
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DISTRIBUTION-AWARE MULTI-GRANULARITY PHASE
CODING: TOWARDS LOWER CONVERSION ERROR FOR
SPIKE-DRIVEN LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking large language models (LLMs) offer significant advantages on neuro-
morphic hardware, yet training them from scratch remains prohibitively expen-
sive. A promising alternative is ANN-to-SNN conversion, which reuses pre-
trained ANN weights while minimizing conversion error. However, existing con-
version frameworks neglect activation distributions, as reflected in SNN neurons
with rate or temporal coding to map uniformly distributed rather than distribution-
aligned discrete values, thus causing latent conversion error arising from distribu-
tion misalignment. To tackle this problem, we propose a distribution-aware multi-
granularity phase coding approach, which achieves reasonable discrete value allo-
cation by minimizing conversion error relative to activation distributions. Specifi-
cally, multi-granularity phase coding extends conventional phase coding with mul-
tiple learnable bases, incorporating representational capacity across different gran-
ularities. Building on this coding scheme, we further propose a novel ANN-to-
SNN conversion paradigm designed towards lower conversion error. In particular,
our paradigm utilizes the activation distributions of hidden layers to sample data
for cost-efficient neuron training, without requiring fine-tuning of model weights.
Theoretically, we provide a convergence guarantee for the neuron training algo-
rithm. Extensive experiments on the LLaMA model confirm the effectiveness of
both our coding scheme and conversion paradigm. Concretely, our spiking LLM
attains the lowest perplexity with ANN-level accuracy, accompanied by a 42%
reduction in energy consumption of MAC and AC operations.

1 INTRODUCTION

Large language models (LLMs), exemplified by GPT-4 (Achiam et al., 2023), Qwen3 (Yang et al.,
2025), and LLaMA3 (Dubey et al., 2024), achieve remarkable performance across a wide range of
natural language processing tasks through training on massive text corpora. However, the trans-
former architecture in LLMs relies on dense matrix multiplications, where intensive Floating-Point
Multiplication and Addition (MAC) operations result in prohibitive energy consumption (Vaswani
et al., 2017; De Vries, 2023). This substantial challenge during training and inference necessitates
the pursuit of energy-efficient paradigms for LLMs. In contrast to conventional neural networks,
spiking neural networks (SNNs) have received increasing attention due to their energy efficiency in
mimicking biological neurons, thereby offering a promising solution. Building on this foundation,
spiking LLMs have recently been developed, showing promise for efficient execution on neuromor-
phic hardware (Xing et al., 2025; Chen et al., 2025a; Zhengzheng & Zhu, 2025).

Research on SNNs has primarily focused on two approaches: direct training and ANN-to-SNN
conversion. Direct training methods (Neftci et al., 2019; Zenke & Vogels, 2021; Lee et al., 2016)
typically adopt surrogate gradients during backpropagation to address the non-differentiability of
spiking neurons. Nevertheless, training SNNs from scratch is prohibitively costly in both time and
resources, particularly at the scale of LLM parameters. In contrast, ANN-to-SNN conversion (Tong
et al., 2022; Hao et al., 2023a; Yang et al., 2022; Chen et al., 2025b) offers a more efficient paradigm,
typically reusing pretrained ANN weights in the spiking model while minimizing conversion error
to achieve effective conversion. Since minimizing conversion error is often less costly than direct
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training, ANN-to-SNN conversion demonstrates greater generality in resource-constrained environ-
ments (Ding et al., 2021).

Unfortunately, there exists the conversion error arising from distribution misalignment, which is
a long-standing inherent problem in such conversions (Datta & Beerel, 2022). However, current
ANN-to-SNN conversion frameworks for LLM tend to overlook non-uniform activation distribu-
tions, leading to latent errors owing to distributional misalignment (Chen et al., 2025b). As shown
in Figure 1, activations within a single layer are generally non-uniformly distributed, and activation
distributions differ across layers. Unfortunately, in the coding schemes of existing spiking LLMs,
rate (Wu et al., 2019; Sengupta et al., 2019) or temporal coding methods (Mostafa, 2017; Zhao et al.,
2025) typically map discrete values by discretizing activation values into uniformly partitioned in-
tervals, rather than aligning with the large-scale non-uniform activation distributions observed in
practice. Furthermore, distinct activation distributions across different components of large models
pose an additional challenge, highlighting the need for a learnable and adaptive framework capable
of handling heterogeneous distributions (Zhang et al., 2018).

Figure 1: Distributions of the absolute activation values
across layers in a large language model. (a) The activa-
tion values of each layer are truncated between 0 and 0.05,
and the histogram reveals the uneven distribution of activa-
tion values. (b) The activation values are divided into 100
groups, with each group representing the average, showing
the uneven distribution trend of activation values.

To address the challenge mentioned
above, we introduce an alternative
coding scheme referred to as phase
coding (Kim et al., 2018; Zhang
et al., 2020) and significantly en-
hance it by proposing distribution-
aware multi-granularity phase cod-
ing. Conventional phase coding
can realize non-uniform allocation of
mapped discrete values by adjusting
the base. Building on this observa-
tion, the proposed distribution-aware
multi-granularity phase coding inte-
grates representational capacities at
different granularities through multi-
ple learnable bases, thereby offering
enhanced flexibility in discrete value
allocation. The final outcome is that
it can achieve a more reasonable dis-
crete value allocation by minimizing distribution-related conversion errors, which is essential for
ensuring the performance of spiking LLMs after conversion.

Furthermore, we develop a novel ANN-to-SNN conversion paradigm built upon the aforementioned
coding scheme. The central component of the paradigm is a cost-efficient alternating optimization
neuron training algorithm, designed to minimize conversion error relative to activation distributions.
Specifically, we tune only the neuron parameters using data pre-sampled from the corresponding
hidden-layer activation distributions, which eliminates the forward and backward propagation of net-
work layers and renders our paradigm highly cost-efficient in conversion. In summary, our paradigm
yields spiking LLMs with both low conversion error and a highly cost-efficient conversion under a
convergence guarantee.

Our contributions are summarized as follows:

• Multi-granularity Phase Coding. We propose a distribution-aware, multi-granularity
phase coding scheme with multiple learnable bases, which enables flexible and adaptive
allocation of discrete value mappings.

• Distribution-Aware Conversion Paradigm. We establish a distribution-aware paradigm
that breaks the uniform discretization of rate and temporal coding, facilitating faithful
ANN-to-SNN conversion.

• Theoretical Convergence Guarantee. We analyze the convergence for the proposed al-
ternating optimization neuron training algorithm, based on the gap between the objective
function before and after smoothing.

• A remarkable Spike-Driven LLM. Our Spiking LLM achieves the lowest perplexity
while preserving ANN-level accuracy, setting new state-of-the-art results, meanwhile re-
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ducing energy consumption of MAC and AC operations by 42.0% compared to its ANN
counterpart.

2 RELATED WORKS

2.1 ANN-TO-SNN CONVERSION

Existing ANN-to-SNN conversion methods are primarily divided into one-stage and two-stage ap-
proaches (Chen et al., 2025a). The former involves not performing any further optimization on the
converted SNN and directly converting the ANN to an SNN model. This approach is commonly
used when the target ANN is built upon ReLU functions, as the output of ReLU can be effectively
approximated by the firing rate of spiking neurons (Cao et al., 2015). Building on the insight dis-
cussed above, both Diehl et al. (2015) and Sengupta et al. (2019) employ normalization techniques
to further improve conversion performance. Additionally, Bu et al. (2023) propose, from a theoreti-
cal perspective, the use of QCFS functions to replace ReLU functions in order to effectively reduce
conversion error. The two-stage approach, on the other hand, focuses on optimizing the converted
SNN to ensure its performance. Hao et al. (2023a) classify the unevenness error into four cases and
propose an optimization strategy based on residual membrane potential to reduce error. Hao et al.
(2023b) focus on addressing the conversion error caused by one additional (or one less) spike by
shifting the initial membrane potential. Chen et al. (2025a) adopt a coarse-to-fine calibration opti-
mization strategy to optimize the converted SNN. However, these approaches either struggle to scale
to transformer-based LLMs or still incur high optimization costs for the converted spiking LLMs.

2.2 SPIKING LLM

Spiking LLMs, noted for their low energy consumption, are gradually emerging as a promising
direction in the field of large-scale models. Despite this promise, research on spiking LLMs re-
mains limited. Early efforts include SpikingBERT (Bal & Sengupta, 2024), which leverages the
average spiking rate of neurons at equilibrium and incorporates knowledge distillation to enhance
both training efficiency and model performance. SpikeGPT (Zhu et al., 2023) adapts RWKV by
combining spiking activations with sequential attention, demonstrating that autoregressive language
generation is feasible within the spiking paradigm. More recently, SpikeLLM (Xing et al., 2025)
has introduced a hybrid co-architecture that integrates SNNs with quantized ANNs, scaling spiking
models to the billion-parameter regime (7–70B) and achieving improved energy efficiency. FAS
(Chen et al., 2025a) enables the conversion of pretrained ANN-based LLMs into spiking counter-
parts through a two-stage calibration, resulting in lower energy consumption and latency. However,
existing Spiking LLM frameworks typically rely on uniform rate coding, which overlooks the non-
uniform distribution of activations and consequently introduces latent conversion error.

3 PRELIMINARY

Spiking coding is a scheme that determines how continuous values are encoded into a sequence of
spikes, with rate coding, temporal coding, and phase coding being the most widely used schemes. In
particular, phase coding combines the characteristics of temporal coding and rate coding, achieving
a higher representational density than other coding schemes under the same total timestep T .

Specifically, similar to temporal coding, where spikes produced at different timesteps t represent
different values, phase coding assigns distinct weights to each t within the total timestep T . Unlike
the uniform phase values induced by the typically employed linear proportion T−t

T in temporal cod-
ing (Rueckauer & Liu, 2018; Han & Roy, 2020), phase coding assigns each timestep t a phase value
B−t, where B is the base of the phase. At the same time, it preserves the multi-spike representation
inherent in rate coding, thereby enhancing the representational capacity within a finite total T . By
combining these advantages, phase coding achieves an expansion of the number of encoded discrete
values to 2T , which reduces the total number of timesteps T in an exponential manner.

The biological manifestation of generic phase coding has been demonstrated by (Montemurro et al.,
2008) and is further advanced in ANN-to-SNN conversion (Hwang & Kung, 2024; Hwang et al.,
2024). Its corresponding neuron dynamic procedure is characterized by the threshold θ(t), reset

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

strength h(t), and output weight d(t), as detailed in the following equation:

v(1) =

T∑
tpre=1

I(tpre), v(t+ 1) = v(t)− h(t)s(t), O(t) = d(t)s(t), (1)

s(t) = Θ
(
v(t)−θ(t)

)
= Θ

(
v(1)−

t−1∑
j=1

h(j)s(j)− θ(t)
)
, (2)

where Θ(·) denotes the Heaviside step function and the initial membrane potential v(1) receives the
output I(tpre) from the pre-layer. For timestep t ∈ {1, 2, . . . , T} of the current neuron, v(t) denotes
the membrane potential, s(t) ∈ {0, 1} denotes the binary spike, O(t) denotes the output signal.
Typically, for the conventional phase coding, h(t), d(t), and θ(t) are specified as B−t as follows:

v(t+ 1) = v(t)−B−ts(t), O(t) = B−ts(t), s(t) = Θ
(
v(t)−B−t

)
. (3)

Notably, the activation value can be approximated within a limited timestep T .

4 METHODOLOGY

In this section, we first explain our motivation from the perspective of information theory. Next, we
introduce our multi-granularity phase coding. Finally, we elaborate on the proposed distribution-
aware ANN-to-SNN conversion paradigm, as shown in Figure 2.
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Figure 2: ANN-to-SNN conversion paradigm based on multi-granularity phase coding. Left: con-
version pipeline with alternating neuron optimization. Right: spiking LLM built on SNN neurons.

4.1 MOTIVATION FROM INFORMATION THEORY

Considering the distribution of activation values, the ANN-to-SNN conversion error can be charac-
terized by the mean squared error as follows:

E =

∫
p(x)

(
x̂− x

)2
dx, (4)

where x̂ denotes the SNN neuron’s approximation of the ANN activation value x. The conversion
error can be regarded as equivalent to the quantization distortion in information theory. From the
information-theoretic perspective, SNN coding is analogous to quantization in its allocation of dis-
crete values. When an SNN employs M allocation intervals, λ(x) represents the relative density of
these intervals. Consequently, the conversion error is equivalent to the quantization distortion, as
formalized in Theorem 1.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 1 (cf., (Gray & Neuhoff, 2002)). For an arbitrary quantizer q, the asymptotic average
distortion with M quantization intervals can be expressed by rewriting Bennett’s integral in terms
of the point density function:

D(q) =

∫
p(x)

(
x− q(x)

)2
dx ≃ 1

12

1

M2

∫
p(x)

λ2(x)
dx, (5)

where p(x) denotes the probability density function (PDF) of the input signal, and λ(x) denotes the
point density function of the quantizer.

To minimize the ANN-to-SNN conversion error, Corollary 1 specifies the optimal allocation princi-
ple, namely assigning larger λ(x) to regions with higher probability density.

Corollary 1. Let D(q) be the asymptotic distortion in Theorem 1. The point density function λ(x)
that minimizes D(q), subject to the normalization constraint

∫
λ(x)dx = 1, is given by:

λ∗(x) =
[p(x)]1/3∫
[p(u)]1/3du

⇒ λ∗(x) ∝ [p(x)]1/3. (6)

In LLMs, the activation distribution p(x) is inherently non-uniform. Consequently, the optimal
allocation function λ∗(x) also exhibits non-uniformity. This implies the necessity of a distribution-
aware coding strategy in SNNs, whereby regions of higher activation density are allocated more
quantization intervals, while regions of lower density receive fewer intervals.

4.2 MULTI-GRANULARITY PHASE CODING

Motivated by this, we introduce multi-granularity phase coding, which adaptively allocates bases
{B1, B2, . . . , Bn} of different granularities to non-uniform activations within a small timestep T .
In particular, the alteration of phase values introduced by our multi-granularity phase coding, relative
to conventional phase coding, is formally defined as follows:

{B−t}Tt=1 → {B−1
1 , B−2

1 , . . . , B−t
2 , B

−(t+1)
2 , . . . , B−T

n }. (7)

This design offers a more flexible discrete value allocation, effectively minimizing the expected
conversion error E. A more intuitive illustration is provided in Figure 3. The non-uniform discrete
value allocation introduced by multi-granularity phase coding allows us to align the mapped discrete
values with the activation distribution by tuning the bases (Figure 3, left). Consequently, intervals
with denser activations are allocated more discrete values rather than being uniformly distributed.
The distinction in conversion error relative to uniform discrete value allocation is illustrated in Figure
3 (right), where the reduction in conversion error can be easily observed from the shaded area.
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Figure 3: Comparison of discrete value allocation and conversion error between multi-granularity
phase coding and rate or temporal coding. The shaded area ER and ER′ represent conversion errors
under different codings.

By incorporating the dynamics from Section 3, we can obtain the neuron dynamic procedure with
multi-granularity phase coding, which is obtained by extending the conventional formulation in
Equation (3) and is formulated as follows:

v(t+ 1) = v(t)− h(t)s(t), O(t) = d(t)s(t), s(t) = Θ
(
v(t)− θ(t)

)
,

{d(t)}Tt=1 = {B−1
1 , B−2

1 , . . . , B−t
2 , B

−(t+1)
2 , . . . , B−T

n }.
(8)
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For clarity, we denote {h(t)}Tt=1, {θ(t)}Tt=1, {d(t)}Tt=1, {Bi}ni=1 as h, θ, d, and B. In contrast to
Equation (3), we remove the constraint θ(t) = h(t) = d(t) and instead treat {h,θ} as learnable
parameters that are decoupled from d. Equation (8) introduces our multi-granularity design, in
which the neuron parameters are no longer constrained to a single base, but instead are constructed
from multiple bases. This generalizes the conventional single-base scheme in Equation (3).

4.3 DISTRIBUTION-AWARE CONVERSION PARADIGM

The proposed spiking LLM architecture is illustrated in Figure 2. By introducing SNN neurons with
multi-granularity phase coding prior to linear layers and matrix operations, activation values are
converted into spike signals, thereby avoiding floating-point matrix multiplications. For the SNN
neuron with multi-granularity phase coding, our objective is to align its discrete value allocation
with the activation distribution while minimizing conversion error, as introduced in Section 4.1.
Toward this end, we consider the following expected conversion error:

min
{h,θ},B

∫
p(x)

(
SN(x; {h,θ},B)− x

)2
dx, (9)

where p(x) is the PDF of activation x, and SN(·) =
∑T

t=1 O(t) is the discrete value obtained by
mapping the activation value through the SNN neuron. In practice, for each neuron, the correspond-
ing activation distribution can be estimated from a batch of input text and then downsampled to
construct a training dataset X composed of activation samples. Ultimately, we formulate the target
problem as an empirical conversion error minimization problem, as follows:

min
{h,θ},B

∥SN(X; {h,θ},B)−X∥2. (10)

To effectively solve the optimization problem formulated in Equation (10), we propose an alternat-
ing optimization neuron training algorithm, as presented in Algorithm 1. Specifically, we alternate
between optimizing {h,θ} and B. Due to the non-differentiability of the Heaviside step function,
updates to {h,θ} are carried out using a sigmoid-based surrogate gradient (Wu et al., 2018). In the
case of a fixed number of granularities, we address timestep allocation through an adaptive granular-
ity allocation method, with full details provided in Appendix C. With Algorithm 1, model weights
do not require fine-tuning, and the neuron training dataset is obtained through pre-sampling. Com-
bined, these eliminate the need for forward and backward propagation through network layers and
restrict propagation to neurons alone, rendering our training algorithm highly cost-efficient. Further-
more, the handling of other nonlinear operations in the model (e.g., RMSNorm, activation–activation
multiplication, Softmax, and SiLU activation function) is provided in Appendix B.

Algorithm 1 Alternating Optimization Neuron Training Algorithm
1: Input: Training dataset X , optimization steps N , N1 and N2, learning rate η1 and η2, neuron

parameters {h(t), θ(t)}Tt=1 and {B−1
1 , B−2

1 , . . . , B−t
2 , B

−(t+1)
2 , . . . , B−T

n }.
2: Initialize {h(0)

0 ,θ
(0)
0 }, B0

0 .
3: for i = 0, · · · , N − 1 do
4: for j = 0, · · · , N1 − 1 do
5: Compute LMSE(h

(j)
i ,θ

(j)
i ;X,B

(0)
i ).

6: Update {h(j+1)
i ,θ

(j+1)
i } = {h(j)

i ,θ
(j)
i } − η1∇̂h,θLMSE(h

(j)
i ,θ

(j)
i ;X,B

(0)
i ).

7: end for
8: Update {h(0)

i+1,θ
(0)
i+1} = {h(N1)

i ,θ
(N1)
i }.

9: for j = 0, · · · , N2 − 1 do
10: Compute LMSE(B

(j)
i ;X,h

(0)
i+1,θ

(0)
i+1).

11: Update B
(j+1)
i = B

(j)
i − η2∇BLMSE(B

(j)
i ;X,h

(0)
i+1,θ

(0)
i+1).

12: end for
13: Update B

(0)
i+1 = B

(N2)
i .

14: end for
15: Output: Neuron parameters {h∗,θ∗}, B∗.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 ANALYSIS

In this section, we first introduce several necessary assumptions and then present the convergence
analysis results of the neuron training algorithm based on activation distributions.

5.1 ASSUMPTIONS

We denote the original objective function ∥SN(X;h,θ,B) − X∥2 by f(h,θ,B), and the
smoothed objective function by g(h,θ,B). In updating h and θ, surrogate gradients are employed
to carry out gradient descent. This process can be regarded as gradient descent utilizing the true
gradient of the smoothed objective function. Based on this perspective, we analyze the convergence
behavior of the alternating optimization scheme. Since the parameters h and θ are optimized simul-
taneously, we introduce the variable o to represent them collectively. A more detailed explanation
of the symbols employed in the analysis is provided in Appendix A.
Assumption 1 (Lipschitz Gradient). There exist constants L1, L2 > 0, for ∀o1,o2 and ∀B1,B2,
such that:

∥∇og(o1,B)−∇og(o2,B)∥ ≤ L1∥o1 − o2∥, (11)
∥∇Bf(o,B1)−∇Bf(o,B2)∥ ≤ L2∥B1 −B2∥. (12)

Assumption 2 (Polyak–Łojasiewicz (PL) condition). There exist constants µ1, µ2, µ3 > 0 such
that:

∥∇g(o,B)∥2 ≥ 2µ1

(
g(o,B)− g∗

)
, (13)

∥∇og(o,B)∥2 ≥ 2µ2

(
g(o,B)− g∗(B)(o,B)

)
, (14)

∥∇Bf(o,B)∥2 ≥ 2µ3

(
f(o,B)− f∗(o)(o,B)

)
, (15)

where g∗ denotes the global minimum value of g(o,B), g∗(B)(o,B) is the minimum of g(o,B)
with B fixed, and f∗(o)(o,B) is the minimum of f(o,B) with o fixed.
Assumption 3. For arbitrary o and B, we have |f(o,B)− g(o,B)| ≤ σ.
Remark 1. Assumptions 1 and 2 are frequently invoked in the theoretical analysis of gradient-
based optimization methods (Malinovsky et al., 2024; Zhou, 2018; Khaled & Richtárik, 2020), while
Assumption 3 ensures that the smoothed loss function does not deviate excessively from the original
function. This requirement is reasonable, as studies on the approximation of step functions have
already demonstrated that the error between a smoothed function and a step function can be made
small (Kyurkchiev & Markov, 2015; Iliev et al., 2015).

5.2 CONVERGENCE RESULTS

Based on the above assumptions, we conduct a convergence analysis of Algorithm 1 and examine
whether the stability of the algorithm is significantly affected by the surrogate gradient.
Theorem 2. Suppose Assumptions 1–3 hold, and let 0 < η1 ≤ min

(
1
L1

, 1
L1µ1

)
, 0 < η2 ≤

min
(

1
L2

, 1
L2µ3

)
, o(0)

k = ok−1, o(N1)
k = ok, B(0)

k = Bk−1, and B
(N2)
k = Bk, then for Algorithm 1,

the following inequality holds:

f(ok+1,Bk+1)− f∗ ≤ (1− µ3η2)(1− µ1η1) [f(ok,Bk)− f∗] + C, (16)

where
C = 2σ(1− µ1η1)(1− µ3η2) + 2σ +

η1
2
(1− µ3η2)∥∇Bg(ok,Bk)∥2

+
µ3η2
2µ2

∥∇og
∗(o)(ok+1,B)∥2.

(17)

Remark 2. Theorem 2 comprises a linear convergence term (1−µ3η2)(1−µ1η1) [f(ok,Bk)− f∗]
and an error term C, resembling the results obtained in analyses such as (Nguyen et al., 2017; Yuan
et al., 2024). We note that the error term is largely determined by the smoothed objective function. A
suitable smoothing technique can ensure that the error constant C remains sufficiently small, thereby
enabling the iterative process of the algorithm to approach the global optimum. The detailed proof
of Theorem 2 can be found in Appendix A.
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6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Baseline. We consider the following three baselines: Full-precision ANN, evaluated under the
zero-shot setting, provides a standard performance reference for spiking LLMs. SpikeLLM (Xing
et al., 2025) integrates SNNs with quantized ANNs to build a spike-driven large language model.
TTFSFormer (Zhao et al., 2025) applies time-to-first-spike coding to transformer architecture and
achieves the spiking transformer based on temporal coding. LAS (Chen et al., 2025b) employs
SNN neurons with θ(t) = h(t) = d(t) = τ · 2−t for ANN-to-SNN conversion, which can be
viewed as a special instance of our method without optimization. SpikedAttention (Hwang et al.,
2024) leverages single-spike phase coding to construct a spiking transformer, and we extend this
design to the LLaMA model in this work. The implementation details of all methods are provided
in Appendix D.1.

Datasets and Metrics. To effectively evaluate different methods, we adopt perplexity and accuracy
as evaluation metrics. For perplexity, we conduct evaluations on Wikitext2 (Merity et al., 2016),
C4 (Raffel et al., 2020), RedPajama (Weber et al., 2024), and Pile (Gao et al., 2020). For accuracy,
we evaluate zero-shot reasoning performance on WinoGrande (Sakaguchi et al., 2021), ArcC, ArcE
(Clark et al., 2018), and PiQA (Bisk et al., 2020). We report the accuracy (acc) for WinoGrande
and the accuracy norm for ArcC, ArcE, and PiQA. All accuracies are measured using lm eval v0.4.2
(Sutawika et al., 2024). All source code required for conducting experiments will be made publicly
available upon publication of the paper.

Table 1: Results on LLaMA-2-7B. “Time Cost” denotes the training time required for the method
to obtain the SNN. “Grain” denotes the number of granularities.

PPL Perf. ↓ T Time Cost Wikitext2 C4 Redpajama Pile Avg. PPL
LLaMA-2-7B N/A N/A 5.47 6.97 5.61 4.63 5.67

SpikeLLM 8 5h 54m 5.86 7.51 6.08 4.97 6.10
TTFSFormer 128 N/A 11.88 16.47 13.18 9.32 12.71

LAS

8

N/A 34.26 40.39 32.18 20.10 31.73
SpikedAttention 2m 02s 19.02 25.05 20.77 14.80 19.91
Ours (Grain=2) 2m 01s 6.71 8.96 7.23 5.74 7.16
Ours (Grain=3) 2m 04s 7.10 9.71 7.80 6.09 7.68

LAS

10

N/A 6.05 7.88 6.37 5.13 6.36
SpikedAttention 2m 28s 11.64 15.47 12.84 9.47 12.36
Ours (Grain=2) 2m 25s 5.50 7.05 5.68 4.67 5.73
Ours (Grain=3) 2m 27s 5.53 7.06 5.69 4.68 5.74

ACC Perf. ↑ T Time Cost WinoGrande ArcC ArcE PiQA Avg. ACC
LLaMA-2-7B N/A N/A 69.06 46.33 74.54 79.05 67.25

SpikeLLM 8 5h 54m 67.40 42.58 71.46 77.75 64.80
TTFSFormer 128 N/A 70.56 44.88 73.11 78.94 66.87

LAS

8

N/A 69.46 45.56 73.65 77.97 66.66
SpikedAttention 2m 02s 68.19 41.38 68.77 77.20 63.89
Ours (Grain=2) 2m 01s 70.56 46.16 73.99 77.97 67.17
Ours (Grain=3) 2m 04s 70.96 46.08 74.33 77.86 67.31

LAS

10

N/A 70.64 45.90 73.95 78.24 67.18
SpikedAttention 2m 28s 67.32 40.10 68.73 76.44 63.15
Ours (Grain=2) 2m 25s 70.48 46.50 73.91 78.29 67.30
Ours (Grain=3) 2m 27s 70.88 46.16 73.78 78.13 67.24

6.2 MAIN RESULTS

We report the results of our method under different granularities, along with comparisons to other
baselines. As shown in Table 1 and 2, our method delivers optimal overall performance by main-
taining accuracy close to that of ANNs alongside low perplexity, highlighting the superiority of our

8
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paradigm over existing baselines. Notably, compared to LAS, which represents a special case of our
method without optimization, our method yields a significant perplexity reduction, validating the
effectiveness of the proposed neuron training algorithm. With respect to SpikedAttention, even with
relaxation of its single-spike phase coding (as described in Appendix D.1), it fails to sustain satis-
factory performance in our limited total timestep experimental setting (T ∈ {6, 8, 10}). Relative to
SpikeLLM, our method demonstrates a substantial advantage in time cost, as its training process en-
tails forward and backward propagation through the decoder layers, whereas our paradigm entirely
eliminates this overhead. For TTFSFormer, our method can achieve comparable performance with
fewer timesteps due to its time-to-first-spike coding. Furthermore, due to the enhanced represen-
tational capacity of multi-granularity phase coding, our method achieves ANN-to-SNN conversion
for LLMs with a limited total timestep. The ablation study and the results on a larger-scale LLM are
provided in the Appendix D.2 and D.3, respectively.

Table 2: Results on LLaMA-3-8B. “Time Cost” denotes the training time required for the method
to obtain the SNN. “Grain” denotes the number of granularities.

PPL Perf. ↓ T Time Cost Wikitext2 C4 Redpajama Pile Avg. PPL
LLaMA-3-8B N/A N/A 6.14 8.88 7.44 5.52 7.00

SpikeLLM 8 6h 13m >100 >100 >100 >100 >100
TTFSFormer 128 N/A 6.72 9.82 8.12 6.03 7.67

LAS

6

N/A 93.13 >100 >100 >100 >100
SpikedAttention 1m 38s >100 >100 >100 83.95 >100
Ours (Grain=2) 1m 36s 8.04 12.25 10.14 7.23 9.42
Ours (Grain=3) 1m 35s 8.53 13.18 10.85 7.73 10.07

LAS

8

N/A 7.06 10.49 8.57 6.51 8.16
SpikedAttention 2m 02s 9.46 14.02 12.08 8.17 10.93
Ours (Grain=2) 2m 01s 6.32 9.14 7.69 5.74 7.22
Ours (Grain=3) 1m 58s 6.37 9.22 7.73 5.79 7.28

ACC Perf. ↑ T Time Cost WinoGrande ArcC ArcE PiQA Avg. ACC
LLaMA-3-8B N/A N/A 72.85 53.33 77.74 80.85 71.19

SpikeLLM 8 6h 13m 69.38 49.23 73.11 78.67 67.60
TTFSFormer 128 N/A 72.69 52.90 77.65 79.33 70.64

LAS

6

N/A 71.19 51.88 73.48 79.33 68.97
SpikedAttention 1m 38s 63.30 32.25 54.00 66.21 53.94
Ours (Grain=2) 1m 36s 73.16 47.87 73.74 77.64 68.10
Ours (Grain=3) 1m 35s 73.24 49.23 73.82 76.82 68.28

LAS

8

N/A 74.82 54.52 77.48 80.74 71.89
SpikedAttention 2m 02s 69.53 49.91 74.33 77.20 67.74
Ours (Grain=2) 2m 01s 72.69 54.35 78.11 80.14 71.32
Ours (Grain=3) 1m 58s 73.09 54.10 78.41 80.30 71.48

6.3 ENERGY ANALYSIS

To estimate energy consumption, we adopt the following theoretical energy estimation approach
according to Rathi & Roy (2020); Li et al. (2021); Zhou et al. (2022); Deng et al. (2024); Zhao et al.
(2025); Wang et al. (2022); Chen et al. (2025a;b),

Etotal = EMAC · CountMAC + EAC · CountAC , (18)

where EMAC and EAC denote the energy consumption of a single MAC and AC operation, re-
spectively, while CountMAC and CountAC denote the counted numbers of MAC and AC opera-
tions during model inference. We measure MAC and AC operations using EMAC ≈ 4.6pJ and
EAC ≈ 0.9pJ , as reported in 45 nm CMOS technology (Horowitz, 2014). The results indicate that,
for a single sample, the ANN-based LLM consumes 18.00 J , whereas our distribution-aware spik-
ing LLM consumes only 10.44∼10.46 J as summarized in Table 3 ,i.e., our spiking LLM achieves
a 42.0% reduction in energy consumption of MAC and AC operations compared to its ANN coun-
terpart. Furthermore, we anticipate that continued progress in neuromorphic hardware will further

9
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enhance the efficiency of our spiking LLM, potentially leading to even larger reductions in both
operations and energy consumption.

Table 3: The calculation count and the energy cost of ANN and our spiking LLMs with T = 6.
Model Method Avg. ACC Avg. PPL Calculation Count Energy Cost (J)

LLaMA-3-8B
ANN 71.19 7.00 3912.08G MACs + 0.17G ACs 18.00

Ours (Grain=2) 68.10 9.42 15.87G MACs + 11521.88G ACs 10.44
Ours (Grain=3) 68.28 10.07 15.87G MACs + 11539.14G ACs 10.46

7 CONCLUSION

To overcome latent conversion error arising from distribution misalignment, we propose multi-
granularity phase coding, enabling SNN neurons to allocate mapped discrete values adaptively with
respect to the activation distribution. Building on this coding scheme, we introduce a novel ANN-
to-SNN conversion paradigm that leverages a cost-efficient alternating optimization neuron training
algorithm to minimize conversion errors with respect to activation distributions. In future research,
we intend to further advance our ANN-to-SNN conversion paradigm based on multi-granularity
phase coding, targeting a smaller total timestep and improved energy efficiency.
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APPENDIX

A THEORETICAL ANALYSIS

A.1 DEFINITION OF NOTATION

Table 4: Notation
Notation Description

f(h,θ,B) Objective function.
g(h,θ,B) Smoothed objective function.
ok or Bk The parameter value at the k-th iteration.
d Output weight parameters of SNN neurons.
B The phase variable to be optimized.
h Reset strength parameters of SNN neurons.
θ Threshold parameters of SNN neurons.
o Treat h and θ as a single parameter o.
g∗(B)(o,B) The minimum of g(o,B) with B fixed.
f∗(o)(o,B) The minimum of f(o,B) with o fixed.
η1 Learning rate for updating h and θ (for updating o).
η2 Learning rate for updating B.
L1 Lipschitz constant of function g(o,B) w.r.t. variable o.
L2 Lipschitz constant of function f(o,B) w.r.t. variable B.
µ PL condition constant.
σ Maximum error between f(o,B) and g(o,B) under identical parameters.

A.2 PROOFS

Lemma 1. If Assumption 3 holds, then |f∗ − g∗| ≤ σ, where f∗ denotes the global minimum value
of f(o,B).

Proof of Lemma 1:

If f∗ = f(oi,Bi) and Assumption 3 hold, we have,

g∗ ≤ g(oi,Bi) ≤ f(oi,Bi) + σ = f∗ + σ. (19)

Similarly, if g∗ = g(oj ,Bj) we have,

f∗ ≤ f(oj ,Bj) ≤ g(oj ,Bj) + σ = g∗ + σ. (20)

So we have,
|f∗ − g∗| ≤ σ. (21)

Proof of Theorem 2:

From Assumption 1, we have,

g(ok+1,Bk) ≤ g(ok,Bk) + ⟨∇og(ok,Bk),ok+1 − ok⟩+
L1

2
∥ok+1 − ok∥22. (22)

Due to ok+1 = ok − η1∇og(ok,Bk), we obtain,

g(ok+1,Bk) ≤ g(ok,Bk)− η1∥∇og(ok,Bk)∥22 +
L1η

2
1

2
∥∇og(ok,Bk)∥22

= g(ok,Bk) + (
L1η

2
1

2
− η1)∥∇og(ok,Bk)∥22.

(23)

Let 0 < η1 ≤ min( 1
L1

, 1
L1µ1

), we have,

g(ok+1,Bk) ≤ g(ok,Bk)−
η1
2
∥∇og(ok,Bk)∥22. (24)
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From Assumption 2, we have,

∥∇g(o,B)∥2 = ∥∇og(o,B)∥2 + ∥∇Bg(o,B)∥2 ≥ 2µ1[g(o,B)− g∗]. (25)

Rearranging the above equation, we have,

∥∇og(o,B)∥2 ≥ 2µ1[g(o,B)− g∗]− ∥∇Bg(o,B)∥2. (26)

Substituting Equation (26) into Equation (24), we obtain,

g(ok+1,Bk) ≤ g(ok,Bk)− µ1η1 [g(ok,Bk)− g∗] +
η1
2
∥∇Bg(ok,Bk)∥2. (27)

Subtracting g∗ from both sides, we have,

g(ok+1,Bk)− g∗ ≤ g(ok,Bk)− g∗ − µ1η1 [g(ok,Bk)− g∗] +
η1
2
∥∇Bg(ok,Bk)∥2

= (1− µ1η1) [g(ok,Bk)− g∗] +
η1
2
∥∇Bg(ok,Bk)∥2.

(28)

Next, we prove the inequality result obtained when updating B. From Assumption 1, we have,

f(ok+1,Bk+1) ≤ f(ok+1,Bk) + ⟨∇Bf(ok+1,Bk),Bk+1 −Bk⟩+
L2

2
∥Bk+1 −Bk∥22. (29)

Due to Bk+1 = Bk − η2∇Bf(ok+1,Bk), we obtain,

f(ok+1,Bk+1) ≤ f(ok+1,Bk)− η2∥∇Bf(ok+1,Bk)∥22 +
L2η

2
2

2
∥∇Bf(ok+1,Bk)∥22

= f(ok+1,Bk) + (
L2η

2
2

2
− η2)∥∇Bf(ok+1,Bk)∥22.

(30)

Let 0 < η2 ≤ min( 1
L2

, 1
L2µ3

), we have,

f(ok+1,Bk+1) ≤ f(ok+1,Bk)−
η2
2
∥∇Bf(ok+1,Bk)∥22. (31)

From Assumption 2, we have,

∥∇Bf(ok+1,Bk)∥22 ≥ 2µ3

[
f(ok+1,Bk)− f∗(o)(ok+1,B)

]
. (32)

Substituting Equation (32) into Equation (31), we obtain,

f(ok+1,Bk+1) ≤ f(ok+1,Bk)− µ3η2

[
f(ok+1,Bk)− f∗(o)(ok+1,B)

]
. (33)

Subtracting f∗ from both sides, we have,

f(ok+1,Bk+1)− f∗ ≤ f(ok+1,Bk)− f∗ − µ3η2

[
f(ok+1,Bk)− f∗(o)(ok+1,B)

]
= (1− µ3η2) [f(ok+1,Bk)− f∗] + µ3η2

[
f∗(o)(ok+1,B)− f∗

]
.

(34)

Next, we combine the results obtained above. Applying Assumption 3 and Lemma 1 to Equation
(28), we have,

f(ok+1,Bk)− f∗ − 2σ ≤ (1− µ1η1) [f(ok,Bk)− f∗ + 2σ] +
η1
2
∥∇Bg(ok,Bk)∥2, (35)

f(ok+1,Bk)− f∗ ≤ (1− µ1η1) [f(ok,Bk)− f∗ + 2σ] +
η1
2
∥∇Bg(ok,Bk)∥2 + 2σ

= (1− µ1η1) [f(ok,Bk)− f∗] + 2σ(2− µ1η1) +
η1
2
∥∇Bg(ok,Bk)∥2.

(36)
Substituting Equation (36) into Equation (34), we obtain,

f(ok+1,Bk+1)− f∗ ≤ (1− µ3η2)(1− µ1η1) [f(ok,Bk)− f∗] + 2σ(2− µ1η1)(1− µ3η2)

+
η1
2
(1− µ3η2)∥∇Bg(ok,Bk)∥2 + µ3η2

[
f∗(o)(ok+1,B)− f∗

]
.

(37)
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Since f∗(o)(ok+1,B)− f∗ ≤ g∗(o)(ok+1,B)− g∗ + 2σ and from Assumption 2, we have,

f∗(o)(ok+1,B)− f∗ ≤ ∥∇og
∗(o)(ok+1,B)∥2

2µ2
+ 2σ. (38)

Substituting Equation (38) into Equation (36), we obtain,

f(ok+1,Bk+1)− f∗ ≤ (1− µ3η2)(1− µ1η1) [f(ok,Bk)− f∗] + 2σ(2− µ1η1)(1− µ3η2)

+
η1
2
(1− µ3η2)∥∇Bg(ok,Bk)∥2 +

µ3η2∥∇og
∗(o)(ok+1,B)∥2

2µ2
+ 2σµ3η2.

(39)
Simplifying yields,

f(ok+1,Bk+1)− f∗ ≤ (1− µ3η2)(1− µ1η1) [f(ok,Bk)− f∗] + C, (40)

where
C = 2σ(1− µ1η1)(1− µ3η2) + 2σ +

η1
2
(1− µ3η2)∥∇Bg(ok,Bk)∥2

+
µ3η2
2µ2

∥∇og
∗(o)(ok+1,B)∥2.

(41)

The above corresponds to the case where both the inner iteration counts of o and B are equal to
one. We now consider the case where the inner iteration count of o is N1, and that of B is N2.
In fact, the above result still holds when the number of inner iterations is not equal to one. This
is because, based on Assumptions 1 and 2, and by employing an argument similar to that used in
deriving Equation (33), we can establish the following inequality:

g(o
(j1+1)
k+1 ,B

(N2)
k )− g∗(B)(o,B

(N2)
k ) ≤ (1− µ1η1)

[
g(o

(j1)
k+1,B

(N2)
k )− g∗(B)(o,B

(N2)
k )

]
,

(42)

f(o
(N1)
k+1 ,B

(j2+1)
k+1 )− f∗(o)(o

(N1)
k+1 ,B) ≤ (1− µ3η2)

[
f(o

(N1)
k+1 ,B

(j2)
k+1)− f∗(o)(o

(N1)
k+1 ,B)

]
.

(43)
Since 0 < η1 ≤ min( 1

L1
, 1
L1µ1

) and 0 < η2 ≤ min( 1
L2

, 1
L2µ3

), let o(0)
k = ok−1, o(N1)

k = ok,

B
(0)
k = Bk−1 and B

(N2)
k = Bk we have,

g(o
(j1+1)
k+1 ,Bk) < g(o

(j1)
k+1,Bk), (44)

f(ok+1,B
(j2+1)
k+1 ) < f(ok+1,B

(j2)
k+1). (45)

By applying the above equation, we obtain,

g(ok+1,Bk) = g(o
(N1)
k+1 ,Bk) < g(o

(1)
k+1,Bk), (46)

f(ok+1,Bk+1) = f(ok+1,B
(N2)
k+1 ) < f(ok+1,B

(1)
k+1). (47)

For the case in which the number of inner iterations differs from one, applying Equations (46) and
(47) yields a result analogous to Equations (34) and (36), with the distinction that ok and Bk here
represent the values at the end of each inner loop. We have,

f(ok+1,Bk+1)− f∗ ≤ f(ok+1,B
(1)
k+1)− f∗

≤ (1− µ3η2) [f(ok+1,Bk)− f∗] + µ3η2

[
f∗(o)(ok+1,B)− f∗

]
,

(48)

f(ok+1,Bk)− f∗ ≤ f(o
(1)
k+1,Bk)− f∗

≤ (1− µ1η1) [f(ok,Bk)− f∗] + 2σ(2− µ1η1) +
η1
2
∥∇Bg(ok,Bk)∥2.

(49)
Based on Equations (48) and (49), we obtain exactly the same result as in Equation (39).
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B CONVERT NONLINEAR OPERATION IN LLM

Attention Layer. The attention architecture of our method is presented as follows:

Q ≈
T∑

t=1

Qs,t, K ≈
T∑

t=1

Ks,t, V ≈
T∑

t=1

Vs,t, (50)

where Q, K and V denote the query Q, key K and value V, and Qs,t, Ks,t and Vs,t denote the
spiking query, key and value at timestep t.

Then, we need to enable the Activation-Activation (AA) multiplication in attention within SNN,
which occurs between the query Q and key K as well as attention array A = QK and value V.
Fortunately, You et al. (2024) have paved the way for such AA multiplication. Specifically, taking
the multiplication between query and key as an example, it can be written as:

A = Q ·K ≈
T∑

t=1

Qs,t ·
T∑

t=1

Ks,t

=

T∑
t=1

(SQ,t ·Ks,t +Qs,t · SK,t −Qs,t ·Ks,t) , (51)

where SQ,t and SK,t represent the accumulated spike output of query and key from 1 to t. Therefore,
the result of AA multiplication at each time t is SQ,t ·Ks,t +Qs,t · SK,t −Qs,t ·Ks,t.

Spiking Softmax, Spiking RMSNorm and Spiking SiLU Activation. Inspired by the literature
(You et al., 2024), we use the following process to enable Softmax, RMSnorm, and SiLU activation
in SNN.

I(t) = I(t− 1) + I(t), (52)
O(t) = ϕ(I(t)), (53)
O(t) = O(t)−O(t− 1), (54)

where I(t) is the accumulated input at t timestep; I(t) is the input at t timestep; ϕ(·) is the Softmax,
RMSnorm and SiLU activation and O(t) is the output at t timestep.

Spiking MLP. Except for the linear layers in MLP, the most important operation is the Activation-
Activation Hadamard product, which exists between the output of a linear layer and the output of
the spiking SiLU function. It can be written as

A⊙B =

T∑
t=1

At ⊙
T∑

t=1

Bt (55)

=

T∑
t=1

At ⊙Bt +

T∑
i=1,i̸=t

At ⊙Bi +Ai ⊙Bt

2

 ,

where A denotes the output of the up proj and B denotes the output of Spiking SiLU. Therefore,
the result of Hadamard product at each time t is At ⊙Bt +

∑T
i=1,i̸=t

At⊙Bi+Ai⊙Bt

2 .

C ADAPTIVE GRANULARITY ALLOCATION

We propose a differentiable adaptive search algorithm for granularity allocation in phase encoding.
In particular, we select the optimal granularity allocation based on the data distribution. To achieve
this, we perform 10,000 down-sampling operations on the activation values during the training pro-
cess of LLaMA-2 and LLaMA-3 in the experiment. Furthermore, we leverage the differentiable
search framework presented in (Liu et al., 2018) to compute the Softmax of the different granularity
allocation weights, as follows:

o(x) =
∑
o∈O

exp(αo)∑
o′∈O exp(αo′)

o(x). (56)
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Here, O represents the set of granularity candidates, and αo represents the granularity allocation
coefficients. Based on this, our optimization objective can be formulated as:

min
α

LMSE(α;w), (57)

s.t. w∗ = argmin
w

LMSE(w;α), (58)

where w(h,θ;B) represents the parameters of the SNN neurons. We obtain the optimal architecture
parameter α∗ as shown in Algorithm 2, and subsequently retrain the SNN neuron with the optimal
granularity allocation.

Algorithm 2 Differentiable Architecture Search with Adaptive Granularity Allocation
1: Input: Training dataset X , neuron patameter w = (h,θ;B), learning rate ηt, optimization

steps Nα.
2: for i = 1, · · · , Nα do
3: Obtain w∗ by using Alogrithem 1 under N1 = N2 = 1.
4: Update α by α = α−∇αLMSE(α;w∗,X).
5: end for
6: return α∗.

D MORE EXPERIMENTAL RESULTS

D.1 IMPLEMENTATION DETAILS

We conduct experiments on a server equipped with multiple 80GB NVIDIA A100 GPUs. For the
full-precision ANNs of the LLaMA family, we use open-source models from the HuggingFace and
evaluate their performance under the FP16 setting. For SpikeLLM, we employ the released open-
source implementation and assess its performance in the W4A8 configuration (4-bit weight and 8-
bit activation). For TTFSFormer, since the original implementation is not available on LLaMA, we
implemented a simplified version by applying time-to-first-spike coding within our code framework.
For LAS, since its available open-source implementation is not adapted to the LLaMA model, we

construct a simplified implementation by setting the SNN neuron parameters as θ(t) = h(t) =
d(t) = τ · 2−t and regard it as the special case of our method without optimization. For the same
reason, we also implement a simplified version of SpikedAttention in our code framework by setting
the SNN neuron parameters as θ(t) = h(t) = d(t) = τ ·2−t and applying the single-spike technique
(Hwang & Kung, 2024). It is worth noting that under a limited total timestep experimental setting,
the single-spike technique leads to a collapse in performance. Therefore, we relax this technique to
allow two spikes instead of one. To handle outliers in LLMs, we apply the Hadamard rotation and
prefixed outlier tokens techniques introduced in the literature (Chen et al., 2024).

D.2 ABLATION STUDY

Effectiveness of Multi-Granularity. To verify the effectiveness of multi-granularity in our pro-
posed phase coding, we perform an ablation study varying the number of granularities, and the
results are presented in Table 5. We observe that the best accuracy and perplexity are not achieved
with a single granularity, which demonstrates the effectiveness of our design. It is worth noting that
increasing the granularity does not necessarily lead to better results. When we increase the number
of granularities, the model can non-uniformly allocate discrete values more flexibly. The solution
space with Grain = 2 or 3 strictly contains the Grain = 1 solution space, so, in principle, more gran-
ularities can only help. However, in practice, this larger solution space also makes optimization
more non-convex and prone to local minima. Our ablation studies also confirm exactly this trade-
off. When we push granularity to the extreme (e.g., setting the number of granularities equal to the
timestep T ), the performance actually is not the best, indicating that excessive granularity makes the
optimization harder and the solution is more likely to be suboptimal.

Interaction between the Timestep T and the Number of Granularities. We observe that the
effect of granularity depends on the timestep T , and we should study this more systematically.
Specifically, we provide bases B and training loss curves for different combinations of timestep and
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T=6, g=2

T=6, g=3

T=8, g=1

T=8, g=2

T=8, g=3

ℎ,𝜃𝜃 training stage 𝐵𝐵 training stage 𝐵𝐵0 𝐵𝐵1 𝐵𝐵2

T=6, g=1

Figure 4: The alternating red and blue curves trace the loss dynamics during staged optimization,
with red intervals indicating updates to h and θ, and blue intervals corresponding to B training.
Dashed curves denote the evolution of base values across granularities B0, B1, and B2.

granularity, showing how the optimization converges. These curves in Figure 4 clearly illustrate the
evolution of B and the training loss during the optimization process under different timesteps and
numbers of granularities. Conceptually, in our phase-coding neuron, the number of representable
discrete values grows as 2T . When T is large, the discrete representation is already quite dense,
so redistributing these discrete values via multi-granularity provides smaller gains. This explains
why, in Tables 1, 2, and 9, the improvement from increasing Grain at a larger T appears modest. In
contrast, when T is lower, the total number of discrete values is more limited, so where these values
are placed becomes much more critical. In this regime, multi-granularity can reduce conversion
error by allocating more resolution to high-density regions of the activation distribution.
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Table 5: Ablation study on the number of granularities with T = 8.
Models Grain Avg. ACC Avg. PPL

LLaMA-2-7B

1 67.03 7.01
2 67.17 7.16
3 67.31 7.68
T 67.14 7.44

LLaMA-3-8B

1 71.09 7.24
2 71.32 7.22
3 71.48 7.28
T 71.40 7.27

Comparison between Joint Optimization and Alternating Optimization. To demonstrate the
effectiveness of alternating optimization, we additionally conduct an ablation study using joint op-
timization. In this setting, we observed a worse downstream performance in Table 6. We believe
this is because, without decoupling the two stages, updates to B and h,θ interfere with each other.
In our method, these parameters play different roles. The bases B determine the distribution of
discrete representable values. By using multiple bases, we shape how discrete values are distributed
to better match the activation distribution. The neuron parameters h,θ determine how a given con-
tinuous input is mapped to one of those discrete values, i.e., how the spike dynamics choose which
discrete value is used. We explicitly separate them so that our method to effectively minimize the
conversion error arising from distribution misalignment. Moreover, from the perspective of the con-
vergence of alternating optimization, the loss function is non-differentiable with respect to h and θ,
so backpropagation for these variables must rely on surrogate gradients, whereas the optimization of
B can directly use the true gradients. Therefore, intuitively, if h, θ, and B are optimized simulta-
neously, the errors introduced by the surrogate gradients will propagate to the updates of B, thereby
amplifying the overall optimization error and reducing the stability of convergence.

Table 6: Results on joint optimization and alternating optimization. “PPL” denotes the perplexity
on Wikitext2.

Model T /Grain Method WinoGrande ArcC ArcE PiQA PPL

LLaMA-2-7B
8/2 Joint 70.09 45.22 73.99 77.86 6.58

Alter 70.56 46.16 73.99 77.97 6.71

8/3 Joint 69.85 45.65 73.78 77.69 6.41
Alter 70.96 46.08 74.33 77.86 7.10

LLaMA-3-8B
6/2 Joint 72.38 47.18 71.38 76.55 7.61

Alter 73.16 47.87 73.74 77.64 8.04

6/3 Joint 71.67 47.18 72.39 74.54 7.52
Alter 73.24 49.23 73.82 76.82 8.53

Decoupling h and θ from Each Other. In conventional formulations, h and θ are often tied (e.g.,
h = θ), which reduces the degrees of freedom of the neuron dynamics. In our setting, once the
discrete values (determined by B) are fixed, the neuron still needs enough flexibility to shape the
mapping from continuous activations to these values. By allowing h and θ to vary independently,
we can increase the expressive power of the neuron dynamics and enable a finer adjustment of the
mapping between continuous activations and discrete values. Empirically, as shown in Table 7, we
observe that this extra flexibility helps reduce the approximation error between the SNN neuron
output and the original ANN activation.

Weight Quantization. We apply weight quantization to the LLaMA-2-7B and recompute the ac-
tivation distributions under 8-bit and 4-bit weights. As shown in Figure 5, we observe that while
quantization slightly changes the exact shape of the distributions, the activations remain highly non-
uniform and layer-dependent, so the core motivation of our distribution-aware design still holds.
We also evaluate our distribution-aware multi-granularity phase coding under quantized weights, in-
cluding 8-bit and 4-bit settings. The results in Table 8 show that our approach maintains competitive
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Table 7: Results on whether to decouple h and θ. “PPL” denotes the perplexity on Wikitext2.
Model T /Grain Decouple WinoGrande ArcC ArcE PiQA PPL

LLaMA-2-7B
8/2 No 70.24 45.65 74.03 77.86 7.62

Yes 70.56 46.16 73.99 77.97 6.71

8/3 No 70.17 45.90 73.86 77.97 6.90
Yes 70.96 46.08 74.33 77.86 7.10

LLaMA-3-8B
6/2 No 71.98 45.90 71.80 75.03 8.00

Yes 73.16 47.87 73.74 77.64 8.04

6/3 No 73.40 47.78 72.26 75.35 7.63
Yes 73.24 49.23 73.82 76.82 8.53

performance under 8-bit and even 4-bit weights, demonstrating that our method is compatible with
weight quantization.

Table 8: Results on LLaMA-2-7B with weight quantization. “PPL” denotes the perplexity on Wiki-
text2.

Method T Weight Bit WinoGrande ArcC ArcE PiQA PPL
LLaMA-2-7B N/A 16 69.06 46.33 74.54 79.05 5.47

Ours (Grain=2) 8 8 70.09 45.48 73.82 77.64 7.56
Ours (Grain=3) 70.40 45.82 74.16 77.53 7.25
Ours (Grain=2) 8 4 67.80 42.75 71.21 76.88 8.91
Ours (Grain=3) 68.51 43.26 71.04 77.15 8.41

Table 9: Results on LLaMA-2-13B. “Time Cost” denotes the training time required for the method
to obtain the SNN. “Grain” denotes the number of granularities.

PPL Perf. ↓ T Time Cost Wikitext2 C4 Redpajama Pile Avg. PPL
LLaMA-2-13B N/A N/A 4.88 6.47 5.19 4.34 5.22

SpikeLLM 8 10h 41m 5.20 6.91 5.57 4.63 5.58
LAS

8

N/A 18.02 21.82 17.02 11.85 17.18
SpikedAttention 2m 35s 8.90 12.97 10.74 8.52 10.28
Ours (Grain=2) 2m 35s 5.07 6.74 5.39 4.51 5.43
Ours (Grain=3) 2m 34s 5.29 7.40 5.91 4.83 5.86

LAS

10

N/A 5.03 6.76 5.38 4.48 5.41
SpikedAttention 3m 05s 6.43 8.54 6.94 5.80 6.93
Ours (Grain=2) 3m 05s 4.90 6.54 5.23 4.38 5.26
Ours (Grain=3) 3m 06s 4.90 6.54 5.23 4.37 5.26

ACC Perf. ↑ T Time Cost WinoGrande ArcC ArcE PiQA Avg. ACC
LLaMA-2-13B N/A N/A 72.45 49.15 77.44 80.52 69.89

SpikeLLM 8 10h 41m 69.30 47.27 76.22 79.05 67.96
LAS

8

N/A 72.77 51.28 77.27 80.14 70.37
SpikedAttention 2m 35s 72.38 45.82 74.54 78.07 67.70
Ours (Grain=2) 2m 35s 73.24 50.43 77.31 80.47 70.36
Ours (Grain=3) 2m 34s 73.72 50.60 77.53 80.14 70.50

LAS

10

N/A 72.53 50.17 77.10 80.85 70.16
SpikedAttention 3m 05s 70.40 44.88 74.20 78.24 66.93
Ours (Grain=2) 3m 05s 72.69 49.91 77.06 81.01 70.17
Ours (Grain=3) 3m 06s 72.77 50.00 77.10 80.74 70.15
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Figure 5: Activation distribution after weight quantization.

D.3 RESULTS ON LARGER-SCALE LLM

In Table 9, we provide a comparison of our method with other baselines on a larger-scale LLM
(LLaMA-2-13B). Similar phenomena are observed on LLaMA-2-13B as on LLaMA-2-7B and
LLaMA-3-8B, which fully demonstrates that our method remains effective for larger-scale LLMs.

D.4 RESULTS ON MULTIMODAL MODEL

Evaluating our method beyond language models can further strengthen the empirical evidence for its
effectiveness. To this end, we have extended our distribution-aware multi-granularity phase coding
from LLMs to a multimodal model, which is structurally and functionally different from language
models. Specifically, we extend our method to CLIP and evaluate the performance of the spiking
CLIP model on image classification tasks. The results in Table 10 show that our method can be
successfully applied in this setting as well.

Table 10: Performance Comparison Results on ImageNet, CIFAR10, and CIFAR100 using CLIP
model. “FP32” represents the performance of the ANN evaluated under the float32 precision.

Model Method T ImageNet CIFAR10 CIFAR100 Avg. ACC

ViT-B/32

FP32 N/A 57.71 89.69 64.01 70.47
LAS 8 55.42 89.27 66.22 70.30

Ours (Grain=2) 8 56.72 90.48 66.11 71.10
Ours (Grain=3) 8 56.78 90.23 65.64 70.88

ViT-B/16

FP32 N/A 63.42 90.82 67.07 73.77
LAS 8 58.87 84.59 59.77 67.74

Ours (Grain=2) 8 60.68 89.70 65.49 71.96
Ours (Grain=3) 8 61.22 89.77 65.25 72.08

ViT-L/14

FP32 N/A 71.13 95.82 76.41 81.12
LAS 8 69.71 88.82 70.29 76.27

Ours (Grain=2) 8 69.61 94.99 77.61 80.74
Ours (Grain=3) 8 69.63 94.87 77.17 80.56

D.5 RESULTS ON OTHER LLM

To enhance the completeness of our method, we add additional experiments on Qwen2-7B (Team
et al., 2024) using our proposed multi-granularity phase coding. The results in Table 11 show that
our method maintains high performance on Qwen2-7B, further demonstrating its effectiveness and
scalability.
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Table 11: Results on Qwen2-7B. “Grain” denotes the number of granularities. “PPL” denotes the
perplexity on Wikitext2.

Method T WinoGrande ArcC ArcE PiQA Avg. Acc PPL
Qwen2-7B N/A 72.38 49.91 74.71 81.23 69.56 7.14

LAS 8 70.96 50.60 74.20 80.52 69.07 10.18
SpikedAttention 8 61.96 28.33 48.96 65.13 51.10 >100
Ours (Grain=2) 8 73.40 50.60 74.12 81.01 69.78 7.41
Ours (Grain=3) 8 72.53 50.60 74.07 80.85 69.51 7.42

D.6 MORE RESULTS AT A LOWER TIMESTEP

To further demonstrate that our method is scalable to a lower timestep, we also include experiments
with T=6 on Llama-2-7B, and the results are in Table 12. Our method significantly reduces perplex-
ity compared to all baselines without sacrificing accuracy.

Table 12: Results on LLaMA-2-7B with T = 6. “Grain” denotes the number of granularities. “PPL”
denotes the perplexity on Wikitext2.

Method ↑ T WinoGrande ArcC ArcE PiQA Avg. Acc PPL
LLaMA-2-7B N/A 69.06 46.33 74.54 79.05 67.25 5.47

LAS

6

67.96 44.28 72.52 77.86 65.65 45.50
SpikedAttention 66.69 41.64 70.03 76.77 63.78 50.05
Ours (Grain=2) 67.64 45.31 72.26 77.58 65.70 12.19
Ours (Grain=3) 68.98 44.37 72.52 77.86 65.93 10.79

D.7 MORE ENERGY ANALYSIS

For the energy comparison with other Spiking LLM, we report the energy consumption data for
SpikeLLM on LLaMA-3-8B. For the energy consumption calculations of both SpikeLLM and our
Spiking LLMs, we employ identical configurations and perform a statistical analysis of the MACs
and ACs generated by the same components. The results in Table 13 demonstrate that our method
achieves lower energy consumption compared to SpikeLLM.

Table 13: The calculation count and the energy cost of ANN, SpikeLLM, and our method on
LLaMA-3-8B.

Method Calculation Count Energy Cost (J)
ANN 3912.08G MACs + 0.17G ACs 18.00

SpikeLLM 2.79G MACs + 14507.31G ACs 13.87
Ours (Grain=2) 15.87G MACs + 11521.88G ACs 10.44
Ours (Grain=3) 15.87G MACs + 11539.14G ACs 10.46

The memory access and data movement are the primary sources of energy consumption (which we
refer to as the read/write cost) on existing hardware (Dampfhoffer et al., 2022). In order to further
validate the effectiveness of our method, we expand our energy analysis to explicitly include the
costs associated with read/write. Specifically, for the calculation of energy consumed by reading
and writing weights and activations, we refer to the energy estimation approach for both ANN and
SNN models presented in Hwang et al. (2024). We set the 32-bit read/write energy for weights
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and activations, Eread and Ewrite, to 5 pJ and conducted a comparison of the energy consumption
between ANN and our spiking LLM. The total energy equations for ANN and SNN are given by:

EANN
total =2Eread · Countread + Ewrite · Countwrite + EMAC · CountMAC + EAC · CountAC

ESNN
total =Eneuron + (1 + 1/32)Eread ·

∑
t

Counttread + 1/32 · Ewrite ·
∑
t

Counttwrite

+ EMAC · CountMAC + EAC · CountAC

(59)

Where Eneuron represents the energy consumption of a neuron, and Eread and Ewrite denote the
energy consumption for read and write operations, respectively. Countread and Countwrite denote
the number of read and write operations. The factors of 1/32 in the SNN formula are due to the
fact that activations in SNNs are represented using the 1-bit spike. Table 14 and Table 17 show
that memory access accounts for at least 68% of the total energy consumption in both ANN and
current SNN models, making it the primary source of energy consumption. Nevertheless, thanks to
the sparsity inherent in SNN computations, our results show that the total energy consumption of
our method remains over 12% lower than that of the ANN.

Table 14: Energy consumption of LLaMA-3-8B under ANN and our method, including both read
and write operations.

Method Read/Write Cost (J) MAC & AC Cost (J) Total Energy Cost (J) Total Energy Cost Relative to ANN
ANN 38.47 18.00 56.47 100.00%

Ours (Grain=2) 38.35 10.44 48.84 86.48%
Ours (Grain=3) 38.93 10.46 49.43 87.53%

Table 15: Relative energy consumption of LLaMA-3-8B under ANN and our spiking LLMs, includ-
ing both read and write operations.

Method Proportion of Read/Write Cost Proportion of MAC & AC Cost
ANN 68.12% 31.88%

Ours (Grain=2) 78.52% 21.38%
Ours (Grain=3) 78.76% 21.16%

As supported by Dampfhoffer et al. (2022), the energy consumption of SNNs is closely tied to the
spike firing rate. To address this issue, we propose a masking mechanism. Specifically, we exploit
the characteristic of phase coding, where the encoding value decreases as the timestep increases.
Consequently, spikes from neurons that fire early can be considered redundant, and those occurring
at later timesteps can be discarded. This strategy effectively reduces the spike firing rate by elim-
inating redundant spikes without significantly impacting performance. As a result, the increased
activation sparsity leads to a substantial reduction in the overall energy consumption of the SNN.
In our energy estimation, we also include the cost of the masking operation. To be cautious, we
upper-bound this cost by assigning the mask the same energy as a full neuron-level computation.
Nevertheless, even under this assumption, the mask-related cost still accounts for only a small frac-
tion of the total SNN energy, as neuron computation contributes relatively little compared with data
movement and memory access. The lower spike firing rate resulting from the masking operation
ultimately yields a lower value for ˜Count than for Count in the energy calculation. The results of
energy consumption with mask are in Table 16 and Table 17.

ESNN
total =2 · Eneuron + (1 + 1/32)Eread ·

∑
t

˜Count
t

read + 1/32 · Ewrite ·
∑
t

˜Count
t

write

+ EMAC · ˜CountMAC + EAC · ˜CountAC

(60)
Where ˜Countread and ˜Countwrite represent the number of read and write operations, and

˜CountMAC and ˜CountAC represent the number of MAC and AC operations, all after reducing
the spike firing rate.
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Table 16: Energy Consumption of LLaMA-3-8B for ANN and our spiking LLMs with mask, in-
cluding both read and write operations. “PPL” denotes the perplexity on Wikitext2.

Method Avg. ACC PPL Read/Write Cost (J) MAC & AC Cost (J) Total Energy Cost (J) Total Energy Cost Relative to ANN
ANN 71.19 6.14 38.47 18.00 56.47 100.00%

Ours (Grain=2) 66.18 8.82 34.02 6.08 40.13 71.03%
Ours (Grain=3) 66.50 9.55 34.35 6.14 40.53 71.77%

Table 17: Relative energy consumption of LLaMA-3-8B under ANN and our spiking LLMs with
mask, including both read and write operations.

Method Proportion of Read/Write Cost Proportion of MAC & AC Cost
ANN 68.12% 31.88%

Ours (Grain=2) 84.77% 15.15%
Ours (Grain=3) 84.75% 15.15%

E USE OF LLMS

In this work, LLMs are employed solely for polishing or grammar checking text that is originally
written by us.
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