
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DISTRIBUTION-AWARE MULTI-GRANULARITY PHASE
CODING: TOWARDS LOWER CONVERSION ERROR FOR
SPIKE-DRIVEN LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking large language models (LLMs) offer significant advantages on neuro-
morphic hardware, yet training them from scratch remains prohibitively expen-
sive. A promising alternative is ANN-to-SNN conversion, which reuses pre-
trained ANN weights while minimizing conversion error. However, existing con-
version frameworks neglect activation distributions, as reflected in SNN neurons
with rate or temporal coding to map uniformly distributed rather than distribution-
aligned discrete values, thus causing latent conversion error arising from distribu-
tion misalignment. To tackle this problem, we propose a distribution-aware multi-
granularity phase coding approach, which achieves reasonable discrete value allo-
cation by minimizing conversion error relative to activation distributions. Specifi-
cally, multi-granularity phase coding extends conventional phase coding with mul-
tiple learnable bases, incorporating representational capacity across different gran-
ularities. Building on this coding scheme, we further propose a novel ANN-to-
SNN conversion paradigm designed towards lower conversion error. In particular,
our paradigm utilizes the activation distributions of hidden layers to sample data
for cost-efficient neuron training, without requiring fine-tuning of model weights.
Theoretically, we provide a convergence guarantee for the neuron training algo-
rithm. Extensive experiments on the LLaMA model confirm the effectiveness of
both our coding scheme and conversion paradigm. Concretely, our spiking LLM
attains the lowest perplexity with ANN-level accuracy, accompanied by a 42%
reduction in energy consumption of MAC and AC operations.

1 INTRODUCTION

Large language models (LLMs), exemplified by GPT-4 (Achiam et al., 2023), Qwen3 (Yang et al.,
2025), and LLaMA3 (Dubey et al., 2024), achieve remarkable performance across a wide range of
natural language processing tasks through training on massive text corpora. However, the trans-
former architecture in LLMs relies on dense matrix multiplications, where intensive Floating-Point
Multiplication and Addition (MAC) operations result in prohibitive energy consumption (Vaswani
et al., 2017; De Vries, 2023). This substantial challenge during training and inference necessitates
the pursuit of energy-efficient paradigms for LLMs. In contrast to conventional neural networks,
spiking neural networks (SNNs) have received increasing attention due to their energy efficiency in
mimicking biological neurons, thereby offering a promising solution. Building on this foundation,
spiking LLMs have recently been developed, showing promise for efficient execution on neuromor-
phic hardware (Xing et al., 2025; Chen et al., 2025a; Zhengzheng & Zhu, 2025).

Research on SNNs has primarily focused on two approaches: direct training and ANN-to-SNN
conversion. Direct training methods (Neftci et al., 2019; Zenke & Vogels, 2021; Lee et al., 2016)
typically adopt surrogate gradients during backpropagation to address the non-differentiability of
spiking neurons. Nevertheless, training SNNs from scratch is prohibitively costly in both time and
resources, particularly at the scale of LLM parameters. In contrast, ANN-to-SNN conversion (Tong
et al., 2022; Hao et al., 2023a; Yang et al., 2022; Chen et al., 2025b) offers a more efficient paradigm,
typically reusing pretrained ANN weights in the spiking model while minimizing conversion error
to achieve effective conversion. Since minimizing conversion error is often less costly than direct

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

training, ANN-to-SNN conversion demonstrates greater generality in resource-constrained environ-
ments (Ding et al., 2021).

Unfortunately, there exists the conversion error arising from distribution misalignment, which is
a long-standing inherent problem in such conversions (Datta & Beerel, 2022). However, current
ANN-to-SNN conversion frameworks for LLM tend to overlook non-uniform activation distribu-
tions, leading to latent errors owing to distributional misalignment (Chen et al., 2025b). As shown
in Figure 1, activations within a single layer are generally non-uniformly distributed, and activation
distributions differ across layers. Unfortunately, in the coding schemes of existing spiking LLMs,
rate (Wu et al., 2019; Sengupta et al., 2019) or temporal coding methods (Mostafa, 2017; Zhao et al.,
2025) typically map discrete values by discretizing activation values into uniformly partitioned in-
tervals, rather than aligning with the large-scale non-uniform activation distributions observed in
practice. Furthermore, distinct activation distributions across different components of large models
pose an additional challenge, highlighting the need for a learnable and adaptive framework capable
of handling heterogeneous distributions (Zhang et al., 2018).

Figure 1: Distributions of the absolute activation values
across layers in a large language model. (a) The activa-
tion values of each layer are truncated between 0 and 0.05,
and the histogram reveals the uneven distribution of activa-
tion values. (b) The activation values are divided into 100
groups, with each group representing the average, showing
the uneven distribution trend of activation values.

To address the challenge mentioned
above, we introduce an alternative
coding scheme referred to as phase
coding (Kim et al., 2018; Zhang
et al., 2020) and significantly en-
hance it by proposing distribution-
aware multi-granularity phase cod-
ing. Conventional phase coding
can realize non-uniform allocation of
mapped discrete values by adjusting
the base. Building on this observa-
tion, the proposed distribution-aware
multi-granularity phase coding inte-
grates representational capacities at
different granularities through multi-
ple learnable bases, thereby offering
enhanced flexibility in discrete value
allocation. The final outcome is that
it can achieve a more reasonable dis-
crete value allocation by minimizing distribution-related conversion errors, which is essential for
ensuring the performance of spiking LLMs after conversion.

Furthermore, we develop a novel ANN-to-SNN conversion paradigm built upon the aforementioned
coding scheme. The central component of the paradigm is a cost-efficient alternating optimization
neuron training algorithm, designed to minimize conversion error relative to activation distributions.
Specifically, we tune only the neuron parameters using data pre-sampled from the corresponding
hidden-layer activation distributions, which eliminates the forward and backward propagation of net-
work layers and renders our paradigm highly cost-efficient in conversion. In summary, our paradigm
yields spiking LLMs with both low conversion error and a highly cost-efficient conversion under a
convergence guarantee.

Our contributions are summarized as follows:

• Multi-granularity Phase Coding. We propose a distribution-aware, multi-granularity
phase coding scheme with multiple learnable bases, which enables flexible and adaptive
allocation of discrete value mappings.

• Distribution-Aware Conversion Paradigm. We establish a distribution-aware paradigm
that breaks the uniform discretization of rate and temporal coding, facilitating faithful
ANN-to-SNN conversion.

• Theoretical Convergence Guarantee. We analyze the convergence for the proposed al-
ternating optimization neuron training algorithm, based on the gap between the objective
function before and after smoothing.

• A remarkable Spike-Driven LLM. Our Spiking LLM achieves the lowest perplexity
while preserving ANN-level accuracy, setting new state-of-the-art results, meanwhile re-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ducing energy consumption of MAC and AC operations by 42.0% compared to its ANN
counterpart.

2 RELATED WORKS

2.1 ANN-TO-SNN CONVERSION

Existing ANN-to-SNN conversion methods are primarily divided into one-stage and two-stage ap-
proaches (Chen et al., 2025a). The former involves not performing any further optimization on the
converted SNN and directly converting the ANN to an SNN model. This approach is commonly
used when the target ANN is built upon ReLU functions, as the output of ReLU can be effectively
approximated by the firing rate of spiking neurons (Cao et al., 2015). Building on the insight dis-
cussed above, both Diehl et al. (2015) and Sengupta et al. (2019) employ normalization techniques
to further improve conversion performance. Additionally, Bu et al. (2023) propose, from a theoreti-
cal perspective, the use of QCFS functions to replace ReLU functions in order to effectively reduce
conversion error. The two-stage approach, on the other hand, focuses on optimizing the converted
SNN to ensure its performance. Hao et al. (2023a) classify the unevenness error into four cases and
propose an optimization strategy based on residual membrane potential to reduce error. Hao et al.
(2023b) focus on addressing the conversion error caused by one additional (or one less) spike by
shifting the initial membrane potential. Chen et al. (2025a) adopt a coarse-to-fine calibration opti-
mization strategy to optimize the converted SNN. However, these approaches either struggle to scale
to transformer-based LLMs or still incur high optimization costs for the converted spiking LLMs.

2.2 SPIKING LLM

Spiking LLMs, noted for their low energy consumption, are gradually emerging as a promising
direction in the field of large-scale models. Despite this promise, research on spiking LLMs re-
mains limited. Early efforts include SpikingBERT (Bal & Sengupta, 2024), which leverages the
average spiking rate of neurons at equilibrium and incorporates knowledge distillation to enhance
both training efficiency and model performance. SpikeGPT (Zhu et al., 2023) adapts RWKV by
combining spiking activations with sequential attention, demonstrating that autoregressive language
generation is feasible within the spiking paradigm. More recently, SpikeLLM (Xing et al., 2025)
has introduced a hybrid co-architecture that integrates SNNs with quantized ANNs, scaling spiking
models to the billion-parameter regime (7–70B) and achieving improved energy efficiency. FAS
(Chen et al., 2025a) enables the conversion of pretrained ANN-based LLMs into spiking counter-
parts through a two-stage calibration, resulting in lower energy consumption and latency. However,
existing Spiking LLM frameworks typically rely on uniform rate coding, which overlooks the non-
uniform distribution of activations and consequently introduces latent conversion error.

3 PRELIMINARY

Spiking coding is a scheme that determines how continuous values are encoded into a sequence of
spikes, with rate coding, temporal coding, and phase coding being the most widely used schemes. In
particular, phase coding combines the characteristics of temporal coding and rate coding, achieving
a higher representational density than other coding schemes under the same total timestep T .

Specifically, similar to temporal coding, where spikes produced at different timesteps t represent
different values, phase coding assigns distinct weights to each t within the total timestep T . Unlike
the uniform phase values induced by the typically employed linear proportion T−t

T in temporal cod-
ing (Rueckauer & Liu, 2018; Han & Roy, 2020), phase coding assigns each timestep t a phase value
B−t, where B is the base of the phase. At the same time, it preserves the multi-spike representation
inherent in rate coding, thereby enhancing the representational capacity within a finite total T . By
combining these advantages, phase coding achieves an expansion of the number of encoded discrete
values to 2T , which reduces the total number of timesteps T in an exponential manner.

The biological manifestation of generic phase coding has been demonstrated by (Montemurro et al.,
2008) and is further advanced in ANN-to-SNN conversion (Hwang & Kung, 2024; Hwang et al.,
2024). Its corresponding neuron dynamic procedure is characterized by the threshold θ(t), reset

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

strength h(t), and output weight d(t), as detailed in the following equation:

v(1) =

T∑
tpre=1

I(tpre), v(t+ 1) = v(t)− h(t)s(t), O(t) = d(t)s(t), (1)

s(t) = Θ
(
v(t)−θ(t)

)
= Θ

(
v(1)−

t−1∑
j=1

h(j)s(j)− θ(t)
)
, (2)

where Θ(·) denotes the Heaviside step function and the initial membrane potential v(1) receives the
output I(tpre) from the pre-layer. For timestep t ∈ {1, 2, . . . , T} of the current neuron, v(t) denotes
the membrane potential, s(t) ∈ {0, 1} denotes the binary spike, O(t) denotes the output signal.
Typically, for the conventional phase coding, h(t), d(t), and θ(t) are specified as B−t as follows:

v(t+ 1) = v(t)−B−ts(t), O(t) = B−ts(t), s(t) = Θ
(
v(t)−B−t

)
. (3)

Notably, the activation value can be approximated within a limited timestep T .

4 METHODOLOGY

In this section, we first explain our motivation from the perspective of information theory. Next, we
introduce our multi-granularity phase coding. Finally, we elaborate on the proposed distribution-
aware ANN-to-SNN conversion paradigm, as shown in Figure 2.

Spiking Self-Attention

Linear

Scale Spiking Softmax Linear

Transpose

Embedding

Head

Spiking
MLP

Li
ne

ar

Li
ne

ar Li
ne

ar

Sp
ik

in
g

Si
LU

Hardmard Product

Spiking MLP

Qs Ks Vs

FS Neuron Spike Dot Product

均匀离散映射区

间

Uniform Initialization
Spiking

RMSNorm

Spiking
Self-Attention

Spiking
RMSNorm

y

distribution-aware
non-uniform interval

x

ROPE

Linear Linear

ROPE

x

Multi-Granularity Phase Coding

Pretrained ANN Large
Language Model

Our Spiking Large
 Language Model

y

Alternating Optimization
Neuron Training

 uniform interval

Figure 2: ANN-to-SNN conversion paradigm based on multi-granularity phase coding. Left: con-
version pipeline with alternating neuron optimization. Right: spiking LLM built on SNN neurons.

4.1 MOTIVATION FROM INFORMATION THEORY

Considering the distribution of activation values, the ANN-to-SNN conversion error can be charac-
terized by the mean squared error as follows:

E =

∫
p(x)

(
x̂− x

)2
dx, (4)

where x̂ denotes the SNN neuron’s approximation of the ANN activation value x. The conversion
error can be regarded as equivalent to the quantization distortion in information theory. From the
information-theoretic perspective, SNN coding is analogous to quantization in its allocation of dis-
crete values. When an SNN employs M allocation intervals, λ(x) represents the relative density of
these intervals. Consequently, the conversion error is equivalent to the quantization distortion, as
formalized in Theorem 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 1 (cf., (Gray & Neuhoff, 2002)). For an arbitrary quantizer q, the asymptotic average
distortion with M quantization intervals can be expressed by rewriting Bennett’s integral in terms
of the point density function:

D(q) =

∫
p(x)

(
x− q(x)

)2
dx ≃ 1

12

1

M2

∫
p(x)

λ2(x)
dx, (5)

where p(x) denotes the probability density function (PDF) of the input signal, and λ(x) denotes the
point density function of the quantizer.

To minimize the ANN-to-SNN conversion error, Corollary 1 specifies the optimal allocation princi-
ple, namely assigning larger λ(x) to regions with higher probability density.

Corollary 1. Let D(q) be the asymptotic distortion in Theorem 1. The point density function λ(x)
that minimizes D(q), subject to the normalization constraint

∫
λ(x)dx = 1, is given by:

λ∗(x) =
[p(x)]1/3∫
[p(u)]1/3du

⇒ λ∗(x) ∝ [p(x)]1/3. (6)

In LLMs, the activation distribution p(x) is inherently non-uniform. Consequently, the optimal
allocation function λ∗(x) also exhibits non-uniformity. This implies the necessity of a distribution-
aware coding strategy in SNNs, whereby regions of higher activation density are allocated more
quantization intervals, while regions of lower density receive fewer intervals.

4.2 MULTI-GRANULARITY PHASE CODING

Motivated by this, we introduce multi-granularity phase coding, which adaptively allocates bases
{B1, B2, . . . , Bn} of different granularities to non-uniform activations within a small timestep T .
In particular, the alteration of phase values introduced by our multi-granularity phase coding, relative
to conventional phase coding, is formally defined as follows:

{B−t}Tt=1 → {B−1
1 , B−2

1 , . . . , B−t
2 , B

−(t+1)
2 , . . . , B−T

n }. (7)

This design offers a more flexible discrete value allocation, effectively minimizing the expected
conversion error E. A more intuitive illustration is provided in Figure 3. The non-uniform discrete
value allocation introduced by multi-granularity phase coding allows us to align the mapped discrete
values with the activation distribution by tuning the bases (Figure 3, left). Consequently, intervals
with denser activations are allocated more discrete values rather than being uniformly distributed.
The distinction in conversion error relative to uniform discrete value allocation is illustrated in Figure
3 (right), where the reduction in conversion error can be easily observed from the shaded area.

Input Activation Value

O
u

tp
u

t
A

ct
iv

at
io

n
 V

al
u

e

y

x x

y
Identity Mapping Distribution Conversion Error in Conversion Error in Rate or

Ours Rate or Temporal Ours Sub-Intervals Temporal Encoding Sub-Intervals

𝐸𝑅 𝐸𝑅′

𝐸𝑅′ = 𝑝 𝑥 𝑥 − 𝑥 2𝑑𝑥
𝑅′

𝐸𝑅 = 𝑝 𝑥 𝑥 − 𝑥 2𝑑𝑥
𝑅

Figure 3: Comparison of discrete value allocation and conversion error between multi-granularity
phase coding and rate or temporal coding. The shaded area ER and ER′ represent conversion errors
under different codings.

By incorporating the dynamics from Section 3, we can obtain the neuron dynamic procedure with
multi-granularity phase coding, which is obtained by extending the conventional formulation in
Equation (3) and is formulated as follows:

v(t+ 1) = v(t)− h(t)s(t), O(t) = d(t)s(t), s(t) = Θ
(
v(t)− θ(t)

)
,

{d(t)}Tt=1 = {B−1
1 , B−2

1 , . . . , B−t
2 , B

−(t+1)
2 , . . . , B−T

n }.
(8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

For clarity, we denote {h(t)}Tt=1, {θ(t)}Tt=1, {d(t)}Tt=1, {Bi}ni=1 as h, θ, d, and B. In contrast to
Equation (3), we remove the constraint θ(t) = h(t) = d(t) and instead treat {h,θ} as learnable
parameters that are decoupled from d. Equation (8) introduces our multi-granularity design, in
which the neuron parameters are no longer constrained to a single base, but instead are constructed
from multiple bases. This generalizes the conventional single-base scheme in Equation (3).

4.3 DISTRIBUTION-AWARE CONVERSION PARADIGM

The proposed spiking LLM architecture is illustrated in Figure 2. By introducing SNN neurons with
multi-granularity phase coding prior to linear layers and matrix operations, activation values are
converted into spike signals, thereby avoiding floating-point matrix multiplications. For the SNN
neuron with multi-granularity phase coding, our objective is to align its discrete value allocation
with the activation distribution while minimizing conversion error, as introduced in Section 4.1.
Toward this end, we consider the following expected conversion error:

min
{h,θ},B

∫
p(x)

(
SN(x; {h,θ},B)− x

)2
dx, (9)

where p(x) is the PDF of activation x, and SN(·) =
∑T

t=1 O(t) is the discrete value obtained by
mapping the activation value through the SNN neuron. In practice, for each neuron, the correspond-
ing activation distribution can be estimated from a batch of input text and then downsampled to
construct a training dataset X composed of activation samples. Ultimately, we formulate the target
problem as an empirical conversion error minimization problem, as follows:

min
{h,θ},B

∥SN(X; {h,θ},B)−X∥2. (10)

To effectively solve the optimization problem formulated in Equation (10), we propose an alternat-
ing optimization neuron training algorithm, as presented in Algorithm 1. Specifically, we alternate
between optimizing {h,θ} and B. Due to the non-differentiability of the Heaviside step function,
updates to {h,θ} are carried out using a sigmoid-based surrogate gradient (Wu et al., 2018). In the
case of a fixed number of granularities, we address timestep allocation through an adaptive granular-
ity allocation method, with full details provided in Appendix C. With Algorithm 1, model weights
do not require fine-tuning, and the neuron training dataset is obtained through pre-sampling. Com-
bined, these eliminate the need for forward and backward propagation through network layers and
restrict propagation to neurons alone, rendering our training algorithm highly cost-efficient. Further-
more, the handling of other nonlinear operations in the model (e.g., RMSNorm, activation–activation
multiplication, Softmax, and SiLU activation function) is provided in Appendix B.

Algorithm 1 Alternating Optimization Neuron Training Algorithm
1: Input: Training dataset X , optimization steps N , N1 and N2, learning rate η1 and η2, neuron

parameters {h(t), θ(t)}Tt=1 and {B−1
1 , B−2

1 , . . . , B−t
2 , B

−(t+1)
2 , . . . , B−T

n }.
2: Initialize {h(0)

0 ,θ
(0)
0 }, B0

0 .
3: for i = 0, · · · , N − 1 do
4: for j = 0, · · · , N1 − 1 do
5: Compute LMSE(h

(j)
i ,θ

(j)
i ;X,B

(0)
i).

6: Update {h(j+1)
i ,θ

(j+1)
i } = {h(j)

i ,θ
(j)
i } − η1∇̂h,θLMSE(h

(j)
i ,θ

(j)
i ;X,B

(0)
i).

7: end for
8: Update {h(0)

i+1,θ
(0)
i+1} = {h(N1)

i ,θ
(N1)
i }.

9: for j = 0, · · · , N2 − 1 do
10: Compute LMSE(B

(j)
i ;X,h

(0)
i+1,θ

(0)
i+1).

11: Update B
(j+1)
i = B

(j)
i − η2∇BLMSE(B

(j)
i ;X,h

(0)
i+1,θ

(0)
i+1).

12: end for
13: Update B

(0)
i+1 = B

(N2)
i .

14: end for
15: Output: Neuron parameters {h∗,θ∗}, B∗.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 ANALYSIS

In this section, we first introduce several necessary assumptions and then present the convergence
analysis results of the neuron training algorithm based on activation distributions.

5.1 ASSUMPTIONS

We denote the original objective function ∥SN(X;h,θ,B) − X∥2 by f(h,θ,B), and the
smoothed objective function by g(h,θ,B). In updating h and θ, surrogate gradients are employed
to carry out gradient descent. This process can be regarded as gradient descent utilizing the true
gradient of the smoothed objective function. Based on this perspective, we analyze the convergence
behavior of the alternating optimization scheme. Since the parameters h and θ are optimized simul-
taneously, we introduce the variable o to represent them collectively. A more detailed explanation
of the symbols employed in the analysis is provided in Appendix A.
Assumption 1 (Lipschitz Gradient). There exist constants L1, L2 > 0, for ∀o1,o2 and ∀B1,B2,
such that:

∥∇og(o1,B)−∇og(o2,B)∥ ≤ L1∥o1 − o2∥, (11)
∥∇Bf(o,B1)−∇Bf(o,B2)∥ ≤ L2∥B1 −B2∥. (12)

Assumption 2 (Polyak–Łojasiewicz (PL) condition). There exist constants µ1, µ2, µ3 > 0 such
that:

∥∇g(o,B)∥2 ≥ 2µ1

(
g(o,B)− g∗

)
, (13)

∥∇og(o,B)∥2 ≥ 2µ2

(
g(o,B)− g∗(B)(o,B)

)
, (14)

∥∇Bf(o,B)∥2 ≥ 2µ3

(
f(o,B)− f∗(o)(o,B)

)
, (15)

where g∗ denotes the global minimum value of g(o,B), g∗(B)(o,B) is the minimum of g(o,B)
with B fixed, and f∗(o)(o,B) is the minimum of f(o,B) with o fixed.
Assumption 3. For arbitrary o and B, we have |f(o,B)− g(o,B)| ≤ σ.
Remark 1. Assumptions 1 and 2 are frequently invoked in the theoretical analysis of gradient-
based optimization methods (Malinovsky et al., 2024; Zhou, 2018; Khaled & Richtárik, 2020), while
Assumption 3 ensures that the smoothed loss function does not deviate excessively from the original
function. This requirement is reasonable, as studies on the approximation of step functions have
already demonstrated that the error between a smoothed function and a step function can be made
small (Kyurkchiev & Markov, 2015; Iliev et al., 2015).

5.2 CONVERGENCE RESULTS

Based on the above assumptions, we conduct a convergence analysis of Algorithm 1 and examine
whether the stability of the algorithm is significantly affected by the surrogate gradient.
Theorem 2. Suppose Assumptions 1–3 hold, and let 0 < η1 ≤ min

(
1
L1

, 1
L1µ1

)
, 0 < η2 ≤

min
(

1
L2

, 1
L2µ3

)
, o(0)

k = ok−1, o(N1)
k = ok, B(0)

k = Bk−1, and B
(N2)
k = Bk, then for Algorithm 1,

the following inequality holds:

f(ok+1,Bk+1)− f∗ ≤ (1− µ3η2)(1− µ1η1) [f(ok,Bk)− f∗] + C, (16)

where
C = 2σ(1− µ1η1)(1− µ3η2) + 2σ +

η1
2
(1− µ3η2)∥∇Bg(ok,Bk)∥2

+
µ3η2
2µ2

∥∇og
∗(o)(ok+1,B)∥2.

(17)

Remark 2. Theorem 2 comprises a linear convergence term (1−µ3η2)(1−µ1η1) [f(ok,Bk)− f∗]
and an error term C, resembling the results obtained in analyses such as (Nguyen et al., 2017; Yuan
et al., 2024). We note that the error term is largely determined by the smoothed objective function. A
suitable smoothing technique can ensure that the error constant C remains sufficiently small, thereby
enabling the iterative process of the algorithm to approach the global optimum. The detailed proof
of Theorem 2 can be found in Appendix A.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Baseline. We consider the following three baselines: Full-precision ANN, evaluated under the
zero-shot setting, provides a standard performance reference for spiking LLMs. SpikeLLM (Xing
et al., 2025) integrates SNNs with quantized ANNs to build a spike-driven large language model.
TTFSFormer (Zhao et al., 2025) applies time-to-first-spike coding to transformer architecture and
achieves the spiking transformer based on temporal coding. LAS (Chen et al., 2025b) employs
SNN neurons with θ(t) = h(t) = d(t) = τ · 2−t for ANN-to-SNN conversion, which can be
viewed as a special instance of our method without optimization. SpikedAttention (Hwang et al.,
2024) leverages single-spike phase coding to construct a spiking transformer, and we extend this
design to the LLaMA model in this work. The implementation details of all methods are provided
in Appendix D.1.

Datasets and Metrics. To effectively evaluate different methods, we adopt perplexity and accuracy
as evaluation metrics. For perplexity, we conduct evaluations on Wikitext2 (Merity et al., 2016),
C4 (Raffel et al., 2020), RedPajama (Weber et al., 2024), and Pile (Gao et al., 2020). For accuracy,
we evaluate zero-shot reasoning performance on WinoGrande (Sakaguchi et al., 2021), ArcC, ArcE
(Clark et al., 2018), and PiQA (Bisk et al., 2020). We report the accuracy (acc) for WinoGrande
and the accuracy norm for ArcC, ArcE, and PiQA. All accuracies are measured using lm eval v0.4.2
(Sutawika et al., 2024). All source code required for conducting experiments will be made publicly
available upon publication of the paper.

Table 1: Results on LLaMA-2-7B. “Time Cost” denotes the training time required for the method
to obtain the SNN. “Grain” denotes the number of granularities.

PPL Perf. ↓ T Time Cost Wikitext2 C4 Redpajama Pile Avg. PPL
LLaMA-2-7B N/A N/A 5.47 6.97 5.61 4.63 5.67

SpikeLLM 8 5h 54m 5.86 7.51 6.08 4.97 6.10
TTFSFormer 128 N/A 11.88 16.47 13.18 9.32 12.71

LAS

8

N/A 34.26 40.39 32.18 20.10 31.73
SpikedAttention 2m 02s 19.02 25.05 20.77 14.80 19.91
Ours (Grain=2) 2m 01s 6.71 8.96 7.23 5.74 7.16
Ours (Grain=3) 2m 04s 7.10 9.71 7.80 6.09 7.68

LAS

10

N/A 6.05 7.88 6.37 5.13 6.36
SpikedAttention 2m 28s 11.64 15.47 12.84 9.47 12.36
Ours (Grain=2) 2m 25s 5.50 7.05 5.68 4.67 5.73
Ours (Grain=3) 2m 27s 5.53 7.06 5.69 4.68 5.74

ACC Perf. ↑ T Time Cost WinoGrande ArcC ArcE PiQA Avg. ACC
LLaMA-2-7B N/A N/A 69.06 46.33 74.54 79.05 67.25

SpikeLLM 8 5h 54m 67.40 42.58 71.46 77.75 64.80
TTFSFormer 128 N/A 70.56 44.88 73.11 78.94 66.87

LAS

8

N/A 69.46 45.56 73.65 77.97 66.66
SpikedAttention 2m 02s 68.19 41.38 68.77 77.20 63.89
Ours (Grain=2) 2m 01s 70.56 46.16 73.99 77.97 67.17
Ours (Grain=3) 2m 04s 70.96 46.08 74.33 77.86 67.31

LAS

10

N/A 70.64 45.90 73.95 78.24 67.18
SpikedAttention 2m 28s 67.32 40.10 68.73 76.44 63.15
Ours (Grain=2) 2m 25s 70.48 46.50 73.91 78.29 67.30
Ours (Grain=3) 2m 27s 70.88 46.16 73.78 78.13 67.24

6.2 MAIN RESULTS

We report the results of our method under different granularities, along with comparisons to other
baselines. As shown in Table 1 and 2, our method delivers optimal overall performance by main-
taining accuracy close to that of ANNs alongside low perplexity, highlighting the superiority of our

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

paradigm over existing baselines. Notably, compared to LAS, which represents a special case of our
method without optimization, our method yields a significant perplexity reduction, validating the
effectiveness of the proposed neuron training algorithm. With respect to SpikedAttention, even with
relaxation of its single-spike phase coding (as described in Appendix D.1), it fails to sustain satis-
factory performance in our limited total timestep experimental setting (T ∈ {6, 8, 10}). Relative to
SpikeLLM, our method demonstrates a substantial advantage in time cost, as its training process en-
tails forward and backward propagation through the decoder layers, whereas our paradigm entirely
eliminates this overhead. For TTFSFormer, our method can achieve comparable performance with
fewer timesteps due to its time-to-first-spike coding. Furthermore, due to the enhanced represen-
tational capacity of multi-granularity phase coding, our method achieves ANN-to-SNN conversion
for LLMs with a limited total timestep. The ablation study and the results on a larger-scale LLM are
provided in the Appendix D.2 and D.3, respectively.

Table 2: Results on LLaMA-3-8B. “Time Cost” denotes the training time required for the method
to obtain the SNN. “Grain” denotes the number of granularities.

PPL Perf. ↓ T Time Cost Wikitext2 C4 Redpajama Pile Avg. PPL
LLaMA-3-8B N/A N/A 6.14 8.88 7.44 5.52 7.00

SpikeLLM 8 6h 13m >100 >100 >100 >100 >100
TTFSFormer 128 N/A 6.72 9.82 8.12 6.03 7.67

LAS

6

N/A 93.13 >100 >100 >100 >100
SpikedAttention 1m 38s >100 >100 >100 83.95 >100
Ours (Grain=2) 1m 36s 8.04 12.25 10.14 7.23 9.42
Ours (Grain=3) 1m 35s 8.53 13.18 10.85 7.73 10.07

LAS

8

N/A 7.06 10.49 8.57 6.51 8.16
SpikedAttention 2m 02s 9.46 14.02 12.08 8.17 10.93
Ours (Grain=2) 2m 01s 6.32 9.14 7.69 5.74 7.22
Ours (Grain=3) 1m 58s 6.37 9.22 7.73 5.79 7.28

ACC Perf. ↑ T Time Cost WinoGrande ArcC ArcE PiQA Avg. ACC
LLaMA-3-8B N/A N/A 72.85 53.33 77.74 80.85 71.19

SpikeLLM 8 6h 13m 69.38 49.23 73.11 78.67 67.60
TTFSFormer 128 N/A 72.69 52.90 77.65 79.33 70.64

LAS

6

N/A 71.19 51.88 73.48 79.33 68.97
SpikedAttention 1m 38s 63.30 32.25 54.00 66.21 53.94
Ours (Grain=2) 1m 36s 73.16 47.87 73.74 77.64 68.10
Ours (Grain=3) 1m 35s 73.24 49.23 73.82 76.82 68.28

LAS

8

N/A 74.82 54.52 77.48 80.74 71.89
SpikedAttention 2m 02s 69.53 49.91 74.33 77.20 67.74
Ours (Grain=2) 2m 01s 72.69 54.35 78.11 80.14 71.32
Ours (Grain=3) 1m 58s 73.09 54.10 78.41 80.30 71.48

6.3 ENERGY ANALYSIS

To estimate energy consumption, we adopt the following theoretical energy estimation approach
according to Rathi & Roy (2020); Li et al. (2021); Zhou et al. (2022); Deng et al. (2024); Zhao et al.
(2025); Wang et al. (2022); Chen et al. (2025a;b),

Etotal = EMAC · CountMAC + EAC · CountAC , (18)

where EMAC and EAC denote the energy consumption of a single MAC and AC operation, re-
spectively, while CountMAC and CountAC denote the counted numbers of MAC and AC opera-
tions during model inference. We measure MAC and AC operations using EMAC ≈ 4.6pJ and
EAC ≈ 0.9pJ , as reported in 45 nm CMOS technology (Horowitz, 2014). The results indicate that,
for a single sample, the ANN-based LLM consumes 18.00 J , whereas our distribution-aware spik-
ing LLM consumes only 10.44∼10.46 J as summarized in Table 3 ,i.e., our spiking LLM achieves
a 42.0% reduction in energy consumption of MAC and AC operations compared to its ANN coun-
terpart. Furthermore, we anticipate that continued progress in neuromorphic hardware will further

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

enhance the efficiency of our spiking LLM, potentially leading to even larger reductions in both
operations and energy consumption.

Table 3: The calculation count and the energy cost of ANN and our spiking LLMs with T = 6.
Model Method Avg. ACC Avg. PPL Calculation Count Energy Cost (J)

LLaMA-3-8B
ANN 71.19 7.00 3912.08G MACs + 0.17G ACs 18.00

Ours (Grain=2) 68.10 9.42 15.87G MACs + 11521.88G ACs 10.44
Ours (Grain=3) 68.28 10.07 15.87G MACs + 11539.14G ACs 10.46

7 CONCLUSION

To overcome latent conversion error arising from distribution misalignment, we propose multi-
granularity phase coding, enabling SNN neurons to allocate mapped discrete values adaptively with
respect to the activation distribution. Building on this coding scheme, we introduce a novel ANN-
to-SNN conversion paradigm that leverages a cost-efficient alternating optimization neuron training
algorithm to minimize conversion errors with respect to activation distributions. In future research,
we intend to further advance our ANN-to-SNN conversion paradigm based on multi-granularity
phase coding, targeting a smaller total timestep and improved energy efficiency.

ETHICS STATEMENT

All participants in this work, as well as the paper submission, adhere to the ICLR Code of Ethics (
https://iclr.cc/public/CodeOfEthics).

REPRODUCIBILITY STATEMENT

We affirm that the results of this work are fully reproducible. Appendix A provides the theoretical
proofs. Appendix D.1 details the experimental implementations, and the source code will be publicly
released upon publication of the paper.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Malyaban Bal and Abhronil Sengupta. SpikingBERT: Distilling bert to train spiking language mod-
els using implicit differentiation. In Proceedings of the AAAI conference on artificial intelligence,
volume 38, pp. 10998–11006, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelli-
gence, volume 34, pp. 7432–7439, 2020.

Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-
snn conversion for high-accuracy and ultra-low-latency spiking neural networks. arXiv preprint
arXiv:2303.04347, 2023.

Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for
energy-efficient object recognition. International Journal of Computer Vision, 113(1):54–66,
2015.

Long Chen, Xiaotian Song, Andy Song, BaDong Chen, Jiancheng Lv, and Yanan Sun. FAS: Fast
ann-snn conversion for spiking large language models. arXiv preprint arXiv:2502.04405, 2025a.

Long Chen, Xiaotian Song, and Yanan Sun. Las: Loss-less ann-snn conversion for fully spike-driven
large language models. arXiv preprint arXiv:2505.09659, 2025b.

10

 https://iclr.cc/public/CodeOfEthics
 https://iclr.cc/public/CodeOfEthics

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mengzhao Chen, Yi Liu, Jiahao Wang, Yi Bin, Wenqi Shao, and Ping Luo. Prefixquant: Static
quantization beats dynamic through prefixed outliers in llms. arXiv preprint arXiv:2410.05265,
2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Manon Dampfhoffer, Thomas Mesquida, Alexandre Valentian, and Lorena Anghel. Are snns re-
ally more energy-efficient than anns? an in-depth hardware-aware study. IEEE Transactions on
Emerging Topics in Computational Intelligence, 7(3):731–741, 2022.

Gourav Datta and Peter A Beerel. Can deep neural networks be converted to ultra low-latency
spiking neural networks? In 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 718–723. IEEE, 2022.

Alex De Vries. The growing energy footprint of artificial intelligence. Joule, 7(10):2191–2194,
2023.

Shikuang Deng, Yuhang Wu, Kangrui Du, and Shi Gu. Spiking token mixer: An event-driven
friendly former structure for spiking neural networks. Advances in Neural Information Processing
Systems, 37:128825–128846, 2024.

Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.
Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing.
In 2015 International joint conference on neural networks (IJCNN), pp. 1–8. ieee, 2015.

Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun Huang. Optimal ann-snn conversion for fast
and accurate inference in deep spiking neural networks. arXiv preprint arXiv:2105.11654, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The Pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Robert M. Gray and David L. Neuhoff. Quantization. IEEE transactions on information theory, 44
(6):2325–2383, 2002.

Bing Han and Kaushik Roy. Deep spiking neural network: Energy efficiency through time based
coding. In European conference on computer vision, pp. 388–404. Springer, 2020.

Zecheng Hao, Tong Bu, Jianhao Ding, Tiejun Huang, and Zhaofei Yu. Reducing ann-snn conversion
error through residual membrane potential. In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pp. 11–21, 2023a.

Zecheng Hao, Jianhao Ding, Tong Bu, Tiejun Huang, and Zhaofei Yu. Bridging the gap between
anns and snns by calibrating offset spikes. arXiv preprint arXiv:2302.10685, 2023b.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
international solid-state circuits conference digest of technical papers (ISSCC), pp. 10–14. IEEE,
2014.

Sangwoo Hwang and Jaeha Kung. One-Spike SNN: Single-spike phase coding with base manip-
ulation for ann-to-snn conversion loss minimization. IEEE Transactions on Emerging Topics in
Computing, 13(1):162–172, 2024.

Sangwoo Hwang, Seunghyun Lee, Dahoon Park, Donghun Lee, and Jaeha Kung. SpikedAttention:
Training-free and fully spike-driven transformer-to-snn conversion with winner-oriented spike
shift for softmax operation. Advances in Neural Information Processing Systems, 37:67422–
67445, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Anton Iliev Iliev, Nikolay Kyurkchiev, and Svetoslav Markov. On the approximation of the cut and
step functions by logistic and gompertz functions. Biomath, 4(2):ID–1510101, 2015.

Ahmed Khaled and Peter Richtárik. Better theory for sgd in the nonconvex world. arXiv preprint
arXiv:2002.03329, 2020.

Jaehyun Kim, Heesu Kim, Subin Huh, Jinho Lee, and Kiyoung Choi. Deep neural networks with
weighted spikes. Neurocomputing, 311:373–386, 2018.

Nikolay Kyurkchiev and Svetoslav Markov. Sigmoid functions: some approximation and modelling
aspects. LAP LAMBERT Academic Publishing, Saarbrucken, 4:34, 2015.

Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks using
backpropagation. Frontiers in neuroscience, 10:508, 2016.

Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differ-
entiable spike: Rethinking gradient-descent for training spiking neural networks. Advances in
neural information processing systems, 34:23426–23439, 2021.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations, 2018.

Grigory Malinovsky, Umberto Michieli, Hasan Abed Al Kader Hammoud, Taha Ceritli, Hayder
Elesedy, Mete Ozay, and Peter Richtárik. Randomized Asymmetric Chain of LoRA: The first
meaningful theoretical framework for low-rank adaptation. arXiv preprint arXiv:2410.08305,
2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Marcelo A Montemurro, Malte J Rasch, Yusuke Murayama, Nikos K Logothetis, and Stefano Panz-
eri. Phase-of-firing coding of natural visual stimuli in primary visual cortex. Current biology, 18
(5):375–380, 2008.

Hesham Mostafa. Supervised learning based on temporal coding in spiking neural networks. IEEE
transactions on neural networks and learning systems, 29(7):3227–3235, 2017.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate Gradient Learning in Spiking
Neural Networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Nam Nguyen, Deanna Needell, and Tina Woolf. Linear convergence of stochastic iterative greedy
algorithms with sparse constraints. IEEE Transactions on Information Theory, 63(11):6869–
6895, 2017.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Nitin Rathi and Kaushik Roy. Diet-snn: Direct input encoding with leakage and threshold optimiza-
tion in deep spiking neural networks. arXiv preprint arXiv:2008.03658, 2020.

Bodo Rueckauer and Shih-Chii Liu. Conversion of analog to spiking neural networks using sparse
temporal coding. In 2018 IEEE international symposium on circuits and systems (ISCAS), pp.
1–5. IEEE, 2018.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An ad-
versarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going Deeper in Spiking
Neural Networks: Vgg and residual architectures. Frontiers in neuroscience, 13:95, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lintang Sutawika, Hailey Schoelkopf, Leo Gao, Baber Abbasi, Stella Biderman, Jonathan Tow, ben
fattori, Charles Lovering, farzanehnakhaee70, Jason Phang, Anish Thite, Fazz, Thomas Wang,
Niklas Muennighoff, Aflah, sdtblck, nopperl, gakada, tttyuntian, researcher2, Chris, Julen Etx-
aniz, Hanwool Albert Lee, Zdeněk Kasner, Khalid, Jeffrey Hsu, Anjor Kanekar, Pawan Sasanka
Ammanamanchi, Vicki Boykis, and AndyZwei. Eleutherai/lm-evaluation-harness: v0.4.2, March
2024.

Qwen Team et al. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2(3), 2024.

Bu Tong, Wei Fang, Jianhao Ding, PENGLIN DAI, Zhaofei Yu, and Tiejun Huang. Optimal ANN-
SNN conversion for high-accuracy and ultra-low-latency spiking neural networks. In Interna-
tional Conference on Learning Representations, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yuchen Wang, Malu Zhang, Yi Chen, and Hong Qu. Signed neuron with memory: Towards simple,
accurate and high-efficient ann-snn conversion. In IJCAI, pp. 2501–2508, 2022.

Maurice Weber, Dan Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xi-
aozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. RedPajama: an open dataset for
training large language models. Advances in neural information processing systems, 37:116462–
116492, 2024.

Jibin Wu, Yansong Chua, Malu Zhang, Qu Yang, Guoqi Li, and Haizhou Li. Deep spiking neural
network with spike count based learning rule. In 2019 International Joint Conference on Neural
Networks (IJCNN), pp. 1–6. IEEE, 2019.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Xingrun Xing, Boyan Gao, Zheng Liu, David A Clifton, Shitao Xiao, Wanpeng Zhang, Li Du,
Zheng Zhang, Guoqi Li, and Jiajun Zhang. SpikeLLM: Scaling up spiking neural network to
large language models via saliency-based spiking. In ICLR, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Qu Yang, Jibin Wu, Malu Zhang, Yansong Chua, Xinchao Wang, and Haizhou Li. Training spiking
neural networks with local tandem learning. Advances in Neural Information Processing Systems,
35:12662–12676, 2022.

Kang You, Zekai Xu, Chen Nie, Zhijie Deng, Qinghai Guo, Xiang Wang, and Zhezhi He. Spikezip-
tf: conversion is all you need for transformer-based snn. In Proceedings of the 41st International
Conference on Machine Learning, pp. 57367–57383, 2024.

Xinzhe Yuan, William de Vazelhes, Bin Gu, and Huan Xiong. New insight of variance reduce in
zero-order hard-thresholding: Mitigating gradient error and expansivity contradictions. In ICLR,
2024.

Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning
for instilling complex function in spiking neural networks. Neural computation, 33(4):899–925,
2021.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. LQ-Nets: Learned quantization
for highly accurate and compact deep neural networks. In Proceedings of the European conference
on computer vision (ECCV), pp. 365–382, 2018.

Ming Zhang, Zonghua Gu, Nenggan Zheng, De Ma, and Gang Pan. Efficient spiking neural net-
works with logarithmic temporal coding. IEEE access, 8:98156–98167, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lusen Zhao, Zihan Huang, Jianhao Ding, and Zhaofei Yu. TTFSFormer: A ttfs-based lossless con-
version of spiking transformer. In Forty-second International Conference on Machine Learning,
2025.

Tang Zhengzheng and Eva Zhu. BrainGPT: A brain-inspired SNN-based large language model,
2025.

Xingyu Zhou. On the fenchel duality between strong convexity and lipschitz continuous gradient.
arXiv preprint arXiv:1803.06573, 2018.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. arXiv preprint
arXiv:2209.15425, 2022.

Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K Eshraghian. SpikeGPT: Generative pre-trained
language model with spiking neural networks. arXiv preprint arXiv:2302.13939, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A THEORETICAL ANALYSIS

A.1 DEFINITION OF NOTATION

Table 4: Notation
Notation Description

f(h,θ,B) Objective function.
g(h,θ,B) Smoothed objective function.
ok or Bk The parameter value at the k-th iteration.
d Output weight parameters of SNN neurons.
B The phase variable to be optimized.
h Reset strength parameters of SNN neurons.
θ Threshold parameters of SNN neurons.
o Treat h and θ as a single parameter o.
g∗(B)(o,B) The minimum of g(o,B) with B fixed.
f∗(o)(o,B) The minimum of f(o,B) with o fixed.
η1 Learning rate for updating h and θ (for updating o).
η2 Learning rate for updating B.
L1 Lipschitz constant of function g(o,B) w.r.t. variable o.
L2 Lipschitz constant of function f(o,B) w.r.t. variable B.
µ PL condition constant.
σ Maximum error between f(o,B) and g(o,B) under identical parameters.

A.2 PROOFS

Lemma 1. If Assumption 3 holds, then |f∗ − g∗| ≤ σ, where f∗ denotes the global minimum value
of f(o,B).

Proof of Lemma 1:

If f∗ = f(oi,Bi) and Assumption 3 hold, we have,

g∗ ≤ g(oi,Bi) ≤ f(oi,Bi) + σ = f∗ + σ. (19)

Similarly, if g∗ = g(oj ,Bj) we have,

f∗ ≤ f(oj ,Bj) ≤ g(oj ,Bj) + σ = g∗ + σ. (20)

So we have,
|f∗ − g∗| ≤ σ. (21)

Proof of Theorem 2:

From Assumption 1, we have,

g(ok+1,Bk) ≤ g(ok,Bk) + ⟨∇og(ok,Bk),ok+1 − ok⟩+
L1

2
∥ok+1 − ok∥22. (22)

Due to ok+1 = ok − η1∇og(ok,Bk), we obtain,

g(ok+1,Bk) ≤ g(ok,Bk)− η1∥∇og(ok,Bk)∥22 +
L1η

2
1

2
∥∇og(ok,Bk)∥22

= g(ok,Bk) + (
L1η

2
1

2
− η1)∥∇og(ok,Bk)∥22.

(23)

Let 0 < η1 ≤ min(1
L1

, 1
L1µ1

), we have,

g(ok+1,Bk) ≤ g(ok,Bk)−
η1
2
∥∇og(ok,Bk)∥22. (24)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

From Assumption 2, we have,

∥∇g(o,B)∥2 = ∥∇og(o,B)∥2 + ∥∇Bg(o,B)∥2 ≥ 2µ1[g(o,B)− g∗]. (25)

Rearranging the above equation, we have,

∥∇og(o,B)∥2 ≥ 2µ1[g(o,B)− g∗]− ∥∇Bg(o,B)∥2. (26)

Substituting Equation (26) into Equation (24), we obtain,

g(ok+1,Bk) ≤ g(ok,Bk)− µ1η1 [g(ok,Bk)− g∗] +
η1
2
∥∇Bg(ok,Bk)∥2. (27)

Subtracting g∗ from both sides, we have,

g(ok+1,Bk)− g∗ ≤ g(ok,Bk)− g∗ − µ1η1 [g(ok,Bk)− g∗] +
η1
2
∥∇Bg(ok,Bk)∥2

= (1− µ1η1) [g(ok,Bk)− g∗] +
η1
2
∥∇Bg(ok,Bk)∥2.

(28)

Next, we prove the inequality result obtained when updating B. From Assumption 1, we have,

f(ok+1,Bk+1) ≤ f(ok+1,Bk) + ⟨∇Bf(ok+1,Bk),Bk+1 −Bk⟩+
L2

2
∥Bk+1 −Bk∥22. (29)

Due to Bk+1 = Bk − η2∇Bf(ok+1,Bk), we obtain,

f(ok+1,Bk+1) ≤ f(ok+1,Bk)− η2∥∇Bf(ok+1,Bk)∥22 +
L2η

2
2

2
∥∇Bf(ok+1,Bk)∥22

= f(ok+1,Bk) + (
L2η

2
2

2
− η2)∥∇Bf(ok+1,Bk)∥22.

(30)

Let 0 < η2 ≤ min(1
L2

, 1
L2µ3

), we have,

f(ok+1,Bk+1) ≤ f(ok+1,Bk)−
η2
2
∥∇Bf(ok+1,Bk)∥22. (31)

From Assumption 2, we have,

∥∇Bf(ok+1,Bk)∥22 ≥ 2µ3

[
f(ok+1,Bk)− f∗(o)(ok+1,B)

]
. (32)

Substituting Equation (32) into Equation (31), we obtain,

f(ok+1,Bk+1) ≤ f(ok+1,Bk)− µ3η2

[
f(ok+1,Bk)− f∗(o)(ok+1,B)

]
. (33)

Subtracting f∗ from both sides, we have,

f(ok+1,Bk+1)− f∗ ≤ f(ok+1,Bk)− f∗ − µ3η2

[
f(ok+1,Bk)− f∗(o)(ok+1,B)

]
= (1− µ3η2) [f(ok+1,Bk)− f∗] + µ3η2

[
f∗(o)(ok+1,B)− f∗

]
.

(34)

Next, we combine the results obtained above. Applying Assumption 3 and Lemma 1 to Equation
(28), we have,

f(ok+1,Bk)− f∗ − 2σ ≤ (1− µ1η1) [f(ok,Bk)− f∗ + 2σ] +
η1
2
∥∇Bg(ok,Bk)∥2, (35)

f(ok+1,Bk)− f∗ ≤ (1− µ1η1) [f(ok,Bk)− f∗ + 2σ] +
η1
2
∥∇Bg(ok,Bk)∥2 + 2σ

= (1− µ1η1) [f(ok,Bk)− f∗] + 2σ(2− µ1η1) +
η1
2
∥∇Bg(ok,Bk)∥2.

(36)
Substituting Equation (36) into Equation (34), we obtain,

f(ok+1,Bk+1)− f∗ ≤ (1− µ3η2)(1− µ1η1) [f(ok,Bk)− f∗] + 2σ(2− µ1η1)(1− µ3η2)

+
η1
2
(1− µ3η2)∥∇Bg(ok,Bk)∥2 + µ3η2

[
f∗(o)(ok+1,B)− f∗

]
.

(37)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Since f∗(o)(ok+1,B)− f∗ ≤ g∗(o)(ok+1,B)− g∗ + 2σ and from Assumption 2, we have,

f∗(o)(ok+1,B)− f∗ ≤ ∥∇og
∗(o)(ok+1,B)∥2

2µ2
+ 2σ. (38)

Substituting Equation (38) into Equation (36), we obtain,

f(ok+1,Bk+1)− f∗ ≤ (1− µ3η2)(1− µ1η1) [f(ok,Bk)− f∗] + 2σ(2− µ1η1)(1− µ3η2)

+
η1
2
(1− µ3η2)∥∇Bg(ok,Bk)∥2 +

µ3η2∥∇og
∗(o)(ok+1,B)∥2

2µ2
+ 2σµ3η2.

(39)
Simplifying yields,

f(ok+1,Bk+1)− f∗ ≤ (1− µ3η2)(1− µ1η1) [f(ok,Bk)− f∗] + C, (40)

where
C = 2σ(1− µ1η1)(1− µ3η2) + 2σ +

η1
2
(1− µ3η2)∥∇Bg(ok,Bk)∥2

+
µ3η2
2µ2

∥∇og
∗(o)(ok+1,B)∥2.

(41)

The above corresponds to the case where both the inner iteration counts of o and B are equal to
one. We now consider the case where the inner iteration count of o is N1, and that of B is N2.
In fact, the above result still holds when the number of inner iterations is not equal to one. This
is because, based on Assumptions 1 and 2, and by employing an argument similar to that used in
deriving Equation (33), we can establish the following inequality:

g(o
(j1+1)
k+1 ,B

(N2)
k)− g∗(B)(o,B

(N2)
k) ≤ (1− µ1η1)

[
g(o

(j1)
k+1,B

(N2)
k)− g∗(B)(o,B

(N2)
k)

]
,

(42)

f(o
(N1)
k+1 ,B

(j2+1)
k+1)− f∗(o)(o

(N1)
k+1 ,B) ≤ (1− µ3η2)

[
f(o

(N1)
k+1 ,B

(j2)
k+1)− f∗(o)(o

(N1)
k+1 ,B)

]
.

(43)
Since 0 < η1 ≤ min(1

L1
, 1
L1µ1

) and 0 < η2 ≤ min(1
L2

, 1
L2µ3

), let o(0)
k = ok−1, o(N1)

k = ok,

B
(0)
k = Bk−1 and B

(N2)
k = Bk we have,

g(o
(j1+1)
k+1 ,Bk) < g(o

(j1)
k+1,Bk), (44)

f(ok+1,B
(j2+1)
k+1) < f(ok+1,B

(j2)
k+1). (45)

By applying the above equation, we obtain,

g(ok+1,Bk) = g(o
(N1)
k+1 ,Bk) < g(o

(1)
k+1,Bk), (46)

f(ok+1,Bk+1) = f(ok+1,B
(N2)
k+1) < f(ok+1,B

(1)
k+1). (47)

For the case in which the number of inner iterations differs from one, applying Equations (46) and
(47) yields a result analogous to Equations (34) and (36), with the distinction that ok and Bk here
represent the values at the end of each inner loop. We have,

f(ok+1,Bk+1)− f∗ ≤ f(ok+1,B
(1)
k+1)− f∗

≤ (1− µ3η2) [f(ok+1,Bk)− f∗] + µ3η2

[
f∗(o)(ok+1,B)− f∗

]
,

(48)

f(ok+1,Bk)− f∗ ≤ f(o
(1)
k+1,Bk)− f∗

≤ (1− µ1η1) [f(ok,Bk)− f∗] + 2σ(2− µ1η1) +
η1
2
∥∇Bg(ok,Bk)∥2.

(49)
Based on Equations (48) and (49), we obtain exactly the same result as in Equation (39).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B CONVERT NONLINEAR OPERATION IN LLM

Attention Layer. The attention architecture of our method is presented as follows:

Q ≈
T∑

t=1

Qs,t, K ≈
T∑

t=1

Ks,t, V ≈
T∑

t=1

Vs,t, (50)

where Q, K and V denote the query Q, key K and value V, and Qs,t, Ks,t and Vs,t denote the
spiking query, key and value at timestep t.

Then, we need to enable the Activation-Activation (AA) multiplication in attention within SNN,
which occurs between the query Q and key K as well as attention array A = QK and value V.
Fortunately, You et al. (2024) have paved the way for such AA multiplication. Specifically, taking
the multiplication between query and key as an example, it can be written as:

A = Q ·K ≈
T∑

t=1

Qs,t ·
T∑

t=1

Ks,t

=

T∑
t=1

(SQ,t ·Ks,t +Qs,t · SK,t −Qs,t ·Ks,t) , (51)

where SQ,t and SK,t represent the accumulated spike output of query and key from 1 to t. Therefore,
the result of AA multiplication at each time t is SQ,t ·Ks,t +Qs,t · SK,t −Qs,t ·Ks,t.

Spiking Softmax, Spiking RMSNorm and Spiking SiLU Activation. Inspired by the literature
(You et al., 2024), we use the following process to enable Softmax, RMSnorm, and SiLU activation
in SNN.

I(t) = I(t− 1) + I(t), (52)
O(t) = ϕ(I(t)), (53)
O(t) = O(t)−O(t− 1), (54)

where I(t) is the accumulated input at t timestep; I(t) is the input at t timestep; ϕ(·) is the Softmax,
RMSnorm and SiLU activation and O(t) is the output at t timestep.

Spiking MLP. Except for the linear layers in MLP, the most important operation is the Activation-
Activation Hadamard product, which exists between the output of a linear layer and the output of
the spiking SiLU function. It can be written as

A⊙B =

T∑
t=1

At ⊙
T∑

t=1

Bt (55)

=

T∑
t=1

At ⊙Bt +

T∑
i=1,i̸=t

At ⊙Bi +Ai ⊙Bt

2

 ,

where A denotes the output of the up proj and B denotes the output of Spiking SiLU. Therefore,
the result of Hadamard product at each time t is At ⊙Bt +

∑T
i=1,i̸=t

At⊙Bi+Ai⊙Bt

2 .

C ADAPTIVE GRANULARITY ALLOCATION

We propose a differentiable adaptive search algorithm for granularity allocation in phase encoding.
In particular, we select the optimal granularity allocation based on the data distribution. To achieve
this, we perform 10,000 down-sampling operations on the activation values during the training pro-
cess of LLaMA-2 and LLaMA-3 in the experiment. Furthermore, we leverage the differentiable
search framework presented in (Liu et al., 2018) to compute the Softmax of the different granularity
allocation weights, as follows:

o(x) =
∑
o∈O

exp(αo)∑
o′∈O exp(αo′)

o(x). (56)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Here, O represents the set of granularity candidates, and αo represents the granularity allocation
coefficients. Based on this, our optimization objective can be formulated as:

min
α

LMSE(α;w), (57)

s.t. w∗ = argmin
w

LMSE(w;α), (58)

where w(h,θ;B) represents the parameters of the SNN neurons. We obtain the optimal architecture
parameter α∗ as shown in Algorithm 2, and subsequently retrain the SNN neuron with the optimal
granularity allocation.

Algorithm 2 Differentiable Architecture Search with Adaptive Granularity Allocation
1: Input: Training dataset X , neuron patameter w = (h,θ;B), learning rate ηt, optimization

steps Nα.
2: for i = 1, · · · , Nα do
3: Obtain w∗ by using Alogrithem 1 under N1 = N2 = 1.
4: Update α by α = α−∇αLMSE(α;w∗,X).
5: end for
6: return α∗.

D MORE EXPERIMENTAL RESULTS

D.1 IMPLEMENTATION DETAILS

We conduct experiments on a server equipped with multiple 80GB NVIDIA A100 GPUs. For the
full-precision ANNs of the LLaMA family, we use open-source models from the HuggingFace and
evaluate their performance under the FP16 setting. For SpikeLLM, we employ the released open-
source implementation and assess its performance in the W4A8 configuration (4-bit weight and 8-
bit activation). For TTFSFormer, since the original implementation is not available on LLaMA, we
implemented a simplified version by applying time-to-first-spike coding within our code framework.
For LAS, since its available open-source implementation is not adapted to the LLaMA model, we

construct a simplified implementation by setting the SNN neuron parameters as θ(t) = h(t) =
d(t) = τ · 2−t and regard it as the special case of our method without optimization. For the same
reason, we also implement a simplified version of SpikedAttention in our code framework by setting
the SNN neuron parameters as θ(t) = h(t) = d(t) = τ ·2−t and applying the single-spike technique
(Hwang & Kung, 2024). It is worth noting that under a limited total timestep experimental setting,
the single-spike technique leads to a collapse in performance. Therefore, we relax this technique to
allow two spikes instead of one. To handle outliers in LLMs, we apply the Hadamard rotation and
prefixed outlier tokens techniques introduced in the literature (Chen et al., 2024).

D.2 ABLATION STUDY

Effectiveness of Multi-Granularity. To verify the effectiveness of multi-granularity in our pro-
posed phase coding, we perform an ablation study varying the number of granularities, and the
results are presented in Table 5. We observe that the best accuracy and perplexity are not achieved
with a single granularity, which demonstrates the effectiveness of our design. It is worth noting that
increasing the granularity does not necessarily lead to better results. When we increase the number
of granularities, the model can non-uniformly allocate discrete values more flexibly. The solution
space with Grain = 2 or 3 strictly contains the Grain = 1 solution space, so, in principle, more gran-
ularities can only help. However, in practice, this larger solution space also makes optimization
more non-convex and prone to local minima. Our ablation studies also confirm exactly this trade-
off. When we push granularity to the extreme (e.g., setting the number of granularities equal to the
timestep T), the performance actually is not the best, indicating that excessive granularity makes the
optimization harder and the solution is more likely to be suboptimal.

Interaction between the Timestep T and the Number of Granularities. We observe that the
effect of granularity depends on the timestep T , and we should study this more systematically.
Specifically, we provide bases B and training loss curves for different combinations of timestep and

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

T=6, g=2

T=6, g=3

T=8, g=1

T=8, g=2

T=8, g=3

ℎ,𝜃𝜃 training stage 𝐵𝐵 training stage 𝐵𝐵0 𝐵𝐵1 𝐵𝐵2

T=6, g=1

Figure 4: The alternating red and blue curves trace the loss dynamics during staged optimization,
with red intervals indicating updates to h and θ, and blue intervals corresponding to B training.
Dashed curves denote the evolution of base values across granularities B0, B1, and B2.

granularity, showing how the optimization converges. These curves in Figure 4 clearly illustrate the
evolution of B and the training loss during the optimization process under different timesteps and
numbers of granularities. Conceptually, in our phase-coding neuron, the number of representable
discrete values grows as 2T . When T is large, the discrete representation is already quite dense,
so redistributing these discrete values via multi-granularity provides smaller gains. This explains
why, in Tables 1, 2, and 9, the improvement from increasing Grain at a larger T appears modest. In
contrast, when T is lower, the total number of discrete values is more limited, so where these values
are placed becomes much more critical. In this regime, multi-granularity can reduce conversion
error by allocating more resolution to high-density regions of the activation distribution.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 5: Ablation study on the number of granularities with T = 8.
Models Grain Avg. ACC Avg. PPL

LLaMA-2-7B

1 67.03 7.01
2 67.17 7.16
3 67.31 7.68
T 67.14 7.44

LLaMA-3-8B

1 71.09 7.24
2 71.32 7.22
3 71.48 7.28
T 71.40 7.27

Comparison between Joint Optimization and Alternating Optimization. To demonstrate the
effectiveness of alternating optimization, we additionally conduct an ablation study using joint op-
timization. In this setting, we observed a worse downstream performance in Table 6. We believe
this is because, without decoupling the two stages, updates to B and h,θ interfere with each other.
In our method, these parameters play different roles. The bases B determine the distribution of
discrete representable values. By using multiple bases, we shape how discrete values are distributed
to better match the activation distribution. The neuron parameters h,θ determine how a given con-
tinuous input is mapped to one of those discrete values, i.e., how the spike dynamics choose which
discrete value is used. We explicitly separate them so that our method to effectively minimize the
conversion error arising from distribution misalignment. Moreover, from the perspective of the con-
vergence of alternating optimization, the loss function is non-differentiable with respect to h and θ,
so backpropagation for these variables must rely on surrogate gradients, whereas the optimization of
B can directly use the true gradients. Therefore, intuitively, if h, θ, and B are optimized simulta-
neously, the errors introduced by the surrogate gradients will propagate to the updates of B, thereby
amplifying the overall optimization error and reducing the stability of convergence.

Table 6: Results on joint optimization and alternating optimization. “PPL” denotes the perplexity
on Wikitext2.

Model T /Grain Method WinoGrande ArcC ArcE PiQA PPL

LLaMA-2-7B
8/2 Joint 70.09 45.22 73.99 77.86 6.58

Alter 70.56 46.16 73.99 77.97 6.71

8/3 Joint 69.85 45.65 73.78 77.69 6.41
Alter 70.96 46.08 74.33 77.86 7.10

LLaMA-3-8B
6/2 Joint 72.38 47.18 71.38 76.55 7.61

Alter 73.16 47.87 73.74 77.64 8.04

6/3 Joint 71.67 47.18 72.39 74.54 7.52
Alter 73.24 49.23 73.82 76.82 8.53

Decoupling h and θ from Each Other. In conventional formulations, h and θ are often tied (e.g.,
h = θ), which reduces the degrees of freedom of the neuron dynamics. In our setting, once the
discrete values (determined by B) are fixed, the neuron still needs enough flexibility to shape the
mapping from continuous activations to these values. By allowing h and θ to vary independently,
we can increase the expressive power of the neuron dynamics and enable a finer adjustment of the
mapping between continuous activations and discrete values. Empirically, as shown in Table 7, we
observe that this extra flexibility helps reduce the approximation error between the SNN neuron
output and the original ANN activation.

Weight Quantization. We apply weight quantization to the LLaMA-2-7B and recompute the ac-
tivation distributions under 8-bit and 4-bit weights. As shown in Figure 5, we observe that while
quantization slightly changes the exact shape of the distributions, the activations remain highly non-
uniform and layer-dependent, so the core motivation of our distribution-aware design still holds.
We also evaluate our distribution-aware multi-granularity phase coding under quantized weights, in-
cluding 8-bit and 4-bit settings. The results in Table 8 show that our approach maintains competitive

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 7: Results on whether to decouple h and θ. “PPL” denotes the perplexity on Wikitext2.
Model T /Grain Decouple WinoGrande ArcC ArcE PiQA PPL

LLaMA-2-7B
8/2 No 70.24 45.65 74.03 77.86 7.62

Yes 70.56 46.16 73.99 77.97 6.71

8/3 No 70.17 45.90 73.86 77.97 6.90
Yes 70.96 46.08 74.33 77.86 7.10

LLaMA-3-8B
6/2 No 71.98 45.90 71.80 75.03 8.00

Yes 73.16 47.87 73.74 77.64 8.04

6/3 No 73.40 47.78 72.26 75.35 7.63
Yes 73.24 49.23 73.82 76.82 8.53

performance under 8-bit and even 4-bit weights, demonstrating that our method is compatible with
weight quantization.

Table 8: Results on LLaMA-2-7B with weight quantization. “PPL” denotes the perplexity on Wiki-
text2.

Method T Weight Bit WinoGrande ArcC ArcE PiQA PPL
LLaMA-2-7B N/A 16 69.06 46.33 74.54 79.05 5.47

Ours (Grain=2) 8 8 70.09 45.48 73.82 77.64 7.56
Ours (Grain=3) 70.40 45.82 74.16 77.53 7.25
Ours (Grain=2) 8 4 67.80 42.75 71.21 76.88 8.91
Ours (Grain=3) 68.51 43.26 71.04 77.15 8.41

Table 9: Results on LLaMA-2-13B. “Time Cost” denotes the training time required for the method
to obtain the SNN. “Grain” denotes the number of granularities.

PPL Perf. ↓ T Time Cost Wikitext2 C4 Redpajama Pile Avg. PPL
LLaMA-2-13B N/A N/A 4.88 6.47 5.19 4.34 5.22

SpikeLLM 8 10h 41m 5.20 6.91 5.57 4.63 5.58
LAS

8

N/A 18.02 21.82 17.02 11.85 17.18
SpikedAttention 2m 35s 8.90 12.97 10.74 8.52 10.28
Ours (Grain=2) 2m 35s 5.07 6.74 5.39 4.51 5.43
Ours (Grain=3) 2m 34s 5.29 7.40 5.91 4.83 5.86

LAS

10

N/A 5.03 6.76 5.38 4.48 5.41
SpikedAttention 3m 05s 6.43 8.54 6.94 5.80 6.93
Ours (Grain=2) 3m 05s 4.90 6.54 5.23 4.38 5.26
Ours (Grain=3) 3m 06s 4.90 6.54 5.23 4.37 5.26

ACC Perf. ↑ T Time Cost WinoGrande ArcC ArcE PiQA Avg. ACC
LLaMA-2-13B N/A N/A 72.45 49.15 77.44 80.52 69.89

SpikeLLM 8 10h 41m 69.30 47.27 76.22 79.05 67.96
LAS

8

N/A 72.77 51.28 77.27 80.14 70.37
SpikedAttention 2m 35s 72.38 45.82 74.54 78.07 67.70
Ours (Grain=2) 2m 35s 73.24 50.43 77.31 80.47 70.36
Ours (Grain=3) 2m 34s 73.72 50.60 77.53 80.14 70.50

LAS

10

N/A 72.53 50.17 77.10 80.85 70.16
SpikedAttention 3m 05s 70.40 44.88 74.20 78.24 66.93
Ours (Grain=2) 3m 05s 72.69 49.91 77.06 81.01 70.17
Ours (Grain=3) 3m 06s 72.77 50.00 77.10 80.74 70.15

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Absolute Activation Range Absolute Activation Range Absolute Activation Range

N
um

be
r

of
 A

ct
iv

at
io

n

N
um

be
r

of
 A

ct
iv

at
io

n

N
um

be
r

of
 A

ct
iv

at
io

n

Figure 5: Activation distribution after weight quantization.

D.3 RESULTS ON LARGER-SCALE LLM

In Table 9, we provide a comparison of our method with other baselines on a larger-scale LLM
(LLaMA-2-13B). Similar phenomena are observed on LLaMA-2-13B as on LLaMA-2-7B and
LLaMA-3-8B, which fully demonstrates that our method remains effective for larger-scale LLMs.

D.4 RESULTS ON MULTIMODAL MODEL

Evaluating our method beyond language models can further strengthen the empirical evidence for its
effectiveness. To this end, we have extended our distribution-aware multi-granularity phase coding
from LLMs to a multimodal model, which is structurally and functionally different from language
models. Specifically, we extend our method to CLIP and evaluate the performance of the spiking
CLIP model on image classification tasks. The results in Table 10 show that our method can be
successfully applied in this setting as well.

Table 10: Performance Comparison Results on ImageNet, CIFAR10, and CIFAR100 using CLIP
model. “FP32” represents the performance of the ANN evaluated under the float32 precision.

Model Method T ImageNet CIFAR10 CIFAR100 Avg. ACC

ViT-B/32

FP32 N/A 57.71 89.69 64.01 70.47
LAS 8 55.42 89.27 66.22 70.30

Ours (Grain=2) 8 56.72 90.48 66.11 71.10
Ours (Grain=3) 8 56.78 90.23 65.64 70.88

ViT-B/16

FP32 N/A 63.42 90.82 67.07 73.77
LAS 8 58.87 84.59 59.77 67.74

Ours (Grain=2) 8 60.68 89.70 65.49 71.96
Ours (Grain=3) 8 61.22 89.77 65.25 72.08

ViT-L/14

FP32 N/A 71.13 95.82 76.41 81.12
LAS 8 69.71 88.82 70.29 76.27

Ours (Grain=2) 8 69.61 94.99 77.61 80.74
Ours (Grain=3) 8 69.63 94.87 77.17 80.56

D.5 RESULTS ON OTHER LLM

To enhance the completeness of our method, we add additional experiments on Qwen2-7B (Team
et al., 2024) using our proposed multi-granularity phase coding. The results in Table 11 show that
our method maintains high performance on Qwen2-7B, further demonstrating its effectiveness and
scalability.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 11: Results on Qwen2-7B. “Grain” denotes the number of granularities. “PPL” denotes the
perplexity on Wikitext2.

Method T WinoGrande ArcC ArcE PiQA Avg. Acc PPL
Qwen2-7B N/A 72.38 49.91 74.71 81.23 69.56 7.14

LAS 8 70.96 50.60 74.20 80.52 69.07 10.18
SpikedAttention 8 61.96 28.33 48.96 65.13 51.10 >100
Ours (Grain=2) 8 73.40 50.60 74.12 81.01 69.78 7.41
Ours (Grain=3) 8 72.53 50.60 74.07 80.85 69.51 7.42

D.6 MORE RESULTS AT A LOWER TIMESTEP

To further demonstrate that our method is scalable to a lower timestep, we also include experiments
with T=6 on Llama-2-7B, and the results are in Table 12. Our method significantly reduces perplex-
ity compared to all baselines without sacrificing accuracy.

Table 12: Results on LLaMA-2-7B with T = 6. “Grain” denotes the number of granularities. “PPL”
denotes the perplexity on Wikitext2.

Method ↑ T WinoGrande ArcC ArcE PiQA Avg. Acc PPL
LLaMA-2-7B N/A 69.06 46.33 74.54 79.05 67.25 5.47

LAS

6

67.96 44.28 72.52 77.86 65.65 45.50
SpikedAttention 66.69 41.64 70.03 76.77 63.78 50.05
Ours (Grain=2) 67.64 45.31 72.26 77.58 65.70 12.19
Ours (Grain=3) 68.98 44.37 72.52 77.86 65.93 10.79

D.7 MORE ENERGY ANALYSIS

For the energy comparison with other Spiking LLM, we report the energy consumption data for
SpikeLLM on LLaMA-3-8B. For the energy consumption calculations of both SpikeLLM and our
Spiking LLMs, we employ identical configurations and perform a statistical analysis of the MACs
and ACs generated by the same components. The results in Table 13 demonstrate that our method
achieves lower energy consumption compared to SpikeLLM.

Table 13: The calculation count and the energy cost of ANN, SpikeLLM, and our method on
LLaMA-3-8B.

Method Calculation Count Energy Cost (J)
ANN 3912.08G MACs + 0.17G ACs 18.00

SpikeLLM 2.79G MACs + 14507.31G ACs 13.87
Ours (Grain=2) 15.87G MACs + 11521.88G ACs 10.44
Ours (Grain=3) 15.87G MACs + 11539.14G ACs 10.46

The memory access and data movement are the primary sources of energy consumption (which we
refer to as the read/write cost) on existing hardware (Dampfhoffer et al., 2022). In order to further
validate the effectiveness of our method, we expand our energy analysis to explicitly include the
costs associated with read/write. Specifically, for the calculation of energy consumed by reading
and writing weights and activations, we refer to the energy estimation approach for both ANN and
SNN models presented in Hwang et al. (2024). We set the 32-bit read/write energy for weights

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

and activations, Eread and Ewrite, to 5 pJ and conducted a comparison of the energy consumption
between ANN and our spiking LLM. The total energy equations for ANN and SNN are given by:

EANN
total =2Eread · Countread + Ewrite · Countwrite + EMAC · CountMAC + EAC · CountAC

ESNN
total =Eneuron + (1 + 1/32)Eread ·

∑
t

Counttread + 1/32 · Ewrite ·
∑
t

Counttwrite

+ EMAC · CountMAC + EAC · CountAC

(59)

Where Eneuron represents the energy consumption of a neuron, and Eread and Ewrite denote the
energy consumption for read and write operations, respectively. Countread and Countwrite denote
the number of read and write operations. The factors of 1/32 in the SNN formula are due to the
fact that activations in SNNs are represented using the 1-bit spike. Table 14 and Table 17 show
that memory access accounts for at least 68% of the total energy consumption in both ANN and
current SNN models, making it the primary source of energy consumption. Nevertheless, thanks to
the sparsity inherent in SNN computations, our results show that the total energy consumption of
our method remains over 12% lower than that of the ANN.

Table 14: Energy consumption of LLaMA-3-8B under ANN and our method, including both read
and write operations.

Method Read/Write Cost (J) MAC & AC Cost (J) Total Energy Cost (J) Total Energy Cost Relative to ANN
ANN 38.47 18.00 56.47 100.00%

Ours (Grain=2) 38.35 10.44 48.84 86.48%
Ours (Grain=3) 38.93 10.46 49.43 87.53%

Table 15: Relative energy consumption of LLaMA-3-8B under ANN and our spiking LLMs, includ-
ing both read and write operations.

Method Proportion of Read/Write Cost Proportion of MAC & AC Cost
ANN 68.12% 31.88%

Ours (Grain=2) 78.52% 21.38%
Ours (Grain=3) 78.76% 21.16%

As supported by Dampfhoffer et al. (2022), the energy consumption of SNNs is closely tied to the
spike firing rate. To address this issue, we propose a masking mechanism. Specifically, we exploit
the characteristic of phase coding, where the encoding value decreases as the timestep increases.
Consequently, spikes from neurons that fire early can be considered redundant, and those occurring
at later timesteps can be discarded. This strategy effectively reduces the spike firing rate by elim-
inating redundant spikes without significantly impacting performance. As a result, the increased
activation sparsity leads to a substantial reduction in the overall energy consumption of the SNN.
In our energy estimation, we also include the cost of the masking operation. To be cautious, we
upper-bound this cost by assigning the mask the same energy as a full neuron-level computation.
Nevertheless, even under this assumption, the mask-related cost still accounts for only a small frac-
tion of the total SNN energy, as neuron computation contributes relatively little compared with data
movement and memory access. The lower spike firing rate resulting from the masking operation
ultimately yields a lower value for ˜Count than for Count in the energy calculation. The results of
energy consumption with mask are in Table 16 and Table 17.

ESNN
total =2 · Eneuron + (1 + 1/32)Eread ·

∑
t

˜Count
t

read + 1/32 · Ewrite ·
∑
t

˜Count
t

write

+ EMAC · ˜CountMAC + EAC · ˜CountAC

(60)
Where ˜Countread and ˜Countwrite represent the number of read and write operations, and

˜CountMAC and ˜CountAC represent the number of MAC and AC operations, all after reducing
the spike firing rate.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 16: Energy Consumption of LLaMA-3-8B for ANN and our spiking LLMs with mask, in-
cluding both read and write operations. “PPL” denotes the perplexity on Wikitext2.

Method Avg. ACC PPL Read/Write Cost (J) MAC & AC Cost (J) Total Energy Cost (J) Total Energy Cost Relative to ANN
ANN 71.19 6.14 38.47 18.00 56.47 100.00%

Ours (Grain=2) 66.18 8.82 34.02 6.08 40.13 71.03%
Ours (Grain=3) 66.50 9.55 34.35 6.14 40.53 71.77%

Table 17: Relative energy consumption of LLaMA-3-8B under ANN and our spiking LLMs with
mask, including both read and write operations.

Method Proportion of Read/Write Cost Proportion of MAC & AC Cost
ANN 68.12% 31.88%

Ours (Grain=2) 84.77% 15.15%
Ours (Grain=3) 84.75% 15.15%

E USE OF LLMS

In this work, LLMs are employed solely for polishing or grammar checking text that is originally
written by us.

26

	Introduction
	Related Works
	ANN-to-SNN Conversion
	Spiking LLM

	Preliminary
	Methodology
	Motivation from Information Theory
	Multi-Granularity Phase Coding
	Distribution-Aware Conversion Paradigm

	Analysis
	Assumptions
	Convergence Results

	Experiments
	Experimental Setup
	Main Results
	Energy Analysis

	Conclusion
	Theoretical Analysis
	Definition of Notation
	Proofs

	Convert Nonlinear Operation in LLM
	Adaptive Granularity Allocation
	More Experimental Results
	Implementation Details
	Ablation Study
	Results on Larger-Scale LLM
	Results on Multimodal Model
	Results on Other LLM
	More Results at a Lower Timestep
	More Energy Analysis

	Use of LLMs

