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Abstract

Sample-efficient reinforcement learning (RL) methods capable of learning directly
from raw sensory data without the use of human-crafted representations would
open up real-world applications in robotics and control. Recent advances in visual
RL have shown that learning a latent representation together with existing RL
algorithms closes the gap between state-based and image-based training. However,
image-based training is still significantly sample-inefficient with respect to learning
in 3D continuous control problems (for example, robotic manipulation) compared
to state-based training. In this study, we propose an effective model-free off-policy
RL method for 3D robotic manipulation that can be trained in an end-to-end manner
from multimodal raw sensory data obtained from a vision camera and a robot’s
joint encoders, without the need for human-crafted representations. Notably, our
method is capable of learning a latent multimodal representation and a policy in
an efficient, joint, and end-to-end manner from multimodal raw sensory data. Our
method, which we dub MERL: Multimodal End-to-end Reinforcement Learning,
results in a simple but effective approach capable of significantly outperforming
both current state-of-the-art visual RL and state-based RL methods with respect
to sample efficiency, learning performance, and training stability in relation to 3D
robotic manipulation tasks from DeepMind Control.

1 Introduction

Deep reinforcement learning (deep RL), the effective combination of RL and deep learning, has
allowed RL methods to attain remarkable results across a wide range of domains, including board
and video games under discrete action space (Mnih et al., 2015; Silver et al., 2017; Vinyals et al.,
2019) and robotics and control under continuous action space (Levine et al., 2016; Zhu et al., 2020;
Kalashnikov et al., 2021; Ibarz et al., 2021; Kroemer et al., 2021). Many deep RL studies use
human-crafted representations, for it is commonly known that state-based training operating on a
coordinate state is significantly more sample-efficient than raw sensory data–based training (for
example, image-based training). However, the use of human-crafted representations poses several
major limitations and issues for 3D robotic manipulation: (a) human-crafted representations cannot
perfectly represent the robot environment; (b) in the case of real-world applications, a separate
module for environmental perception is required to obtain the environment state; and (c) state-based
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training based on human-crafted representations is not capable of using a neural network architecture
repeatedly for different tasks, even for small variations in the environment such as changes in the
number, size, or shape of objects.

Over the last three years, the RL community has made significant headway on these limitations and
issues by significantly improving sample efficiency in image-based training (Hafner et al., 2019a,b,
2020, 2022; Lee et al., 2020a; Srinivas et al., 2020; Yarats et al., 2020, 2021a,b,c). A key insight
of such studies is that the learning of better low-dimensional representations from image pixels is
achieved through an autoencoder (Yarats et al., 2021c), variational inference (Hafner et al., 2019a,b,
2020, 2022; Lee et al., 2020a), contrastive learning (Srinivas et al., 2020; Yarats et al., 2021b), or
data augmentation (Yarats et al., 2020, 2021a), which in turn has helped to improve sample efficiency
significantly. Recently, some visual RL studies have solved 3D continuous control problems such
as quadruped and humanoid locomotion tasks from the DeepMind Control (DMC) suite, which in
turn has helped to bridge the gap between state-based and image-based training (Hafner et al., 2020;
Yarats et al., 2021a). Despite such significant progress in visual RL, image-based training is still
notably sample inefficient with respect to learning in 3D continuous control problems (for example,
robotic manipulation) compared to state-based training.

In this paper, we propose an effective deep RL method for 3D robotic manipulation, which we
dub MERL: Multimodal End-to-end Reinforcement Learning. MERL is a simple but effective
model-free RL method that can be trained in an end-to-end manner from two different types of raw
sensory data (RGB images and proprioception) having a multimodality that differs in dimensionality
and value range, without the need for human-crafted representations. Notably, MERL is capable of
learning a latent multimodal representation and a policy in an efficient, joint, and end-to-end manner
from multimodal raw sensory data. Compared to current state-of-the-art visual RL and state-based RL
methods, MERL provides significant improvements in sample efficiency, learning performance, and
training stability in relation to three 3D robotic manipulation tasks from DMC (jaco reach duplo, jaco
move box, and jaco lift box) (Tunyasuvunakool et al., 2020). To the best of our knowledge, MERL
is the first model-free off-policy method not only to learn a latent multimodal representation and a
policy in an efficient, joint, and end-to-end manner from multimodal raw sensory data, but also to
show a new state-of-the-art performance by significantly outperforming both current state-of-the-art
visual RL and state-based RL methods with respect to sample efficiency, learning performance, and
training stability.

The main contributions of the paper can be summarized as follows: (1) the introduction of an end-
to-end approach learning directly from multimodal raw sensory data for the efficient learning of
a policy for use in the field of 3D robotic manipulation; (2) a demonstration of the fact that the
approach significantly outperforms current state-of-the-art visual RL and state-based RL methods
with respect to sample efficiency, learning performance, and training stability in relation to three
3D robotic manipulation tasks from DMC; and (3) the provision of a deep RL method capable of
learning a latent multimodal representation and a policy in an efficient, joint, and end-to-end manner
from multimodal raw sensory data.

2 Related work

2.1 Reinforcement Learning for 3D Robotic Manipulation

Deep RL has seen widespread success across a variety of domains, including board and video games
and robotics and control (Mnih et al., 2015; Silver et al., 2017; Vinyals et al., 2019; Levine et al.,
2016; Zhu et al., 2020; Kalashnikov et al., 2021; Ibarz et al., 2021; Kroemer et al., 2021). In recent
years, a number of deep RL methods have been successfully applied to 3D robotic manipulation
tasks ranging from ‘easy’ (for example, reach target) to ‘hard’ (for example, assembly) (Yamada
et al., 2020; Lee et al., 2019b, 2021b; Nam et al., 2022). However, many such methods require
hand-engineered components for perception, state estimation, and low-level control, for they learn
from human-crafted representations. Such methods are commonly referred to as state-based RL.

Over the last three years, visual RL that learns directly from image pixels has been greatly advanced
and has seen significant improvements in sample efficiency in 3D continuous control problems, which
in turn has helped to bridge the gap between state-based and image-based training (Hafner et al.,
2019a,b, 2020, 2022; Srinivas et al., 2020; Yarats et al., 2020, 2021a,b,c; Wu et al., 2022). A key
insight of such studies is that the learning of better low-dimensional representations from image pixels
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is achieved through various techniques such as an autoencoder, variational inference, contrastive
learning, or data augmentation. Currently, DrQ-v2 (Yarats et al., 2021a) shows a state-of-the-art
performance in visual RL studies by solving complex 3D locomotion tasks from the DMC suite
(Tassa et al., 2018) such as humanoid locomotion, previously unattained by model-free visual RL.

In this study, we propose MERL, a deep RL method for 3D robotic manipulation capable of learning
a latent multimodal representation and a policy in an efficient, joint, and end-to-end manner from
multimodal raw sensory data, including RGB images and proprioception. Here, the RGB images
and proprioception are obtained from a fixed vision camera and a robot’s joint encoders, respectively.
Experimental results on 3D robotic manipulation tasks from DMC (Tunyasuvunakool et al., 2020)
show that MERL significantly improves sample efficiency compared to state-based RL and DrQ-v2
(Yarats et al., 2021a), the current state-of-the-art visual RL.

2.2 Representation Learning for Multimodal Inputs

The complementary nature of heterogeneous sensor modalities, such as vision, audio, language,
haptic, range, and proprioceptive data, has previously been explored with respect to perception and
decision-making. For instance, many studies have explored the correlation between such different
modalities, including the correlation between visual and auditory data in relation to speech recognition
(Yang et al., 2017; Afouras et al., 2018) or sound source localization (Tian et al., 2018; Owens &
Efros, 2018); the correlation between visual and haptic data for grasping (Calandra et al., 2018; Narita
& Kroemer, 2021) or manipulation (Lee et al., 2019a, 2020b, 2021a); the correlation between visual
and tactile data for object tracking (Yu & Rodriguez, 2018; Lambert et al., 2019) or shape completion
(Wang et al., 2018); and the correlation between visual and ranging data for robot navigation (Liu
et al., 2017; Cai et al., 2020). While many of these studies have contributed to improvements in
perception performance through multimodal representation learning, in this study, we are interested
in improving the performance of RL through multimodal representation learning; in particular, the
efficient joint learning of a latent multimodal representation and a policy.

In addition, some neuroscience studies have proved that the interdependence and concurrency
of different sensory inputs aid perception and manipulation (Edelman, 1987; Lacey & Sathian,
2016; Bohg et al., 2017). Accordingly, we use two heterogeneous sensory data: RGB images and
proprioception (for example, joint angles and velocities) to efficiently learn a policy for 3D robotic
manipulation.

3 Background

3.1 End-to-End Reinforcement Learning from Multimodal Raw Sensory Data

We formulate continuous control problems on the basis of multimodal raw sensory data (that is,
RGB image and proprioception) as an infinite-horizon Markov decision process (MDP) (Bellman,
1957). In such a setting, we stack three consecutive prior RGB images to properly approximate the
environment’s underlying state (Mnih et al., 2013). Accordingly, such an MDP can be described as
a tuple (O,A, P,R, γ, p0), where O = {Oimage,Oprop} denotes the state space, including the three
consecutive high-dimensional RGB images, Oimage, and the low-dimensional proprioception vector,
Oprop; A denotes the action space; P : O×A → ∆(O) denotes the transition dynamics that define a
probability distribution over the next state given the current state and action; R : O × A → [0, 1]
denotes the reward function that maps the current state and action to a reward; γ ∈ [0, 1) denotes
a discount factor; and p0 ∈ ∆(O) denotes the probability distribution of the initial state o0. The
goal is to find a policy, π : O → ∆(A), that maximizes the expected discounted sum of rewards,
Eπ [

∑∞
t=1 γ

trt], where o0 ∼ p0, and ∀t we have at ∼ π(· | ot), ot+1 ∼ p(· | ot, at), and rt =
R(ot, at).

3.2 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015) is an off-policy actor–critic RL
algorithm for continuous control that concurrently learns a Q-function, Qϕ, and a deterministic policy,
πθ. For this, DDPG uses Q-learning (Watkins & Dayan, 1992) to learnQϕ by minimizing the one-step
Bellman residual Jϕ(D) = E(ot,at,rt,ot+1)∼D

[
(Qϕ(ot, at)− rt − γQϕ̄(ot+1, πθ(ot+1)))

2
]
. The
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policy πθ is learned by employing Deterministic Policy Gradient (DPG) (Silver et al., 2014) and
maximizing Jθ(D) = Eot∼D [Qϕ(ot, πθ(ot))], where πθ(ot) approximates argmaxaQϕ(ot, a). Here,
D is a replay buffer of environment transitions and ϕ̄ is an exponential moving average of the weights.
DDPG is amenable to incorporate n-step returns when estimating temporal difference (TD) error
beyond a single step. In practice, n-step returns allow for faster reward propagation and have been
previously used in policy gradient and Q-learning methods (Hessel et al., 2018; Barth-Maron et al.,
2018; Li & Faisal, 2021).

3.3 Soft Actor-Critic

Soft actor-critic (SAC) (Haarnoja et al., 2018a,b) is an off-policy actor–critic RL algorithm for
continuous control problems that concurrently learns a Q-function, Qϕ, a stochastic policy, πθ, and
a temperature, α, on the basis of a maximum-entropy framework. For this, SAC performs soft
policy evaluation and improvement steps at each iteration, with the goal of maximizing a trade-off
between expected return and entropy using the following γ-discounted maximum-entropy objective:
E(ot,at)∼D [R(ot, at) + αH(π(· | ot))], where α is the temperature that balances between optimizing
for the reward and for the stochasticity of the policy.

3.4 Image Augmentation in Reinforcement Learning

Image augmentation techniques have been commonly used in computer vision research not only to
avoid overfitting, but also to achieve state-of-the-art performance (Shorten & Khoshgoftaar, 2019).
Recently, in visual RL, DrQ-v2 (Yarats et al., 2021a), which is an improvement on DrQ (Yarats et al.,
2020), provides a new state-of-the-art performance in relation to 3D locomotion tasks from the DMC
suite (Tassa et al., 2018) by adding image augmentation in the form of random shifts. The use of
such image augmentation techniques is now an essential factor in achieving a new state-of-the-art
performance in image-based training (Srinivas et al., 2020; Schwarzer et al., 2020; Yarats et al., 2020,
2021a; Hansen & Wang, 2021).

4 MERL: Multimodal End-to-End Reinforcement Learning

In this section, we describe MERL, an effective deep RL method for 3D robotic manipulation;
specifically, a model-free off-policy actor–critic RL algorithm that can be trained in an end-to-end
manner from multimodal raw sensory data (high-dimensional RGB images and a low-dimensional
proprioception vector). Figure 1 illustrates our method (MERL), which learns a latent multimodal
representation and a policy in an efficient, joint, and end-to-end manner from multimodal raw sensory
data. Here, MERL uses an image augmentation technique and a convolutional neural network (CNN)
to encode the images; a multi-layer perception (MLP) to encode the proprioception; an MLP and
layer normalization with scaling to learn the latent multimodal representation from the encoded visual
and proprioceptive representations; and actor–critic networks to learn the policy.

4.1 Multimodal Representation Learning for 3D Robotic Manipulation

Replay Buffer Unlike in visual RL such as DrQ-v2 or state-based RL such as DDPG and SAC, our
method stores transition (ot,at, rt, γt,ot+1), including multimodal observations, in the replay buffer,
for we use two different types of raw sensory data (RGB images and proprioception). Regarding the
transition, ot denotes a multimodal observation (three consecutive prior RGB images, oimage

t , and
a proprioception vector, oprop

t ) at time t; at denotes the robot’s action (for example, joint torques)
at time t; rt denotes the reward at time t; γt denotes a discount factor at time t; and ot+1 denotes a
multimodal observation (three consecutive prior RGB images, oimage

t+1 , and a proprioception vector,
oprop
t+1) at time t+ 1. Regarding the proprioception vector, it can include the joint positions, velocities,

or torques of the robotic arm and hand or the position or rotation of the robot’s end-effector, or all of
the above.

Image Augmentation A deep neural network is a powerful tool with which to learn a latent
representation from high-dimensional data; however, such a tool requires a substantial amount of
training data. The computer vision community has made great headway regarding this challenge by
using various image augmentation techniques (Shorten & Khoshgoftaar, 2019). In this study, we
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Figure 1: Our method (MERL) learns a latent multimodal representation and a policy in an efficient,
joint, and end-to-end manner from multimodal raw sensory data: high-dimensional RGB images and
a low-dimensional proprioception vector. A new state-of-the-art performance comes from a careful
configuration of multimodal representation learning combined with data-augmented RL.

apply a random shift image augmentation technique to image observations of the environment, as
in DrQ-v2. Specifically, we pad each side of an 84×84 image with four repeating boundary pixels.
Next, we replace each repeated pixel value with the average of the four nearest pixel values (that
is, we apply bilinear interpolation to the shifted image). Finally, we select a random 84×84 crop,
yielding the original image shifted by ±4 pixels.

Image Encoder The augmented images, ôimage, obtained by means of the random shift augmenta-
tion technique, are embedded into a low-dimensional latent vector, rimage, by means of a CNN encoder.
Regarding the CNN encoder, we use the same architecture as in DrQ (Yarats et al., 2020), which was
first introduced in SAC+AE (Yarats et al., 2021c). This is due to the fact that DrQ has successfully
shown a range of encoders of differing architecture and capacity to perform equally well on continu-
ous control problems in the case where a random shift augmentation technique is applied to original
image observations. The encoding process can be concisely formulated as rimage = fξ(aug(o

image)),
where fξ denotes the image encoder, aug denotes the random shift augmentation, and oimage denotes
the original image observation.

Proprioception Encoder Regarding the proprioception encoder, we use a simple MLP. The encod-
ing process can be concisely summarized as rprop = gζ(o

prop), where gζ denotes the proprioception
encoder and oprop denotes the original proprioception observation. Note here that the best perfor-
mance is achieved when the proprioception encoder is set as the identity encoder. This is due to
the fact that the proprioception is already well-encoded by itself (see Appendix C.1 for more details).

Multimodal Fusion MERL uses two different types of raw sensory data as input: the RGB images
from a fixed vision camera and the proprioception from the joint encoders of the robot arm and hand.
The heterogeneous nature of this data requires us to use domain-specific encoders to obtain the unique
characteristics of each modality, which we then fuse into a single latent multimodal representation
vector, rmm, of dimension d.

For visual feedback, we stack three consecutive prior RGB images, apply the random shift augmenta-
tion technique to the stacked images, normalize the resulting augmented images, and use a CNN to
encode the normalized images into a latent representation vector, rimage. For proprioception, we use
an MLP to encode the proprioception into a latent representation vector, rprop. For multimodal fusion,
we use an MLP and layer normalization with scaling to produce a low-dimensional scaled latent
vector, of which the range is (−1, 1) for each modality. Each scaled latent vector is concatenated to
produce a single latent multimodal representation vector, rmm of dimension d. The multimodal fusion
process can be succinctly summarized as rmm = hψ(r

image, rprop), where rimage = fξ(aug(o
image))

denotes the encoded visual representation from the RGB images and rprop = gζ(o
prop) denotes the

encoded proprioceptive representation from the proprioception.
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4.2 Model-Free Actor–Critic Reinforcement Learning

Although SAC has been the de facto off-policy RL algorithm for many RL methods over the past
few years, it is prone to suffering from policy entropy collapse. Recently, DrQ-v2 showed that using
DDPG instead of SAC as a learning algorithm leads to better performance (that is, more robustness
and more stability) in relation to the tasks from the DMC suite, including 3D continuous control
problems. For this reason, we opt for DDPG as a backbone actor–critic RL algorithm to learn a
policy from a latent multimodal representation. As in DrQ-v2, we also augment DDPG with n-step
returns to estimate TD error: the augmentation leads to faster learning progress by accelerating
reward propagation. Here, we opt for augmenting DDPG with 3-step returns. For the augmentation,
we sample a mini-batch of transitions, τ = (ot,at, rt:t+n−1,ot+n), from the replay buffer, D. In
addition, we use clipped double Q-learning to reduce over-estimation bias in the target value. For the
learning, we train two Q-functions, Qϕ1

and Qϕ2
, by minimizing the following two losses:

LQ(ϕk, ψcritic, ξ, ζ,D) = E(ot,at,rt:t+n−1,ot+n)∼D
[
(Qϕk

(rmm_c
t ,at)− y)2

]
∀k ∈ {1, 2}, (1)

where TD target, y, is defined as follows:

y =

n−1∑
i=0

γirt+i + γn min
k=1,2

Qϕ̄k
(rmm_c
t+n ,at+n),

where rmm_c
t = hψcritic(fξ(aug(o

image
t )), gζ(o

prop
t )), rmm_c

t+n = hψcritic(fξ(aug(o
image
t+n )), gζ(o

prop
t+n)),

at = πθ(r
mm_a
t ) + ϵ, and at+n = πθ(r

mm_a
t+n ) + ϵ. Here, ϵ represents exploration noise sampled

from clip(N (0, σ2),−c, c), which is similar to TD3 (Fujimoto et al., 2018); ϕ̄1 and ϕ̄2 represent
the exponential moving averages of the weights for the Q target networks; and ψcritic represents the
multimodal fusion weights for the critic. The final version of MERL uses decoupled multimodal
fusion networks for the actor and critic, hψactor and hψcritic , respectively. We note here that we use
the most recent weights of ξ for the image encoder, ζ for the proprioception encoder, and ψ for the
multimodal fusion, to encode ot and ot+n. Finally, we train the deterministic actor, πθ, using DPG
by maximizing the expected returns, as follows:

Lπ(θ, ψactor,D) = −Eot∼D

[
min
k=1,2

Qϕk
(rmm_c
t ,at)

]
, (2)

where rmm_a
t = hψactor(fξ(aug(o

image
t )), gζ(o

prop
t )) and at = πθ(r

mm_a
t ) + ϵ. Here, ψactor represents

the multimodal fusion weights for the actor. We note here that we prevent the actor’s gradients from
updating the image and proprioception encoders, for SAC+AE found that this in fact hinders the
agent’s performance.

5 Experiments

In this section, we provide an empirical evaluation of MERL in relation to three 3D robotic manipula-
tion tasks from DMC (jaco reach duplo, jaco move box, and jaco lift box) (Tunyasuvunakool et al.,
2020). We first present a comparison to prior methods, including current state-of-the-art visual RL
and state-based RL methods, with respect to sample efficiency, learning performance, and training
stability. We then present an ablation study that guided the final version of MERL. We believe that
MERL is the first deep RL method capable of learning a latent multimodal representation and a policy
in an efficient, joint, and end-to-end manner from multimodal raw sensory data in relation to 3D
robotic manipulation tasks from DMC.

5.1 Setup

Environment Setup We consider an environment for 3D robotic manipulation that provides
multimodal raw sensory data as observation. In this context, we consider learning directly from
multimodal observations, including RGB images and proprioception. Here, the RGB images represent
stacks of three consecutive RGB images of size 84×84, stacked along the channel dimension to
enable inference of dynamic information such as velocity and acceleration, and the proprioception
represents joint angles and velocities for the robotic arm and hand. The action space is bounded by
(−1, 1).
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Figure 2: We compare MERL to both current state-of-the-art visual RL and state-based RL methods
in relation to three 3D robotic manipulation tasks from DMC (jaco reach duplo, jaco move box, and
jaco lift box). MERL demonstrates superior sample efficiency, significantly outperforms leading
model-free RL baselines, and shows more stable training performance.

Task Setup We design a set of three 3D robotic manipulation tasks from DMC (jaco reach duplo,
jaco move box, and jaco lift box) to include two different types of raw sensory data (that is, RGB
images obtained from a fixed vision camera and proprioception obtained from a robot’s joint encoders)
as observation, where task success requires joint reasoning over visual and proprioceptive feedback.
In addition, for each task, we randomize the configuration of the initial positions of the robot and the
box at the beginning of each episode, during both training and testing, to enhance the robustness and
generalization of the model.

Reward Design We adopt a staged, structured, and multi-component reward function to guide the
RL algorithm, which simplifies the challenge of exploration and leads to effective policy learning
(Lee et al., 2020b; Yu et al., 2020). The reward function, R, is a combination of a reaching reward,
pushing reward, vertical reward, floating reward, and lifting reward, or subsets thereof for simpler
tasks that only include reaching or pushing. With this design, the reward is bounded by [0, 1] per
timestep.

5.2 Comparison to Prior Methods

Baselines We compare our method to DrQ-v2 (Yarats et al., 2021a), which currently provides the
best performance for 3D continuous control problems within model-free visual RL methods, with
respect to sample efficiency, learning performance, and training stability. We also compare it to the
state-based RL algorithms DDPG (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018b), which
provide upper-bound performance with respect to sample efficiency for many RL studies.

Evaluation We present our experimental results for three 3D robotic manipulation tasks from DMC
(jaco reach duplo, jaco move box, and jaco lift box), in Figure 2. Our empirical study in Figure 2
reveals that MERL considerably outperforms both the state-based RL algorithms (DDPG and SAC)
and the state-of-the-art visual RL algorithm (DrQ-v2) with respect to sample efficiency, learning
performance, and training stability. This suggests that a coordinate state used in state-based RL is
insufficient to represent the robot environment and that visual RL requires significantly more data
to learn a latent representation, both of which in turn suggest that learning from multimodal raw
sensory data is required to achieve the best performance with respect to sample efficiency and learning
performance in relation to 3D robotic manipulation. Notably, MERL’s advantage is more pronounced
in the case of more difficult 3D robotic manipulation tasks (for example, jaco move box and jaco lift
box), where exploration is more challenging. Most notably, to the best of our knowledge, MERL is
the first model-free RL method for 3D robotic manipulation capable of learning a latent multimodal
representation and a policy in an efficient, joint, and end-to-end manner from multimodal raw sensory
data while showing a new state-of-the-art performance.

5.3 Ablation Study

We conduct an ablation study that leads to the final version of MERL. Our findings are summarized
in Figure 3 and detailed below.
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(a) Ablation study on decoupled multimodal fusion

(b) Ablation study on multimodal representation dimensions

(c) Ablation study on layer normalization

(d) Ablation study on exploration noise

Figure 3: An ablation study that led us to the final version of MERL: (a) we observe that the
decoupled architecture for multimodal fusion (red) provides better performance compared to the
conventional shared architecture (blue); (b) we observe that dim = 128 for multimodal representation
(red) provides the best performance for the given 3D robotic manipulation tasks; (c) we observe that
layer normalization (red) results in a significant performance gain for learning a latent multimodal
representation and a policy jointly; and (d) we observe that the fixed stochastic exploration (red)
provides better performance for 3D robotic manipulation compared to the scheduled exploration
(blue) used in DrQ-v2.

Decoupled Multimodal Fusion We examine our decision to use a decoupled architecture for
multimodal fusion compared to using a conventional shared architecture primarily used in multimodal
representation learning (Lee et al., 2019a, 2020b). We conduct some experiments on two different
architectures for multimodal fusion: decoupled and shared. As shown in Figure 3a, the decoupled
architecture provides better performance in relation to the three 3D robotic manipulation tasks from
DMC (jaco reach duplo, jaco move box, and jaco lift box) compared to the conventional shared
architecture. This suggests that the decoupled architecture for multimodal fusion has a greater impact
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on actor–critic learning compared to the conventional shared architecture. The greater impact may be
due to the fact that in the decoupled architecture latent multimodal representations fed into the actor
are separately learned to maximize the learning performance of the actor, and likewise in the case of
the critic. We also found that, in the case of the shared architecture for multimodal fusion, updating
the multimodal fusion with the actor’s gradients greatly hinders the agent’s performance.

Multimodal Representation Dimensions We investigate the required level of compactness of the
latent multimodal representation for 3D robotic manipulation by changing the dimensionality of the
representation. We hypothesize that a more compact representation may increase the tractability of
RL yet capture less information for 3D robotic manipulation tasks. We perform several experiments
at different representation dimensions: dim = 64, 128, and 256. As shown in Figure 3b, dim = 128
provides the best performance in relation to the three 3D robotic manipulation tasks from DMC (jaco
reach duplo, jaco move box, and jaco lift box). In the case of dim = 64, less information for the tasks
was captured, and in the case of dim = 256, the learning performance was degraded owing to an
increase in the latent state space used in policy learning.

Layer Normalization We examine the efficacy of layer normalization (Ba et al., 2016) commonly
used in transformer architectures (Vaswani et al., 2017; Wang et al., 2019). We hypothesize that the
application of layer normalization to our multimodal fusion will play a crucial role in controlling
the gradient scales, as in a transformer architecture, and will lead to favorable sample efficiency. We
conduct some experiments for two different cases: multimodal fusion with and without layer normal-
ization applied. As shown in Figure 3c, the former case produces significantly better performance
in relation to the three 3D robotic manipulation tasks from DMC (jaco reach duplo, jaco move box,
and jaco lift box) than the latter case. This suggests that any increase in speed or stability of the
RL process is due to the use of normalized multimodal representations (via layer normalization) in
actor–critic networks. In addition, we perform scaling via tanh before feeding the representation into
the critic network in order to match the latent multimodal representation and action to the same scale.

Exploration Noise We investigate the efficacy of the scheduled exploration noise used in DrQ-v2,
where the scheduled exploration noise has different levels of exploration at different stages of learning.
We hypothesize that a scheduled exploration noise will be more helpful to improve sample efficiency
by having a more stochastic exploration at the beginning of training compared to a fixed exploration
noise. We perform some experiments at two different levels of exploration noise: decaying and fixed.
As shown in Figure 3d, contrary to the results of the DrQ-v2 study (Yarats et al., 2021a), having
a fixed level of exploration noise provides better learning performance in relation to the three 3D
robotic manipulation tasks from DMC (jaco reach duplo, jaco move box, and jaco lift box) than
having a scheduled level of exploration noise. This suggests that the data accumulated through having
a stochastic exploration at the beginning of training degrades the learning performance, especially
in the case of the task jaco lift box. Accordingly, we need to set different levels of exploration
noise depending on the characteristics of a given task. For example, for a task that requires a lot
of stochastic exploration at the beginning of training, such as humanoid locomotion, a scheduled
exploration noise is more effective, whereas, in the case of 3D robotic manipulation tasks, a fixed
stochastic exploration is more effective.

6 Conclusion

We have proposed MERL, a conceptually simple but effective model-free RL method for 3D robotic
manipulation capable of learning a latent multimodal representation and a policy in an efficient, joint,
and end-to-end manner from multimodal raw sensory data such as RGB images and proprioception.
Our experimental results show that MERL significantly outperforms both current state-of-the-art
visual RL and state-based RL methods with respect to sample efficiency, learning performance,
and training stability in relation to 3D robotic manipulation tasks from DMC. To the best of our
knowledge, MERL is the first effective RL method for 3D robotic manipulation capable of learning
a latent multimodal representation and a policy in an efficient, joint, and end-to-end manner from
multimodal raw sensory data while showing a new state-of-the-art performance. We hope this work
will serve as a guideline for future multimodal end-to-end RL research.

In future work, we will seek to use more sensors (for example, depth and haptic sensors) of differing
modalities, which will lead to more dexterous manipulation, and to test and validate MERL in a
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real-world robotic environment through sim-to-real. In addition, we hope to explore the use of
transformer architectures and object-centric learning to obtain a better representation.
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A Algorithm Details

Algorithm 1 MERL: Multimodal end-to-end deep RL
Parametric networks: Image encoder fξ , proprioception encoder gζ , multimodal fusion for critic
hψcritic , multimodal fusion for actor hψactor , actor πθ, critic Qϕ
Hyper-parameters: Training steps T , mini-batch size B, learning rate α, target update rate τ ,
standard deviation σ, clip value c
Image augmentations: Random shift aug

for t← 1 · · ·T do
at ← πθ(hψactor(fξ(o

image
t ), gζ(o

prop
t ))) + ϵ and ϵ ∼ N (0, σ2)

ot+1 ∼ P (· | ot,at)
D ← (ot,at, R(ot,at),ot+1) ∪ D
UPDATECRITIC(D)
UPDATEACTOR(D)

end for
procedure UPDATECRITIC(D)
{(ot,at, rt:t+n−1,ot+n)} ∼ D
rmm_c
t , rmm_c

t+n ← hψcritic(fξ(aug(o
image
t )), gζ(o

prop
t )), hψcritic(fξ(aug(o

image
t+n )), gζ(o

prop
t+n))

rmm_a
t , rmm_a

t+n ← hψactor(fξ(aug(o
image
t )), gζ(o

prop
t )), hψactor(fξ(aug(o

image
t+n )), gζ(o

prop
t+n))

at+n ← πθ(r
mm_a
t+n ) + ϵ and ϵ ∼ clip(N (0, σ2),−c, c)

Compute Lϕ1,ψcritic,ξ,ζ and Lϕ2,ψcritic,ξ,ζ

ξ ← ξ − α∇ξ(Lϕ1,ψcritic,ξ,ζ + Lϕ2,ψcritic,ξ,ζ)

ζ ← ζ − α∇ζ(Lϕ1,ψcritic,ξ,ζ + Lϕ2,ψcritic,ξ,ζ)

ψcritic ← ψcritic − α∇ψcritic(Lϕ1,ψcritic,ξ,ζ + Lϕ2,ψcritic,ξ,ζ)

ϕk ← ϕk − α∇ϕk
Lϕk,ψcritic,ξ,ζ ∀k ∈ {1, 2}

ϕ̄k ← (1− τ)ϕ̄k + τϕk ∀k ∈ {1, 2}
end procedure
procedure UPDATEACTOR(D)
{(ot)} ∼ D
rmm_c
t ← hψcritic(fξ(aug(o

image
t )), gζ(o

prop
t ))

rmm_a
t ← hψactor(fξ(aug(o

image
t )), gζ(o

prop
t ))

at ← πθ(r
mm_a
t ) + ϵ and ϵ ∼ clip(N (0, σ2),−c, c)

Compute Lθ,ψactor

ψactor ← ψactor − α∇ψactorLθ,ψactor

θ ← θ − α∇θLθ,ψactor

end procedure
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B Task Details

In this section, we describe details of the three 3D robotic manipulation tasks from DMC (jaco reach
duplo, jaco move box, and jaco lift box) with respect to task descriptions, reward design, and task
visualizations.

B.1 Task Descriptions

We design a set of three 3D robotic manipulation tasks from DMC (jaco reach duplo, jaco move
box, and jaco lift box) (Tunyasuvunakool et al., 2020) to include two different types of raw sensory
data (that is, RGB images obtained from a fixed vision camera and proprioception obtained from a
robot’s joint encoders) as observation, where task success requires joint reasoning over visual and
proprioceptive feedback. For each task, we randomize the configuration of the initial positions of the
robot and the box at the beginning of each episode, during both training and testing, to enhance the
robustness and generalization of the model.

In the case of the task jaco reach duplo, the robot (more precisely, the center point of the robot’s
end-effector) is required to reach a duplo randomly placed on a workspace. The task is considered
successful when the robot reaches within 5 cm of the duplo.

In the case of the task jaco move box, the robot is required to move a box randomly placed on a
workspace to a specific target position. The task is considered successful when the box reaches within
1 cm of the target position.

In the case of the task jaco lift box, the robot is required to lift a box randomly placed on a workspace
to a specific target position. The task is considered successful when the box reaches within 1 cm of
the target position.

B.2 Reward Design

We adopt a staged, structured, and multi-component reward function to guide the RL algorithm,
which simplifies the challenge of exploration and leads to effective policy learning (Lee et al., 2020b;
Yu et al., 2020). The reward function, R, is a combination of a reaching reward, pushing reward,
vertical reward, floating reward, and lifting reward, or subsets thereof for simpler tasks that only
include reaching or pushing. With this design, the reward is bounded by [0, 1] per timestep.

Jaco Reach Duplo The reward function for task jaco reach duplo is defined as follows:

rt = rreaching (reaching) (3)

Jaco Move Box The reward function for task jaco move box is defined as follows:

rt =

{
rreaching (reaching)
rreaching + rpushing if dist(ptcp,pobj) < εreaching (pushing)

(4)

Jaco Lift Box The reward function for task jaco lift box is defined as follows:

rt =


rreaching + rvertical (reaching)
rreaching + rvertical + rfloating if dist(ptcp,pobj) < εreaching (floating)
rreaching + rvertical + rfloating + rlifting if zobj > εfloating (lifting)

(5)

where rreaching = 1
N tolerance

(
dist(ptcp,pobj), εreaching

)
, rpushing = 1

N tolerance
(
dist(ptarget,

pobj), εpushing
)
, rvertical = 1

N tolerance
(
cosdist(vhand,u-z), 1 − εvertical

)
, rfloating = 1

N
zobj

ztarget
, and

rlifting = 1
N tolerance

(
dist(pobj,ptarget), εlifting

)
. ptcp represents the position of the end-effector’s

center point, pobj represents the position of the object (here, the box’s center point), ptarget represents
the target position, zobj represents the z-axis value of the object’s center point, ztarget represents the
z-axis value of the target position, vhand represents a unit vector vertical to the robot hand, and u-z
represents a unit vector [0, 0,−1]. The number of stages is represented by N . Here, we adopted the
same function tolerance as in DMC (Tunyasuvunakool et al., 2020).
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B.3 Task Visualizations

Figure 4 provides visualizations for behaviors generated by MERL in relation to the three 3D robotic
manipulation tasks from DMC (jaco reach duplo, jaco move box, and jaco lift box). The visualization
of behaviors learned by MERL during the training procedure is shown in Figure 4a. We note here
that MERL solves all three of the 3D robotic manipulation tasks in less than 1M environment steps.
Figure 4b illustrates the visualization of successful trajectories generated by MERL.

(a) Visualization of final behaviors generated by MERL during the training procedure.

(b) Visualization of successful trajectories generated by MERL.

Figure 4: Visualizations for behaviors generated by our method (MERL) in relation to the 3D robotic
manipulation tasks from DMC (jaco reach duplo, jaco move box, and jaco lift box): (a) we visualize
the behaviors learned by MERL during the training procedure and (b) we visualize the successful
trajectories learned by MERL.
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C Implementation Details

In this section, we describe our implementation details for MERL. We use PyTorch as a deep learning
tool and DMC and MuJoCo for our simulation. We conduct our experiments on a workstation with
an Intel i9-9980XE CPU and Nvidia Quadro RTX 8000 GPU.

C.1 Network Architectures

For all networks, we initialize the weight matrix of the convolutional and fully-connected layers with
an orthogonal initialization (Saxe et al., 2013) and set the bias to be zero.

Image Encoder Network The image encoder network is modeled as four convolutional layers with
3×3 kernels and 32 channels, as in SAC+AE (Yarats et al., 2021c). An ReLU activation is applied
after each convolutional layer. We use stride 1 everywhere, except for the first convolutional layer,
which has stride 2. Here, we note that only the critic optimizer is allowed to update the image encoder
network weights (that is, we prevent the actor’s gradients from updating the image encoder network
weights).

Proprioception Encoder Network The proprioception encoder network is modeled as a 2-layer
MLP with ReLU activations after each layer. Here, the final version of our method uses the pro-
prioception encoder as the identity encoder. This is because as shown in Figure 5, contrary to
the results in (Lee et al., 2019a, 2020b), the case where the proprioception encoder is set as the
identity encoder provides better performance in relation to the three 3D robotic manipulation tasks
from DMC (jaco reach duplo, jaco move box, and jaco lift box), compared to the case where the
proprioception encoder is set as an MLP encoder. This suggests that the proprioception itself is
enough to learn a latent multimodal representation and a policy in an efficient, joint, and end-to-end
manner, without the need for additional encodings; that is, it is already well-encoded. Note that only
the critic optimizer is allowed to update the proprioception encoder network weights.

Figure 5: An additional ablation study that led us to the final version of MERL in relation to the
proprioception encoder. We observe that the proprioception encoder set as the identity encoder
(red) provides the best performance for the given 3D robotic manipulation tasks compared to MLP
encoders (blue, green, and yellow).

Multimodal Fusion Network The encoded visual and proprioceptive representations are fed into
multimodal fusion to learn a latent multimodal representation. The multimodal fusion network
is modeled as a single fully-connected layer normalized by LayerNorm (Ba et al., 2016). After
LayerNorm, the tanh nonlinearity is applied to the output of the fully-connected layer, which serves
to match the latent multimodal representation and action to the same scale. Finally, each output is
concatenated to produce a single latent multimodal representation vector of dimension d. The weights
of each multimodal fusion network for actor and critic are updated by the gradients of actor and critic,
respectively.

Actor and Critic Networks As in TD3 (Fujimoto et al., 2018), we use clipped double Q-learning
for the critic network, where each Q-function is parametrized as a 3-layer (in the case of the task jaco
reach box) or 6-layer (in the case of the tasks jaco move box and jaco lift box) MLP with LayerNorm
and ReLU activations after each layer except the last. The actor network is also modeled as a 3-layer
(in the case of the task jaco reach box) or 6-layer (in the case of the tasks jaco move box and jaco lift
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box) MLP with LayerNorm and ReLU activations after each layer except the last, which outputs the
mean and covariance for the diagonal Gaussian that represents the policy. The hidden dimension is
set to 1024 for both the critic and the actor.

C.2 Hyper-Parameters

We provide a comprehensive overview of the hyper-parameters used in the case of the three 3D
robotic manipulation tasks from DMC (jaco reach duplo, jaco move box, and jaco lift box) in Table 1.

Table 1: An overview of hyper-parameters.

Parameter Setting
Replay buffer capacity 106

Mini-batch size 256
Frame stack 3
Seed frames 4000
Exploration steps 2000
Action repeat 1
Discount factor 0.99
Optimizer Adam
Learning rate 10−4

Soft-update rate 0.01
n-step returns 3
Exploration std. dev. 0.2
Exploration std. dev. clip 0.3
Hidden dim. for actor–critic 1024
Latent dim. for multimodal representation 128
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