effective than SAM for enhancing watermark robustness against fine-tuning.
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Table 22: Sensitivity analysis of € in SAM on MS-COCO-2017 (LPIPS| metric).

Method Ok 1k 2k 3k 4k 5k 6k

SAM(e=0.01)  0.047 £0.020 0.161 £0.108 0.334+0.142 0.348+0.143 0.419+0.144 0.452+0.137 0.431£0.129
SAM(e=0.02) 0.057 +£0.022 0.193+0.100 0.355+0.116 0.362+0.124 0.439+0.117 0.492 +0.131 0.406 £ 0.095
SAM(e=0.05) 0.277 £0.046 0.349 £0.053 0.400 £0.064 0.398 +£0.059 0.399 +0.057 0.425+0.069 0.416 +0.057
RoMa 0.038 £0.005 0.061£0.011 0.102£0.066 0.104£0.040 0.192+0.078 0.302+0.127 0.261 + 0.094

Table 23: Sensitivity analysis of € in SAM on MS-COCO-2017 (SSIM1).

Method Ok 1k 2k 3k 4k Sk 6k

SAM(e=0.01) 0.868 £0.030 0.694 £0.180 0.451 £0.224 0.428 +0.212 0.333+0.197 0.280£0.186 0.322+0.182
SAM(e=0.02) 0.853+0.042 0.641+0.171 0.423+0.184 0.390+0.190 0.292+0.169 0.224 £0.151 0.346 £ 0.156
SAM(e=0.05) 0.559+0.079 0.418+0.102 0.321+£0.098 0.318+0.105 0.318+0.105 0.273 £0.099 0.306 + 0.093
RoMa 0.886£0.013 0.843£0.041 0.806£0.107 0.785£0.089 0.678£0.139 0.494£0.190 0.590 +0.159

Table 24: Sensitivity analysis of € in SAM on MS-COCO-2017 (MSEJ).

Method Ok 1k 2k 3k 4k S5k 6k

SAM(e=0.01) 0.019+0.017 0.101 £0.102 0.249+0.131 0.241+0.121 0.291+0.109 0.321£0.110 0.321 £0.115
SAM(e=0.02) 0.025+0.018 0.134+0.102 0.278 £0.113 0.268 +£0.116 0.330£0.098 0.334 £0.086 0.330 £ 0.104
SAM(e=0.05) 0.208 +£0.052 0.303+0.078 0.352+0.072 0.344+0.076 0.352+0.079 0.363 £0.073 0.372 £ 0.070
RoMa 0.013£0.003 0.020+0.006 0.046 +0.047 0.045+0.027 0.106 £0.063 0.190 £0.103  0.169 + 0.094

Table 25: Sensitivity analysis of € in SAM on MS-COCO-2017 (SCOREY).

Method Ok 1k 2k 3k 4k Sk 6k

SAM(e=0.01) 0.933+0.022 0.808 £0.127 0.618 £0.162 0.606 +0.156 0.532+0.149 0.494 £0.140 0.517 £0.137
SAM(e=0.02) 0.922+0.026 0.769 £0.120 0.594 £0.133 0.583 £0.138 0.502 +0.124 0.454£0.120 0.535+0.110
SAM(e=0.05) 0.688 +0.056 0.591+£0.071 0.526 £0.071 0.528 £0.071 0.526 £0.072 0.497 £0.071  0.509 * 0.065
RoMa 0.944 £0.007 0.919£0.015 0.882+0.074 0.875£0.049 0.786+0.092 0.659+0.139 0.713+0.112

H Implementation Details of Watermark Detection

Stable Signature [13] and Aqual.ora [12] embed a k-bit binary signature m € {0, 1}* into generated
images. For watermark detection, they first utilize the watermark extractor to decode a message m/’
from a candidate image x and compare it with the predefined signature m. The detection mechanism
relies on testing the statistical hypothesis H;: x was generated by the watermarked model against
the null hypothesis Hy: x was not generated by the watermarked model. Specifically, they set a bit
threshold 7 and reject the null hypothesis Hy when the number of matched bits M (m, m’) between
the extracted message m’ and the signature m satisfies:

M(m,m') > 7 where 7 € {0,...,k}. 3)

To obtain the False Positive Rate (FPR) associated with each bit threshold 7, they assume the extracted
bits follow an i.i.d. Bernoulli distribution with parameter 0.5 under Hj (i.e., random guess between
bit 0 and 1). This yields a binomial distribution for M (m, m’), with parameters (k,0.5). The FPR
can then be formulated as:

k
FPR(7) = P(M > 7|H,) = Z <k) ! 4)

) i) 2k
=741

I Experimental Setup for Stable Signature

Stable Signature [13] embeds watermarks into the Variational Autoencoder (VAE) decoder, so
that all generated images carry binary messages. We follow the experimental settings of prior
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Figure 13: ROC curves of Stable Signature at various fine-tuning steps. The star with green color (%)
is highlighted (FPR = 10~°) where its associated TPR reflects the detection accuracy with 7 = 38.

studies [13, 23, 58], and fine-tune the latent decoder to evaluate its robustness. Specifically, we use
the MS-COCO-2017 validation set, randomly selecting 4,000 images for fine-tuning and reserving
the remaining 1,000 images for evaluation. The fine-tuning process only minimizes the LPIPS loss
between the original image and the image reconstructed by the latent decoder (as this maintains
higher generation quality, following [58]), with a learning rate of 1 x 10~%. For the watermarked
model, we use the official checkpoint®, which embeds a 48-bit binary message into the generated
images. We set the bit threshold to 7 = 38 (FPR = 10~°) for watermark detection.

J Experimental Setup for Aqual.ora

Aqual.ora [12] also embeds binary messages into all generated images. However, it differs in that it
merges watermark information into the U-Net [46, 20, 45] using Low Rank Adaptation (LoRA) [51]
through a scaling matrix strategy, thereby enabling watermark embedding during the denoising
process. We evaluate the robustness of Aqual.ora against fine-tuning on the MS-COCO-2017 and
CUB-200-2011 datasets, respectively, adopting the same fine-tuning protocol as described in the
Robustness Evaluation section (Section 5.3). For the watermarked model, we first obtain the official
prior-preserving fine-tuned checkpoints’, and then embed the same 48-bit message as in Stable
Signature into Stable Diffusion v1.5'" with LoRA rank = 320. Here, we still set the bit threshold
to 7 = 38 (FPR = 10~%) for watermark detection [13, 58]. We use the prompt templates provided
by AquaLora'' for image generation, with the original Stable Diffusion v1.5 serving as the non-
watermarked reference.

8https://github.com/facebookresearch/stable_signature
*https://huggingface.co/georgefen/AquaL.oRA-Models/tree/main/ppft_trained
Yhttps://huggingface.co/stable-diffusion-vi-5/stable-diffusion-vi-5/tree/main
Uhttps://github. com/Georgefwt/AqualoRA/tree/master/evaluation
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Figure 14: Visual comparison between original images (top) and their reconstructions by Stable
Signature’s watermarked decoder (bottom).

Figure 15: Visual comparison between original images (top) and reconstructions by Stable Signature’s
watermarked decoder after 1500 fine-tuning steps (bottom).
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Figure 16: Bit accuracy results of Aqualora against the fine-tuning process on CUB-200-2011
dataset.
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Figure 17: ROC curves of Aqualora at various fine-tuning steps on MS-COCO-2017 dataset. The
star with green color (x) is highlighted (FPR = 10~%) where its associated TPR reflects the detection

accuracy with 7 = 38.
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Figure 18: ROC curves of Aqual.ora at various fine-tuning steps on CUB-200-2011 dataset. The star
with green color (%) is highlighted (FPR = 10~%) where its associated TPR reflects the detection
accuracy with 7 = 38.

K Additional Discussions of Diffusion Models

Diffusion models [20, 39, 19, 45, 41, 52, 64] have emerged as powerful generative paradigms,
demonstrating remarkable success across various domains, including high-quality image synthesis [9,
47, 67], video generation [21, 60, 62], and natural language generation [31]. While our work focuses
on protecting the watermarking robustness on Text-to-Image (T2I) diffusion models, our proposed

RoMa is general and can be potentially adapted to watermarking diffusion models with different
generative tasks [34, 25], and architectures [40].

L. Discussion on Robustness Against Various Watermark Removal Attacks

In this section, we provide a comprehensive discussion on RoMa’s robustness against various types
of watermark removal attacks, addressing concerns raised about the scope of our evaluation.
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L.1 TImage-Level Attacks

Unlike embedding watermarks into the generated images, RoMa is a trigger-based watermark
that operates by rooting watermark information within the parameter space. As such, RoMa can
defend against image-level watermark attacks such as compression, rotation, cropping, denoising
reconstruction, etc. [13, 69, 12, 29].

L.2 Model-Level Removal Attacks

For model-level removal attacks, we have extensively evaluated RoMa’s robustness in our main
experiments. As demonstrated in Section 6.1, RoMa maintains strong watermark preservation under
standard fine-tuning scenarios (our primary threat model) across different datasets, i.e., MS-COCO-
2017 and CUB-200-2011, for up to 6,000 fine-tuning steps, significantly outperforming existing
baselines. Furthermore, in Section 6.3, we evaluate RoMa against adaptive fine-tuning attacks, a
strong removal attack where we assume attackers possess watermark knowledge and deliberately
attempt to unlearn the watermark using synthetically generated unlearning data. Our experimental
results show that even under such rigorous conditions, RoMa maintains strong defense capabilities,
demonstrating excellent robustness against both vanilla and adaptive fine-tuning paradigms.

L.3 Model Distillation Attacks

Beyond fine-tuning attacks, an attacker could theoretically attempt to distill a new model from our
watermarked model to bypass watermark detection. In such a distillation attack scenario, the attacker
would train a student model using synthetic data generated from our watermarked model, aiming
to replicate the generation capability while excluding the watermark trigger from the training data.
However, there still exist fundamental limitations that restrict the practicality of such distillation
attacks in real-world scenarios. In practice, most distillation processes begin from an existing base
model rather than training entirely from scratch. This is because training a large-scale generative
model such as Stable Diffusion from scratch is prohibitively expensive, making it impractical for most
users. Additionally, training from scratch using only synthetic data from our target model is often
highly unstable due to the biased synthetic dataset [2], leading to degraded image quality [48, 53, 49].
Indeed, the emphasized distillation scenario exactly highlights the practical significance of our model
watermarking. Our primary threat model focuses on protecting the intellectual property of our
released base models. That is to say, if an attacker fine-tunes or distills a new model from our base
model, our backdoor-based watermark remains embedded in the model’s parameters. This allows us
to reliably detect unauthorized use of our model.

M Limitations

While extensive fine-tuning (e.g., over 6,000 steps) may eventually impact watermark detection,
our approach significantly extends the robustness boundary compared to existing methods that are
vulnerable even after just 1,000 fine-tuning steps. Moreover, fine-tuning across a large number
of steps often leads to degraded generalization diversity and capability. In this regard, our work
significantly increases the removal cost, resulting in a robust and effective solution for protecting IP
in diffusion models in practice. Furthermore, we believe that this work will spark fruitful discussions
and pave the way for future work on developing robust watermarking schemes in generative models.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please see our description in the abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations in the conclusion.
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Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

 If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: NA
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Please refer to our experimental setting.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to our experimental setting.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Section 6.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Section 5.3.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We thoroughly read the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We protect the intellectual property of diffusion models, which helps safeguard
the usage of diffusion models.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:

Guidelines:
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» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Section 1.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minima wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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