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Abstract

Large Language Model (LLM) pretraining, finetuning, and evaluation rely on1

input-space reconstruction and generative capabilities. Yet, it has been observed2

in vision that embedding-space training objectives, e.g., with Joint Embedding3

Predictive Architectures (JEPAs), are far superior to their input-space counterpart.4

That mismatch in how training is achieved between language and vision opens up a5

natural question: can language training methods learn a few tricks from the vision6

ones? The lack of JEPA-style LLM is a testimony of the challenge in designing7

such objectives for language. In this work, we propose a first step in that direction8

where we develop LLM-JEPA, a JEPA based solution for LLMs applicable both9

to finetuning and pretraining. Thus far, LLM-JEPA is able to outperform the10

standard LLM training objectives by a significant margin across models, all while11

being robust to overfiting. Those findings are observed across numerous datasets12

(NL-RX, GSM8K, Spider, RottenTomatoes) and various models from the Llama3,13

OpenELM, Gemma2 and Olmo families.14
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Figure 1: LLM-JEPA produces strong fine-tuned models across datasets and models.

1 Introduction15

The research landscape around representation learning has been increasingly divided into two camps:16

(i) generative or reconstruction-based methods [6, 8, 12, 19], and (ii) reconstruction-free Joint17

Embedding Predictive Architectures (JEPAs) [2, 3, 4]. While the former is self-explanatory, the latter18

learns a representation by ensuring that different views, e.g., pictures of a same building at different19

time of day, can be predicted from each other, all while preventing a collapse of the embeddings.20

By moving away from input-space objectives, JEPAs training benefits from less biases [22], at the21

cost of potential dimensional collapse of their representation [17, 18]. That divide has been well22

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



Natural Language to Regular Expression

Natural Language to SQL

Figure 2: Left: JEPA applied to NLP tasks that has Text and Code, where Text and Code are naturally two
views of the same thing. Right: (top): An illustration of the NL-RX-SYNTH dataset, where each sample consists
of a description of the regular expression in natural language (Text) and the regular expression itself (Code).
(bottom): The Spider dataset, where Text is the database ID and description of the SQL query and Code is
the SQL query itself.

studied in vision, where it was found that JEPAs offer multiple provable benefits when it comes to23

knowledge discovery for perception tasks. In the realm of Natural Language Processing however,24

reconstruction-based methods remain predominant. In fact, today’s Large Language Models are25

mostly judged from their ability to generate samples and answers in input space in text form–making26

it challenging to leverage JEPA objectives.27

Yet, LLMs’ task also involve perception and reasoning where JEPA is known to be preferable. It28

thus seems crucial to adapt JEPA solutions to LLMs in the hope to showcase the same benefits as29

witnessed in vision. This first step is exactly what we present in this study. We propose to improve30

the representation quality of LLMs by leveraging a novel objective combining both the original31

reconstruction based loss–with an additional JEPA objective. To do so, we focus first on tasks and32

datasets that are inherently suited for JEPA objectives: the ones providing multiple views of the same33

underlying knowledge. One typical example is a git issue and the corresponding code diff (fig. 2)34

[16]. The two samples are two views–one being plain English and one being in code–of the same35

underlying functionality. Let’s use that particular example to highlight our core contribution:36

Viewing the (text,code) pairs as views of the same underlying knowledge enables JEPA objectives37

to be utilized with LLMs, complementing the standard text → code generative task.38

We strongly emphasize that being able to obtain non-trivial views, such as described above, is crucial39

to the success of JEPA objectives. While we restrict ourselves to datasets offering those non-trivial40

views, developing a mechanism akin to data-augmentation in vision would enable JEPA objectives to41

be used on any dataset. Nonetheless, we believe that our proposed solution–coined LLM-JEPA–and42

empirical study will serve as a first step towards more JEPA-centric LLM pretraining and finetuning.43

We summarize our contributions below:44

• Novel JEPA-based training objective: We present the first JEPA-based training objective for45

LLMs operating in embedding space and with different views–perfectly following vision-based46

JEPAs without sacrificing the generative capabilities of LLMs47

• Improved SOTA: We empirically validate our formulation in various finetuning settings, where48

we obtain improvements over standard LLM finetuning solutions. We also explore pretraining49

scenarios showing encouraging results of LLM-JEPA50

• Extensive empirical validation: on various model family (llama, gemma, apple/openelm, al-51

lenai/olmo), dataset (NL-RX, GSM8K, Spider, RottenTomatoes), and size.52

2 JEPA-LLM: Improving LLMs’ Reasoning and Generative Capabilities53

The first section 2.1 provides minimal background around next-token prediction LLM objectives,54

used as part of the proposed LLM-JEPA loss (section 2.2). Empirical validation will then be provided55

in section 2.3 demonstrating clear finetuning and pretraining benefits.56
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2.1 Primer on Large Language Models57

Contemporary LLMs are mostly built from the same core principles: stacking numerous layers of58

nonlinear operations and skip-connections–known as Transformers. While subtleties may differ, e.g.,59

about positional embeddings, initialization, normalization, the main driver of performance remains60

the availability of high quality dataset during the pretraining stage. The training objective in itself61

has also been standardize throughout methods: autoregressive token-space reconstruction. Let’s first62

denote by LLLM the typical LLM objective used for the specific task and dataset at hand. In most63

cases, this will be a cross-entropy loss between the predicted tokens and the ground-truth token to64

reconstruction. We note that our LLM-JEPA construction is agnostic of LLLM hence making our65

method general to numerous scenarios.66

LLLM(Text1:L−1,TextL) = XEnt (Classifier (Enc(Text1:L−1)) ,TextL) , (1)

where Classifier predicts the logits of the next token TextL given the past tokens Text1:L−1. Com-67

putation of eq. (1) is done at once over L through causal autoregression. Different stages and tasks68

may vary the input and output of the loss.69

2.2 The LLM-JEPA Objective70

Throughout this section, we will use Text and Code as concrete examples of having different views71

of the same underlying knowledge. It should be clear to the reader that our proposed LLM-JEPA72

objective handles different types of views similarly.73

The construction of our LLM-JEPA objective relies on two principles. First, we must preserve the74

generative capabilities of LLMs and we therefore start with the LLLM from eq. (1). Second, we aim75

to improve the abstraction capabilities of LLMs using the joint embedding prediction task. On top of76

LLLM, we then propose to add the well-established JEPA objective leading to the complete loss L77

defined as78

LLLM−JEPA =

L∑
ℓ=2

LLLM(Text1:ℓ−1,Textℓ)︸ ︷︷ ︸
generative capabilities (LLM)

+λ× d(Pred(Enc(Text)),Enc(Code))︸ ︷︷ ︸
abstraction capabilities (JEPA)

, (2)

where λ ≥ 0 is an hyperparameter balancing the contribution of the two terms, Pred and Enc are the79

predictor and encoder networks respectively, and d is a metric of choice, e.g., the ℓ2 distance. Let’s80

now precisely describe each of those components.81

The encoder. We use the hidden_state of the last token from the last layer as the embedding of an82

input sequence–as commonly done for LLM probing. Practically, we can not produce Enc(Text) and83

Enc(Code) through a single forward pass. For example, passing the concatenation of [Text,Code]84

would require meddling with the self attention to avoid cross-view interaction which would be85

efficient but specific to each LLM architecture. Instead, we propose to get the encoding through86

two additional forward passes: one for Text, and one for Code. This incurs additional costs during87

training–but not during inference–see section 3 for further discussions.88

The metric. When it comes comparing embeddings, it is now widely accepted in vision to leverage89

the cosine similarity. We thus propose to do the same for LLM-JEPA.90

The predictor. We leverage the auto-regressive nature of LLM and their internal self-attention91

to define a tied-weights predictor. By introducing a special token [PRED] at the end of a given92

input, we allow for further nonlinear processing of the input hereby producing Pred(·) at the final93

embedding of the last layer. By reusing the internal weights of the LLM for the prediction task,94

we greatly reduce the training overhead and architectural design choices. Practically, we append95

k ∈ {0, . . . ,K} predictor tokens to an input prompt and use the embedding of the last predictor96

token to be Pred(Enc(·)). When k = 0, the predictor is trivial, i.e., Pred(x) = x.97

Relation to Previous Work. Because loss functions such as LLLM (input space reconstruction since98

tokens are lossless compression of the original prompts) have been shown to be sub-optimal in99

vision, a few LLM variations have started to employ embedding space regularizers and training100

objectives [5, 29]. Current solution however rely on intricate structural constraints of the embedding101

space, e.g., hierarchical organization and cluster, and thus fall out of the JEPA scope. We also102

note that our interpretation of views when it comes to LLM datasets, e.g., (text issue, code diff), is103
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Table 1: Pretraining accuracy on dataset NL-RX-SYNTH by Next Token Prediction (LLLM) loss vs. LLLM−JEPA

loss (our method). We inherit the best configuration from fine-tuning. Each case runs five times. Average
accuracy and standard deviation are reported. We also report p-value of paired, single-tailed t-Test.

Model Method Accuracy (%) ↑ p-value ↓ Config

Llama-3.2-1B-Instruct
LLLM 54.38± 1.70

2.94e− 4
lr = 8e− 5

LLLM−JEPA (ours) 60.59± 1.01 λ = 2, k = 3, same lr

something that has been leveraged as part of the LLM finetuning solutions–by learning to generate104

one from the other–without a JEPA-style loss. This includes natural language to regular expression105

translation [23, 30, 32], natural language to SQL parsing [11, 15, 20, 28, 31] and the more recent106

issue descriptions to code diffs [7, 14, 27, 33]. More intricate examples involve text-based problem107

solving and their counterpart program induction [1, 9, 13, 21].108

2.3 Empirical Validation: LLM-JEPAs Outperforms LLMs109

The JEPA loss is not implicitly minimized by LLLM. The very first observation we want to make,110

provided in fig. 4 lies in observing that minimizing LLLM does not implicitly minimize LJEPA–111

indicating that it is required to add that term during training.112

LLM-JEPA Improves Finetuning. We run experiments across multiple pretrained LLMs (Llama-3.2-113

1B-Instruct [10], gemma-2-2b-it [26], OpenELM-1_1B-Instruct [24], and OLMo-2-0425-1B-Instruct114

[25]) with various datasets (NL-RX-SYNTH, NL-RX-TURK [23], GSM8K [9], Spider [31]). For a115

given (model,dataset) case, search for the best learning rate lr ∈ {1e−5, 2e−5, 4e−5, 8e−5} based116

on the best possible accuracy of LLLM after 4 epochs. Then we tune the hyperparameter specific to117

LLLM−JEPA, k and λ in a two dimensional grid defined by (k, λ) ∈ {0, 1, 2, 3, 4} × {0.5, 1, 2, 4}118

(fig. 3 and table 5). For both NL-RX-SYNTH and NL-RX-TURK, accuracy is exact match of the generated119

regular expression; for GSM8K, accuracy is exact match of the final result; and for Spider, accuracy120

is exact match of the execution result of the generated query. We provide results demonstrating how121

LLM-JEPA improves performances (fig. 1 left) across models (table 8), datasets (table 9), training122

time (fig. 1 right and fig. 5), and sizes (table 11). Examples of inputs and targets along with models’123

predictions and error analysis are provided in tables 6 and 7. The improved performance of LLM-124

JEPA holds across LoRA ranks as shown in table 3. We also provide evidence that LLM-JEPA induces125

an approximately linear transformation from Enc(Text) to Enc(Code) (figs. 6 and 7 and table 10).126

LLM-JEPA Improves Pretraining. We pretrain Llama-3.2-1B-Instruct from randomly initialized127

weights on NL-RX-SYNTH dataset, a prediction is valid as long as it starts with the ground truth.128

We obtain that LLM-JEPA also improves the quality of the learned representation, as shown in129

table 1. We also conduct another pretraining experiment on cestwc/paraphrase containing groups130

of 5 paraphrases. We employ the paraphrases within a same group for the JEPA loss. Once the131

model is pretrained (4 epochs), we do finetuning evaluation on rotten_tomatoes (1 epoch). We132

demonstrate how JEPA pretraining improves the downstream performance post-finetuning in table 4.133

Note that finetuning does not employ the JEPA loss–hence showing the benefit of JEPA at pretraining134

stage. Lastly, we provide in table 2 generated samples demonstrating that JEPA pretraining does135

maintain the generative capabilities of the model when prompted with the first few tokens in the136

cestwc/paraphrase dataset.137

3 Conclusion and Future Work138

We introduced an alternative training objective for LLMs leveraging JEPAs. Our formulation is139

an exact replicate of the JEPA objective extensively used in vision–but that hadn’t been adapted to140

language yet. Crucially, our proposed LLM-JEPA maintains the generative capabilities of LLMs141

while improving their abstract prompt representation as empirically validated across datasets and142

models. While our experiments mostly focus on finetuning, preliminary pretraining experiment are143

promising which we plan to scale and more thoroughly test in future work. Regarding the limitations144

of LLM-JEPA, the main current bottleneck is the 3-fold compute cost during training required to145

obtain the representations of the views. We plan to explore possible mitigation that would mask the146

self-attention matrix and allow for our LLM-JEPA loss to be evaluated within a single forward pass147

through the LLM.148
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Table 2: Generated samples by model pretrained by paraphrase dataset. The pretrained model is not good at
terminating sentence. prompt and generation

Ground Truth vs. Generation

Ground Truth A garden of flowers and a bench stating "City of London."
Generation A garden of flowers and a vase with a flower in it.............

Ground Truth A person that is riding on a horse in a grass field.
Generation A person that is riding in a field.................

Ground Truth A man is riding a horse in a field.
Generation A man is riding a horse in a field................

Ground Truth There are two birds standing on top of a building
Generation There are two birds standing on a rock.................

Ground Truth Two hawks sit on top of a roof spire.
Generation Two hawks sit on top of a wooden bench................

Ground Truth .A young woman serving herself at a cookout.
Generation .A young woman serving herself in a kitchen.................

Ground Truth 2 bowls of fruit sit on a table.
Generation 2 bowls of fruit sit on a table.................

Ground Truth A wooden bench written ’CITY OF LONDON’ at the park
Generation A wooden bench written ’CITY and a tree.................

Table 3: Fine-tuning accuracy on dataset NL-RX-SYNTH, LoRA vs. full fine-tuning, both by LLLM loss and
LLLM−JEPA loss (our method). Configuration is lr = 2e− 5, λ = 1, k = 1. Each cell runs five times. Average
accuracy and standard deviation are reported. At every LoRA rank, LLLM−JEPA (ours) has better accuracy. At
LoRA rank 512 (22.59% trainable parameters), LLLM−JEPA (ours) achieves same accuracy as full fine-tuning,
but LLLM still has a significant gap from full fine-tuning.

LoRA Rank Method Accuracy (%) ↑

32
LLLM 6.09± 0.55

LLLM−JEPA (ours) 7.45± 1.87

64
LLLM 21.09± 1.90

LLLM−JEPA (ours) 32.46± 1.26

128
LLLM 34.21± 2.82

LLLM−JEPA (ours) 48.45± 3.66

256
LLLM 45.57± 4.52

LLLM−JEPA (ours) 60.80± 2.31

512
LLLM 50.18± 5.15

LLLM−JEPA (ours) 72.41± 2.94

Full
LLLM 57.29± 5.32

LLLM−JEPA (ours) 70.42± 2.36

A Appendix254

A.1 Faster LoRA Convergence255

Table 3 demonstrates that LoRA fine-tuning with LLLM−JEPA loss not only achieves substantially256

higher accuracy than using LLLM alone, but also converges more quickly. Notably, at a LoRA rank257

of 512, our method already reaches accuracy comparable to full fine-tuning, whereas LoRA with only258

LLLM still exhibits a clear performance gap.259
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Table 4: Pretraining + fine-tuning Llama-3.2-1B-Instruct accuracy on pretraining dataset paraphrase
and fine-tuning dataset rotten_tomatoes by Next Token Prediction (LLLM) loss vs. LLLM−JEPA loss (our
method). Note that LLLM−JEPA is applied only at pretraining. We tune lrpre and lrft by LLLM, and stick to
them in LLM-JEPA pretraining. We run pretraining 5 times, and for each pretrained model, we run fine-tuning 5
times. Average accuracy and standard deviation are reported. We also report p-value of paired, single-tailed
t-Test.

FT Dataset Method Accuracy (%) ↑ p-value ↓ Config

rotten_tomatoes
LLLM 56.57± 1.66

7.38e− 4
lrpre = 8e− 5, lrft = 4e− 5

LLLM−JEPA (ours) 57.76± 1.33 λ = 0.5, k = 2, same lrpre, lrft

Table 5: Fine-tuning accuracy on dataset NL-RX-SYNTH with LLLM−JEPA loss (ours) over various γ/λ.
Configuration is lr = 2e− 5, λ = 1, k = 0. We maintain max(γ, λ) = 1.0 to use a fixed lr. Each cell runs
five times. Average accuracy and standard deviation are reported. When γ = 0.0, it generate only empty output.

γ/λ Config Accuracy (%) ↑

0.0 γ = 0.0, λ = 1.0 0.00± 0.00
0.001 γ = 0.01, λ = 1.0 1.38± 0.06
0.1 γ = 0.1, λ = 1.0 45.80± 5.04
1.0 γ = 1.0, λ = 1.0 70.42± 2.36
10.0 γ = 1.0, λ = 0.1 67.52± 1.45
100.0 γ = 1.0, λ = 0.01 66.83± 3.89
∞ γ = 1.0, λ = 0.0 57.29± 5.32

A.2 Ablation Study on the Role of LLLM260

One limitation of eq. (2) is that the contribution of LLLM cannot be effectively reduced to 0. To261

address this, we introduce an additional hyperparameter γ to explicitly control its relative strength:262

LLLM−JEPA = γ ×
L∑

ℓ=2

LLLM(Text1:ℓ−1,Textℓ)︸ ︷︷ ︸
generative capabilities

+λ× d(Pred(Enc(Text)),Enc(Code))︸ ︷︷ ︸
abstraction capabilities

, (3)

We vary the ratio γ/λ within [0, 1] while enforcing max(γ, λ) = 1 to maintain a constant learning263

rate. Table 5 shows that LLLM remains essential for generative performance: when γ = 0, the264

fine-tuned model produces only empty outputs. This indicates that the JEPA component primarily265

serves as a regularization term, complementing the generative loss.266

A.3 Hyperparameter Tuning for LLM-JEPA267

Despite its strong accuracy gains, LLM-JEPA introduces two additional hyperparameters. As shown268

in fig. 3, the optimal configuration may occur at any point in the grid (λ, k) ∈ {0.5, 1.0, 2.0, 4.0} ×269

{0, 1, 2, 3, 4}, which imposes a significant cost for hyperparameter tuning. While we have not270

identified an efficient method to explore this space, we empirically observe that adjacent grid points271

often yield similar accuracy, suggesting the potential for a more efficient tuning algorithm.272

A.4 Additional Generation Examples273

Table 7 presents additional examples generated by fine-tuning Llama-3.2-1B-Instruct on the274

NL-RX-SYNTH dataset using LLLM and LLLM−JEPA, respectively.275

A.5 Overfitting Behavior in LoRA Fine-Tuning276

We also conducted experiments to examine whether LoRA fine-tuning with LLLM-JEPA exhibits277

similar resistance to overfitting. As shown in fig. 5, accuracy under LLLM-JEPA generally continues278

to improve with additional epochs, whereas fine-tuning with LLLM shows clear signs of overfitting.279

Notably, the standard deviation is much higher than in full fine-tuning, likely reflecting the lower280
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(a) Llama on GSM8K, lr = 2e− 5 (b) Llama on Spider, lr = 1e− 5

(c) Gemma on SYNTH, lr = 1e− 5 (d) OpenELM on SYNTH, lr = 8e− 5

(e) OLMo on SYNTH, lr = 8e− 5 (f) Llama on SYNTH, Pretrain, lr = 8e− 5

Figure 3: In general we didn’t find any pattern on where the best accuracy could appear. It could be at either
high-end or low-end of either λ or k. Furthermore, there can be dips and spikes in random locations. Nonetheless,
adjacent cells have close accuracy most of times, and sweeping (k, λ) ∈ {0, 1, 2, 3, 4}×{0.5, 1, 2, 4} normally
yield satisfiable results. Each cell is an average of five runs, epoch = 4.

Table 6: Regular expressions generated by Llama-3.2-1B-Instruct after fine-tuning with LLLM loss and
LLLM−JEPA loss (ours). Color code: wrong , extra , missing

Ground Truth LLLM LLLM−JEPA (ours)

lines not having the string ’dog’ followed by a number, 3 or more times
((dog.*[0-9].*)3,) ((dog.*[0-9].*)3,) ((dog.*[0-9].*){3,})

lines containing ending with a vowel, zero or more times
.*(.*)(([AEIOUaeiou])*).* (.*)(([AEIOUaeiou])*) * ( .* ) (.*) { ([AEIOUaeiou])* }

lines with a number or a character before a vowel
(([0-9])|(.)).*([AEIOUaeiou]).* (([0-9])|(.)).*([AEIOUaeiou]).* .* (([0-9])|(.)).*([AEIOUaeiou]).*

lines with words with the string ’dog’, a letter, and a number
((([0-9])&(dog))|([A-Za-z]))* ((([0-9])&(dog))|([A-Za-z]))* (( [0-9])&(dog))|( ( [A-Za-z]) * )

Figure 4: Losses in fine-tuning with LLLM loss (LLLM) and LLLM−JEPA loss (LLLM−JEPA, our method). We
measure both the cross-entropy loss for next token prediction (LossLLM , LLLM in chart) and JEPA prediction
loss (D(·, ·), pred in chart), although the latter does not contribute in the baseline case. The accuracy is 51.95%
for LLLM and 71.10% for LLLM−JEPA. Since LLLM and LLLM−JEPA share similar LLLM loss, the LLLM loss
cannot explain the gap between the accuracy. pred stays a constant in LLLM, while is minimized in LLLM−JEPA,
hence pred should be the main reason behind the accuracy gap.

capacity of LoRA fine-tuning. An interesting pattern emerges: for LLLM-JEPA, larger standard281
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Table 7: More regular expressions generated by Llama-3.2-1B-Instruct after fine-tuning with LLLM loss
and LLLM−JEPA loss (ours). Color code: wrong , extra , missing

Ground Truth LLLM LLLM−JEPA (ours)

lines ending with a vowel or starting with a character
([AEIOUaeiou].*[A-Za-z].*)+ ([AEIOUaeiou].*[A-Za-z].*)+ ([AEIOUaeiou].*[A-Za-z].*)+

ines containing either a lower-case letter, a vowel, or a letter
((.*)([AEIOUaeiou]))|((.)(.*)) (.*) ( ([AEIOUaeiou]) |((.)(.*)) ) (.*) ( ([AEIOUaeiou]) |((.)(.*)) )

lines starting with the string ’dog’ before a vowel
(([A-Za-z])7,).*(dog).* (([A-Za-z])7,).*(dog).* .* (([A-Za-z])7,).*(dog).*

lines not containing a letter and the string ’dog’
((([A-Z])+)|([a-z]))(.*) ((([A-Z])+)|([a-z]))(.*) + ((([A-Z])+)|([a-z]))(.*)

lines with a character before a vowel and the string ’dog’, zero or more times
.*(.)&([0-9])&(dog).* .*(.)&([0-9])&(dog).* .* .*(.)&([0-9])&(dog).* .*.*

lines with a vowel at least once before not a character
(([A-Za-z])+).*(~([0-9])).* (([A-Za-z])+).*(~([0-9])).* .* (([A-Za-z])+).*(~([0-9])).*

Table 8: Fine-tuning accuracy on dataset NL-RX-SYNTH by Next Token Prediction (LLLM) loss vs. LLLM−JEPA

loss (our method). Each cell is the best possible accuracy over a set of configurations. Each configuration runs
five times. Average accuracy and standard deviation are reported. We also report p-value of paired, single-tailed
t-Test.

Model Method Accuracy (%) ↑ p-value ↓ Config

gemma-2-2b-it
LLLM 33.65± 3.24

5.5e− 3
lr = 1e− 5

LLLM−JEPA (ours) 43.12± 2.61 λ = 2, k = 4, same lr

OpenELM-1_1B-Instruct
LLLM 12.07± 1.81

5.1e− 4
lr = 8e− 5

LLLM−JEPA (ours) 25.40± 2.40 λ = 4, k = 3, same lr

OLMo-2-0425-1B-Instruct
LLLM 87.09± 0.36

2.5e− 3
lr = 8e− 5

LLLM−JEPA (ours) 87.52± 0.29 λ = 2, k = 0, same lr

deviations often coincide with dips in accuracy, whereas for LLLM they tend to accompany accuracy282

spikes. This suggests that such fluctuations may be unreliable indicators of generalization quality.283
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Figure 5: LLM-JEPA resists overfitting in LoRA fine-tuning. Fine-tuning with LLLM−JEPA loss (our method)
resists overfitting. When fine-tuning with LLLM loss start to overfit, LLLM−JEPA kept improving. However the
trend is not as stable as in full fine-tuning, possibly due to limited capacity of LoRA fine-tuning.

A.6 Structured Representations Induced by LLM-JEPA284

We also examine the representation space to better understand how LLM-JEPA regularizes learned fea-285

tures. Specifically, we plot t-SNE embeddings for both Text and Code across three settings: the base286
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Table 9: Fine-tuning accuracy by model Llama-3.2-1B-Instruct, LLLM loss vs. LLLM−JEPA loss (our
method). Each cell is the best possible accuracy over a set of configurations. Each configuration runs five times.
Average accuracy and standard deviation are reported. We also report p-value of paired, single-tailed t-Test.

Dataset Method Accuracy (%) ↑ p-value ↓ Config

NL-RX-SYNTH
LLLM 57.29± 5.32

1.0e− 3
lr = 2e− 5

LLLM−JEPA (ours) 71.46± 1.34 λ = 1, k = 1, same lr

NL-RX-TURK
LLLM 22.49± 1.91

2.4e− 4
lr = 2e− 5

LLLM−JEPA (ours) 30.94± 1.13 λ = 1, k = 1, same lr

GSM8K
LLLM 32.36± 0.58

9.6e− 5
lr = 2e− 5

LLLM−JEPA (ours) 36.36± 0.20 λ = 0.5, k = 4, same lr

Spider
LLLM 47.52± 2.44

4.0e− 3
lr = 4e− 5

LLLM−JEPA (ours) 50.55± 2.08 λ = 1, k = 3, same lr

Table 10: LLM-JEPA is almost a linear transformation from Enc(Text) to Enc(Code).

minX ||Enc(Text) ·X − Enc(Code)||2 Avg. Top 100 Singular

Base model 3953.11 310.73
LLLM 3035.01 341.80

LLM-JEPA (Ours) k = 1 4.47 94.84
LLM-JEPA (Ours) k = 0 4.04 16.82

model, a model fine-tuned with LLLM, and a model fine-tuned with LLLM-JEPA. As shown in fig. 6,287

clear structure emerges after fine-tuning with LLLM-JEPA. We hypothesize that LLLM-JEPA enforces288

structure in the representation space by constraining the mapping from Enc(Text) to Enc(Code)289

within a narrow subspace. If this is the case, the SVD decomposition of Enc(Text)− Enc(Code)290

should yield significantly smaller singular values, which is confirmed in fig. 7. Furthermore, we291

hypothesize that the mapping is approximately linear. To test this, we compute the least-squares292

regression error, and table 10 supports this hypothesis. Together, these results suggest that LLM-JEPA293

promotes a near-linear transformation between Text and Code representations, which may underlie294

its accuracy improvements.295

A.7 Performance Across Model Sizes296

We also evaluate LLM-JEPA across different model sizes. As shown in table 11, we observe297

statistically significant improvements at all scales. Since there is no official 8B version of Llama-298

3.2, we instead use Llama-3.1-8B-Instruct, where performance collapsed due to the model’s299

difficulty in properly terminating regular expressions. To address this, we additionally evaluate using300

a startswith criterion—that is, a prediction is considered correct if the generated regular expression301

begins with the ground-truth expression, removing the need for exact termination. Under this metric,302

we again observe statistically significant accuracy improvements.303
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Text
Code

(a) Base model: No fine-tuning

Text
Code

(b) Baseline: Fine-tuned by NTP loss

Text
Code

(c) LLM-JEPA (Ours) k = 0

Text
Code

(d) LLM-JEPA (Ours) k = 1

Figure 6: t-SNE plot of Text and Code representations in (a) Base mode without fine-tuning, (b) Baseline that
is fine-tuned with NTP loss, (c) LLM-JEPA (ours) with k = 0, and (d) LLM-JEPA (ours) with k = 1. Clearly
LLM-JEPA (ours) induced nice structure on the representations while fine-tuning with NTP loss disrupted the
structure in the base model.
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Figure 7: The top 100 singular values of Enc(Text)−Enc(Code). The curves of LLM-JEPA (ours) are a few
magnitudes lower than that of base model and regular fine-tuning, meaning the mapping from Text to Code are
confined within a narrow subspace, fostering the nice structure we see in Figure 6
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Table 11: Fine-tuning accuracy on NL-RX-SYNTH by Next Token Prediction (LLLM) loss vs. LLLM−JEPA loss
(our method). Each case runs five times. Average accuracy and standard deviation are reported. We also report
p-value of paired, single-tailed t-Test. Note that Llama does not have official 3.2-8B, and we have to use 3.1-8B,
which collapsed on NL-RX-SYNTH as the fine-tuned model doesn’t learn how to terminate the generated regular
expression. We report both exact match and startswith-match, where we test if the generated regular expression
starts with the ground truth. For exact match, the accuracy is more than doubled, though p ≥ 0.05.

Model Method Accuracy (%) ↑ p-value ↓ Config

Llama-3.2-1B-Instruct
LLLM 57.29± 5.32

1.0e− 3
lr = 2e− 5

LLLM−JEPA (ours) 71.46± 1.34 λ = 1, k = 1, same lr

Llama-3.2-3B-Instruct
LLLM 74.55± 3.58

0.0352
lr = 2e− 5

LLLM−JEPA (ours) 77.16± 3.66 λ = 2, k = 0, same lr

Llama-3.1-8B-Instruct
LLLM 3.03± 0.27

0.0962
lr = 2e− 5

LLLM−JEPA (ours) 7.29± 6.04 λ = 0.5, k = 4, same lr

Llama-3.1-8B-Instruct LLLM 84.92± 0.10
0.0117

lr = 2e− 5
(startswith) LLLM−JEPA (ours) 85.15± 0.13 λ = 1.0, k = 1, same lr
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