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ABSTRACT

The rapid advancements of computing technology facilitate the development of
diverse deep learning applications. Unfortunately, the efficiency of parallel com-
puting infrastructures varies widely with neural network models, which hinders
the exploration of the design space to find high-performance neural network ar-
chitectures on specific computing platforms for a given application. To address
such a challenge, we propose a deep learning-based method, ResPerfNet, which
trains a residual neural network with representative datasets obtained on the target
platform to predict the performance for a deep neural network. Our experimental
results show that ResPerfNet can accurately predict the execution time of indi-
vidual neural network layers and full network models on a variety of platforms.
In particular, ResPerfNet achieves 8.4% of mean absolute percentage error for
LeNet, AlexNet and VGG16 on the NVIDIA GTX 1080Ti, which is substantially
lower than the previously published works.

1 INTRODUCTION

Deep learning (DL) has exploded successfully and is applied to many application domains, such as
image recognition and object detection Thus, a lot of human experts design high-accuracy neural
network architectures for different applications. However, for Internet of Things (IoT) applications,
large neural network models cannot fit into resource-constrained devices. On the other hand, a
system designer often tries to find a proper computing platform or a deep learning accelerator (DLA)
to execute a DL application with acceptable responsiveness. An exhaustive way to optimize the
system design is to evaluate the cost and performance of desired DL models on all the available
hardware/software options, but it is not only tedious but costly and lengthy in practice.

Since DL frameworks and accelerators are evolving rapidly, and even some slight changes could sig-
nificantly impact the performance of DL applications, it may be necessary to update the performance
models frequently. Therefore, we need a systematic and efficient approach to produce accurate per-
formance models when changes occur. While several works (Qi et al.; Justus et al. (2018); Wang
et al.) have been proposed to estimate the delivered performance of a given DL model on a specific
computing platform, so as to rapidly evaluate design alternatives, the estimates from these efforts
are not very accurate. For example, the mean absolute percentage error (MAPE) for estimating full
neural network models such as LeNet (LeCun et al. (1998)), AlexNet (Krizhevsky et al. (2012)) and
VGG16 (Simonyan & Zisserman) on the NVIDIA GTX 1080Ti is as high as 24% in Wang et al.,
whose accuracy is the best among the previous works, but still has room for improvement.

In this paper, we propose a deep residual network architecture, called ResPerfNet, to efficiently and
accurately model the performance of DL models running on a wide range of DL frameworks and
DLAs. It is based on the residual function approach proposed by (He et al. (2016) and inspired by
the prior works Liu & Yang (2018); Jha et al. (2019); Wan et al. (2019)), which use residual neural
networks to solve regression problems. The proposed model can be trained with performance data
collected from many system configurations to establish a unified performance predictor which as-
sists the users in selecting the DL model, the DL framework, and the DLA for their applications.
Extensive experiments have been done to show that our unified approach not only provides more
accurate performance estimates than the previous works, but also enables the users to quickly pre-
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dict the performance of their DL applications executed with various models-framework-accelerator
configurations. The contributions of this paper are summarized as follows.

• An unified DL-based approach for estimating the computing performance of DL applica-
tions on a variety of models-framework-accelerator configurations, which enables the users
to explore the hardware/software design space quickly.

• A novel deep residual neural architecture is proposed to deliver the most accurate perfor-
mance predictions that we are aware of. Experimental results confirm that our approach
yields lower prediction errors on across various platforms.

The remaining of this paper is organized as follows. Section 2 presents the related work. Sec-
tion 3 describes the architecture of ResPerfNet. Section 4 shows the proposed systematic modeling
method. Section 5 elaborates the dataset and training mechanism to train the ResPerfNet models
within a reasonable time span. Section 6 evaluates the efficiency of our approach. Section 7 con-
cludes the paper.

2 BACKGROUND AND RELATED WORK

With the rapid evolving of both hardware accelerators and DL models, the performance mea-
sure/estimation of the DL models on the DLA platforms is an important task to evaluate the ef-
fectiveness of the software/hardware solutions to the given problems. Different approaches have
been proposed to serve the purposes.

Benchmarking approaches, such as DAWNbench (Coleman et al. (2017)) and MLPerf (Reddi et al.
(2020)), aim at the measurements of the training and inference performance of the machine-learning
(ML) models on certain software/hardware combinations. By offering a set of standardized machine
learning workloads and the instructions for performance benchmarking, these benchmarks are able
to measure how fast a system can perform the training and inference for ML models.

Analytical approach, as reported in PALEO (Qi et al.), constructs the analytical performance model
for DL systems. The execution time is decomposed into the total time for the computation and
communication parts, which are derived from the utilization of the computing and communication
resources on the target hardware, respectively. For instance, the computation time is estimated
by dividing the total floating-point operations required by the DL model to the actual processing
speed (i.e., the processed floating-point operations per second for the DL model) delivered by the
computing hardware. The communication time is calculated by the similar approach.This approach
highly relies on the accuracy of the benchmarking results (i.e., to provide the actual processing speed
of the target model on the hardware), which requires its users to choose the benchmarks wisely to
perfectly match the program characteristics of their target deep learning models, so as to give a
proper estimate of the actual processing speed. However, the manual process (of the benchmarks
selection) limit its widespread adoption.

DL-based approaches build the DNNs for estimating the DL models’ performance by learning the
relationships between the characteristics of the DL models and the specifications of the accelerating
hardware. The following works focus on TensorFlow-based DL models. Justus et al. (2018) use
a fully-connected multiple-layer perceptron (MLP) network for performance prediction, using the
configurations of the DL model and the specification of the hardware accelerator, and the training
data of the DL model as the input features to the MLP network. However, due to the simplified
communication time estimation model, where the communications from GPU to CPU for each of
the DL layers are counted repeatedly for estimating the communication time, their model tends to
provide over-estimated results. Wang et al. use PerfNet (an MLP network) to learn the relationships
between the configurations and the execution time of the target DL model. They further decompose
the execution of a DL model into three phases, preprocessing, execution, and postprocessing, and
train multiple PerfNet network instances, each of which learns the relationships between the model
configurations and the model execution time for a specific phase. By aggregating the prediction
results for the three phases, their proposed work is able to predict the total execution time of a given
DL model. Nevertheless, the MLP network has its own limitation, i.e., it is hard to further enhance
its performance since a deeper MLP network will lead to lower prediction accuracy.
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Figure 1: Network architecture of ResPerfNet for performance estimation, where the number above
each layer is the kernel number or the output neuron number for the corresponding layer.

In consideration of the limitations of the prior works listed above and the need of modeling the
optimizing DL frameworks, our work uses the systematical approach to characterize the DL models
built with various DL framework, and adopts the residual neural network to model their delivered
performance on the DLAs.

3 RESPERFNET ARCHITECTURE

ResPerfNet adopts a ML-based approach for the performance estimation of different types of neural
network layers. Furthermore, ResPerfNet is specially designed to prevent the degradation problem,
which refers to the phenomenon that increasing the depth and/or the width of each layer for the DNN
may not only necessarily improve the accuracy, but get saturated rapidly and then degrades sharply
as reported in (He & Sun (2015); Srivastava et al. (2015)). In other words, it is more likely to lead
to a higher training error on the neural network with a wider or deeper architecture. To solve the
problem, the deep residual learning is proposed and applied to each group of the stacked NN layers
(He et al. (2016)), where a certain number of stacked layers are logically grouped together to form a
residual block. Hence, in this work, to address the degradation problem, we adopt the deep residual
learning to every few stacked layers (He et al. (2016)).

The residual block is defined as Equation 1, where x and y represent the input feature maps and the
output vectors of the residual layer, respectively. The function F(x, {Wi}) performs the residual
operations to be learned. The operation F(x, {Wi}) + x is performed by a shortcut connection and
element-wise addition. Figure 1 illustrates the network architecture of ResPerfNet. The second,
third and fourth layers (i.e., two convolutional and one add layers) together form a residual block,
and there are a total of six residual blocks in ResPerfNet.

y = F(x, {Wi}) + x (1)

As shown in Figure 1, the ResPerfNet consists of 26 layers, including 15 convolutional layers, 6 add
layers, 4 fully-connected (FC) layers and 1 dropout layer. Before FC layers, every 7 layers contain
one head convolutional layer (e.g., Conv1D 3 representing the head convolutional layer for the
first residual block) and two residual blocks, each of which consists of two convolutional layers
with the same filters and an element-wise add residual function layer. The first head convolutional
layer has 128 filters of kernel size 3 with a stride length of 1. In order to reduce the complexity of
ResPerfNet, the second head convolutional layer uses 64 filters of kernel size 3 with a stride length
of 1. Moreover, the number of filters for the six residual blocks is decreasing from 128 filters in
the first two blocks to 32 filters for the last two blocks. Three FC layers are attached to the last
residual block, where each of the FC layers has 128 neurons. The dropout layer with the ratio of
0.2 is connected to the last FC layer, which uses a single neuron to perform the one-dimensional
regression for predicting the elapsed time of the designated type of the layers.

Our proposed residual neural architecture, ResPerfNet, gets significant improvements in accuracy
compared with traditional machine learning algorithms, such as support vector regression, polyno-
mial regression and XGBoost, and is even better than the MLP network. A series of experiments
has been done to show ResPerfNet is superior to the previous works in Section 6.1.
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4 METHODOLOGY

This section presents the methodology of using ResPerfNet to relate the performance characteristics
of a CNN layer to the delivered performance of the given layer. We first define the target neural
networks for the performance modeling in Section 4.1. The three-phase based modeling of a given
CNN based is presented in Section 4.2. Lastly, the same modeling for a given NN layer is further
described in Section 4.3.

4.1 FORMALIZING THE NEURAL NETWORKS

A neural network can be represented by a directed acyclic graph, denoted as N ({u(i)}ki=1), con-
sisting of an ordered sequence of k nodes, where each graph node u(i) represents a layer of the
neural networkN , such as convolutional, pooling, and fully-connected layers. The input and output
feature maps of a graph node u(i) performing the operation f (i) are denoted as input(f (i)) and
output(f (i)), respectively. In this work, we assume that a given neural network will be run on the
host system h with a single hardware accelerating device d.

4.2 THE THREE-PHASE PERFORMANCE MODELING

The execution time of a given neural network model includes the computation time spent on the
acceleration device d and the data communication time between the host system h and the device
d. As most of the computations are performed by the accelerating device and the communications
occur merely at the first and the last layers of the given model, the estimated execution time of a
given neural network model with k layers is formulated as follows, where the formulation assumes
that all k layers within the given model are accelerated by the single device d.

T (N ) = Tpre(u
(1)) +

k∑
i=1

Texe(u
(i)) + Tpost(u

(k)) (2)

The above equation shows the three-phase performance modeling approach, where Tpre, Texe, and
Tpost represent the execution time for the preprocess, execution, and postprocess phases, respec-
tively. Specifically, the communication time of bringing the input data from the host system to the
accelerating device at the first layer is denoted as Tpre(u(1)), where the i-th NN layer is represented
as u(i). The summation of the execution time for all the NN layers is represented as

∑k
i=1 Texe(u

(i)).
The communication time of transferring the inference results from the accelerating device to the
host system is defined as Tpost(u(k)). Our prediction model delivers more accurate performance es-
timates than previously proposed methods by modeling these three phases defined in the following
subsection for a DLA separately and adding the predicted results together as Equation 2.

4.3 MODELING INDIVIDUAL NN LAYERS

The similar approach is used to model the performance of the i-th NN layer u(i). In particular,
for each layer u(i), the execution times for the preprocess, execution, and postprocess phases are
Tpre(u

(i)), Texe(u(i)), and Tpost(u
(i)), respectively. The above time components constitute the

estimated execution time of the layer u(i), as defined in the equation below. The superscript index i
is omitted to simplify the looks of the equations by using the simpler form u.

T (u) = Tpre(u) + Texe(u) + Tpost(u) (3)

The preprocess phase is for preparing the input data for the acceleration in d and involves with the
four operations: 1) issuing the commands for copying input feature maps on h and d asynchronously,
2) performing the memory copy of the input feature maps in 1, 3) issuing the commands for the
operation f on d, and 4) performing the data reshaping operations for input feature maps. The data
reshaping operations, which transform the input/output data to the more efficient format for the next
operation on d, usually occur in data transmissions between h and d. The lengths of time for the
four operations areR(input(f), h, d),M(input(f),R(f, d), and T (input(f), d), respectively. As
shown in Equation 4, the time consumed in the preprocess phase is defined as the summation of the
time required by the above four operations.
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Tpre(u) = R(input(f), h, d) +M(input(f), h, d) +R(f, d) + T (input(f), d) (4)

Intuitively, the time consumed for computation, which is C(f, d), in the execution phase would be
identical to the computation time of f on d. Unfortunately, the measured execution time of a layer
from the micro-benchmarks includes the time consumed by the data reshaping operations in both di-
rections, from h to d and from d to h, which are T (input(f), d) and T (output(f), d), respectively.
As the deployed NN layers collectively run on the acceleration device d, isolating the data reshaping
time from the measured execution time for the NN layer of each micro-benchmark facilitates the
execution time estimation of the deployed NN layers with the formula,

∑k
i=1 Texe(u

(i)). Regarding
this situation, the time for the execution phase is defined in Equation 5.

Texe(u) = C(f, d)− T (input(f), d)− T (output(f), d) (5)

The postprocess phase is defined for dealing with the procedure of returning the inference compu-
tation results back to the invoking application on the host system. That is, it is about reshaping
the output vector into the format accepted by h, copying the output vector back to h from d, and
moving the prediction result to the application level (i.e., the call site of the model inference) on
the host system. The corresponding execution time for the above three operations are denoted as
T (output(f), d),M(output(f, d, h), and V(output(f), h), respectively.

Tpost(u) = T (output(f), d) +M(output(f), d, h) + V(output(f), h) (6)

5 TRAINING DATA AND LOSS FUNCTION

In this section, we present the details of the dataset used to build the proposed performance pre-
diction models. In particular, the configurations of our developed benchmark tools for the training
dataset is discussed in Section 5.1. The tool collecting and extracting the data is described in Sec-
tion 5.2, and the data transformation techniques to facilitate the training convergence is introduced
in Section 5.3. The specially designed loss function to better deal with the unbalanced training data
is introduced in Section 5.4.

5.1 DATA PREPARATION

The training data is the characteristics of the TensorFlow and TensorRT programs and the perfor-
mance information of the programs running on the target computing hardware, where the proposed
model helps correlate the characteristics and their runtimes during the training process. In order to
better catch the characteristics of different TensorFlow and TensorRT configurations (i.e., the code
patterns, which are considered as the features during the model training process), we have devel-
oped a benchmark tool to generate a set of micro-benchmarks, which are actually TensorFlow and
TensorRT programs with different configurations for the three types of layers, including convolu-
tion, pooling and dense layers. The generation of the micro-benchmarks are done by randomly
selecting the configurations for each type of the layer, so as to collect the performance for different
configurations. The possible configurations (or features) for all three layer types and their ranges are
listed in Table 3. These configurations are actually the function parameters for the three types of lay-
ers, which are extracted from TensorFlow 1.13 APIs, including tensorflow.layers.conv2d,
tensorflow.layers.maxpooling2d, and tensorflow.layers.dense, and their pos-
sible combinations are 7.33 × 1014, 7.33 × 1010, and 2.14 × 109, respectively. While each micro-
benchmark takes at least seconds for the stable and accurate measurements, it is impossible to cover
the entire design space with brute force, which requires over 1014 micro-benchmark runs.

5.2 DATA COLLECTION AND DATA EXTRACTION

The data preparation is used to generate the TensorFlow- and TensorRT-based micro-benchmarks.
The data collection takes about two weeks for running 100,000 different samples of the Tensor-
Flow micro-benchmarks on the DLAs to collect the performance data. On the other hand, for the
TensorRT micro-benchmarks, more than two weeks were spent to optimize and profile the 25,000
different configurations of the TensorRT programs. It is interesting to note that the TensorRT exper-
iments generate large optimized intermediate files, especially for the dense layer, where it requires
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more than 5TB of storage space to keep its parameters. Due to the disk space limitation, we select
16,000 out of 25,000 samples to run and profile their performance. For data extraction, our data
processing tool filters out the outliers (data with extreme values) before feeding the profiled data for
the model training. The total elapsed time of each layer is decomposed into the preprocessing time
(Tpre), the execution time (Texe), and the postprocessing time (Tpost), as mentioned in the previous
section. In order to test the accuracy of our trained model, the collected samples are split into 80%
of the samples as training datasets and 20% as testing datasets.

5.3 DATA TRANSFORMATION

Now, suppose we are given a training dataset D, which is comprising m observations and p fea-
tures of X and written as D = {ti, xi1, xi2, ..., xip}mi=1, where t is a vector of observed values
ti (i = 1, ...,m), and X could be seen as a matrix of row-vectors xi (i = 1, ...,m) or of m-
dimensional column-vectors Xj(j = 1, ..., p). The coefficients vector w keeps the weights of the
model. The predicted value is denoted as y(x,w), for any given model of weights w and the dataset
x. In order to improve the convergence efficiency and stability of the stochastic gradient descent
(SGD) algorithm, the three types of data transformations are adopted in this work, including scalar
multiplication, Z-scores transformation, and Box-Cox transformation. Scalar multiplication is used
to provide fine-grained updates of the SGD procedure and scales each observed value ti. Z-scores
transformation puts each data feature Xj from different sources into the same scale to eliminate the
prejudicial bias of the features values. Box-Cox transformation converts the values of the features
Xj to standard normal random variables, which would further improve the effectiveness of Z-scores
transformation. Details of these data transformations are available in Appendixes B, C and D.

5.4 LOSS FUNCTION

As the observed vector t is with the positive-skew distribution and often contains some noises con-
tributed by the measurement errors, we fine-tune the loss function as mean absolute percentage
logarithmic error (MAPLE) for the prediction model (Wang et al.), as shown in Equation 7. To
deal with the situation of the skewed distribution, the logarithmic operations for the predicted values
1 + y(xi,w) and the observed values 1 + ti, and the division operation on the observed values in
MAPLE are expected to enhance the accuracy of the small data, which occurs frequently. On the
other head, the absolute value of MAPLE helps increase the resistance against outliers that may
unexpectedly appear in the measured data. Moreover, to prevent over-fitting, L2 regularization is
added to the loss function, where λ2 is a scaling factor for the regularization.

En(w) =
1

n

n∑
i=0

∣∣∣∣ log(1 + y(xi,w))− log(1 + ti)

log(1 + ti)

∣∣∣∣+ λ2‖w‖2 (7)

6 EVALUATION

The layer-wise and model-wise performance results are evaluated to demonstrate the effectiveness
of ResPerfNet in this section. In particular, we compare the layer-wise estimated execution time
produced by ResPerfNet and the previous works to show that ResPerfNet is superior to other re-
gression based approaches, such as polynomial regression, support vector regression and PerfNet.
Three statistical metrics, including mean absolute percentage error (MAPE), root mean squared error
(RMSE) and mean absolute error (MAE), are used to quantify the effectiveness for each tested per-
formance modeling approach. In addition, to demonstrate the capability of ResPerfNet for the full
model prediction, three popular CNNs are considered in the model-wise experiments, e.g., LeNet,
AlexNet, and VGG16. Note that three data transformations mentioned in Section 5.3 are applied in
ResPerfNet by default unless specified otherwise. The details of our experimental environments are
listed in Appendix F.

6.1 LAYER-WISE EXECUTION TIME PREDICTION

Table 1 compares the MAPEs of the execution time for the convolutional layers, estimated by Res-
PerfNet and the prior works. While appropriate parameter adjustments are applied to obtain parame-
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ters for better results, the MAPEs of polynomial regression, support vector regression, and XGBoost
are over 29%, which means the error is quite large and indicates that the corresponding approaches
are not capable of doing good performance prediction for the real applications. On the contrary,
the DL-based approaches, PerfNet and ResPerfNet, give more accurate estimations, which have
less than 15% of the MAPEs. In particular, ResPerfNet outperforms the other approaches and has
11.75% and 14.23% of the MAPEs for the TensorFlow and TensorRT models. The results suggest
that ResPerfNet correctly associates the program characteristics to the performance model.

Table 1: Comparison of the prediction errors (MAPEs) for the convolutional layer execution time
produced by different approaches.

Framwork Layer Phases Polynomial SVR XGBoost PerfNet ResPerfNet
Regression RBF BoxCox

TensorFlow convolutional execution 63.57 % 58.74 % 29.25 % 14.96 % 11.75 %
TensorRT convolutional execution 316.5 % 59.94 % 33.10 % - 14.23 %

To further look into the effectiveness of PerfNet and ResPerfNet and the impact of the Box-Cox
transformation on the predicted results, Figure 2 plots the error curves of the TensorFlow convolu-
tional layer using the PerfNet and ResPerfNet with and without performing the data transformation.
Figure 2(a) shows that most of the MAPE of ResPerfNet on the testing dataset are below 15%, as de-
picted by the red/black solid lines. Notably, ResPerfNet applying the Box-Cox data transformation
reaches the lowest prediction error (11.7%), 2% less than ResPerfNet without the data transforming.
Similar trends can be observed in Figure 2(b) using the RMSE metric, in which the black solid line
also shows the best performance. The results presented in Figure 2 show that ResPerfNet with Box-
Cox transformation has better convergence rate, given the same training epoch. The detailed training
process is illustrated in Appendix E. Moreover, the R2 values for the predicted and measured execu-
tion time of the convolutional, pooling and dense layers are all above 0.97, which demonstrate high
prediction quality of ResPerfNet, as illustrated in Figure 4 of Appendix I.

Figure 2: Training and testing errors of PerfNet and ResPerfNet on their TensorFlow models, where
the dashed lines represent the training errors, and the solid lines denote the testing errors, with
respect to (a) MAPE and (b) RMSE.

The layer-wise performance results of the TensorFlow and TensorRT models delivered by Res-
PerfNet are listed in Table 2. Overall, the MAPE for all phases are under 16%, which removes
the concern of over-fitting. For RMSE, the value of the TensorFlow version convolutional layer is
0.84ms. It is better than the 0.98ms reported by PerfNet (Wang et al.), and is also better than the
2.55ms produced by the method in (Justus et al. (2018)). Detailed predicted results of the three
layers under different phases for TensorFlow (with 3 additional platforms) and for TensorRT are
also presented in Appendixes G and H, respectively. From the tables, we can see that ResPerfNet
has better predicted results for TensorFlow than TensorRT. That is because currently the TensorRT-
based ResPerfNet is trained with less training data, as described in Section 5.2. We believe that the
accuracy for TensorRT predictions can be further improved with sufficient data as TensorFlow.
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Table 2: ResperfNet: TensorFlow/TensorRT predicted inference results on NVIDIA GTX 1080Ti.
Framwork Layers Phases MAPE (%) RMSE (ms) MAE (ms)

TensorFlow
convolutional execution 11.75 0.840 0.336

pooling execution 6.221 0.367 0.125
dense execution 4.515 0.069 0.036

TensorRT
convolutional execution 14.23 0.649 0.263

pooling execution 15.19 0.497 0.186
dense execution 13.40 0.094 0.045

6.2 MODEL-WISE EXECUTION TIME PREDICTION

Figure 3 plots the inference time estimated by PerfNet and ResPerfNet for the three popular DNNs,
including LeNet, AlexNet, and VGG16, using TensorFlow and TensorRT frameworks. Figure 3(a)-
(c) shows that ResPerfNet has more accurate estimation than PerfNet since the averaged MAPE of
the three models is 8.4% for all tested batch sizes, while PerfNet has the averaged MAPE of 24.04%.
Figure 3(d)-(f) illustrates the similar trend for TensorRT based DNNs. The averaged MAPE of these
DNNs using ResPerfNet is 17%. The results show that our modeling and methodology are effective
on the two popular frameworks.

Figure 3: Inference Time Prediction on NVDIA GTX 1080Ti: Comparison with actual inference
time for (a) LeNet on Tensorflow, (b) AlexNet LeNet on Tensorflow, (c) VGG16 on Tensorflow, (d)
LeNet on TensorRT, (e) AlexNet on TensorRT, and (f) VGG16 on TensorRT.

7 CONCLUSION

In this paper, we proposed a deep residual network architecture, ResPerfNet, to model the per-
formance of neural networks on the target DLAs by considering the interactions between the host
and the GPU and decomposing a neural network operation into three phases. In addition, we ap-
ply ResPerfNet to predict the execution time of the optimized models, such as TensorRT, with the
same performance characteristics as those used in unoptimized models. Our experimental results
show that ResPerfNet is able to provide high-accuracy estimations on various DLAs, which helps
facilitate the exploration of proper neural network architectures built with various DL frameworks.
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A FEATURES OF TRAINING DATA

Table 3: Description of features.

Name Description Range Scenario1

Batch Size The number of parallel processed in one iteration. 1-64 C, D, P
Matrix Size The dimensions of the input data. (1-512) × (1-512) C, P
Kernel Size The size of the filter applied to the input data. (1-7) × (1-7) C
Channel In The number of channels in the input data. 1-9999 C, P
Channel Out The number of channels in the output data. 1-9999 C
Strides The amount of the window shifts for each dimen-

sion of the input data with kernels.
(1-4) × (1-4) C, P

Padding The number for preserving the original size of the
image while the filter scans each pixel. 0: Valid.
1: Same.

0-1 C, P

Activate
Function

The number for representing what activation func-
tion is used. 0: Without an activate function. 1:
ReLU.

0-1 C, D, P

Bias The boolean number for utilizing an additional in-
tercept on training input data.

0-1 C, D

Dimension
Input

The number of outputs from the previous layer. 1-4096 D

Dimension
Output

The number of outputs of the layer. 1-4096 D

Pooling Size The windows size factors for scaling down the in-
put data.

(1-7) × (1-7) P

1 In the scenario column, C, P, and D indicate which of the NN layer (i.e., Convolutional, Pooling,
and Dense layer) the corresponding feature applies to.

B SCALAR MULTIPLICATION

Scalar multiplication is applied on the observed vector t as Equation 8 to magnify the prediction
results since the original data are too small to provide accurate estimates. It is interesting to note
that the scalar multiplication would be inefficient for some commonly used loss function, such as
mean squared error MSE, based on our experiences; nevertheless, it works well with the MAPLE
by making every gradient converging smoothly without frequently adjusting an appropriate learning
rate in each epoch.

scalar multiplication : t = t× scaler (8)

C Z-SCORES TRANSFORMATION

Z-scores transformation is performed on each n-dimensional column-vectorXj as Equation 9, where
X̄j is the mean of the each column-vectorXj , and σj is the standard deviation of each column-vector
Xj . Z-scores transformation resales the values of the features to ensure the mean to be zero and the
standard deviation to be one. The values of the features are rescaled within the range between zero
and one, which is useful for gradient decent algorithms.

Z-scores transformation : Xj =
Xj − X̄j

σj
(9)
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D BOX-COX TRANSFORM

Box-Cox transformation transforms the input features Xj into a normal distribution for the best
model accuracy. Box-Cox transformation is shown in Equation 10, where λ1 is the best approxima-
tion for the selected features. In our experiments, Box-Cox transformation is applied on Matrix Size
and Kernel Size (See Table 3) for the convolutional layer data, and Matrix Size for the pooling layer
data.

Box-Cox transformation : X
(λ1)
j =

{
X
λ1−1
j

λ1
ifλ1 6= 0

lnXj ifλ1 = 0
(10)

E THE PROPOSED GRADIENT DESCENT ALGORITHM

Algorithm 1 is the pseudo-code of our proposed algorithm to train each phase of the layers. The
required parameters are defined as follows: optimizer: algorithm used to update the attributes of a
neural network, lr scheduler: sets the learning rate of each parameter group to the initial lr times
a given function, total epochs: total epochs of the neural network algorithm, lr: learning rate, bs:
maximum of the batch size for each epoch, η: period of learning rate decay, γ: multiplicative factor
of learning rate decay, and λ2: multiplicative factor for the weight penalty.

Algorithm 1 The stochastic gradient descent algorithm proposed by ResperfNet, where our default
settings for the our DL regression problems are optimizer = Adam, total epochs = 200, lr =
0.1, bs = 128, η = 40, γ = 0.5, λ2 = 0.1, and scaler = 10.
Require: α: Multiplicative factor for the weight, n: Current batch size, τ : Current iteration.

1: t← scalar multiplication(t, scalar) . Update t by Equation 8.
2: x← Z-scores(Box-Cox(x)) . Update x by Equation 10 and 9.
3: for e in total epochs do
4: lr ← lr scheduler(lr, e, η, γ) . Update the learning rate by scheduler.
5: for b in (m/bs+ 1) do
6: α← optimizer(lr) . Update the weight factor by optimizer.
7: n← x[b ∗ bs : min ((b+ 1) ∗ bs,m)] . Calculate n (current batch size).
8: ∇En ← calculate gradient of En on model wτ . Calculate En by Equation 7.
9: wτ+1 ← wτ − α∇En(wτ )

10: τ ← τ + 1
11: end for
12: end for

F EXPERIMENTAL SETUP

The experiments are done on the Intel i7 processors with a variety of hardware accelerators listed in
Table 4. TensorFlow 1.13.1 and TensorRT 5.0.2.6 with Python 3.6 are used to build the DL models,
running on Ubuntu 18.04.4 LTS (kernel version 5.4.0-42-generic).

Table 4: Acceleration hardware specifications.

NVIDIA Basic CUDA Memory Memory Peak Bus
Device Clock Cores Clock Bandwith TFLOPS Standard

GTX1080Ti 1481 MHz 3584 1376 MHz 484.4 GB/s 11.34 PCIe
P1000 1266 MHz 640 1253 MHz 80.19 GB/s 1.894 PCIe
P2000 1076 MHz 1024 1752 MHz 140.2 GB/s 3.031 PCIe
P5000 1607 MHz 2560 1127 MHz 288.5 GB/s 8.873 PCIe
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G LAYER-WISE EXECUTION TIME PREDICTION FOR TENSORFLOW

Table 5: TensorFlow predicted inference results on NVIDIA GTX 1080Ti.
Layers Phases MAPE (%) RMSE (ms) MAE (ms)

convolutional
preprocess 1.603 0.215 0.126
execution 11.75 0.84 0.336

postprocess 2.821 0.097 0.041

pooling
preprocess 1.177 0.150 0.094
execution 6.221 0.367 0.125

postprocess 1.967 0.091 0.031

dense
preprocess 6.455 0.036 0.025
execution 4.515 0.069 0.036

postprocess 13.86 0.011 0.009

Table 6: TensorFlow predicted inference results on NVIDIA Quadro P1000.
Layers Phases MAPE (%) RMSE (ms) MAE (ms)

convolutional
preprocess 1.943 0.478 0.271
execution 12.74 5.022 2.046

postprocess 2.818 0.105 0.038

pooling
preprocess 1.511 0.206 0.122
execution 5.842 0.977 0.390

postprocess 2.860 0.091 0.035

dense
preprocess 6.691 0.043 0.035
execution 5.687 0.429 0.204

postprocess 13.61 0.018 0.008

Table 7: TensorFlow predicted inference results on NVIDIA Quadro P2000.
Layers Phases MAPE (%) RMSE (ms) MAE (ms)

convolutional
preprocess 1.535 0.536 0.308
execution 12.347 4.209 1.671

postprocess 3.132 0.107 0.045

pooling
preprocess 1.321 0.407 0.185
execution 4.425 0.682 0.234

postprocess 2.728 0.098 0.034

dense
preprocess 7.369 0.017 0.013
execution 13.39 0.073 0.037

postprocess 14.03 0.011 0.008

Table 8: TensorFlow predicted inference results on NVIDIA Quadro P5000.
Layers Phases MAPE (%) RMSE (ms) MAE (ms)

convolutional
preprocess 1.247 0.417 0.235
execution 12.23 1.553 0.671

postprocess 4.072 0.148 0.065

pooling
preprocess 1.339 0.398 0.205
execution 6.444 0.527 0.174

postprocess 3.802 0.131 0.053

dense
preprocess 5.126 0.045 0.035
execution 5.298 0.121 0.121

postprocess 18.13 0.019 0.019
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H LAYER-WISE EXECUTION TIME PREDICTION FOR TENSORRT

Table 9: TensorRT predicted inference results on NVIDIA GTX 1080Ti.
Layers Phases MAPE (%) RMSE (ms) MAE (ms)

convolutional
preprocess 2.283 0.646 0.356
execution 14.23 0.649 0.263

postprocess 4.334 0.274 0.089

pooling
preprocess 2.268 0.689 0.323
execution 15.19 0.497 0.186

postprocess 4.001 0.141 0.058

dense
preprocess 5.612 0.035 0.027
execution 13.40 0.094 0.045

postprocess 18.01 0.017 0.014

I PREDICTED VS. MEASURED TIME (TENSORFLOW)

Figure 4: Predicted and measured times of execution phase of (a) Convolutional, (b) Pooling, and
(c) Dense layer on a NVIDIA GTX 1080Ti.

J MODEL-WISE EXECUTION TIME PREDICTION FOR TENSORFLOW

Figure 5: Predicted and actual inference time comparison for LeNet on TensorFlow.
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Figure 6: Predicted and actual inference time comparison for AlexNet on TensorFlow.

Figure 7: Predicted and actual inference time comparison for VGG16 on TensorFlow.
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