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Abstract

Weight averaging of Stochastic Gradient Descent (SGD) iterates is a popular method for
training deep learning models. While it is often used as part of complex training pipelines to
improve generalization or serve as a ‘teacher’ model, weight averaging lacks proper evaluation
on its own. In this work, we present a systematic study of the Exponential Moving Average
(EMA) of weights. We first explore the training dynamics of EMA, give guidelines for
hyperparameters tuning, and highlight its good early performance, partly explaining its
success as a teacher. We also observe that EMA requires less learning rate decay compared
to SGD since averaging naturally reduces noise, introducing a form of implicit regularization.
Through extensive experiments, we show that EMA solutions di�er from last-iterate solutions.
EMA models not only generalize better but also exhibit improved i) robustness to noisy
labels, ii) repeatability, iii) calibration and iv) transfer learning. Therefore, we suggest that
an EMA of weights is a simple yet e�ective plug-in to improve the performance of deep
learning models.

1 Introduction

The performance of modern deep learning models is tightly linked to their training. In order to converge
to a good solution, reducing the noise coming from stochastic updates is eventually required. For example,
Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951; Bottou, 2010) needs a carefully tuned learning
rate and decay schedule, while adaptive variants such as Adam (Kingma & Ba, 2014) essentially decay the
learning rate based on gradients retrieved: while a large learning rate is initially required to obtain fast
training and good generalization, only when the learning rate is low enough does the model actually converge
to a good solution. In an orthogonal approach to learning rate decay, a standard way to reduce noise in
convex optimization is (tail) averaging (Polyak & Juditsky, 1992): if SGD stops making progress because of
stochastic noise, a more accurate solution can be retrieved despite high learning rates by averaging the last
iterates.

While the theoretical gains of averaging are less clear in the non-convex setting, Weight averaging (WA) is
also popular in deep learning, and has been explored primarily in two ways: WA inside the training loop as a
teacher model, and WA outside the training loop to improve generalization. In the first case, an Exponential
Moving Average (EMA) of parameters is used as a teacher in Student-Teacher frameworks, for example in
popular representation learning methods (Tarvainen & Valpola, 2017; Grill et al., 2020). The averaged model
provides more accurate and consistent predictions during training, which the student uses for training. For
the second case, Stochastic Weight Averaging (SWA) (Izmailov et al., 2018) uses an average of multiple
checkpoints along the SGD trajectory to improve the generalization of the final model, arguing that it finds
flatter solutions than SGD. Note that SWA does not a�ect optimization since the averaged model is not used
in the training loop.

Despite the popularity of EMA teachers, the properties of EMA models have not been studied thoroughly.
Previous works (Grill et al., 2020; He et al., 2020) mainly justify its e�ectiveness by enhanced consistency
and stability of predictions during training, and often mix EMA with other mechanisms as part of a complex
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framework, making it impossible to disentangle the impact of averaging. EMA has mainly been used as a
teacher, leaving aside the potential of EMA itself to improve the final solution in favor of SWA.

In this work, we focus on EMA models outside of the training loop, exploring their training dynamics and
benefits in generalization and beyond. By doing so, we unveil new reasons why EMA are such good teachers:
we find that the solutions reached when reducing stochastic noise by averaging are di�erent than by learning
rate decay. They improve in robustness to label noise, calibration, repeatability and transfer learning. In a
nutshell, we ask the following question:

What are the properties of weight averaging when training deep neural networks?

To answer this question, we empirically study weight averaging during a (momentum) SGD trajectory by
means of an Exponential Moving Average (EMA). More specifically, if the SGD models form a trajectory
(xt)tØ0, the corresponding EMA models would be obtained by taking, for some – œ [0, 1]:

x
EMA
0 = x0, and x

EMA
t+1 = –x

EMA
t + (1 ≠ –)xt+1. (1)

Keeping an EMA model is simple, has minimal overhead, and can easily be plugged into any existing pipeline.
We study EMA models outside of the training loop, such that they have no e�ect on the underlying SGD
trajectory. We split our study in two parts, described in the two paragraphs below.

Training dynamics of EMA (Sec. 3). We find that weight averaging reduces noise and can replace the
last phase of learning rate decay, while at the same time enabling implicit regularization via stochastic noise.
More specifically, (i) While last-iterate SGD requires decaying the learning rate to nearly 0 for convergence,
averaging reduces noise and yields good solutions under reasonably high learning rates, which we argue
promotes learning more general representations. We propose a one-shot tuning of the strength of implicit
regularization by using cosine annealing of the learning rate and early stopping. (ii) We highlight the
impressive performance of EMA in the early stages of training and postulate this observation as a key reason
for the success of popular EMA teachers. Combined with early stopping, the EMA model can reduce the
compute budget by sparing the last phase of SGD training at low learning rates. (iii) We look into Batch
Normalization (BN) in EMA models and find that it is the limiting factor when choosing the EMA decay.
If BN statistics are recomputed, larger averaging windows can be used and actually may improve further
generalization.

Properties of the final EMA model (Sec. 4). We find that the solutions reached with EMA and early
stopping are di�erent from the baseline solution obtained by last-iterate momentum SGD, and conjecture
that this is due to implicit regularization via stochastic noise. More specifically, (i) in extensive experiments
on image classification tasks we find a consistent improvement in generalization using an EMA model.
(ii) We also find a great improvement in robustness to label noise in training data, as the implicit
regularization largely prevents memorization of wrong labels. A simple EMA model proves to be competitive
with specialized methods for robust training to label noise. (iii) We compare the EMA model to the SGD
baseline in a number of other metrics and find that it improves considerably in calibration, prediction

disagreement and transfer learning.

2 Related Work

Weight averaging during deep learning training is already a popular method that leads to better practical
performances. Yet, it lacks a systematic study, since contributions are mostly scattered in domain-specific
literature. Besides, the use of weight averaging is often justified by intuitive alleged properties which are rarely
investigated in isolation. In this section, we review di�erent areas in which weight averaging is used, along
with the corresponding alleged folklore benefits. We then test them, as well as give alternative explanations
for why it is useful in the remaining sections.

Weight averaging to improve generalization. Averaging the iterates during a trajectory has a long history
in stochastic approximation (Ruppert, 1988; Polyak, 1990; Polyak & Juditsky, 1992), and its correct use and
understanding have been an active area of research since (Bach & Moulines, 2011; Dieuleveut et al., 2017;
Lakshminarayanan & Szepesvari, 2018; Mücke et al., 2019; Gadat & Panloup, 2023). Geometric averaging
(EMA but with more weights on old iterates) can also be connected with a form of explicit regularization Neu
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& Rosasco (2018). Yet, these methods assume quadratic or (strongly) convex objectives, and so do not apply
to deep learning training.

In deep learning, a popular averaging method is Stochastic Weight Averaging (SWA) (Izmailov et al., 2018).
SWA keeps a uniform average of checkpoints during the final epochs of an SGD trajectory, while holding
a reasonably high and constant learning rate. SWA is argued to find flatter solutions than SGD, thus
generalizing better to unseen data. A potential explanation is that the loss function near a minimum is
often asymmetric, sharp in some directions and flat in others. While SGD tends to land near a sharp ascent,
averaging iterates biases solutions towards a flat region (He et al., 2019).

Many extensions of SWA have been proposed for specialized tasks (Gupta et al., 2020; Li et al., 2022; Kaddour,
2022), and in particular semi-supervised learning (Athiwaratkun et al., 2019), low-precision training (Yang
et al., 2019) and domain generalization (Cha et al., 2021). The latter introduces enhancements such as dense
averaging (i.e., every iteration) and overfit-aware sampling by tracking validation loss. The flatness argument
has also been leveraged for robustness: weight averaging on top of adversarial training helps finding flatter
minima and boosts adversarial robustness. This has been shown using both SWA (Chen et al., 2021) and
EMA (Gowal et al., 2020; Rebu� et al., 2021). EMA has also been studied in minimax optimization, with
applications to GANs (Yaz et al., 2019). Finally, many works use averaging as part of their implementation
but do not emphasize it or discuss its e�ect. Such works are hard to review since they are not explicitly
listed as working on averaging, but include for instance Berthelot et al. (2019); Sohn et al. (2020); Oord et al.
(2018); Oquab et al. (2023), which rely on EMA or uniform averaging, sometimes replacing the decay of
learning rate.

Overall, while weight averaging seems to improve generalization, existing studies mostly focus on SWA. We
close this gap, and show similar results for EMA in this work.

Weight averaging in Student-Teacher methods. Consistency training is a popular technique for learning
with unlabeled data (Laine & Aila, 2016; Berthelot et al., 2019), based on generating pseudo-labels during
training, often through a teacher model, which does not receive gradient updates. Mean Teacher (Tarvainen
& Valpola, 2017) first proposed to use an EMA of model weights as a teacher, such that ◊Õ = EMA(◊), in a
method for semi-supervised image classification. EMA has since become a popular choice for teacher models,
used for tasks such as semi-supervised semantic segmentation (French et al., 2019), unsupervised domain
adaptation (Hoyer et al., 2022), continual adaptation (Wang et al., 2022), and robustness to label noise Liu
et al. (2020); Nguyen et al. (2019). On the other hand, SWA requires recomputing batch norm (BN) statistics
for the averaged model with a full pass over the train set, thus making it unfit for its online use (e.g., as
teacher). While these works find that EMA teachers are beneficial and provide accurate pseudo-labels, they
do not specifically study the properties of EMA models.

In self-supervised learning, EMA plays a central role in a handful of popular frameworks. BYOL (Grill
et al., 2020) employs consistency training with an EMA teacher (a.k.a. self-distillation) to learn visual
representations from unsupervised data. MoCo (He et al., 2020) rebrands the EMA teacher as a momentum
encoder and proposes a student-teacher framework with a contrastive learning objective. CURL (Laskin
et al., 2020) applies the same idea to learn unsupervised representations for reinforcement learning. These
methods attribute the e�ectiveness of EMA to smoother changes in target representations, maintaining
consistency and stability, rather than the quality of the representations. DINO (Caron et al., 2021) explores
self-distillation in Transformers and studies, for the first time, the training dynamics of the EMA teacher,
including the key observation that the teacher consistently outperforms the student during training.

In summary, weight averaging is a key component of student-teacher methods. EMA is generally preferred
over other averaging methods (such as SWA) to avoid recomputing BN stats. In this work, we investigate the
relation between averaging window and BN statistics, and show that this is actually only the case for short
averaging windows.

3 Insights on Weight Averaging during Training

Although EMA models are built from SGD iterates, their dynamics during training and final solutions are
very di�erent. We argue that EMA is a simple, lightweight and e�ective plug-in to SGD training.

3



Under review as submission to TMLR

3.1 Training with EMA

Computation overhead. The overhead of using an EMA of weights outside of the training loop is generally
very low, as it only requires keeping a running average of parameters and possibly evaluating every epoch.
Moreover, the running average can be updated every T steps instead of after every parameter update. We set
T = 16 by default and find no di�erence to T = 1 in the results. In terms of computation, the optimization
step remains the dominating factor. In terms of memory, keeping an additional set of weights is feasible for
most deep learning models used in practice, other than foundation models. For example, a ResNet-50 (23.7M
parameters) requires 90.43 MB of storage.

Hyperparameters tuning. There are two main sources of potential tuning overhead when training averaging
models: 1) deciding on the averaging window and 2) tuning the final learning rate, a sensible hyperparameter
crucial for the final performance. The averaging window for an EMA is determined by the decay factor –.
An EMA naturally avoids the need for (1), since we can simultaneously keep multiple EMA models with
di�erent decays to compare di�erent averaging windows. We prevent (2) by using cosine annealing of the
learning rate and finding the best early stopping epoch on a validation set. This allows us to search for (1)
and (2) on the go, training only once. Admittedly, keeping multiple EMAs (say, M) to avoid tuning does
increase the overhead by a factor M , but it is still a tiny fraction of the computation time for small enough
values (e.g., M = 5). With this scheme, we need to decide on epoch budget, number and selection of EMA
decays, and to search for the best initial learning rate, as usual for regular training of DNNs.

3.2 Implicit Regularization with SGD Noise and Learning Rate Schedule

Noisy SGD updates are argued to bias solutions towards flatter regions that are believed to generalize better,
partly explaining the success of deep learning (Keskar et al., 2016). This implicit regularization e�ect makes
a case for large learning rates and small mini-batches (Pesme et al., 2021; Even et al., 2023). Nonetheless,
standard training of DNNs requires decaying the learning rate to reduce stochastic noise and converge to a
good solution. Averaging during training is an alternative way of reducing noise and reach a good solution
without too much learning rate decay. This allows to freely tune the final learning rate to control the strength
of implicit regularization, while still converging to a good solution within the neighborhood.

We demonstrate the dynamics of EMA models in Fig. 1a, where we use a continuous decaying of the learning
rate ÷ with cosine annealing and track the validation accuracy of the EMA model to find the best early
stopping epoch (for implementation details see Sec. 4.1). We first highlight that the EMA model outperforms
SGD throughout training. We also observe that the best EMA model is obtained when averaging updates with
a reasonably high learning rate, benefiting from a stronger implicit regularization. The EMA accuracy rises
fast at first, then slowly increases as ÷ is continuously decayed (and so does the strength of regularization),
peaks at epoch 150, and finally deteriorates as ÷ is decayed further. Early stopping while sweeping through
the learning rate values allows for a one-shot tuning of the regularization strength. Finally, the EMA
model matches the SGD sequence when the iterates don’t advance (÷ æ 0). For more examples of EMA
dynamics, see Fig. 2 and App. A. As we will see in Sec. 4, the solutions reached by EMA and SGD are
di�erent: the implicit regularization of averaging improves generalization and promotes learning more general
representations.

We emphasize that the EMA solutions not only generalize similarly or better than SGD, but also require
fewer training epochs. In our experiments with cosine annealing, early stopping for EMA was always at < 3/4
of the epochs budget (see App. B). This suggests that the last phase of SGD training is mostly wasteful,
as the iterates are already around a good solution that cannot be accessed (without averaging) because of
stochastic noise. With averaging, there is no need to decay the learning rate that much, and the entire last
phase of training can be spared.

3.3 EMA in early training

A key di�erence in the training dynamics of EMA and SGD models is the early-stage performance: EMA

models are very e�ective early in training, as shown in Fig. 1a. Its remarkable performance after just a
few epochs partly explains the success of EMA teachers. While popular self-supervised methods (Grill et al.,
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(a) EMA vs SGD (b) EMA by decay –, with vs w/o recomputing BN stats

Figure 1: CIFAR-100 on ResNet-18. Left: EMA vs SGD baseline, and learning rate (µ). EMA is the
best among the 5 EMA models at any given epoch, without recomputing BN stats. We observe that EMA
dominates momentum SGD and has a good performance since early on. EMA peaks at epoch 150, at the
optimal µ, and then deteriorates. Right: Breakdown of the 5 EMA models per decay (with and without
BN recomputation after every epoch). EMAs with the largest averaging windows fail unless BN stats are
recomputed. Sliding window of 5 used for smoothing. All results are the mean of 3 runs.

2020; He et al., 2020) attribute the benefit of a slow-moving average to an improved consistency between
predictions during training, we argue that the improved quality of the EMA representations also plays a
crucial role in their frameworks. Thanks to noise reduction from averaging, the EMA model can achieve
notable performances while keeping a large learning rate for fast progress. Student-teacher frameworks
leverage this fact and distill knowledge from the EMA teacher.

Instead of knowledge distillation, a tempting idea is to regularly bootstrap the SGD model with EMA
parameters. We investigate this (see App. C), but conclude that bootstrapping with the EMA does not o�er

any benefit. The EMA model is simply a good point within the local neighborhood of the latest iterates.
After bootstrapping, noisy SGD updates quickly take over and deteriorate the model performance. Therefore,
distillation methods are a more e�ective way of leveraging EMA’s early performance to improve training.

3.4 Batch Norm Statistics and EMA decay

Batch Normalization (BN) presents a challenge for weight averaging. By default, the EMA model uses BN
statistics (mean and standard deviation of each activation) from the current batch, but the cross-sample
dependency may harm generalization. Cai et al. (2021) improve EMA teachers by keeping a moving average
of the BN stats of the student, which we use in our implementation. In another approach, SWA (Izmailov
et al., 2018) recomputes BN statistics for the final averaged model with an additional full pass over the train
data after training. For the online use of an EMA model, however, recomputing BN stats during training
would imply a significant overhead.

We investigate the optimal averaging window size (i.e., decay –) for EMA and find di�erent behaviors for the
running average of model parameters and of BN stats. In particular, model parameters tolerate larger

averaging window sizes than BN statistics. As shown in Fig. 1b, the EMA model can diverge when a
very slow decay (i.e., large –) is used. Interestingly, if we recompute the BN stats of that same EMA model
(once after every epoch) we recover full performance, indicating that it is BN that breaks an EMA model
as we increase the size of the averaging window. In fact, if recomputing BN stats, averaging weights tends
to benefit from using very large averaging windows. We also observe that recomputing BN stats always
improves generalization.

The EMA decay is usually set to – œ [0.9, 0.999], and the optimal value will be task dependent. For an online
use of EMA, when recomputing BN stats periodically may be undesirable, a faster decay may be used to
avoid divergence. On the other hand, when averaging to improve final performance, it is preferable to use a
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slower decay and recompute BN stats after training. Models that do not use BN naturally avoid this problem
(e.g., VGG-16). While we focus on CNNs, future work could investigate EMA in Transformer models, which
also avoid BN.

4 Results

4.1 Experimental Setup

We perform experiments on several image classification datasets (CIFAR-10, CIFAR-100, Tiny-ImageNet (Le
& Yang, 2015)) with various network architectures (ResNet-18 (He et al., 2016), WideResNet-28-10 (Zagoruyko
& Komodakis, 2016), VGG-16 (Simonyan & Zisserman, 2014)). We always use SGD with Nesterov Momentum
of 0.9 for training. The epochs, batch size and weight decay are fixed (see details in App. F). For the learning
rate schedule, we use a linear warmup during the first 5 epochs and then decay with cosine annealing, and
search for the best initial learning rate. We always report the mean of 3 independent runs.

To perform a rigorous study, we stress the importance of using a hold-out set for hyperparameter selection.
Unfortunately, most image classification benchmarks do not include a standard validation set. We define
random 80/20 splits of the training set for train and validation respectively and perform hyperparameter
optimization on the validation set, including the early stopping epoch for EMA (without BN stats recompu-
tation). Finally, we train on the full training data using the selected hyperparameters and evaluate on the
test set. Note that early stopping is not tuned again on the test set. Also note that most methods would
technically require this train/evaluation split: the best step-size for SGD should be selected on a validation
set for instance. We explicitly use one here instead of choosing the best performance on the test set (as is
often done) since our EMA training pipeline also relies on early stopping, which we do not think would be
relevant to choose directly on the test set.

The EMA introduces one hyperparameter, the decay rate –, which governs how fast the moving average
forgets past iterations. Since the EMA is outside of the training loop, we can optimize – in a single training
run by keeping 5 parallel EMA models. We fix the decays to – œ [0.968, 0.984, 0.992, 0.996, 0.998], and use an
EMA sampling period of T = 16 steps, to reduce the overhead at no cost in performance. Note that using
T > 1 a�ects the e�ective decay, which becomes –1/T (e.g., 0.9841/16 ¥ 0.999). We also use a decay warm-up
for a faster EMA update in the first epochs, as min(–, t+1

t+10 ) at time t. For EMA’s BN statistics we follow
Cai et al. (2021).

In our experiments, we compare Baseline against EMA. We refer as Baseline to the momentum SGD model
on which we perform the EMA. For the EMA we consider two di�erent early stopping epochs: at best

validation accuracy and lowest validation loss, which are often not aligned and produce solutions with di�erent
properties. In both cases, we report the EMA with the largest decay (– = 0.998) and recompute BN stats
once after training. In App. B we report the full results including the two EMA variants with and without
BN recompute.

4.2 Generalization

We start by investigating the performance of EMA models in terms of test accuracy. We find that averaging
with EMA improves generalization, always outperforming the SGD baseline. This is not unexpected, as
the generalization benefit of (uniform) averaging is well-known in deep learning (Izmailov et al., 2018).
Nonetheless, to the best of our knowledge, we are the first to show this for EMA.

In Table 1 we report test accuracy and test loss for the momentum SGD baseline and its EMA, early stopped
either at the epoch of best accuracy or lowest loss. We emphasize two takeaways. Firstly, EMA performs
consistently better than the baseline. We include SWA results when available, which bring a generalization
improvement approximately similar to EMA, but leave for future work a comprehensive comparison between
the two methods. Secondly, the EMA model with the lowest loss does not correspond to the model with
highest accuracy, as the early stopping point to minimize the loss is always earlier (see App. B). As we discuss
in the next sections, the EMA with the lowest loss outperforms the best accuracy EMA in other metrics (e.g.,
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Dataset Architecture Baseline EMA (acc.) EMA (loss) SWA
Acc. Loss Acc. Loss Acc. Loss Acc.

CIFAR-100 ResNet-18 77.63 1.02 78.55 0.84 78.05 0.82 -
VGG-16 72.82 1.77 73.62 1.13 72.08 1.06 74.27

WRN-28-10 81.07 0.78 82.72 0.67 81.90 0.64 82.15
CIFAR-10 ResNet-18 95.19 0.22 95.59 0.15 95.27 0.15 -
TinyImageNet ResNet-18 66.03 1.60 67.97 1.35 67.05 1.36 -

Table 1: Test accuracy and loss on a baseline model and its EMA. The EMA model consistently outperforms
the baseline in accuracy and loss. We explore EMA with two early stopping criteria: best accuracy and
lowest loss. EMA models’ BN statistics are recomputed once. SWA results from Izmailov et al. (2018).

calibration, repeatability, transferability), suggesting a trade-o� between maximizing these metrics or model
accuracy.

4.3 Label Noise

In this section, we study the case of training with label noise, i.e., with a fraction of the training set wrongly
annotated. We perform experiments on the benchmarks of CIFAR-10N and CIFAR-100N (Wei et al., 2022),
two datasets with human annotator label noise of approximately 40%.

Interestingly, we find that the e�ect of implicit regularization is magnified in the presence of label noise. In
Fig. 2 we observe that the EMA model performs best when averaging iterates at a relatively high learning
rate. The EMA model peaks at 64.8% accuracy at epoch 100, with a learning rate around 0.4, and then
decays until it plateaus at 55.0% at the end of training. Eventually, when the learning rate is decayed low
enough, the model fits (i.e., memorizes) all the noisy labels and reaches 100% train accuracy (App. E.1), but
generalizes worse. Memorization in the EMA occurs as the learning rate is decayed, and not due to continued
training (App. E.2). An explanation for the outstanding performance of EMA is that the regularizing e�ect
of stochastic noise e�ectively prevents fitting the noisy labels, while it allows learning of general patterns in
the data.

Figure 2: CIFAR-100N on ResNet-34. EMA vs SGD
baseline, and learning rate (÷). EMA dominates SGD
and outperforms the best model. Training on data
with 40% of label noise, evaluating on clean test set,
mean of 3 runs.

Method CIFAR-10N CIFAR-100N

DivideMix 92.56 71.13

PES(semi) 92.68 70.36

ELR+ 91.09 66.70

EMA (acc.) 86.71 65.15
CAL 85.36 61.73

CORES 83.60 61.15

Co-Teaching 83.83 60.30

JoCor 83.37 59.97

. . . . . . . . .

CE (standard) 77.69 55.50

Table 2: Selection of best-performing methods on
CIFAR-10N (Worse) and CIFAR-100N, with 40%
label noise in train data, using a ResNet-34. Ours
is highlighted, all other results are from Wei
et al. (2022). Leaderboard available at http://
www.yliuu.com/web-cifarN/Leaderboard.html
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We compare our results to the leaderboard for robust training to label noise (see Tab. 2). The performance
of the EMA under label noise not only is a good example of the e�ect of implicit regularization, but also it is
an extremely simple method which is actually competitive with state-of-the-art. The other methods in Tab. 2
are complex and specialized frameworks, often computationally demanding. Most of them, including the
top-performing DivideMix (Li et al., 2020), train two networks simultaneously while refining labels based on
their predictions, and use advanced augmentation strategies such as MixUp. In contrast, we do not adopt any
specialized technique or data augmentation, we only keep an EMA model on top of vanilla momentum SGD
training. Despite its simplicity, EMA outperforms multiple specialized methods and gets reasonably close to
the state-of-the-art. We believe this can be particularly relevant when the presence or the level of label noise
is unknown. While specialized (costly) methods need to be justified by heavy label noise, (lightweight) EMA
can simply be adopted by default.

4.4 Prediction disagreement

Training of modern neural networks includes multiple sources of randomness, such as batch ordering,
initialization and data augmentations. As a result, two independent runs (with exact same algorithm,
architecture, training data and hyperparamter configuration) can converge to very di�erent solutions. Even if
their accuracy is usually similar, the resulting models will di�er in many predictions of individual samples
(Jiang et al., 2021b; Bhojanapalli et al., 2021). This prediction disagreement, also known as churn, poses a
challenge for reproducibility and repeatability in deep learning. Moreover, in real-world systems where the
production model is often replaced, it is desirable that the new model, expected to be ever so slightly more
accurate, behaves similarly to the previous ones – that is, has a low predictive churn (Jiang et al., 2021a).

We denote the churn between two functions f◊1 and f◊2 as the fraction of test samples with di�erent
prediction, the lower the better. That is, 1

N

qN
n=1 1[f◊1(xn) ”= f◊2(xn)] for the N samples in the test

set, where f(xn) is the top-class predicted. We also propose to use the Jensen-Shannon (JS) divergence
as a metric for prediction disagreement, which considers the di�erence in the entire class probability
vector. The JS divergence is a symmetrized version of the Kullback–Leibler (KL) divergence defined as
JS(pÎq) = 1/2 KL(pÎm) + 1/2 KL(qÎm), where m = 1/2(p + q).

A few attempts have been made to reduce churn with algorithmic variations (Bhojanapalli et al., 2021; Jiang
et al., 2021a; Madhyastha & Jain, 2019). In our experiments, we train 3 models on independent runs with
di�erent seeds and measure the pair-wise churn and JS div. between their predictions. In Table 3 we compare
the prediction disagreement of the momentum SGD baseline with the EMA model. We use the EMA with
early stopping at the epoch of lowest validation loss (which outperforms EMA of best accuracy, see App. B)
and recompute BN stats. Using EMA brings a great improvement in repeatability, even outperforming the
state of the art (Bhojanapalli et al., 2021), a specialized method that uses co-distillation and has a ◊2 training

Test Acc. Churn JS divergence

Baseline Method Baseline Method Baseline Method

Method: EMA (lowest loss)

CIFAR-100 ResNet-18 77.63 78.05 18.84 12.71 0.32 0.09
WRN-28-10 81.07 81.90 15.69 8.91 0.10 0.055
VGG-16 72.82 72.08 23.7 20.07 0.676 0.134

CIFAR-10 ResNet-18 95.25 95.46 3.78 2.71 0.017 0.01
Tiny-ImageNet ResNet-18 66.03 67.05 29.36 15.32 0.85 0.14
Method: Co-distillation KL (Bhojanapalli et al., 2021)

CIFAR-100 ResNet-56 73.26 76.53 26.77 17.09 - -

CIFAR-10 ResNet-56 93.97 94.63 5.72 4.21 - -

Table 3: Prediction disagreement (churn, JS div.) results. Using an EMA model substantially improves the
consistency of predictions between independent runs, achieving a lower prediction disagreement than methods
designed specifically for this goal.
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Linear eval on: CIFAR-10 CIFAR-100
Pretraining on: Tiny-ImageNet CIFAR-100 Tiny-ImageNet CIFAR-10

Baseline 74.61 ± 0.26 82.10 ± 0.21 52.77 ± 0.15 33.72 ± 1.67
EMA (best accuracy) 78.70 ± 0.45 84.03 ± 1.07 57.30 ± 0.39 37.09 ± 1.06
EMA (lowest loss) 79.13 ± 0.76 85.02 ± 0.03 57.78 ± 0.09 36.09 ± 0.86
Supervised 95.25 ± 0.11 77.63 ± 0.14

Table 4: Linear evaluation on CIFAR-10/100 with a frozen ResNet-18 backbone pretrained on another dataset.
Mean and std deviation for 3 seeds. The significant improvements in accuracy using EMA pretrained models
indicates that the representations learned are more general and transferable.

cost. The EMA model consistently reduces the classification churn across di�erent datasets and architectures.
Note that we gain a large factor in repeatability, as most samples are already correctly predicted by both
models, and so don’t move. We also find a consistent improvement in the continuous metric of JS divergence.

4.5 Transfer Learning

In order to assess the quality and generalizability of the learned representations, we test their ability to
transfer to other datasets. We investigate whether the implicit regularization with stochastic noise promotes
the learning of more general representations that generalize across datasets, instead of relying on patterns
specific to the training distribution.

We evaluate transfer learning via linear evaluation, similarly to Chen et al. (2020). We use a frozen pretrained
model as a feature extractor, all layers but for the last one, and add a linear classification head for another
dataset on top. Then, we train the classification head for 50 epochs with SGD with Nesterov momentum of
0.9, without weight decay and with a tuned learning rate of 0.01 without warmup. We do not use EMA on
the classification head.

We find that the EMA models learn more general representations which better transfer to other datasets,
compared to the SGD baseline. Table 4 shows the results for linear evaluation on the frozen feature extractors,
demonstrating that EMA models’ representations are more linearly separable when transferred to other tasks.
Interestingly, EMA with early stopping at the epoch of lowest validation loss often outperforms the epoch of
best accuracy, likely because stopping at an earlier epoch increases the strength of implicit regularization.

As expected, since we only train a linear layer, the accuracy of linear evaluation is far from the supervised
performance when training an entire model from scratch. Nonetheless, we believe that our results are
insightful for understanding the di�erences between averaged solutions and SGD solutions decaying learning
rate to zero, showcasing how implicit regularization promotes the learning of more general representations. In
future work, it would be of interest to extend this study to EMA of self-supervised methods and investigate if
it can readily improve their performance.

4.6 Calibration

Calibration of a model is the property that the predicted probabilities reflect the true likelihood of the
ground-truth. While calibrated models are important for high-stakes decision making, for example in medical
domains, modern deep neural networks are generally not well-calibrated. Multiple methods have been
proposed to improve calibration. Guo et al. (2017) use a post-hoc temperature scaling tuned on a hold-out
set. Deep ensembles are also known to improve uncertainty estimation and calibration (Lakshminarayanan
et al., 2017; Jiang et al., 2021b), but are an expensive solution. Another class of methods directly optimize
for low calibration error during training with auxiliary objectives (Karandikar et al., 2021).

In Table 5 we report the test accuracy and calibration error for a baseline model, trained on SGD with
Nesterov momentum, and its EMA. We use the Expected Calibration Error (ECE) metric, widely used in
the literature. We fix the number of bins to M = 100 and compute ECE with equal-mass binning (Nixon
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Baseline EMA

ResNet-18

CIFAR-100

Accuracy 75.83 76.31

ECE 11.75 9.46

ECE w/ TS 4.67 3.13

VGG-16

CIFAR-100

Accuracy 70.57 70.46

ECE 20.57 8.12

ECE w/ TS 12.17 3.64

WideResNet-28-10

CIFAR-100

Accuracy 79.29 80.12

ECE 6.38 6.20

ECE w/ TS 5.60 3.37

ResNet-18

CIFAR-10

Accuracy 94.54 95.01

ECE 3.58 1.99

ECE w/ TS 1.99 1.04

ResNet-18

Tiny-ImageNet

Accuracy 63.74 65.81

ECE 12.62 8.88

ECE w/ TS 3.35 3.57

Table 5: Expected Calibration Error (ECE) and ECE after Temperature Scaling (TS) results, lower is better.
EMA consistently outperforms the SGD baseline.

et al., 2019). We also report ECE after temperature scaling (TS) as proposed by (Guo et al., 2017). We train
on an 80% split of the full training dataset, tune the temperature in the remaining 20% hold-out set, and
evaluate on test. For the EMA we use early stopping at the epoch of lowest loss and recompute BN stats
after training.

We find that using an EMA considerably reduces the calibration error across all models and datasets tried,
compared to the SGD baseline. The improvement that EMA brings seems to be orthogonal to the popular
post-hoc operation of temperature scaling, which corrects for an average over/under-confidence. Combining
temperature scaling and EMA reduces ECE by a factor of ◊4 in some cases. We hypothesize that a temporal
ensemble of model weights represents a high diversity of solutions, which leads to an improved uncertainty
estimation.

5 Conclusion

In this work, we have performed a thorough study weight averaging in deep learning through EMA models,
that was lacking in the literature despite its extensive use. We proposed a training framework to limit the
overhead induced by keeping EMA models, and provided a insights to improve the understanding of weight
averaging dynamics. We showed that EMA allows to maintain high learning rates, which leads to implicit
regularization that favors learning more general representations. Then, we highlighted the surprising early
performance of EMA models, and we showed that too large averaging windows cannot be used for EMA
teachers, since they require recomputing Batch Norm statistics. On the benefits of using EMA on top of SGD
iterates, we showcase the strong performance of EMA models with a comprehensive empirical evaluation. We
illustrate that not only EMA models generalize better, which was known in the weight averaging literature
with methods such as SWA, but they also are more robust to label noise (beating many specialized methods),
improve consistency of predictions across runs, produce more general and transferable representations, and
are better calibrated.
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