

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DISTRIBUTION-AWARE MULTI-GRANULARITY PHASE CODING: TOWARDS LOWER CONVERSION ERROR FOR SPIKE-DRIVEN LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Spiking large language models (LLMs) offer significant advantages on neuromorphic hardware, yet training them from scratch remains prohibitively expensive. A promising alternative is ANN-to-SNN conversion, which reuses pre-trained ANN weights while minimizing conversion error. However, existing conversion frameworks neglect activation distributions, as reflected in SNN neurons with rate or temporal coding to map uniformly distributed rather than distribution-aligned discrete values, thus causing latent conversion error arising from distribution misalignment. To tackle this problem, we propose a distribution-aware multi-granularity phase coding approach, which achieves reasonable discrete value allocation by minimizing conversion error relative to activation distributions. Specifically, multi-granularity phase coding extends conventional phase coding with multiple learnable bases, incorporating representational capacity across different granularities. Building on this coding scheme, we further propose a novel ANN-to-SNN conversion paradigm designed towards lower conversion error. In particular, our paradigm utilizes the activation distributions of hidden layers to sample data for cost-efficient neuron training, without requiring fine-tuning of model weights. Theoretically, we provide a convergence guarantee for the neuron training algorithm. Extensive experiments on the LLaMA model confirm the effectiveness of both our coding scheme and conversion paradigm. **Concretely, our spiking LLM attains the lowest perplexity with ANN-level accuracy, accompanied by a 42% reduction in energy consumption of MAC and AC operations.**

1 INTRODUCTION

Large language models (LLMs), exemplified by GPT-4 (Achiam et al., 2023), Qwen3 (Yang et al., 2025), and LLaMA3 (Dubey et al., 2024), achieve remarkable performance across a wide range of natural language processing tasks through training on massive text corpora. However, the transformer architecture in LLMs relies on dense matrix multiplications, where intensive Floating-Point Multiplication and Addition (MAC) operations result in prohibitive energy consumption (Vaswani et al., 2017; De Vries, 2023). This substantial challenge during training and inference necessitates the pursuit of energy-efficient paradigms for LLMs. In contrast to conventional neural networks, spiking neural networks (SNNs) have received increasing attention due to their energy efficiency in mimicking biological neurons, thereby offering a promising solution. Building on this foundation, spiking LLMs have recently been developed, showing promise for efficient execution on neuromorphic hardware (Xing et al., 2025; Chen et al., 2025a; Zhengzheng & Zhu, 2025).

Research on SNNs has primarily focused on two approaches: direct training and ANN-to-SNN conversion. Direct training methods (Neftci et al., 2019; Zenke & Vogels, 2021; Lee et al., 2016) typically adopt surrogate gradients during backpropagation to address the non-differentiability of spiking neurons. Nevertheless, training SNNs from scratch is prohibitively costly in both time and resources, particularly at the scale of LLM parameters. In contrast, ANN-to-SNN conversion (Tong et al., 2022; Hao et al., 2023a; Yang et al., 2022; Chen et al., 2025b) offers a more efficient paradigm, typically reusing pretrained ANN weights in the spiking model while minimizing conversion error to achieve effective conversion. Since minimizing conversion error is often less costly than direct

054 training, ANN-to-SNN conversion demonstrates greater generality in resource-constrained environments
 055 (Ding et al., 2021).
 056

057 **Unfortunately, there exists the conversion error arising from distribution misalignment, which is**
 058 **a long-standing inherent problem in such conversions (Datta & Beerel, 2022). However, current**
 059 **ANN-to-SNN conversion frameworks for LLM tend to overlook non-uniform activation distributions,**
 060 **leading to latent errors owing to distributional misalignment (Chen et al., 2025b).** As shown
 061 in Figure 1, activations within a single layer are generally non-uniformly distributed, and activation
 062 distributions differ across layers. Unfortunately, in the coding schemes of existing spiking LLMs,
 063 rate (Wu et al., 2019; Sengupta et al., 2019) or temporal coding methods (Mostafa, 2017; Zhao et al.,
 064 2025) typically map discrete values by discretizing activation values into uniformly partitioned
 065 intervals, rather than aligning with the large-scale non-uniform activation distributions observed in
 066 practice. Furthermore, distinct activation distributions across different components of large models
 067 pose an additional challenge, highlighting the need for a learnable and adaptive framework capable
 068 of handling heterogeneous distributions (Zhang et al., 2018).

069 To address the challenge mentioned
 070 above, we introduce an alternative
 071 coding scheme referred to as phase
 072 coding (Kim et al., 2018; Zhang
 073 et al., 2020) and significantly
 074 enhance it by proposing distribution-
 075 aware multi-granularity phase coding.
 076 Conventional phase coding can
 077 realize non-uniform allocation of
 078 mapped discrete values by adjusting
 079 the base. Building on this observation,
 080 the proposed distribution-aware
 081 multi-granularity phase coding
 082 integrates representational capacities
 083 at different granularities through
 084 multiple learnable bases, thereby
 085 offering enhanced flexibility in discrete
 086 value allocation. The final outcome is
 087 that it can achieve a more reasonable
 088 discrete value allocation by minimizing
 089 distribution-related conversion errors,
 090 which is essential for
 091 ensuring the performance of spiking
 092 LLMs after conversion.
 093

094 Furthermore, we develop a novel ANN-to-SNN conversion paradigm built upon the aforementioned
 095 coding scheme. The central component of the paradigm is a cost-efficient alternating optimization
 096 neuron training algorithm, designed to minimize conversion error relative to activation distributions.
 097 Specifically, we tune only the neuron parameters using data pre-sampled from the corresponding
 098 hidden-layer activation distributions, which eliminates the forward and backward propagation of
 099 network layers and renders our paradigm highly cost-efficient in conversion. In summary, our paradigm
 100 yields spiking LLMs with both low conversion error and a highly cost-efficient conversion under a
 101 convergence guarantee.

102 Our contributions are summarized as follows:
 103

- 104 **• Multi-granularity Phase Coding.** We propose a distribution-aware, multi-granularity
 105 phase coding scheme with multiple learnable bases, which enables flexible and adaptive
 106 allocation of discrete value mappings.
- 107 **• Distribution-Aware Conversion Paradigm.** We establish a distribution-aware paradigm
 108 that breaks the uniform discretization of rate and temporal coding, facilitating faithful
 109 ANN-to-SNN conversion.
- 110 **• Theoretical Convergence Guarantee.** We analyze the convergence for the proposed
 111 alternating optimization neuron training algorithm, based on the gap between the objective
 112 function before and after smoothing.
- 113 **• A remarkable Spike-Driven LLM.** Our Spiking LLM achieves the lowest perplexity
 114 while preserving ANN-level accuracy, setting new state-of-the-art results, meanwhile re-

108
 109 **duc**ing energy consumption of MAC and AC operations by 42.0% compared to its ANN
 110 **cou**nterpart.

111 2 RELATED WORKS

113 2.1 ANN-TO-SNN CONVERSION

115
 116 Existing ANN-to-SNN conversion methods are primarily divided into one-stage and two-stage ap-
 117 proaches (Chen et al., 2025a). The former involves not performing any further optimization on the
 118 converted SNN and directly converting the ANN to an SNN model. This approach is commonly
 119 used when the target ANN is built upon ReLU functions, as the output of ReLU can be effectively
 120 approximated by the firing rate of spiking neurons (Cao et al., 2015). Building on the insight dis-
 121 cussed above, both Diehl et al. (2015) and Sengupta et al. (2019) employ normalization techniques
 122 to further improve conversion performance. Additionally, Bu et al. (2023) propose, from a theoreti-
 123 cal perspective, the use of QCFS functions to replace ReLU functions in order to effectively reduce
 124 conversion error. The two-stage approach, on the other hand, focuses on optimizing the converted
 125 SNN to ensure its performance. Hao et al. (2023a) classify the unevenness error into four cases and
 126 propose an optimization strategy based on residual membrane potential to reduce error. Hao et al.
 127 (2023b) focus on addressing the conversion error caused by one additional (or one less) spike by
 128 shifting the initial membrane potential. Chen et al. (2025a) adopt a coarse-to-fine calibration opti-
 129 mization strategy to optimize the converted SNN. However, these approaches either struggle to scale
 130 to transformer-based LLMs or still incur high optimization costs for the converted spiking LLMs.
 131

132 2.2 SPIKING LLM

133 Spiking LLMs, noted for their low energy consumption, are gradually emerging as a promising
 134 direction in the field of large-scale models. Despite this promise, research on spiking LLMs re-
 135 mains limited. Early efforts include SpikingBERT (Bal & Sengupta, 2024), which leverages the
 136 average spiking rate of neurons at equilibrium and incorporates knowledge distillation to enhance
 137 both training efficiency and model performance. SpikeGPT (Zhu et al., 2023) adapts RWKV by
 138 combining spiking activations with sequential attention, demonstrating that autoregressive language
 139 generation is feasible within the spiking paradigm. More recently, SpikeLLM (Xing et al., 2025)
 140 has introduced a hybrid co-architecture that integrates SNNs with quantized ANNs, scaling spiking
 141 models to the billion-parameter regime (7–70B) and achieving improved energy efficiency. FAS
 142 (Chen et al., 2025a) enables the conversion of pretrained ANN-based LLMs into spiking counter-
 143 parts through a two-stage calibration, resulting in lower energy consumption and latency. However,
 144 existing Spiking LLM frameworks typically rely on uniform rate coding, which overlooks the non-
 145 uniform distribution of activations and consequently introduces latent conversion error.
 146

147 3 PRELIMINARY

148 Spiking coding is a scheme that determines how continuous values are encoded into a sequence of
 149 spikes, with rate coding, temporal coding, and phase coding being the most widely used schemes. In
 150 particular, phase coding combines the characteristics of temporal coding and rate coding, achieving
 151 a higher representational density than other coding schemes under the same total timestep T .

152 Specifically, similar to temporal coding, where spikes produced at different timesteps t represent
 153 different values, phase coding assigns distinct weights to each t within the total timestep T . Unlike
 154 the uniform phase values induced by the typically employed linear proportion $\frac{T-t}{T}$ in temporal cod-
 155 ing (Rueckauer & Liu, 2018; Han & Roy, 2020), phase coding assigns each timestep t a phase value
 156 B^{-t} , where B is the base of the phase. At the same time, it preserves the multi-spike representation
 157 inherent in rate coding, thereby enhancing the representational capacity within a finite total T . By
 158 combining these advantages, phase coding achieves an expansion of the number of encoded discrete
 159 values to 2^T , which reduces the total number of timesteps T in an exponential manner.

160 The biological manifestation of **generic** phase coding has been demonstrated by (Montemurro et al.,
 161 2008) and is further advanced in ANN-to-SNN conversion (Hwang & Kung, 2024; Hwang et al.,
 162 2024). Its corresponding neuron dynamic procedure is characterized by the threshold $\theta(t)$, reset

strength $h(t)$, and output weight $d(t)$, as detailed in the following equation:

$$v(1) = \sum_{t^{pre}=1}^T I(t^{pre}), v(t+1) = v(t) - h(t)s(t), O(t) = d(t)s(t), \quad (1)$$

$$s(t) = \Theta(v(t) - \theta(t)) = \Theta(v(1) - \sum_{j=1}^{t-1} h(j)s(j) - \theta(t)), \quad (2)$$

where $\Theta(\cdot)$ denotes the Heaviside step function and the initial membrane potential $v(1)$ receives the output $I(t^{pre})$ from the pre-layer. For timestep $t \in \{1, 2, \dots, T\}$ of the current neuron, $v(t)$ denotes the membrane potential, $s(t) \in \{0, 1\}$ denotes the binary spike, $O(t)$ denotes the output signal. Typically, for the conventional phase coding, $h(t)$, $d(t)$, and $\theta(t)$ are specified as B^{-t} as follows:

$$v(t+1) = v(t) - B^{-t}s(t), O(t) = B^{-t}s(t), s(t) = \Theta(v(t) - B^{-t}). \quad (3)$$

Notably, the activation value can be approximated within a limited timestep T .

4 METHODOLOGY

In this section, we first explain our motivation from the perspective of information theory. Next, we introduce our multi-granularity phase coding. Finally, we elaborate on the proposed distribution-aware ANN-to-SNN conversion paradigm, as shown in Figure 2.

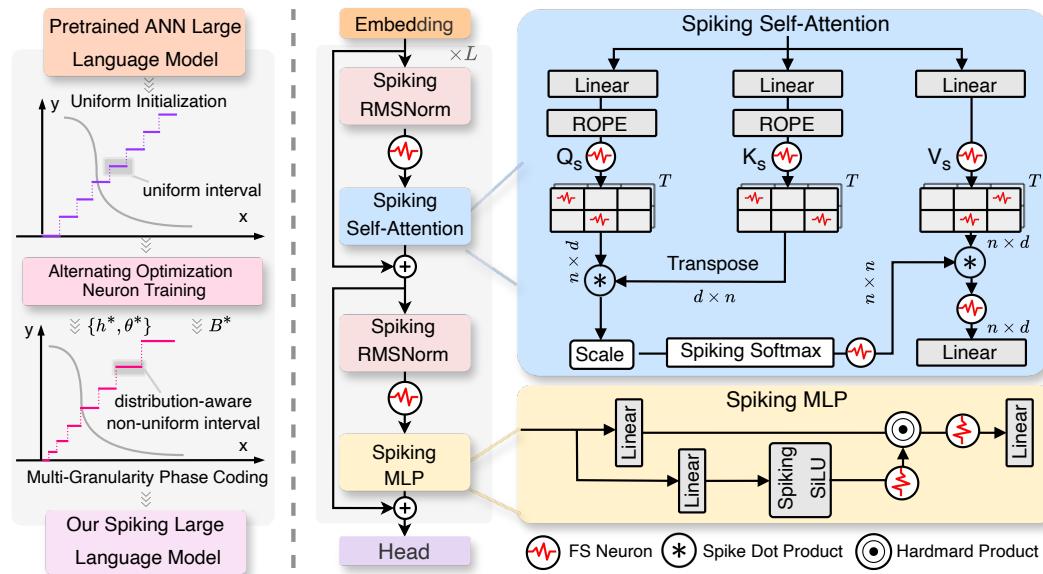


Figure 2: ANN-to-SNN conversion paradigm based on multi-granularity phase coding. Left: conversion pipeline with alternating neuron optimization. Right: spiking LLM built on SNN neurons.

4.1 MOTIVATION FROM INFORMATION THEORY

Considering the distribution of activation values, the ANN-to-SNN conversion error can be characterized by the mean squared error as follows:

$$E = \int p(x)(\hat{x} - x)^2 dx, \quad (4)$$

where \hat{x} denotes the SNN neuron's approximation of the ANN activation value x . The conversion error can be regarded as equivalent to the quantization distortion in information theory. From the information-theoretic perspective, SNN coding is analogous to quantization in its allocation of discrete values. When an SNN employs M allocation intervals, $\lambda(x)$ represents the relative density of these intervals. Consequently, the conversion error is equivalent to the quantization distortion, as formalized in Theorem 1.

216 **Theorem 1** (cf., (Gray & Neuhoff, 2002)). For an arbitrary quantizer q , the asymptotic average
 217 distortion with M quantization intervals can be expressed by rewriting Bennett’s integral in terms
 218 of the point density function:
 219

$$220 \quad D(q) = \int p(x)(x - q(x))^2 dx \simeq \frac{1}{12} \frac{1}{M^2} \int \frac{p(x)}{\lambda^2(x)} dx, \quad (5)$$

222 where $p(x)$ denotes the probability density function (PDF) of the input signal, and $\lambda(x)$ denotes the
 223 point density function of the quantizer.
 224

225 To minimize the ANN-to-SNN conversion error, Corollary 1 specifies the optimal allocation principle,
 226 namely assigning larger $\lambda(x)$ to regions with higher probability density.
 227

228 **Corollary 1.** Let $D(q)$ be the asymptotic distortion in Theorem 1. The point density function $\lambda(x)$
 229 that minimizes $D(q)$, subject to the normalization constraint $\int \lambda(x)dx = 1$, is given by:
 230

$$231 \quad \lambda^*(x) = \frac{[p(x)]^{1/3}}{\int [p(u)]^{1/3} du} \Rightarrow \lambda^*(x) \propto [p(x)]^{1/3}. \quad (6)$$

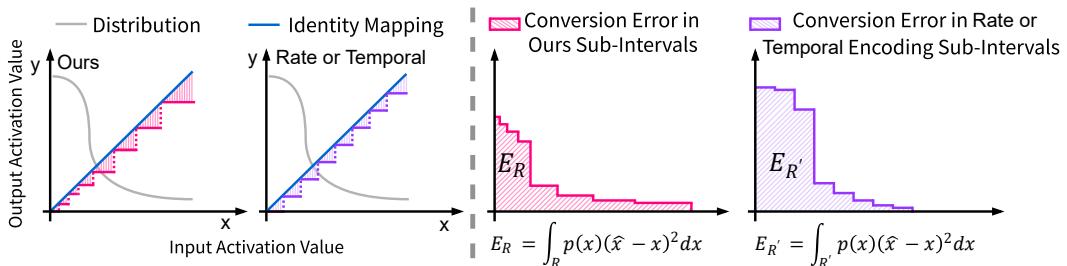
233 In LLMs, the activation distribution $p(x)$ is inherently non-uniform. Consequently, the optimal
 234 allocation function $\lambda^*(x)$ also exhibits non-uniformity. This implies the necessity of a distribution-
 235 aware coding strategy in SNNs, whereby regions of higher activation density are allocated more
 236 quantization intervals, while regions of lower density receive fewer intervals.
 237

238 4.2 MULTI-GRANULARITY PHASE CODING

240 Motivated by this, we introduce multi-granularity phase coding, which adaptively allocates bases
 241 $\{B_1, B_2, \dots, B_n\}$ of different granularities to non-uniform activations within a small timestep T .
 242 In particular, the alteration of phase values introduced by our multi-granularity phase coding, relative
 243 to conventional phase coding, is formally defined as follows:
 244

$$\{B^{-t}\}_{t=1}^T \rightarrow \{B_1^{-1}, B_1^{-2}, \dots, B_2^{-t}, B_2^{-(t+1)}, \dots, B_n^{-T}\}. \quad (7)$$

246 This design offers a more flexible discrete value allocation, effectively minimizing the expected
 247 conversion error E . A more intuitive illustration is provided in Figure 3. The non-uniform discrete
 248 value allocation introduced by multi-granularity phase coding allows us to align the mapped discrete
 249 values with the activation distribution by tuning the bases (Figure 3, left). Consequently, intervals
 250 with denser activations are allocated more discrete values rather than being uniformly distributed.
 251 The distinction in conversion error relative to uniform discrete value allocation is illustrated in Figure
 252 3 (right), where the reduction in conversion error can be easily observed from the shaded area.
 253



261 Figure 3: Comparison of discrete value allocation and conversion error between multi-granularity
 262 phase coding and rate or temporal coding. The shaded area E_R and $E_{R'}$ represent conversion errors
 263 under different codings.
 264

265 By incorporating the dynamics from Section 3, we can obtain the neuron dynamic procedure with
 266 multi-granularity phase coding, which is obtained by extending the conventional formulation in
 267 Equation (3) and is formulated as follows:
 268

$$269 \quad v(t+1) = v(t) - h(t)s(t), \quad O(t) = d(t)s(t), \quad s(t) = \Theta(v(t) - \theta(t)), \quad (8)$$

$$\{d(t)\}_{t=1}^T = \{B_1^{-1}, B_1^{-2}, \dots, B_2^{-t}, B_2^{-(t+1)}, \dots, B_n^{-T}\}.$$

270 For clarity, we denote $\{h(t)\}_{t=1}^T$, $\{\theta(t)\}_{t=1}^T$, $\{d(t)\}_{t=1}^T$, $\{B_i\}_{i=1}^n$ as \mathbf{h} , θ , d , and \mathbf{B} . In contrast to
 271 Equation (3), we remove the constraint $\theta(t) = h(t) = d(t)$ and instead treat $\{\mathbf{h}, \theta\}$ as learnable
 272 parameters that are decoupled from d . Equation (8) introduces our multi-granularity design, in
 273 which the neuron parameters are no longer constrained to a single base, but instead are constructed
 274 from multiple bases. This generalizes the conventional single-base scheme in Equation (3).
 275

276 4.3 DISTRIBUTION-AWARE CONVERSION PARADIGM

277 The proposed spiking LLM architecture is illustrated in Figure 2. By introducing SNN neurons with
 278 multi-granularity phase coding prior to linear layers and matrix operations, activation values are
 279 converted into spike signals, thereby avoiding floating-point matrix multiplications. For the SNN
 280 neuron with multi-granularity phase coding, our objective is to align its discrete value allocation
 281 with the activation distribution while minimizing conversion error, as introduced in Section 4.1.
 282 Toward this end, we consider the following expected conversion error:
 283

$$284 \min_{\{\mathbf{h}, \theta\}, \mathbf{B}} \int p(x) (SN(x; \{\mathbf{h}, \theta\}, \mathbf{B}) - x)^2 dx, \quad (9)$$

287 where $p(x)$ is the PDF of activation x , and $SN(\cdot) = \sum_{t=1}^T O(t)$ is the discrete value obtained by
 288 mapping the activation value through the SNN neuron. In practice, for each neuron, the correspond-
 289 ing activation distribution can be estimated from a batch of input text and then downsampled to
 290 construct a training dataset \mathbf{X} composed of activation samples. Ultimately, we formulate the target
 291 problem as an empirical conversion error minimization problem, as follows:
 292

$$293 \min_{\{\mathbf{h}, \theta\}, \mathbf{B}} \|SN(\mathbf{X}; \{\mathbf{h}, \theta\}, \mathbf{B}) - \mathbf{X}\|^2. \quad (10)$$

294 To effectively solve the optimization problem formulated in Equation (10), we propose an alterna-
 295 ting optimization neuron training algorithm, as presented in Algorithm 1. Specifically, we alternate
 296 between optimizing $\{\mathbf{h}, \theta\}$ and \mathbf{B} . Due to the non-differentiability of the Heaviside step function,
 297 updates to $\{\mathbf{h}, \theta\}$ are carried out using a sigmoid-based surrogate gradient (Wu et al., 2018). In the
 298 case of a fixed number of granularities, we address timestep allocation through an adaptive granular-
 299 ity allocation method, with full details provided in Appendix C. With Algorithm 1, model weights
 300 do not require fine-tuning, and the neuron training dataset is obtained through pre-sampling. Com-
 301 bined, these eliminate the need for forward and backward propagation through network layers and
 302 restrict propagation to neurons alone, rendering our training algorithm highly cost-efficient. Further-
 303 more, the handling of other nonlinear operations in the model (e.g., RMSNorm, activation–activation
 304 multiplication, Softmax, and SiLU activation function) is provided in Appendix B.
 305

306 **Algorithm 1** Alternating Optimization Neuron Training Algorithm

- 307 1: **Input:** Training dataset \mathbf{X} , optimization steps N , N_1 and N_2 , learning rate η_1 and η_2 , neuron
 308 parameters $\{h(t), \theta(t)\}_{t=1}^T$ and $\{B_1^{-1}, B_1^{-2}, \dots, B_2^{-t}, B_2^{-(t+1)}, \dots, B_n^{-T}\}$.
 309 2: Initialize $\{\mathbf{h}_0^{(0)}, \theta_0^{(0)}\}$, $\mathbf{B}_0^{(0)}$.
 310 3: **for** $i = 0, \dots, N - 1$ **do**
 311 4: **for** $j = 0, \dots, N_1 - 1$ **do**
 312 5: Compute $\mathcal{L}_{MSE}(\mathbf{h}_i^{(j)}, \theta_i^{(j)}; \mathbf{X}, \mathbf{B}_i^{(0)})$.
 313 6: Update $\{\mathbf{h}_i^{(j+1)}, \theta_i^{(j+1)}\} = \{\mathbf{h}_i^{(j)}, \theta_i^{(j)}\} - \eta_1 \hat{\nabla}_{\mathbf{h}, \theta} \mathcal{L}_{MSE}(\mathbf{h}_i^{(j)}, \theta_i^{(j)}; \mathbf{X}, \mathbf{B}_i^{(0)})$.
 314 7: **end for**
 315 8: Update $\{\mathbf{h}_{i+1}^{(0)}, \theta_{i+1}^{(0)}\} = \{\mathbf{h}_i^{(N_1)}, \theta_i^{(N_1)}\}$.
 316 9: **for** $j = 0, \dots, N_2 - 1$ **do**
 317 10: Compute $\mathcal{L}_{MSE}(\mathbf{B}_i^{(j)}; \mathbf{X}, \mathbf{h}_{i+1}^{(0)}, \theta_{i+1}^{(0)})$.
 318 11: Update $\mathbf{B}_i^{(j+1)} = \mathbf{B}_i^{(j)} - \eta_2 \nabla_{\mathbf{B}} \mathcal{L}_{MSE}(\mathbf{B}_i^{(j)}; \mathbf{X}, \mathbf{h}_{i+1}^{(0)}, \theta_{i+1}^{(0)})$.
 319 12: **end for**
 320 13: Update $\mathbf{B}_{i+1}^{(0)} = \mathbf{B}_i^{(N_2)}$.
 321 14: **end for**
 322 15: **Output:** Neuron parameters $\{\mathbf{h}^*, \theta^*\}$, \mathbf{B}^* .
 323

324 **5 ANALYSIS**
 325

326 In this section, we first introduce several necessary assumptions and then present the convergence
 327 analysis results of the neuron training algorithm based on activation distributions.
 328

329 **5.1 ASSUMPTIONS**
 330

331 We denote the original objective function $\|SN(\mathbf{X}; \mathbf{h}, \boldsymbol{\theta}, \mathbf{B}) - \mathbf{X}\|^2$ by $f(\mathbf{h}, \boldsymbol{\theta}, \mathbf{B})$, and the
 332 smoothed objective function by $g(\mathbf{h}, \boldsymbol{\theta}, \mathbf{B})$. In updating \mathbf{h} and $\boldsymbol{\theta}$, surrogate gradients are employed
 333 to carry out gradient descent. This process can be regarded as gradient descent utilizing the true
 334 gradient of the smoothed objective function. Based on this perspective, we analyze the convergence
 335 behavior of the alternating optimization scheme. Since the parameters \mathbf{h} and $\boldsymbol{\theta}$ are optimized simulta-
 336 neously, we introduce the variable \mathbf{o} to represent them collectively. A more detailed explanation
 337 of the symbols employed in the analysis is provided in Appendix A.

338 **Assumption 1** (Lipschitz Gradient). *There exist constants $L_1, L_2 > 0$, for $\forall \mathbf{o}_1, \mathbf{o}_2$ and $\forall \mathbf{B}_1, \mathbf{B}_2$,
 339 such that:*

$$\|\nabla_{\mathbf{o}} g(\mathbf{o}_1, \mathbf{B}) - \nabla_{\mathbf{o}} g(\mathbf{o}_2, \mathbf{B})\| \leq L_1 \|\mathbf{o}_1 - \mathbf{o}_2\|, \quad (11)$$

$$\|\nabla_{\mathbf{B}} f(\mathbf{o}, \mathbf{B}_1) - \nabla_{\mathbf{B}} f(\mathbf{o}, \mathbf{B}_2)\| \leq L_2 \|\mathbf{B}_1 - \mathbf{B}_2\|. \quad (12)$$

342 **Assumption 2** (Polyak-Łojasiewicz (PL) condition). *There exist constants $\mu_1, \mu_2, \mu_3 > 0$ such
 343 that:*

$$\|\nabla g(\mathbf{o}, \mathbf{B})\|^2 \geq 2\mu_1(g(\mathbf{o}, \mathbf{B}) - g^*), \quad (13)$$

$$\|\nabla_{\mathbf{o}} g(\mathbf{o}, \mathbf{B})\|^2 \geq 2\mu_2(g(\mathbf{o}, \mathbf{B}) - g^{*(\mathbf{B})}(\mathbf{o}, \mathbf{B})), \quad (14)$$

$$\|\nabla_{\mathbf{B}} f(\mathbf{o}, \mathbf{B})\|^2 \geq 2\mu_3(f(\mathbf{o}, \mathbf{B}) - f^{*(\mathbf{o})}(\mathbf{o}, \mathbf{B})), \quad (15)$$

348 where g^* denotes the global minimum value of $g(\mathbf{o}, \mathbf{B})$, $g^{*(\mathbf{B})}(\mathbf{o}, \mathbf{B})$ is the minimum of $g(\mathbf{o}, \mathbf{B})$
 349 with \mathbf{B} fixed, and $f^{*(\mathbf{o})}(\mathbf{o}, \mathbf{B})$ is the minimum of $f(\mathbf{o}, \mathbf{B})$ with \mathbf{o} fixed.

350 **Assumption 3.** For arbitrary \mathbf{o} and \mathbf{B} , we have $|f(\mathbf{o}, \mathbf{B}) - g(\mathbf{o}, \mathbf{B})| \leq \sigma$.

352 **Remark 1.** Assumptions 1 and 2 are frequently invoked in the theoretical analysis of gradient-
 353 based optimization methods (Malinovsky et al., 2024; Zhou, 2018; Khaled & Richtárik, 2020), while
 354 Assumption 3 ensures that the smoothed loss function does not deviate excessively from the original
 355 function. This requirement is reasonable, as studies on the approximation of step functions have
 356 already demonstrated that the error between a smoothed function and a step function can be made
 357 small (Kyurkchiev & Markov, 2015; Iliev et al., 2015).

358 **5.2 CONVERGENCE RESULTS**
 359

360 Based on the above assumptions, we conduct a convergence analysis of Algorithm 1 and examine
 361 whether the stability of the algorithm is significantly affected by the surrogate gradient.

362 **Theorem 2.** Suppose Assumptions 1–3 hold, and let $0 < \eta_1 \leq \min(\frac{1}{L_1}, \frac{1}{L_1\mu_1})$, $0 < \eta_2 \leq$
 363 $\min(\frac{1}{L_2}, \frac{1}{L_2\mu_3})$, $\mathbf{o}_k^{(0)} = \mathbf{o}_{k-1}$, $\mathbf{o}_k^{(N_1)} = \mathbf{o}_k$, $\mathbf{B}_k^{(0)} = \mathbf{B}_{k-1}$, and $\mathbf{B}_k^{(N_2)} = \mathbf{B}_k$, then for Algorithm 1,
 364 the following inequality holds:

$$f(\mathbf{o}_{k+1}, \mathbf{B}_{k+1}) - f^* \leq (1 - \mu_3\eta_2)(1 - \mu_1\eta_1)[f(\mathbf{o}_k, \mathbf{B}_k) - f^*] + C, \quad (16)$$

366 where

$$\begin{aligned} C = & 2\sigma(1 - \mu_1\eta_1)(1 - \mu_3\eta_2) + 2\sigma + \frac{\eta_1}{2}(1 - \mu_3\eta_2)\|\nabla_{\mathbf{B}} g(\mathbf{o}_k, \mathbf{B}_k)\|^2 \\ & + \frac{\mu_3\eta_2}{2\mu_2}\|\nabla_{\mathbf{o}} g^{*(\mathbf{o})}(\mathbf{o}_{k+1}, \mathbf{B})\|^2. \end{aligned} \quad (17)$$

373 **Remark 2.** Theorem 2 comprises a linear convergence term $(1 - \mu_3\eta_2)(1 - \mu_1\eta_1)[f(\mathbf{o}_k, \mathbf{B}_k) - f^*]$
 374 and an error term C , resembling the results obtained in analyses such as (Nguyen et al., 2017; Yuan
 375 et al., 2024). We note that the error term is largely determined by the smoothed objective function. A
 376 suitable smoothing technique can ensure that the error constant C remains sufficiently small, thereby
 377 enabling the iterative process of the algorithm to approach the global optimum. The detailed proof
 of Theorem 2 can be found in Appendix A.

378

6 EXPERIMENTS

379

380 6.1 EXPERIMENTAL SETUP

382 **Baseline.** We consider the following three baselines: **Full-precision ANN**, evaluated under the
 383 zero-shot setting, provides a standard performance reference for spiking LLMs. **SpikeLLM** (Xing
 384 et al., 2025) integrates SNNs with quantized ANNs to build a spike-driven large language model.
 385 **TTFSFormer** (Zhao et al., 2025) applies time-to-first-spike coding to transformer architecture and
 386 achieves the spiking transformer based on temporal coding. **LAS** (Chen et al., 2025b) employs
 387 SNN neurons with $\theta(t) = h(t) = d(t) = \tau \cdot 2^{-t}$ for ANN-to-SNN conversion, which can be
 388 viewed as a special instance of our method without optimization. **SpikedAttention** (Hwang et al.,
 389 2024) leverages single-spike phase coding to construct a spiking transformer, and we extend this
 390 design to the LLaMA model in this work. The implementation details of all methods are provided
 391 in Appendix D.1.

392 **Datasets and Metrics.** To effectively evaluate different methods, we adopt perplexity and accuracy
 393 as evaluation metrics. For perplexity, we conduct evaluations on WikiText2 (Merity et al., 2016),
 394 C4 (Raffel et al., 2020), RedPajama (Weber et al., 2024), and Pile (Gao et al., 2020). For accuracy,
 395 we evaluate zero-shot reasoning performance on WinoGrande (Sakaguchi et al., 2021), ArcC, ArcE
 396 (Clark et al., 2018), and PiQA (Bisk et al., 2020). We report the accuracy (acc) for WinoGrande
 397 and the accuracy norm for ArcC, ArcE, and PiQA. All accuracies are measured using lm_eval v0.4.2
 398 (Sutawika et al., 2024). All source code required for conducting experiments will be made publicly
 399 available upon publication of the paper.

400
 401 Table 1: Results on LLaMA-2-7B. “Time Cost” denotes the training time required for the method
 402 to obtain the SNN. “Grain” denotes the number of granularities.

PPL	Perf. ↓	T	Time Cost	WikiText2	C4	Redpajama	Pile	Avg. PPL
LLaMA-2-7B	N/A	N/A	5.47	6.97	5.61	4.63	5.67	
SpikeLLM	8	5h 54m	5.86	7.51	6.08	4.97	6.10	
TTFSFormer	128	N/A	11.88	16.47	13.18	9.32	12.71	
LAS		N/A	34.26	40.39	32.18	20.10	31.73	
SpikedAttention	8	2m 02s	19.02	25.05	20.77	14.80	19.91	
Ours (Grain=2)		2m 01s	6.71	8.96	7.23	5.74	7.16	
Ours (Grain=3)		2m 04s	7.10	9.71	7.80	6.09	7.68	
LAS		N/A	6.05	7.88	6.37	5.13	6.36	
SpikedAttention	10	2m 28s	11.64	15.47	12.84	9.47	12.36	
Ours (Grain=2)		2m 25s	5.50	7.05	5.68	4.67	5.73	
Ours (Grain=3)		2m 27s	5.53	7.06	5.69	4.68	5.74	
ACC	Perf. ↑	T	Time Cost	WinoGrande	ArcC	ArcE	PiQA	Avg. ACC
LLaMA-2-7B	N/A	N/A	69.06	46.33	74.54	79.05	67.25	
SpikeLLM	8	5h 54m	67.40	42.58	71.46	77.75	64.80	
TTFSFormer	128	N/A	70.56	44.88	73.11	78.94	66.87	
LAS		N/A	69.46	45.56	73.65	77.97	66.66	
SpikedAttention	8	2m 02s	68.19	41.38	68.77	77.20	63.89	
Ours (Grain=2)		2m 01s	70.56	46.16	73.99	77.97	67.17	
Ours (Grain=3)		2m 04s	70.96	46.08	74.33	77.86	67.31	
LAS		N/A	70.64	45.90	73.95	78.24	67.18	
SpikedAttention	10	2m 28s	67.32	40.10	68.73	76.44	63.15	
Ours (Grain=2)		2m 25s	70.48	46.50	73.91	78.29	67.30	
Ours (Grain=3)		2m 27s	70.88	46.16	73.78	78.13	67.24	

427

428 6.2 MAIN RESULTS

429
 430 We report the results of our method under different granularities, along with comparisons to other
 431 baselines. As shown in Table 1 and 2, our method delivers optimal overall performance by main-
 432 taining accuracy close to that of ANNs alongside low perplexity, highlighting the superiority of our

paradigm over existing baselines. Notably, compared to LAS, which represents a special case of our method without optimization, our method yields a significant perplexity reduction, validating the effectiveness of the proposed neuron training algorithm. With respect to SpikedAttention, even with relaxation of its single-spike phase coding (as described in Appendix D.1), it fails to sustain satisfactory performance in our limited total timestep experimental setting ($T \in \{6, 8, 10\}$). Relative to SpikeLLM, our method demonstrates a substantial advantage in time cost, as its training process entails forward and backward propagation through the decoder layers, whereas our paradigm entirely eliminates this overhead. For TTFSFormer, our method can achieve comparable performance with fewer timesteps due to its time-to-first-spike coding. Furthermore, due to the enhanced representational capacity of multi-granularity phase coding, our method achieves ANN-to-SNN conversion for LLMs with a limited total timestep. The ablation study and the results on a larger-scale LLM are provided in the Appendix D.2 and D.3, respectively.

Table 2: Results on LLaMA-3-8B. ‘‘Time Cost’’ denotes the training time required for the method to obtain the SNN. ‘‘Grain’’ denotes the number of granularities.

PPL	Perf. ↓	T	Time Cost	Wikitext2	C4	Redpajama	Pile	Avg. PPL
LLaMA-3-8B	N/A	N/A	6.14	8.88	7.44	5.52	7.00	
SpikeLLM	8	6h 13m	>100	>100	>100	>100	>100	
TTFSFormer	128	N/A	6.72	9.82	8.12	6.03	7.67	
LAS		N/A	93.13	>100	>100	>100	>100	
SpikedAttention	6	1m 38s	>100	>100	>100	83.95	>100	
Ours (Grain=2)		1m 36s	8.04	12.25	10.14	7.23	9.42	
Ours (Grain=3)		1m 35s	8.53	13.18	10.85	7.73	10.07	
LAS		N/A	7.06	10.49	8.57	6.51	8.16	
SpikedAttention	8	2m 02s	9.46	14.02	12.08	8.17	10.93	
Ours (Grain=2)		2m 01s	6.32	9.14	7.69	5.74	7.22	
Ours (Grain=3)		1m 58s	6.37	9.22	7.73	5.79	7.28	
ACC	Perf. ↑	T	Time Cost	WinoGrande	ArcC	ArcE	PiQA	Avg. ACC
LLaMA-3-8B	N/A	N/A	72.85	53.33	77.74	80.85	71.19	
SpikeLLM	8	6h 13m	69.38	49.23	73.11	78.67	67.60	
TTFSFormer	128	N/A	72.69	52.90	77.65	79.33	70.64	
LAS		N/A	71.19	51.88	73.48	79.33	68.97	
SpikedAttention	6	1m 38s	63.30	32.25	54.00	66.21	53.94	
Ours (Grain=2)		1m 36s	73.16	47.87	73.74	77.64	68.10	
Ours (Grain=3)		1m 35s	73.24	49.23	73.82	76.82	68.28	
LAS		N/A	74.82	54.52	77.48	80.74	71.89	
SpikedAttention	8	2m 02s	69.53	49.91	74.33	77.20	67.74	
Ours (Grain=2)		2m 01s	72.69	54.35	78.11	80.14	71.32	
Ours (Grain=3)		1m 58s	73.09	54.10	78.41	80.30	71.48	

6.3 ENERGY ANALYSIS

To estimate energy consumption, we adopt the following theoretical energy estimation approach according to Rathi & Roy (2020); Li et al. (2021); Zhou et al. (2022); Deng et al. (2024); Zhao et al. (2025); Wang et al. (2022); Chen et al. (2025a;b),

$$E_{total} = E_{MAC} \cdot Count_{MAC} + E_{AC} \cdot Count_{AC}, \quad (18)$$

where E_{MAC} and E_{AC} denote the energy consumption of a single MAC and AC operation, respectively, while $Count_{MAC}$ and $Count_{AC}$ denote the counted numbers of MAC and AC operations during model inference. We measure MAC and AC operations using $E_{MAC} \approx 4.6pJ$ and $E_{AC} \approx 0.9pJ$, as reported in 45 nm CMOS technology (Horowitz, 2014). The results indicate that, for a single sample, the ANN-based LLM consumes 18.00 J , whereas our distribution-aware spiking LLM consumes only 10.44~10.46 J as summarized in Table 3 ,i.e., our spiking LLM achieves a 42.0% reduction in energy consumption of MAC and AC operations compared to its ANN counterpart. Furthermore, we anticipate that continued progress in neuromorphic hardware will further

486 enhance the efficiency of our spiking LLM, potentially leading to even larger reductions in both
 487 operations and energy consumption.
 488

489
 490 **Table 3:** The calculation count and the energy cost of ANN and our spiking LLMs with $T = 6$.

491 Model	492 Method	493 Avg. ACC	494 Avg. PPL	495 Calculation Count	496 Energy Cost (J)
492 LLaMA-3-8B	493 ANN	494 71.19	495 7.00	496 3912.08G MACs + 0.17G ACs	497 18.00
493 LLaMA-3-8B	494 Ours (Grain=2)	495 68.10	496 9.42	497 15.87G MACs + 11521.88G ACs	498 10.44
494 LLaMA-3-8B	495 Ours (Grain=3)	496 68.28	497 10.07	498 15.87G MACs + 11539.14G ACs	499 10.46

495 496 7 CONCLUSION

497 To overcome latent conversion error arising from distribution misalignment, we propose multi-
 498 granularity phase coding, enabling SNN neurons to allocate mapped discrete values adaptively with
 499 respect to the activation distribution. Building on this coding scheme, we introduce a novel ANN-
 500 to-SNN conversion paradigm that leverages a cost-efficient alternating optimization neuron training
 501 algorithm to minimize conversion errors with respect to activation distributions. In future research,
 502 we intend to further advance our ANN-to-SNN conversion paradigm based on multi-granularity
 503 phase coding, targeting a smaller total timestep and improved energy efficiency.
 504

505 506 ETHICS STATEMENT

507 All participants in this work, as well as the paper submission, adhere to the ICLR Code of Ethics (508
<https://iclr.cc/public/CodeOfEthics>).
 509

510 511 REPRODUCIBILITY STATEMENT

512 We affirm that the results of this work are fully reproducible. Appendix A provides the theoretical
 513 proofs. Appendix D.1 details the experimental implementations, and the source code will be publicly
 514 released upon publication of the paper.
 515

516 517 REFERENCES

518
 519 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 520 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
 521 report. *arXiv preprint arXiv:2303.08774*, 2023.

522
 523 Malyaban Bal and Abhroni Sengupta. SpikingBERT: Distilling bert to train spiking language mod-
 524 els using implicit differentiation. In *Proceedings of the AAAI conference on artificial intelligence*,
 525 volume 38, pp. 10998–11006, 2024.

526
 527 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical
 528 commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelli-
 529 gence*, volume 34, pp. 7432–7439, 2020.

530
 531 Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-
 532 snn conversion for high-accuracy and ultra-low-latency spiking neural networks. *arXiv preprint
 533 arXiv:2303.04347*, 2023.

534
 535 Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for
 536 energy-efficient object recognition. *International Journal of Computer Vision*, 113(1):54–66,
 537 2015.

538
 539 Long Chen, Xiaotian Song, Andy Song, BaDong Chen, Jiancheng Lv, and Yanan Sun. FAS: Fast
 540 ann-snn conversion for spiking large language models. *arXiv preprint arXiv:2502.04405*, 2025a.

541
 542 Long Chen, Xiaotian Song, and Yanan Sun. Las: Loss-less ann-snn conversion for fully spike-driven
 543 large language models. *arXiv preprint arXiv:2505.09659*, 2025b.

540 Mengzhao Chen, Yi Liu, Jiahao Wang, Yi Bin, Wenqi Shao, and Ping Luo. Prefixquant: Static
 541 quantization beats dynamic through prefixed outliers in llms. *arXiv preprint arXiv:2410.05265*,
 542 2024.

543 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 544 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 545 *arXiv preprint arXiv:1803.05457*, 2018.

546 Manon Dampfhofer, Thomas Mesquida, Alexandre Valentian, and Lorena Anghel. Are snns re-
 547 ally more energy-efficient than anns? an in-depth hardware-aware study. *IEEE Transactions on*
 548 *Emerging Topics in Computational Intelligence*, 7(3):731–741, 2022.

549 Gourav Datta and Peter A Beerel. Can deep neural networks be converted to ultra low-latency
 550 spiking neural networks? In *2022 Design, Automation & Test in Europe Conference & Exhibition*
 551 (*DATE*), pp. 718–723. IEEE, 2022.

552 Alex De Vries. The growing energy footprint of artificial intelligence. *Joule*, 7(10):2191–2194,
 553 2023.

554 Shikuang Deng, Yuhang Wu, Kangrui Du, and Shi Gu. Spiking token mixer: An event-driven
 555 friendly former structure for spiking neural networks. *Advances in Neural Information Processing*
 556 *Systems*, 37:128825–128846, 2024.

557 Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.
 558 Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing.
 559 In *2015 International joint conference on neural networks (IJCNN)*, pp. 1–8. ieee, 2015.

560 Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun Huang. Optimal ann-snn conversion for fast
 561 and accurate inference in deep spiking neural networks. *arXiv preprint arXiv:2105.11654*, 2021.

562 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 563 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 564 *arXiv e-prints*, pp. arXiv–2407, 2024.

565 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
 566 Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The Pile: An 800gb dataset of diverse text
 567 for language modeling. *arXiv preprint arXiv:2101.00027*, 2020.

568 Robert M. Gray and David L. Neuhoff. Quantization. *IEEE transactions on information theory*, 44
 569 (6):2325–2383, 2002.

570 Bing Han and Kaushik Roy. Deep spiking neural network: Energy efficiency through time based
 571 coding. In *European conference on computer vision*, pp. 388–404. Springer, 2020.

572 Zecheng Hao, Tong Bu, Jianhao Ding, Tiejun Huang, and Zhaofei Yu. Reducing ann-snn conversion
 573 error through residual membrane potential. In *Proceedings of the AAAI conference on artificial*
 574 *intelligence*, volume 37, pp. 11–21, 2023a.

575 Zecheng Hao, Jianhao Ding, Tong Bu, Tiejun Huang, and Zhaofei Yu. Bridging the gap between
 576 anns and snns by calibrating offset spikes. *arXiv preprint arXiv:2302.10685*, 2023b.

577 Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In *2014 IEEE*
 578 *international solid-state circuits conference digest of technical papers (ISSCC)*, pp. 10–14. IEEE,
 579 2014.

580 Sangwoo Hwang and Jaeha Kung. One-Spike SNN: Single-spike phase coding with base manip-
 581 ulation for ann-to-snn conversion loss minimization. *IEEE Transactions on Emerging Topics in*
 582 *Computing*, 13(1):162–172, 2024.

583 Sangwoo Hwang, Seunghyun Lee, Dahoon Park, Donghun Lee, and Jaeha Kung. SpikedAttention:
 584 Training-free and fully spike-driven transformer-to-snn conversion with winner-oriented spike
 585 shift for softmax operation. *Advances in Neural Information Processing Systems*, 37:67422–
 586 67445, 2024.

594 Anton Iliev Iliev, Nikolay Kyurkchiev, and Svetoslav Markov. On the approximation of the cut and
 595 step functions by logistic and gompertz functions. *Biomath*, 4(2):ID-1510101, 2015.
 596

597 Ahmed Khaled and Peter Richtárik. Better theory for sgd in the nonconvex world. *arXiv preprint*
 598 *arXiv:2002.03329*, 2020.

599
 600 Jaehyun Kim, Heesu Kim, Subin Huh, Jinho Lee, and Kiyoung Choi. Deep neural networks with
 601 weighted spikes. *Neurocomputing*, 311:373–386, 2018.

602 Nikolay Kyurkchiev and Svetoslav Markov. Sigmoid functions: some approximation and modelling
 603 aspects. *LAP LAMBERT Academic Publishing, Saarbrucken*, 4:34, 2015.
 604

605 Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks using
 606 backpropagation. *Frontiers in neuroscience*, 10:508, 2016.

607
 608 Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differentiable spike: Rethinking gradient-descent for training spiking neural networks. *Advances in*
 609 *neural information processing systems*, 34:23426–23439, 2021.
 610

611 Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
 612 *International Conference on Learning Representations*, 2018.
 613

614 Grigory Malinovsky, Umberto Michieli, Hasan Abed Al Kader Hammoud, Taha Ceritli, Hayder
 615 Elesedy, Mete Ozay, and Peter Richtárik. Randomized Asymmetric Chain of LoRA: The first
 616 meaningful theoretical framework for low-rank adaptation. *arXiv preprint arXiv:2410.08305*,
 617 2024.

618 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 619 models. *arXiv preprint arXiv:1609.07843*, 2016.
 620

621 Marcelo A Montemurro, Malte J Rasch, Yusuke Murayama, Nikos K Logothetis, and Stefano Panz-
 622 eri. Phase-of-firing coding of natural visual stimuli in primary visual cortex. *Current biology*, 18
 623 (5):375–380, 2008.

624 Hesham Mostafa. Supervised learning based on temporal coding in spiking neural networks. *IEEE*
 625 *transactions on neural networks and learning systems*, 29(7):3227–3235, 2017.
 626

627 Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate Gradient Learning in Spiking
 628 Neural Networks: Bringing the power of gradient-based optimization to spiking neural networks.
 629 *IEEE Signal Processing Magazine*, 36(6):51–63, 2019.
 630

631 Nam Nguyen, Deanna Needell, and Tina Woolf. Linear convergence of stochastic iterative greedy
 632 algorithms with sparse constraints. *IEEE Transactions on Information Theory*, 63(11):6869–
 633 6895, 2017.

634 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 635 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 636 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.
 637

638 Nitin Rathi and Kaushik Roy. Diet-snn: Direct input encoding with leakage and threshold optimiza-
 639 tion in deep spiking neural networks. *arXiv preprint arXiv:2008.03658*, 2020.
 640

641 Bodo Rueckauer and Shih-Chii Liu. Conversion of analog to spiking neural networks using sparse
 642 temporal coding. In *2018 IEEE international symposium on circuits and systems (ISCAS)*, pp.
 643 1–5. IEEE, 2018.

644 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An ad-
 645 versarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.
 646

647 Abhroneil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going Deeper in Spiking
 Neural Networks: Vgg and residual architectures. *Frontiers in neuroscience*, 13:95, 2019.

648 Lintang Sutawika, Hailey Schoelkopf, Leo Gao, Baber Abbasi, Stella Biderman, Jonathan Tow, ben
 649 fattori, Charles Lovering, farzanehnakhaee70, Jason Phang, Anish Thite, Fazz, Thomas Wang,
 650 Niklas Muennighoff, Aflah, sdtblk, nopperl, gakada, ttyuntian, researcher2, Chris, Julen Etx-
 651 aniz, Hanwool Albert Lee, Zdeněk Kasner, Khalid, Jeffrey Hsu, Anjor Kanekar, Pawan Sasanka
 652 Ammanamanchi, Vicki Boykis, and AndyZwei. Eleutherai/Im-evaluation-harness: v0.4.2, March
 653 2024.

654 Qwen Team et al. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2(3), 2024.

655 Bu Tong, Wei Fang, Jianhao Ding, PENGLIN DAI, Zhaofei Yu, and Tiejun Huang. Optimal ANN-
 656 SNN conversion for high-accuracy and ultra-low-latency spiking neural networks. In *Inter-
 657 national Conference on Learning Representations*, 2022.

658 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 659 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 660 tion processing systems*, 30, 2017.

661 Yuchen Wang, Malu Zhang, Yi Chen, and Hong Qu. Signed neuron with memory: Towards simple,
 662 accurate and high-efficient ann-snn conversion. In *IJCAI*, pp. 2501–2508, 2022.

663 Maurice Weber, Dan Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xi-
 664 aozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. RedPajama: an open dataset for
 665 training large language models. *Advances in neural information processing systems*, 37:116462–
 666 116492, 2024.

667 Jibin Wu, Yansong Chua, Malu Zhang, Qu Yang, Guoqi Li, and Haizhou Li. Deep spiking neural
 668 network with spike count based learning rule. In *2019 International Joint Conference on Neural
 669 Networks (IJCNN)*, pp. 1–6. IEEE, 2019.

670 Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
 671 training high-performance spiking neural networks. *Frontiers in neuroscience*, 12:331, 2018.

672 Xingrun Xing, Boyan Gao, Zheng Liu, David A Clifton, Shitao Xiao, Wanpeng Zhang, Li Du,
 673 Zheng Zhang, Guoqi Li, and Jiajun Zhang. SpikeLLM: Scaling up spiking neural network to
 674 large language models via saliency-based spiking. In *ICLR*, 2025.

675 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 676 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 677 arXiv:2505.09388*, 2025.

678 Qu Yang, Jibin Wu, Malu Zhang, Yansong Chua, Xinchao Wang, and Haizhou Li. Training spiking
 679 neural networks with local tandem learning. *Advances in Neural Information Processing Systems*,
 680 35:12662–12676, 2022.

681 Kang You, Zekai Xu, Chen Nie, Zhijie Deng, Qinghai Guo, Xiang Wang, and Zhezhi He. Spikezip-
 682 tf: conversion is all you need for transformer-based snn. In *Proceedings of the 41st International
 683 Conference on Machine Learning*, pp. 57367–57383, 2024.

684 Xinzhe Yuan, William de Vazelhes, Bin Gu, and Huan Xiong. New insight of variance reduce in
 685 zero-order hard-thresholding: Mitigating gradient error and expansivity contradictions. In *ICLR*,
 686 2024.

687 Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning
 688 for instilling complex function in spiking neural networks. *Neural computation*, 33(4):899–925,
 689 2021.

690 Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. LQ-Nets: Learned quantization
 691 for highly accurate and compact deep neural networks. In *Proceedings of the European conference
 692 on computer vision (ECCV)*, pp. 365–382, 2018.

693 Ming Zhang, Zonghua Gu, Nenggan Zheng, De Ma, and Gang Pan. Efficient spiking neural net-
 694 works with logarithmic temporal coding. *IEEE access*, 8:98156–98167, 2020.

702 Lusen Zhao, Zihan Huang, Jianhao Ding, and Zhaofei Yu. TTFSFormer: A ttfs-based lossless con-
703 version of spiking transformer. In *Forty-second International Conference on Machine Learning*,
704 2025.

705 Tang Zhengzheng and Eva Zhu. BrainGPT: A brain-inspired SNN-based large language model,
706 2025.

708 Xingyu Zhou. On the fenchel duality between strong convexity and lipschitz continuous gradient.
709 *arXiv preprint arXiv:1803.06573*, 2018.

710 Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and
711 Li Yuan. Spikformer: When spiking neural network meets transformer. *arXiv preprint*
712 *arXiv:2209.15425*, 2022.

714 Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K Eshraghian. SpikeGPT: Generative pre-trained
715 language model with spiking neural networks. *arXiv preprint arXiv:2302.13939*, 2023.

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

A THEORETICAL ANALYSIS

A.1 DEFINITION OF NOTATION

Table 4: Notation

Notation	Description
$f(\mathbf{h}, \theta, \mathbf{B})$	Objective function.
$g(\mathbf{h}, \theta, \mathbf{B})$	Smoothed objective function.
\mathbf{o}_k or \mathbf{B}_k	The parameter value at the k -th iteration.
\mathbf{d}	Output weight parameters of SNN neurons.
\mathbf{B}	The phase variable to be optimized.
\mathbf{h}	Reset strength parameters of SNN neurons.
θ	Threshold parameters of SNN neurons.
\mathbf{o}	Treat \mathbf{h} and θ as a single parameter \mathbf{o} .
$g^{*(\mathbf{B})}(\mathbf{o}, \mathbf{B})$	The minimum of $g(\mathbf{o}, \mathbf{B})$ with \mathbf{B} fixed.
$f^{*(\mathbf{o})}(\mathbf{o}, \mathbf{B})$	The minimum of $f(\mathbf{o}, \mathbf{B})$ with \mathbf{o} fixed.
η_1	Learning rate for updating \mathbf{h} and θ (for updating \mathbf{o}).
η_2	Learning rate for updating \mathbf{B} .
L_1	Lipschitz constant of function $g(\mathbf{o}, \mathbf{B})$ w.r.t. variable \mathbf{o} .
L_2	Lipschitz constant of function $f(\mathbf{o}, \mathbf{B})$ w.r.t. variable \mathbf{B} .
μ	PL condition constant.
σ	Maximum error between $f(\mathbf{o}, \mathbf{B})$ and $g(\mathbf{o}, \mathbf{B})$ under identical parameters.

A.2 PROOFS

Lemma 1. *If Assumption 3 holds, then $|f^* - g^*| \leq \sigma$, where f^* denotes the global minimum value of $f(\mathbf{o}, \mathbf{B})$.*

Proof of Lemma 1:

If $f^* = f(\mathbf{o}_i, \mathbf{B}_i)$ and Assumption 3 hold, we have,

$$g^* \leq g(\mathbf{o}_i, \mathbf{B}_i) \leq f(\mathbf{o}_i, \mathbf{B}_i) + \sigma = f^* + \sigma. \quad (19)$$

Similarly, if $g^* = g(\mathbf{o}_j, \mathbf{B}_j)$ we have,

$$f^* \leq f(\mathbf{o}_j, \mathbf{B}_j) \leq g(\mathbf{o}_j, \mathbf{B}_j) + \sigma = g^* + \sigma. \quad (20)$$

So we have,

$$|f^* - g^*| \leq \sigma. \quad (21)$$

Proof of Theorem 2:

From Assumption 1, we have,

$$g(\mathbf{o}_{k+1}, \mathbf{B}_k) \leq g(\mathbf{o}_k, \mathbf{B}_k) + \langle \nabla_{\mathbf{o}} g(\mathbf{o}_k, \mathbf{B}_k), \mathbf{o}_{k+1} - \mathbf{o}_k \rangle + \frac{L_1}{2} \|\mathbf{o}_{k+1} - \mathbf{o}_k\|_2^2. \quad (22)$$

Due to $\mathbf{o}_{k+1} = \mathbf{o}_k - \eta_1 \nabla_{\mathbf{o}} g(\mathbf{o}_k, \mathbf{B}_k)$, we obtain,

$$\begin{aligned} g(\mathbf{o}_{k+1}, \mathbf{B}_k) &\leq g(\mathbf{o}_k, \mathbf{B}_k) - \eta_1 \|\nabla_{\mathbf{o}} g(\mathbf{o}_k, \mathbf{B}_k)\|_2^2 + \frac{L_1 \eta_1^2}{2} \|\nabla_{\mathbf{o}} g(\mathbf{o}_k, \mathbf{B}_k)\|_2^2 \\ &= g(\mathbf{o}_k, \mathbf{B}_k) + \left(\frac{L_1 \eta_1^2}{2} - \eta_1 \right) \|\nabla_{\mathbf{o}} g(\mathbf{o}_k, \mathbf{B}_k)\|_2^2. \end{aligned} \quad (23)$$

Let $0 < \eta_1 \leq \min(\frac{1}{L_1}, \frac{1}{L_1 \mu_1})$, we have,

$$g(\mathbf{o}_{k+1}, \mathbf{B}_k) \leq g(\mathbf{o}_k, \mathbf{B}_k) - \frac{\eta_1}{2} \|\nabla_{\mathbf{o}} g(\mathbf{o}_k, \mathbf{B}_k)\|_2^2. \quad (24)$$

810 From Assumption 2, we have,

811
$$\|\nabla g(\mathbf{o}, \mathbf{B})\|^2 = \|\nabla_{\mathbf{o}} g(\mathbf{o}, \mathbf{B})\|^2 + \|\nabla_{\mathbf{B}} g(\mathbf{o}, \mathbf{B})\|^2 \geq 2\mu_1[g(\mathbf{o}, \mathbf{B}) - g^*]. \quad (25)$$

813 Rearranging the above equation, we have,

814
$$\|\nabla_{\mathbf{o}} g(\mathbf{o}, \mathbf{B})\|^2 \geq 2\mu_1[g(\mathbf{o}, \mathbf{B}) - g^*] - \|\nabla_{\mathbf{B}} g(\mathbf{o}, \mathbf{B})\|^2. \quad (26)$$

816 Substituting Equation (26) into Equation (24), we obtain,

817
$$g(\mathbf{o}_{k+1}, \mathbf{B}_k) \leq g(\mathbf{o}_k, \mathbf{B}_k) - \mu_1\eta_1[g(\mathbf{o}_k, \mathbf{B}_k) - g^*] + \frac{\eta_1}{2}\|\nabla_{\mathbf{B}} g(\mathbf{o}_k, \mathbf{B}_k)\|^2. \quad (27)$$

820 Subtracting g^* from both sides, we have,

821
$$\begin{aligned} g(\mathbf{o}_{k+1}, \mathbf{B}_k) - g^* &\leq g(\mathbf{o}_k, \mathbf{B}_k) - g^* - \mu_1\eta_1[g(\mathbf{o}_k, \mathbf{B}_k) - g^*] + \frac{\eta_1}{2}\|\nabla_{\mathbf{B}} g(\mathbf{o}_k, \mathbf{B}_k)\|^2 \\ 822 &= (1 - \mu_1\eta_1)[g(\mathbf{o}_k, \mathbf{B}_k) - g^*] + \frac{\eta_1}{2}\|\nabla_{\mathbf{B}} g(\mathbf{o}_k, \mathbf{B}_k)\|^2. \end{aligned} \quad (28)$$

825 Next, we prove the inequality result obtained when updating \mathbf{B} . From Assumption 1, we have,

826
$$f(\mathbf{o}_{k+1}, \mathbf{B}_{k+1}) \leq f(\mathbf{o}_{k+1}, \mathbf{B}_k) + \langle \nabla_{\mathbf{B}} f(\mathbf{o}_{k+1}, \mathbf{B}_k), \mathbf{B}_{k+1} - \mathbf{B}_k \rangle + \frac{L_2}{2}\|\mathbf{B}_{k+1} - \mathbf{B}_k\|_2^2. \quad (29)$$

829 Due to $\mathbf{B}_{k+1} = \mathbf{B}_k - \eta_2 \nabla_{\mathbf{B}} f(\mathbf{o}_{k+1}, \mathbf{B}_k)$, we obtain,

830
$$\begin{aligned} 831 f(\mathbf{o}_{k+1}, \mathbf{B}_{k+1}) &\leq f(\mathbf{o}_{k+1}, \mathbf{B}_k) - \eta_2\|\nabla_{\mathbf{B}} f(\mathbf{o}_{k+1}, \mathbf{B}_k)\|_2^2 + \frac{L_2\eta_2^2}{2}\|\nabla_{\mathbf{B}} f(\mathbf{o}_{k+1}, \mathbf{B}_k)\|_2^2 \\ 832 &= f(\mathbf{o}_{k+1}, \mathbf{B}_k) + \left(\frac{L_2\eta_2^2}{2} - \eta_2\right)\|\nabla_{\mathbf{B}} f(\mathbf{o}_{k+1}, \mathbf{B}_k)\|_2^2. \end{aligned} \quad (30)$$

835 Let $0 < \eta_2 \leq \min(\frac{1}{L_2}, \frac{1}{L_2\mu_3})$, we have,

836
$$f(\mathbf{o}_{k+1}, \mathbf{B}_{k+1}) \leq f(\mathbf{o}_{k+1}, \mathbf{B}_k) - \frac{\eta_2}{2}\|\nabla_{\mathbf{B}} f(\mathbf{o}_{k+1}, \mathbf{B}_k)\|_2^2. \quad (31)$$

838 From Assumption 2, we have,

840
$$\|\nabla_{\mathbf{B}} f(\mathbf{o}_{k+1}, \mathbf{B}_k)\|_2^2 \geq 2\mu_3 \left[f(\mathbf{o}_{k+1}, \mathbf{B}_k) - f^{*(\mathbf{o})}(\mathbf{o}_{k+1}, \mathbf{B}) \right]. \quad (32)$$

842 Substituting Equation (32) into Equation (31), we obtain,

843
$$f(\mathbf{o}_{k+1}, \mathbf{B}_{k+1}) \leq f(\mathbf{o}_{k+1}, \mathbf{B}_k) - \mu_3\eta_2 \left[f(\mathbf{o}_{k+1}, \mathbf{B}_k) - f^{*(\mathbf{o})}(\mathbf{o}_{k+1}, \mathbf{B}) \right]. \quad (33)$$

845 Subtracting f^* from both sides, we have,

847
$$\begin{aligned} 848 f(\mathbf{o}_{k+1}, \mathbf{B}_{k+1}) - f^* &\leq f(\mathbf{o}_{k+1}, \mathbf{B}_k) - f^* - \mu_3\eta_2 \left[f(\mathbf{o}_{k+1}, \mathbf{B}_k) - f^{*(\mathbf{o})}(\mathbf{o}_{k+1}, \mathbf{B}) \right] \\ 849 &= (1 - \mu_3\eta_2)[f(\mathbf{o}_{k+1}, \mathbf{B}_k) - f^*] + \mu_3\eta_2 \left[f^{*(\mathbf{o})}(\mathbf{o}_{k+1}, \mathbf{B}) - f^* \right]. \end{aligned} \quad (34)$$

851 Next, we combine the results obtained above. Applying Assumption 3 and Lemma 1 to Equation (28), we have,

853
$$f(\mathbf{o}_{k+1}, \mathbf{B}_k) - f^* - 2\sigma \leq (1 - \mu_1\eta_1)[f(\mathbf{o}_k, \mathbf{B}_k) - f^* + 2\sigma] + \frac{\eta_1}{2}\|\nabla_{\mathbf{B}} g(\mathbf{o}_k, \mathbf{B}_k)\|^2, \quad (35)$$

855
$$\begin{aligned} 856 f(\mathbf{o}_{k+1}, \mathbf{B}_k) - f^* &\leq (1 - \mu_1\eta_1)[f(\mathbf{o}_k, \mathbf{B}_k) - f^* + 2\sigma] + \frac{\eta_1}{2}\|\nabla_{\mathbf{B}} g(\mathbf{o}_k, \mathbf{B}_k)\|^2 + 2\sigma \\ 857 &= (1 - \mu_1\eta_1)[f(\mathbf{o}_k, \mathbf{B}_k) - f^*] + 2\sigma(2 - \mu_1\eta_1) + \frac{\eta_1}{2}\|\nabla_{\mathbf{B}} g(\mathbf{o}_k, \mathbf{B}_k)\|^2. \end{aligned} \quad (36)$$

859 Substituting Equation (36) into Equation (34), we obtain,

861
$$\begin{aligned} 862 f(\mathbf{o}_{k+1}, \mathbf{B}_{k+1}) - f^* &\leq (1 - \mu_3\eta_2)(1 - \mu_1\eta_1)[f(\mathbf{o}_k, \mathbf{B}_k) - f^*] + 2\sigma(2 - \mu_1\eta_1)(1 - \mu_3\eta_2) \\ 863 &\quad + \frac{\eta_1}{2}(1 - \mu_3\eta_2)\|\nabla_{\mathbf{B}} g(\mathbf{o}_k, \mathbf{B}_k)\|^2 + \mu_3\eta_2 \left[f^{*(\mathbf{o})}(\mathbf{o}_{k+1}, \mathbf{B}) - f^* \right]. \end{aligned} \quad (37)$$

864 Since $f^{*(\mathbf{o})}(\mathbf{o}_{k+1}, \mathbf{B}) - f^* \leq g^{*(\mathbf{o})}(\mathbf{o}_{k+1}, \mathbf{B}) - g^* + 2\sigma$ and from Assumption 2, we have,
865

$$866 \quad 867 \quad f^{*(\mathbf{o})}(\mathbf{o}_{k+1}, \mathbf{B}) - f^* \leq \frac{\|\nabla_{\mathbf{o}} g^{*(\mathbf{o})}(\mathbf{o}_{k+1}, \mathbf{B})\|^2}{2\mu_2} + 2\sigma. \quad (38)$$

868 Substituting Equation (38) into Equation (36), we obtain,
869

$$870 \quad 871 \quad f(\mathbf{o}_{k+1}, \mathbf{B}_{k+1}) - f^* \leq (1 - \mu_3\eta_2)(1 - \mu_1\eta_1)[f(\mathbf{o}_k, \mathbf{B}_k) - f^*] + 2\sigma(2 - \mu_1\eta_1)(1 - \mu_3\eta_2) \\ 872 \quad 873 \quad + \frac{\eta_1}{2}(1 - \mu_3\eta_2)\|\nabla_{\mathbf{B}} g(\mathbf{o}_k, \mathbf{B}_k)\|^2 + \frac{\mu_3\eta_2\|\nabla_{\mathbf{o}} g^{*(\mathbf{o})}(\mathbf{o}_{k+1}, \mathbf{B})\|^2}{2\mu_2} + 2\sigma\mu_3\eta_2. \quad (39)$$

874 Simplifying yields,
875

$$876 \quad 877 \quad f(\mathbf{o}_{k+1}, \mathbf{B}_{k+1}) - f^* \leq (1 - \mu_3\eta_2)(1 - \mu_1\eta_1)[f(\mathbf{o}_k, \mathbf{B}_k) - f^*] + C, \quad (40)$$

878 where

$$879 \quad 880 \quad C = 2\sigma(1 - \mu_1\eta_1)(1 - \mu_3\eta_2) + 2\sigma + \frac{\eta_1}{2}(1 - \mu_3\eta_2)\|\nabla_{\mathbf{B}} g(\mathbf{o}_k, \mathbf{B}_k)\|^2 \\ 881 \quad 882 \quad + \frac{\mu_3\eta_2}{2\mu_2}\|\nabla_{\mathbf{o}} g^{*(\mathbf{o})}(\mathbf{o}_{k+1}, \mathbf{B})\|^2. \quad (41)$$

883 The above corresponds to the case where both the inner iteration counts of \mathbf{o} and \mathbf{B} are equal to
884 one. We now consider the case where the inner iteration count of \mathbf{o} is N_1 , and that of \mathbf{B} is N_2 .
885 In fact, the above result still holds when the number of inner iterations is not equal to one. This
886 is because, based on Assumptions 1 and 2, and by employing an argument similar to that used in
887 deriving Equation (33), we can establish the following inequality:

$$888 \quad 889 \quad g(\mathbf{o}_{k+1}^{(j_1+1)}, \mathbf{B}_k^{(N_2)}) - g^{*(\mathbf{B})}(\mathbf{o}, \mathbf{B}_k^{(N_2)}) \leq (1 - \mu_1\eta_1) \left[g(\mathbf{o}_{k+1}^{(j_1)}, \mathbf{B}_k^{(N_2)}) - g^{*(\mathbf{B})}(\mathbf{o}, \mathbf{B}_k^{(N_2)}) \right], \quad (42)$$

$$890 \quad 891 \quad f(\mathbf{o}_{k+1}^{(N_1)}, \mathbf{B}_{k+1}^{(j_2+1)}) - f^{*(\mathbf{o})}(\mathbf{o}_{k+1}^{(N_1)}, \mathbf{B}) \leq (1 - \mu_3\eta_2) \left[f(\mathbf{o}_{k+1}^{(N_1)}, \mathbf{B}_{k+1}^{(j_2)}) - f^{*(\mathbf{o})}(\mathbf{o}_{k+1}^{(N_1)}, \mathbf{B}) \right]. \quad (43)$$

892 Since $0 < \eta_1 \leq \min(\frac{1}{L_1}, \frac{1}{L_1\mu_1})$ and $0 < \eta_2 \leq \min(\frac{1}{L_2}, \frac{1}{L_2\mu_3})$, let $\mathbf{o}_k^{(0)} = \mathbf{o}_{k-1}$, $\mathbf{o}_k^{(N_1)} = \mathbf{o}_k$,
893 $\mathbf{B}_k^{(0)} = \mathbf{B}_{k-1}$ and $\mathbf{B}_k^{(N_2)} = \mathbf{B}_k$ we have,
894

$$895 \quad 896 \quad g(\mathbf{o}_{k+1}^{(j_1+1)}, \mathbf{B}_k) < g(\mathbf{o}_{k+1}^{(j_1)}, \mathbf{B}_k), \quad (44)$$

$$897 \quad 898 \quad f(\mathbf{o}_{k+1}, \mathbf{B}_{k+1}^{(j_2+1)}) < f(\mathbf{o}_{k+1}, \mathbf{B}_{k+1}^{(j_2)}). \quad (45)$$

899 By applying the above equation, we obtain,
900

$$902 \quad 903 \quad g(\mathbf{o}_{k+1}, \mathbf{B}_k) = g(\mathbf{o}_{k+1}^{(N_1)}, \mathbf{B}_k) < g(\mathbf{o}_{k+1}^{(1)}, \mathbf{B}_k), \quad (46)$$

$$904 \quad 905 \quad f(\mathbf{o}_{k+1}, \mathbf{B}_{k+1}) = f(\mathbf{o}_{k+1}, \mathbf{B}_{k+1}^{(N_2)}) < f(\mathbf{o}_{k+1}, \mathbf{B}_{k+1}^{(1)}). \quad (47)$$

906 For the case in which the number of inner iterations differs from one, applying Equations (46) and
907 (47) yields a result analogous to Equations (34) and (36), with the distinction that \mathbf{o}_k and \mathbf{B}_k here
908 represent the values at the end of each inner loop. We have,
909

$$910 \quad 911 \quad f(\mathbf{o}_{k+1}, \mathbf{B}_{k+1}) - f^* \leq f(\mathbf{o}_{k+1}, \mathbf{B}_{k+1}^{(1)}) - f^* \\ 912 \quad 913 \quad \leq (1 - \mu_3\eta_2)[f(\mathbf{o}_{k+1}, \mathbf{B}_k) - f^*] + \mu_3\eta_2 \left[f^{*(\mathbf{o})}(\mathbf{o}_{k+1}, \mathbf{B}) - f^* \right], \quad (48)$$

$$914 \quad 915 \quad f(\mathbf{o}_{k+1}, \mathbf{B}_k) - f^* \leq f(\mathbf{o}_{k+1}^{(1)}, \mathbf{B}_k) - f^* \\ 916 \quad 917 \quad \leq (1 - \mu_1\eta_1)[f(\mathbf{o}_k, \mathbf{B}_k) - f^*] + 2\sigma(2 - \mu_1\eta_1) + \frac{\eta_1}{2}\|\nabla_{\mathbf{B}} g(\mathbf{o}_k, \mathbf{B}_k)\|^2. \quad (49)$$

918 Based on Equations (48) and (49), we obtain exactly the same result as in Equation (39).

918 B CONVERT NONLINEAR OPERATION IN LLM

920 **Attention Layer.** The attention architecture of our method is presented as follows:

$$922 \quad \mathbf{Q} \approx \sum_{t=1}^T \mathbf{Q}_{s,t}, \quad \mathbf{K} \approx \sum_{t=1}^T \mathbf{K}_{s,t}, \quad \mathbf{V} \approx \sum_{t=1}^T \mathbf{V}_{s,t}, \quad (50)$$

925 where \mathbf{Q} , \mathbf{K} and \mathbf{V} denote the query \mathbf{Q} , key \mathbf{K} and value \mathbf{V} , and $\mathbf{Q}_{s,t}$, $\mathbf{K}_{s,t}$ and $\mathbf{V}_{s,t}$ denote the
926 spiking query, key and value at timestep t .

927 Then, we need to enable the Activation-Activation (AA) multiplication in attention within SNN,
928 which occurs between the query \mathbf{Q} and key \mathbf{K} as well as attention array $\mathbf{A} = \mathbf{Q}\mathbf{K}$ and value \mathbf{V} .
929 Fortunately, You et al. (2024) have paved the way for such AA multiplication. Specifically, taking
930 the multiplication between query and key as an example, it can be written as:

$$931 \quad \mathbf{A} = \mathbf{Q} \cdot \mathbf{K} \approx \sum_{t=1}^T \mathbf{Q}_{s,t} \cdot \sum_{t=1}^T \mathbf{K}_{s,t} \\ 932 \quad = \sum_{t=1}^T (\mathbf{S}_{Q,t} \cdot \mathbf{K}_{s,t} + \mathbf{Q}_{s,t} \cdot \mathbf{S}_{K,t} - \mathbf{Q}_{s,t} \cdot \mathbf{K}_{s,t}), \quad (51)$$

937 where $\mathbf{S}_{Q,t}$ and $\mathbf{S}_{K,t}$ represent the accumulated spike output of query and key from 1 to t . Therefore,
938 the result of AA multiplication at each time t is $\mathbf{S}_{Q,t} \cdot \mathbf{K}_{s,t} + \mathbf{Q}_{s,t} \cdot \mathbf{S}_{K,t} - \mathbf{Q}_{s,t} \cdot \mathbf{K}_{s,t}$.
939

940 **Spiking Softmax, Spiking RMSNorm and Spiking SiLU Activation.** Inspired by the literature
941 (You et al., 2024), we use the following process to enable Softmax, RMSnorm, and SiLU activation
942 in SNN.

$$943 \quad \mathbf{I}(t) = \mathbf{I}(t-1) + I(t), \quad (52)$$

$$944 \quad \mathbf{O}(t) = \phi(\mathbf{I}(t)), \quad (53)$$

$$945 \quad O(t) = \mathbf{O}(t) - \mathbf{O}(t-1), \quad (54)$$

947 where $\mathbf{I}(t)$ is the accumulated input at t timestep; $I(t)$ is the input at t timestep; $\phi(\cdot)$ is the Softmax,
948 RMSnorm and SiLU activation and $O(t)$ is the output at t timestep.

949 **Spiking MLP.** Except for the linear layers in MLP, the most important operation is the Activation-
950 Activation Hadamard product, which exists between the output of a linear layer and the output of
951 the spiking SiLU function. It can be written as

$$952 \quad \mathbf{A} \odot \mathbf{B} = \sum_{t=1}^T \mathbf{A}_t \odot \sum_{t=1}^T \mathbf{B}_t \quad (55) \\ 953 \quad = \sum_{t=1}^T \left(\mathbf{A}_t \odot \mathbf{B}_t + \sum_{i=1, i \neq t}^T \frac{\mathbf{A}_t \odot \mathbf{B}_i + \mathbf{A}_i \odot \mathbf{B}_t}{2} \right),$$

959 where \mathbf{A} denotes the output of the **up_proj** and \mathbf{B} denotes the output of Spiking SiLU. Therefore,
960 the result of Hadamard product at each time t is $\mathbf{A}_t \odot \mathbf{B}_t + \sum_{i=1, i \neq t}^T \frac{\mathbf{A}_t \odot \mathbf{B}_i + \mathbf{A}_i \odot \mathbf{B}_t}{2}$.
961

962 C ADAPTIVE GRANULARITY ALLOCATION

964 We propose a differentiable adaptive search algorithm for granularity allocation in phase encoding.
965 In particular, we select the optimal granularity allocation based on the data distribution. To achieve
966 this, we perform 10,000 down-sampling operations on the activation values during the training pro-
967 cess of LLaMA-2 and LLaMA-3 in the experiment. Furthermore, we leverage the differentiable
968 search framework presented in (Liu et al., 2018) to compute the Softmax of the different granularity
969 allocation weights, as follows:

$$970 \quad \bar{o}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(\alpha_o)}{\sum_{o' \in \mathcal{O}} \exp(\alpha_{o'})} o(x). \quad (56)$$

972 Here, \mathcal{O} represents the set of granularity candidates, and α_o represents the granularity allocation
 973 coefficients. Based on this, our optimization objective can be formulated as:
 974

$$\min_{\alpha} \mathcal{L}_{MSE}(\alpha; \mathbf{w}), \quad (57)$$

$$\text{s.t. } \mathbf{w}^* = \arg \min_{\mathbf{w}} \mathcal{L}_{MSE}(\mathbf{w}; \alpha), \quad (58)$$

978 where $\mathbf{w}(\mathbf{h}, \theta; \mathbf{B})$ represents the parameters of the SNN neurons. We obtain the optimal architecture
 979 parameter α^* as shown in Algorithm 2, and subsequently retrain the SNN neuron with the optimal
 980 granularity allocation.
 981

Algorithm 2 Differentiable Architecture Search with Adaptive Granularity Allocation

982 1: **Input:** Training dataset \mathbf{X} , neuron parameter $\mathbf{w} = (\mathbf{h}, \theta; \mathbf{B})$, learning rate η_t , optimization
 983 steps N_α .
 984 2: **for** $i = 1, \dots, N_\alpha$ **do**
 985 3: Obtain \mathbf{w}^* by using Alogrithem 1 under $N_1 = N_2 = 1$.
 986 4: Update α by $\alpha = \alpha - \nabla_\alpha \mathcal{L}_{MSE}(\alpha; \mathbf{w}^*, \mathbf{X})$.
 987 5: **end for**
 988 6: **return** α^* .
 989

990
 991 **D MORE EXPERIMENTAL RESULTS**

992 993 **D.1 IMPLEMENTATION DETAILS**

994 We conduct experiments on a server equipped with multiple 80GB NVIDIA A100 GPUs. For the
 995 full-precision ANNs of the LLaMA family, we use open-source models from the HuggingFace and
 996 evaluate their performance under the FP16 setting. For SpikeLLM, we employ the released open-
 997 source implementation and assess its performance in the W4A8 configuration (4-bit weight and 8-
 998 bit activation). **For TTFSFormer, since the original implementation is not available on LLaMA, we
 999 implemented a simplified version by applying time-to-first-spike coding within our code framework.**
 1000

1001 For LAS, since its available open-source implementation is not adapted to the LLaMA model, we
 1002 construct a simplified implementation by setting the SNN neuron parameters as $\theta(t) = h(t) =$
 1003 $d(t) = \tau \cdot 2^{-t}$ and regard it as the special case of our method without optimization. For the same
 1004 reason, we also implement a simplified version of SpikedAttention in our code framework by setting
 1005 the SNN neuron parameters as $\theta(t) = h(t) = d(t) = \tau \cdot 2^{-t}$ and applying the single-spike technique
 1006 (Hwang & Kung, 2024). It is worth noting that under a limited total timestep experimental setting,
 1007 the single-spike technique leads to a collapse in performance. Therefore, we relax this technique to
 1008 allow two spikes instead of one. To handle outliers in LLMs, we apply the Hadamard rotation and
 1009 prefixed outlier tokens techniques introduced in the literature (Chen et al., 2024).
 1010

1011 **D.2 ABLATION STUDY**

1012 **Effectiveness of Multi-Granularity.** To verify the effectiveness of multi-granularity in our pro-
 1013 posed phase coding, we perform an ablation study varying the number of granularities, and the
 1014 results are presented in Table 5. We observe that the best accuracy and perplexity are not achieved
 1015 with a single granularity, which demonstrates the effectiveness of our design. It is worth noting that
 1016 increasing the granularity does not necessarily lead to better results. **When we increase the number
 1017 of granularities, the model can non-uniformly allocate discrete values more flexibly.** The solution
 1018 space with Grain = 2 or 3 strictly contains the Grain = 1 solution space, so, in principle, more gran-
 1019 uilarities can only help. However, in practice, this larger solution space also makes optimization
 1020 more non-convex and prone to local minima. Our ablation studies also confirm exactly this trade-
 1021 off. When we push granularity to the extreme (e.g., setting the number of granularities equal to the
 1022 timestep T), the performance actually is not the best, indicating that excessive granularity makes the
 1023 optimization harder and the solution is more likely to be suboptimal.

1024 **Interaction between the Timestep T and the Number of Granularities.** We observe that the
 1025 effect of granularity depends on the timestep T , and we should study this more systematically.
 1026 Specifically, we provide bases \mathbf{B} and training loss curves for different combinations of timestep and

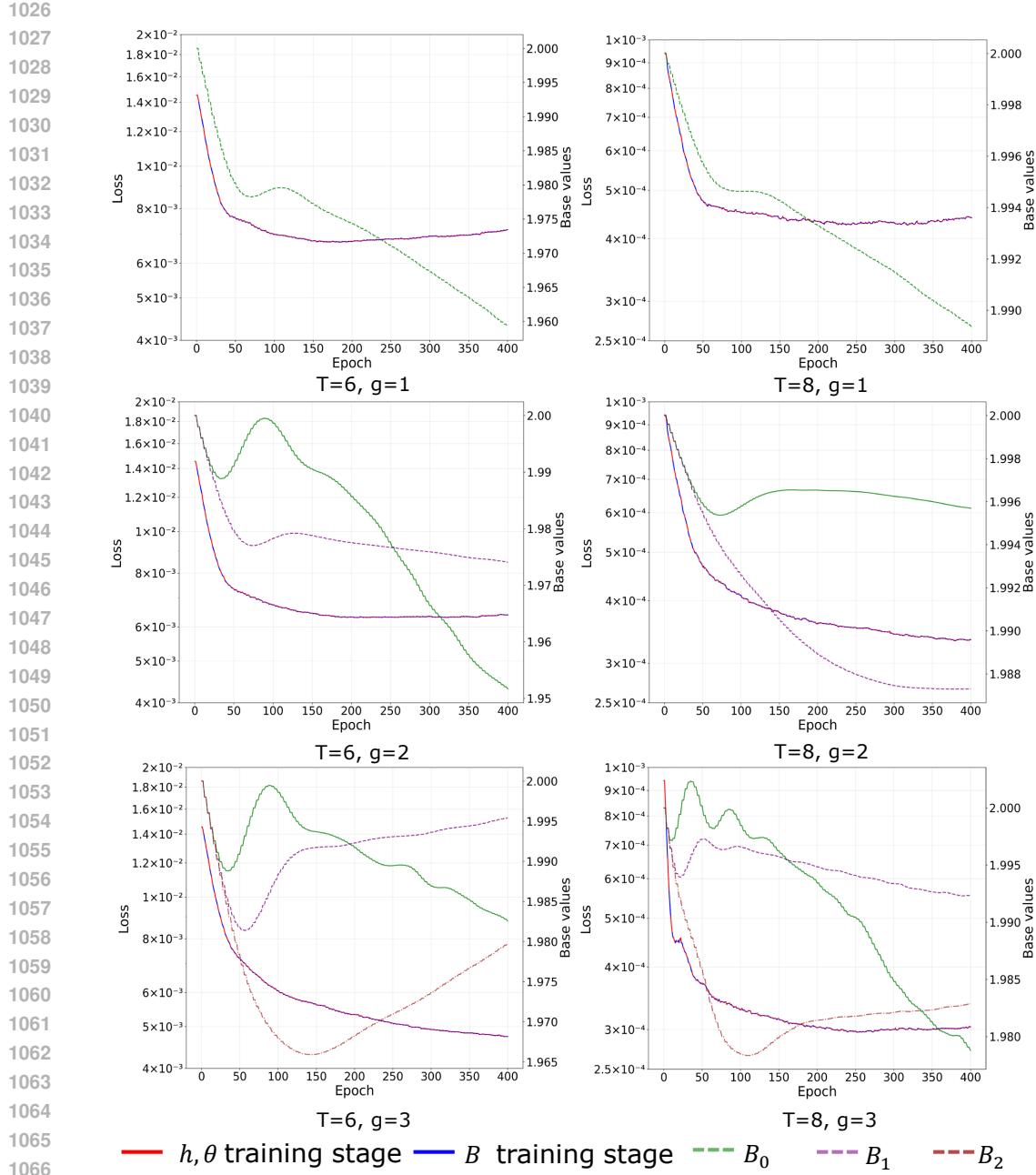


Figure 4: The alternating red and blue curves trace the loss dynamics during staged optimization, with red intervals indicating updates to h and θ , and blue intervals corresponding to B training. Dashed curves denote the evolution of base values across granularities B_0 , B_1 , and B_2 .

granularity, showing how the optimization converges. These curves in Figure 4 clearly illustrate the evolution of B and the training loss during the optimization process under different timesteps and numbers of granularities. Conceptually, in our phase-coding neuron, the number of representable discrete values grows as 2^T . When T is large, the discrete representation is already quite dense, so redistributing these discrete values via multi-granularity provides smaller gains. This explains why, in Tables 1, 2, and 9, the improvement from increasing Grain at a larger T appears modest. In contrast, when T is lower, the total number of discrete values is more limited, so where these values are placed becomes much more critical. In this regime, multi-granularity can reduce conversion error by allocating more resolution to high-density regions of the activation distribution.

1080

1081

Table 5: Ablation study on the number of granularities with $T = 8$.

1082

1083

Models	Grain	Avg. ACC	Avg. PPL
LLaMA-2-7B	1	67.03	7.01
	2	67.17	7.16
	3	67.31	7.68
	T	67.14	7.44
LLaMA-3-8B	1	71.09	7.24
	2	71.32	7.22
	3	71.48	7.28
	T	71.40	7.27

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

Comparison between Joint Optimization and Alternating Optimization. To demonstrate the effectiveness of alternating optimization, we additionally conduct an ablation study using joint optimization. In this setting, we observed a worse downstream performance in Table 6. We believe this is because, without decoupling the two stages, updates to \mathbf{B} and \mathbf{h}, θ interfere with each other. In our method, these parameters play different roles. The bases \mathbf{B} determine the distribution of discrete representable values. By using multiple bases, we shape how discrete values are distributed to better match the activation distribution. The neuron parameters \mathbf{h}, θ determine how a given continuous input is mapped to one of those discrete values, i.e., how the spike dynamics choose which discrete value is used. We explicitly separate them so that our method to effectively minimize the conversion error arising from distribution misalignment. Moreover, from the perspective of the convergence of alternating optimization, the loss function is non-differentiable with respect to \mathbf{h} and θ , so backpropagation for these variables must rely on surrogate gradients, whereas the optimization of \mathbf{B} can directly use the true gradients. Therefore, intuitively, if \mathbf{h}, θ , and \mathbf{B} are optimized simultaneously, the errors introduced by the surrogate gradients will propagate to the updates of \mathbf{B} , thereby amplifying the overall optimization error and reducing the stability of convergence.

Table 6: Results on joint optimization and alternating optimization. “PPL” denotes the perplexity on Wikitext2.

Model	T/Grain	Method	WinoGrande	ArcC	ArcE	PiQA	PPL
LLaMA-2-7B	8/2	Joint	70.09	45.22	73.99	77.86	6.58
		Alter	70.56	46.16	73.99	77.97	6.71
	8/3	Joint	69.85	45.65	73.78	77.69	6.41
		Alter	70.96	46.08	74.33	77.86	7.10
LLaMA-3-8B	6/2	Joint	72.38	47.18	71.38	76.55	7.61
		Alter	73.16	47.87	73.74	77.64	8.04
	6/3	Joint	71.67	47.18	72.39	74.54	7.52
		Alter	73.24	49.23	73.82	76.82	8.53

Decoupling \mathbf{h} and θ from Each Other. In conventional formulations, \mathbf{h} and θ are often tied (e.g., $\mathbf{h} = \theta$), which reduces the degrees of freedom of the neuron dynamics. In our setting, once the discrete values (determined by \mathbf{B}) are fixed, the neuron still needs enough flexibility to shape the mapping from continuous activations to these values. By allowing \mathbf{h} and θ to vary independently, we can increase the expressive power of the neuron dynamics and enable a finer adjustment of the mapping between continuous activations and discrete values. Empirically, as shown in Table 7, we observe that this extra flexibility helps reduce the approximation error between the SNN neuron output and the original ANN activation.

Weight Quantization. We apply weight quantization to the LLaMA-2-7B and recompute the activation distributions under 8-bit and 4-bit weights. As shown in Figure 5, we observe that while quantization slightly changes the exact shape of the distributions, the activations remain highly non-uniform and layer-dependent, so the core motivation of our distribution-aware design still holds. We also evaluate our distribution-aware multi-granularity phase coding under quantized weights, including 8-bit and 4-bit settings. The results in Table 8 show that our approach maintains competitive

1134

1135

Table 7: Results on whether to decouple h and θ . “PPL” denotes the perplexity on WikiText2.

Model	T/Grain	Decouple	WinoGrande	ArcC	ArcE	PiQA	PPL
LLaMA-2-7B	8/2	No	70.24	45.65	74.03	77.86	7.62
		Yes	70.56	46.16	73.99	77.97	6.71
	8/3	No	70.17	45.90	73.86	77.97	6.90
		Yes	70.96	46.08	74.33	77.86	7.10
LLaMA-3-8B	6/2	No	71.98	45.90	71.80	75.03	8.00
		Yes	73.16	47.87	73.74	77.64	8.04
	6/3	No	73.40	47.78	72.26	75.35	7.63
		Yes	73.24	49.23	73.82	76.82	8.53

1141

1142

1143 performance under 8-bit and even 4-bit weights, demonstrating that our method is compatible with
1144 weight quantization.

1145

1146

Table 8: Results on LLaMA-2-7B with weight quantization. “PPL” denotes the perplexity on WikiText2.

Method	T	Weight Bit	WinoGrande	ArcC	ArcE	PiQA	PPL
LLaMA-2-7B	N/A	16	69.06	46.33	74.54	79.05	5.47
Ours (Grain=2)	8	8	70.09	45.48	73.82	77.64	7.56
Ours (Grain=3)	8	8	70.40	45.82	74.16	77.53	7.25
Ours (Grain=2)	8	4	67.80	42.75	71.21	76.88	8.91
Ours (Grain=3)	8	4	68.51	43.26	71.04	77.15	8.41

1160

1161

1162

Table 9: Results on LLaMA-2-13B. “Time Cost” denotes the training time required for the method to obtain the SNN. “Grain” denotes the number of granularities.

PPL Perf. ↓	T	Time Cost	WikiText2	C4	Redpajama	Pile	Avg. PPL
LLaMA-2-13B	N/A	N/A	4.88	6.47	5.19	4.34	5.22
SpikeLLM	8	10h 41m	5.20	6.91	5.57	4.63	5.58
LAS		N/A	18.02	21.82	17.02	11.85	17.18
SpikedAttention	8	2m 35s	8.90	12.97	10.74	8.52	10.28
Ours (Grain=2)		2m 35s	5.07	6.74	5.39	4.51	5.43
Ours (Grain=3)		2m 34s	5.29	7.40	5.91	4.83	5.86
LAS		N/A	5.03	6.76	5.38	4.48	5.41
SpikedAttention	10	3m 05s	6.43	8.54	6.94	5.80	6.93
Ours (Grain=2)		3m 05s	4.90	6.54	5.23	4.38	5.26
Ours (Grain=3)		3m 06s	4.90	6.54	5.23	4.37	5.26
ACC Perf. ↑	T	Time Cost	WinoGrande	ArcC	ArcE	PiQA	Avg. ACC
LLaMA-2-13B	N/A	N/A	72.45	49.15	77.44	80.52	69.89
SpikeLLM	8	10h 41m	69.30	47.27	76.22	79.05	67.96
LAS		N/A	72.77	51.28	77.27	80.14	70.37
SpikedAttention	8	2m 35s	72.38	45.82	74.54	78.07	67.70
Ours (Grain=2)		2m 35s	73.24	50.43	77.31	80.47	70.36
Ours (Grain=3)		2m 34s	73.72	50.60	77.53	80.14	70.50
LAS		N/A	72.53	50.17	77.10	80.85	70.16
SpikedAttention	10	3m 05s	70.40	44.88	74.20	78.24	66.93
Ours (Grain=2)		3m 05s	72.69	49.91	77.06	81.01	70.17
Ours (Grain=3)		3m 06s	72.77	50.00	77.10	80.74	70.15

1187

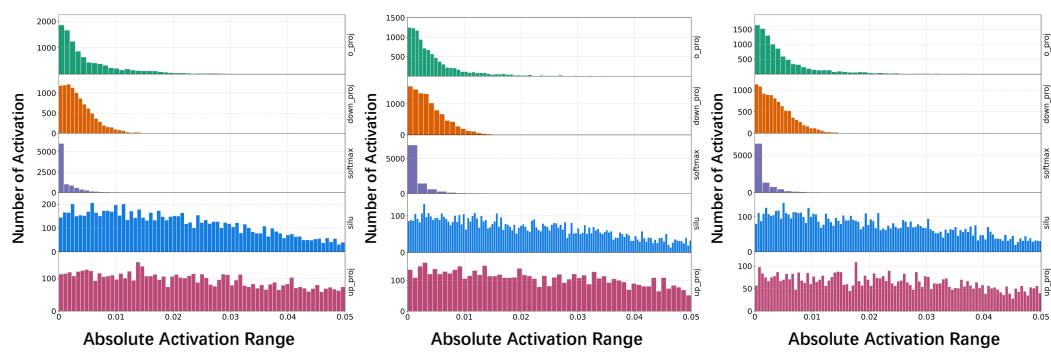


Figure 5: Activation distribution after weight quantization.

D.3 RESULTS ON LARGER-SCALE LLM

In Table 9, we provide a comparison of our method with other baselines on a larger-scale LLM (LLaMA-2-13B). Similar phenomena are observed on LLaMA-2-13B as on LLaMA-2-7B and LLaMA-3-8B, which fully demonstrates that our method remains effective for larger-scale LLMs.

D.4 RESULTS ON MULTIMODAL MODEL

Evaluating our method beyond language models can further strengthen the empirical evidence for its effectiveness. To this end, we have extended our distribution-aware multi-granularity phase coding from LLMs to a multimodal model, which is structurally and functionally different from language models. Specifically, we extend our method to CLIP and evaluate the performance of the spiking CLIP model on image classification tasks. The results in Table 10 show that our method can be successfully applied in this setting as well.

Table 10: Performance Comparison Results on ImageNet, CIFAR10, and CIFAR100 using CLIP model. “FP32” represents the performance of the ANN evaluated under the float32 precision.

Model	Method	T	ImageNet	CIFAR10	CIFAR100	Avg. ACC
ViT-B/32	FP32	N/A	57.71	89.69	64.01	70.47
	LAS	8	55.42	89.27	66.22	70.30
	Ours (Grain=2)	8	56.72	90.48	66.11	71.10
	Ours (Grain=3)	8	56.78	90.23	65.64	70.88
ViT-B/16	FP32	N/A	63.42	90.82	67.07	73.77
	LAS	8	58.87	84.59	59.77	67.74
	Ours (Grain=2)	8	60.68	89.70	65.49	71.96
	Ours (Grain=3)	8	61.22	89.77	65.25	72.08
ViT-L/14	FP32	N/A	71.13	95.82	76.41	81.12
	LAS	8	69.71	88.82	70.29	76.27
	Ours (Grain=2)	8	69.61	94.99	77.61	80.74
	Ours (Grain=3)	8	69.63	94.87	77.17	80.56

D.5 RESULTS ON OTHER LLM

To enhance the completeness of our method, we add additional experiments on Qwen2-7B (Team et al., 2024) using our proposed multi-granularity phase coding. The results in Table 11 show that our method maintains high performance on Qwen2-7B, further demonstrating its effectiveness and scalability.

1242
 1243 Table 11: Results on Qwen2-7B. “Grain” denotes the number of granularities. “PPL” denotes the
 1244 perplexity on Wikitext2.

Method	T	WinoGrande	ArcC	ArcE	PiQA	Avg. Acc	PPL
Qwen2-7B	N/A	72.38	49.91	74.71	81.23	69.56	7.14
LAS	8	70.96	50.60	74.20	80.52	69.07	10.18
SpikedAttention	8	61.96	28.33	48.96	65.13	51.10	>100
Ours (Grain=2)	8	73.40	50.60	74.12	81.01	69.78	7.41
Ours (Grain=3)	8	72.53	50.60	74.07	80.85	69.51	7.42

D.6 MORE RESULTS AT A LOWER Timestep

To further demonstrate that our method is scalable to a lower timestep, we also include experiments with T=6 on Llama-2-7B, and the results are in Table 12. Our method significantly reduces perplexity compared to all baselines without sacrificing accuracy.

1255
 1256 Table 12: Results on LLaMA-2-7B with $T = 6$. “Grain” denotes the number of granularities. “PPL”
 1257 denotes the perplexity on Wikitext2.

Method \uparrow	T	WinoGrande	ArcC	ArcE	PiQA	Avg. Acc	PPL
LLaMA-2-7B	N/A	69.06	46.33	74.54	79.05	67.25	5.47
LAS		67.96	44.28	72.52	77.86	65.65	45.50
SpikedAttention	6	66.69	41.64	70.03	76.77	63.78	50.05
Ours (Grain=2)	6	67.64	45.31	72.26	77.58	65.70	12.19
Ours (Grain=3)		68.98	44.37	72.52	77.86	65.93	10.79

D.7 MORE ENERGY ANALYSIS

For the energy comparison with other Spiking LLM, we report the energy consumption data for SpikeLLM on LLaMA-3-8B. For the energy consumption calculations of both SpikeLLM and our Spiking LLMs, we employ identical configurations and perform a statistical analysis of the MACs and ACs generated by the same components. The results in Table 13 demonstrate that our method achieves lower energy consumption compared to SpikeLLM.

1274
 1275 Table 13: The calculation count and the energy cost of ANN, SpikeLLM, and our method on
 1276 LLaMA-3-8B.

Method	Calculation Count	Energy Cost (J)
ANN	3912.08G MACs + 0.17G ACs	18.00
SpikeLLM	2.79G MACs + 14507.31G ACs	13.87
Ours (Grain=2)	15.87G MACs + 11521.88G ACs	10.44
Ours (Grain=3)	15.87G MACs + 11539.14G ACs	10.46

1291 The memory access and data movement are the primary sources of energy consumption (which we
 1292 refer to as the read/write cost) on existing hardware (Dampfhofer et al., 2022). In order to further
 1293 validate the effectiveness of our method, we expand our energy analysis to explicitly include the
 1294 costs associated with read/write. Specifically, for the calculation of energy consumed by reading
 1295 and writing weights and activations, we refer to the energy estimation approach for both ANN and
 SNN models presented in Hwang et al. (2024). We set the 32-bit read/write energy for weights

1296 and activations, E_{read} and E_{write} , to 5 pJ and conducted a comparison of the energy consumption
 1297 between ANN and our spiking LLM. The total energy equations for ANN and SNN are given by:
 1298

$$1299 E_{total}^{ANN} = 2E_{read} \cdot Count_{read} + E_{write} \cdot Count_{write} + E_{MAC} \cdot Count_{MAC} + E_{AC} \cdot Count_{AC}$$

$$1300$$

$$1301 E_{total}^{SNN} = E_{neuron} + (1 + 1/32)E_{read} \cdot \sum_t Count_{read}^t + 1/32 \cdot E_{write} \cdot \sum_t Count_{write}^t$$

$$1302 + E_{MAC} \cdot Count_{MAC} + E_{AC} \cdot Count_{AC} \quad (59)$$

$$1303$$

$$1304$$

$$1305$$

1306 Where E_{neuron} represents the energy consumption of a neuron, and E_{read} and E_{write} denote the
 1307 energy consumption for read and write operations, respectively. $Count_{read}$ and $Count_{write}$ denote
 1308 the number of read and write operations. The factors of 1/32 in the SNN formula are due to the
 1309 fact that activations in SNNs are represented using the 1-bit spike. Table 14 and Table 17 show
 1310 that memory access accounts for at least 68% of the total energy consumption in both ANN and
 1311 current SNN models, making it the primary source of energy consumption. Nevertheless, thanks to
 1312 the sparsity inherent in SNN computations, our results show that the total energy consumption of
 1313 our method remains over 12% lower than that of the ANN.

$$1314$$

$$1315$$

$$1316$$

Table 14: Energy consumption of LLaMA-3-8B under ANN and our method, including both read
 and write operations.

Method	Read/Write Cost (J)	MAC & AC Cost (J)	Total Energy Cost (J)	Total Energy Cost Relative to ANN
ANN	38.47	18.00	56.47	100.00%
Ours (Grain=2)	38.35	10.44	48.84	86.48%
Ours (Grain=3)	38.93	10.46	49.43	87.53%

Table 15: Relative energy consumption of LLaMA-3-8B under ANN and our spiking LLMs, including both read and write operations.

Method	Proportion of Read/Write Cost	Proportion of MAC & AC Cost
ANN	68.12%	31.88%
Ours (Grain=2)	78.52%	21.38%
Ours (Grain=3)	78.76%	21.16%

1320
 1321
 1322 As supported by Dampfhofer et al. (2022), the energy consumption of SNNs is closely tied to the
 1323 spike firing rate. To address this issue, we propose a masking mechanism. Specifically, we exploit
 1324 the characteristic of phase coding, where the encoding value decreases as the timestep increases.
 1325 Consequently, spikes from neurons that fire early can be considered redundant, and those occurring
 1326 at later timesteps can be discarded. This strategy effectively reduces the spike firing rate by elim-
 1327 inating redundant spikes without significantly impacting performance. As a result, the increased
 1328 activation sparsity leads to a substantial reduction in the overall energy consumption of the SNN.
 1329 In our energy estimation, we also include the cost of the masking operation. To be cautious, we
 1330 upper-bound this cost by assigning the mask the same energy as a full neuron-level computation.
 1331 Nevertheless, even under this assumption, the mask-related cost still accounts for only a small
 1332 fraction of the total SNN energy, as neuron computation contributes relatively little compared with data
 1333 movement and memory access. The lower spike firing rate resulting from the masking operation
 1334 ultimately yields a lower value for \tilde{Count} than for $Count$ in the energy calculation. The results of
 1335 energy consumption with mask are in Table 16 and Table 17.

$$1336$$

$$1337$$

$$1338$$

$$1339$$

$$1340$$

$$1341$$

$$1342$$

$$1343$$

$$1344 E_{total}^{SNN} = 2 \cdot E_{neuron} + (1 + 1/32)E_{read} \cdot \sum_t \tilde{Count}_{read}^t + 1/32 \cdot E_{write} \cdot \sum_t \tilde{Count}_{write}^t$$

$$1345 + E_{MAC} \cdot \tilde{Count}_{MAC} + E_{AC} \cdot \tilde{Count}_{AC} \quad (60)$$

$$1346$$

$$1347$$

1348 Where \tilde{Count}_{read} and \tilde{Count}_{write} represent the number of read and write operations, and
 1349 \tilde{Count}_{MAC} and \tilde{Count}_{AC} represent the number of MAC and AC operations, all after reducing
 the spike firing rate.

1350

1351 Table 16: Energy Consumption of LLaMA-3-8B for ANN and our spiking LLMs with mask, in-
1352 cluding both read and write operations. “PPL” denotes the perplexity on WikiText2.

Method	Avg. ACC	PPL	Read/Write Cost (J)	MAC & AC Cost (J)	Total Energy Cost (J)	Total Energy Cost Relative to ANN
ANN	71.19	6.14	38.47	18.00	56.47	100.00%
Ours (Grain=2)	66.18	8.82	34.02	6.08	40.13	71.03%
Ours (Grain=3)	66.50	9.55	34.35	6.14	40.53	71.77%

1356

1357

1358 Table 17: Relative energy consumption of LLaMA-3-8B under ANN and our spiking LLMs with
1359 mask, including both read and write operations.

Method	Proportion of Read/Write Cost	Proportion of MAC & AC Cost
ANN	68.12%	31.88%
Ours (Grain=2)	84.77%	15.15%
Ours (Grain=3)	84.75%	15.15%

1360

1361

E USE OF LLMs

1362

1363 In this work, LLMs are employed solely for polishing or grammar checking text that is originally
1364 written by us.

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403