© 00 N o g~ W0 N =

24 a4 a4 oo
> ®w M = o

15

16
17
18
19
20
21
22

LLM-JEPA: Large Language Models Meet Joint
Embedding Predictive Architectures

Anonymous Author(s)
Affiliation
Address

email

Abstract

Large Language Model (LLM) pretraining, finetuning, and evaluation rely on
input-space reconstruction and generative capabilities. Yet, it has been observed
in vision that embedding-space training objectives, e.g., with Joint Embedding
Predictive Architectures (JEPAs), are far superior to their input-space counterpart.
That mismatch in how training is achieved between language and vision opens up a
natural question: can language training methods learn a few tricks from the vision
ones? The lack of JEPA-style LLM is a testimony of the challenge in designing
such objectives for language. In this work, we propose a first step in that direction
where we develop LLM-JEPA, a JEPA based solution for LLMs applicable both
to finetuning and pretraining. Thus far, LLM-JEPA is able to outperform the
standard LLLM training objectives by a significant margin across models, all while
being robust to overfiting. Those findings are observed across numerous datasets
(NL-RX, GSM8K, Spider, RottenTomatoes) and various models from the Llama3,
OpenELM, Gemma2 and Olmo families.

701 B Baseline
B LLM-JEPA (Ours) 704

70.4 70.9 71.8

51.5

v
o

30.9 31.6 31.8
27.2 J———i———I

Accuracy (%)
w »
o o

Accuracy (%)
3

’ng; 22.5 225 21.6
201 20 ST DLy L |
-
101 w0 L7 .* = SYNTH
e — = TURK

0l

Llama3 gemma2 OpenELM Llama3 Llama3 Llama3 1 2 3 4 5 6
SYNTH SYNTH SYNTH Spider GSM8K TURK Epoch

Figure 1: LLM-JEPA produces strong fine-tuned models across datasets and models.

1 Introduction

The research landscape around representation learning has been increasingly divided into two camps:
(i) generative or reconstruction-based methods [6} (8, (12} [T9]], and (ii) reconstruction-free Joint
Embedding Predictive Architectures (JEPAs) [2} 3] 4]. While the former is self-explanatory, the latter
learns a representation by ensuring that different views, e.g., pictures of a same building at different
time of day, can be predicted from each other, all while preventing a collapse of the embeddings.
By moving away from input-space objectives, JEPAs training benefits from less biases [22]], at the
cost of potential dimensional collapse of their representation [18]]. That divide has been well

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

23
24
25
26
27

28
29
30
31
32
33
34
35
36

37
38

39
40
41
42
43
44

45
46
47
48
49
50
51
52

53

54
55
56

Natural Language to Regular Expression

Pred(Enc(Text))

source: "lines containing the string Text
'dog', 2 or more times"

D(Pred(Enc(Text), Enc(Code)) | | target: ".*(dog){2,}.*"

Natural Language to SQL

Enc(Text) Enc(Code) db_id: "department_management" Text

question: "How many heads of the
departments are older than 56 ?"

@ query: "SELECT count(*)
FROM head WHERE age > 56"

Figure 2: Left: JEPA applied to NLP tasks that has T'ext and Code, where T'ext and Code are naturally two
views of the same thing. Right: (top): An illustration of the NL-RX-SYNTH dataset, where each sample consists
of a description of the regular expression in natural language (T'ext) and the regular expression itself (C'ode).
(bottom): The Spider dataset, where T'ext is the database ID and description of the SQL query and C'ode is
the SQL query itself.

studied in vision, where it was found that JEPAs offer multiple provable benefits when it comes to
knowledge discovery for perception tasks. In the realm of Natural Language Processing however,
reconstruction-based methods remain predominant. In fact, today’s Large Language Models are
mostly judged from their ability to generate samples and answers in input space in text form—making
it challenging to leverage JEPA objectives.

Yet, LLMs’ task also involve perception and reasoning where JEPA is known to be preferable. It
thus seems crucial to adapt JEPA solutions to LLMs in the hope to showcase the same benefits as
witnessed in vision. This first step is exactly what we present in this study. We propose to improve
the representation quality of LLMs by leveraging a novel objective combining both the original
reconstruction based loss—with an additional JEPA objective. To do so, we focus first on tasks and
datasets that are inherently suited for JEPA objectives: the ones providing multiple views of the same
underlying knowledge. One typical example is a git issue and the corresponding code diff (fig. [2)
[L6]. The two samples are two views—one being plain English and one being in code—of the same
underlying functionality. Let’s use that particular example to highlight our core contribution:

Viewing the (text, code) pairs as views of the same underlying knowledge enables JEPA objectives
to be utilized with LLMs, complementing the standard text — code generative task.

We strongly emphasize that being able to obtain non-trivial views, such as described above, is crucial
to the success of JEPA objectives. While we restrict ourselves to datasets offering those non-trivial
views, developing a mechanism akin to data-augmentation in vision would enable JEPA objectives to
be used on any dataset. Nonetheless, we believe that our proposed solution—coined LLM-JEPA—and
empirical study will serve as a first step towards more JEPA-centric LLM pretraining and finetuning.
We summarize our contributions below:

* Novel JEPA-based training objective: We present the first JEPA-based training objective for
LLMs operating in embedding space and with different views—perfectly following vision-based
JEPAs without sacrificing the generative capabilities of LLMs

* Improved SOTA: We empirically validate our formulation in various finetuning settings, where
we obtain improvements over standard LLM finetuning solutions. We also explore pretraining
scenarios showing encouraging results of LLM-JEPA

» Extensive empirical validation: on various model family (llama, gemma, apple/openelm, al-
lenai/olmo), dataset (NL-RX, GSMSK, Spider, RottenTomatoes), and size.

2 JEPA-LLM: Improving LLLMs’ Reasoning and Generative Capabilities

The first section [2.1] provides minimal background around next-token prediction LLM objectives,
used as part of the proposed LLM-JEPA loss (section[2.2)). Empirical validation will then be provided
in section [2.3]demonstrating clear finetuning and pretraining benefits.

57

58
59
60
61
62
63
64
65
66

67
68
69

70

7
72
73

74
75
76
77
78

79
80
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98
99
100
101
102
103

2.1 Primer on Large Language Models

Contemporary LLMs are mostly built from the same core principles: stacking numerous layers of
nonlinear operations and skip-connections—known as Transformers. While subtleties may differ, e.g.,
about positional embeddings, initialization, normalization, the main driver of performance remains
the availability of high quality dataset during the pretraining stage. The training objective in itself
has also been standardize throughout methods: autoregressive token-space reconstruction. Let’s first
denote by Ly, the typical LLM objective used for the specific task and dataset at hand. In most
cases, this will be a cross-entropy loss between the predicted tokens and the ground-truth token to
reconstruction. We note that our LLM-JEPA construction is agnostic of L£r,m hence making our
method general to numerous scenarios.

Lrrm(Texty.r—1, Texty,) = XEnt (Classifier (Enc(Texty.;,—1)) , Texty,), e

where Classifier predicts the logits of the next token Text;, given the past tokens Text;.r, 1. Com-
putation of eq. (I)) is done at once over L through causal autoregression. Different stages and tasks
may vary the input and output of the loss.

2.2 The LLM-JEPA Objective

Throughout this section, we will use Text and Code as concrete examples of having different views
of the same underlying knowledge. It should be clear to the reader that our proposed LLM-JEPA
objective handles different types of views similarly.

The construction of our LLM-JEPA objective relies on two principles. First, we must preserve the
generative capabilities of LLMs and we therefore start with the £y 1,\ from eq. . Second, we aim
to improve the abstraction capabilities of LLMs using the joint embedding prediction task. On top of
L11.:m, we then propose to add the well-established JEPA objective leading to the complete loss £
defined as

L
LILM_JEPA = Z L (Texty.e—1, Texty) +A x d(Pred(Enc(Text)), Enc(Code)), (2)
(=2

abstraction capabilities (JEPA)

generative capabilities (LLM)

where A > 0 is an hyperparameter balancing the contribution of the two terms, Pred and Enc are the
predictor and encoder networks respectively, and d is a metric of choice, e.g., the {5 distance. Let’s
now precisely describe each of those components.

The encoder. We use the hidden_state of the last token from the last layer as the embedding of an
input sequence—as commonly done for LLM probing. Practically, we can not produce Enc(Text) and
Enc(Code) through a single forward pass. For example, passing the concatenation of [Text, Code]
would require meddling with the self attention to avoid cross-view interaction which would be
efficient but specific to each LLM architecture. Instead, we propose to get the encoding through
two additional forward passes: one for Text, and one for Code. This incurs additional costs during
training—but not during inference—see section 3] for further discussions.

The metric. When it comes comparing embeddings, it is now widely accepted in vision to leverage
the cosine similarity. We thus propose to do the same for LLM-JEPA.

The predictor. We leverage the auto-regressive nature of LLM and their internal self-attention
to define a tied-weights predictor. By introducing a special token [PRED] at the end of a given
input, we allow for further nonlinear processing of the input hereby producing Pred(-) at the final
embedding of the last layer. By reusing the internal weights of the LLM for the prediction task,
we greatly reduce the training overhead and architectural design choices. Practically, we append
k € {0,..., K} predictor tokens to an input prompt and use the embedding of the last predictor
token to be Pred(Enc(-)). When k = 0, the predictor is trivial, i.e., Pred(z) = x.

Relation to Previous Work. Because loss functions such as £11,\ (input space reconstruction since
tokens are lossless compression of the original prompts) have been shown to be sub-optimal in
vision, a few LLM variations have started to employ embedding space regularizers and training
objectives [5, 29]. Current solution however rely on intricate structural constraints of the embedding
space, e.g., hierarchical organization and cluster, and thus fall out of the JEPA scope. We also
note that our interpretation of views when it comes to LLM datasets, e.g., (text issue, code diff), is

104
105

107
108

109

110
111
112

113
114
115
116
117
118
119
120
121
122
123
124
125
126

127
128
129
130
131
132
133
134
135
136
137

138

139
140
141
142
143
144
145
146
147
148

Table 1: Pretraining accuracy on dataset NL-RX-SYNTH by Next Token Prediction (Lr,ram) 10ss vs. LM —JEPA
loss (our method). We inherit the best configuration from fine-tuning. Each case runs five times. Average
accuracy and standard deviation are reported. We also report p-value of paired, single-tailed ¢-Test.

Model ‘ Method Accuracy (%) 1 p-value | Config
Lrim 54.38 +1.70 Ilr=8¢—5
Llama-3.2-1B-Instruct | © s (ours) 60.59+1.01 22T N\ ok =3 camelr

something that has been leveraged as part of the LLM finetuning solutions—by learning to generate
one from the other—without a JEPA-style loss. This includes natural language to regular expression
translation [23} 30, [32]], natural language to SQL parsing [[11} [15 20} 28l [31]] and the more recent
issue descriptions to code diffs [[7, 14} 27, 33]. More intricate examples involve text-based problem
solving and their counterpart program induction [1} 9} [13} 21]].

2.3 Empirical Validation: LLM-JEPAs Outperforms LL.Ms

The JEPA loss is not implicitly minimized by L 1,\. The very first observation we want to make,
provided in fig. E] lies in observing that minimizing Ly does not implicitly minimize £jgpa—
indicating that it is required to add that term during training.

LLM-JEPA Improves Finetuning. We run experiments across multiple pretrained LLMs (Llama-3.2-
1B-Instruct [[10], gemma-2-2b-it [26]], OpenELM-1_1B-Instruct [24], and OLMo-2-0425-1B-Instruct
[25]) with various datasets (NL-RX-SYNTH, NL-RX-TURK [23]], GSM8K [9], Spider [31]). For a
given (model,dataset) case, search for the best learning rate I € {le —5,2e—5,4e—5,8e — 5} based
on the best possible accuracy of L11,\ after 4 epochs. Then we tune the hyperparameter specific to
L11Mm-J1EPA, k and X in a two dimensional grid defined by (k, A) € {0,1,2,3,4} x {0.5,1,2,4}
(fig.B]and table[5). For both NL-RX-SYNTH and NL-RX-TURK, accuracy is exact match of the generated
regular expression; for GSM8K, accuracy is exact match of the final result; and for Spider, accuracy
is exact match of the execution result of the generated query. We provide results demonstrating how
LLM-JEPA improves performances (fig.[I]left) across models (table[8)), datasets (table[J), training
time (fig. [T|right and fig. [5), and sizes (table[IT)). Examples of inputs and targets along with models’
predictions and error analysis are provided in tables [6|and[7] The improved performance of LLM-
JEPA holds across LoRA ranks as shown in table[3] We also provide evidence that LLM-JEPA induces
an approximately linear transformation from Enc(Text) to Enc(Code) (figs.[6] and [7]and table[10).

LLM-JEPA Improves Pretraining. We pretrain Llama-3.2-1B-Instruct from randomly initialized
weights on NL-RX-SYNTH dataset, a prediction is valid as long as it starts with the ground truth.
We obtain that LLM-JEPA also improves the quality of the learned representation, as shown in
table[I} We also conduct another pretraining experiment on cestwc/paraphrase containing groups
of 5 paraphrases. We employ the paraphrases within a same group for the JEPA loss. Once the
model is pretrained (4 epochs), we do finetuning evaluation on rotten_tomatoes (1 epoch). We
demonstrate how JEPA pretraining improves the downstream performance post-finetuning in table 4]
Note that finetuning does not employ the JEPA loss—hence showing the benefit of JEPA at pretraining
stage. Lastly, we provide in table [2| generated samples demonstrating that JEPA pretraining does
maintain the generative capabilities of the model when prompted with the first few tokens in the
cestwc/paraphrase dataset.

3 Conclusion and Future Work

We introduced an alternative training objective for LLMs leveraging JEPAs. Our formulation is
an exact replicate of the JEPA objective extensively used in vision—but that hadn’t been adapted to
language yet. Crucially, our proposed LLM-JEPA maintains the generative capabilities of LLMs
while improving their abstract prompt representation as empirically validated across datasets and
models. While our experiments mostly focus on finetuning, preliminary pretraining experiment are
promising which we plan to scale and more thoroughly test in future work. Regarding the limitations
of LLM-JEPA, the main current bottleneck is the 3-fold compute cost during training required to
obtain the representations of the views. We plan to explore possible mitigation that would mask the
self-attention matrix and allow for our LLM-JEPA loss to be evaluated within a single forward pass
through the LLM.

149

150
151
152

153
154
155
156

157

159

160
161
162

163
164
165
166

167
168
169

170
171

172
173
174
175

176
177
178

179
180
181

182
183
184

185
186
187

188
189
190

191
192
193

194
195

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based
formalisms. arXiv preprint arXiv:1905.13319, 2019.

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael
Rabbat, Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-
embedding predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15619-15629, 2023.

Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli.
Data2vec: A general framework for self-supervised learning in speech, vision and language. In
International conference on machine learning, pages 1298—-1312. PMLR, 2022.

Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann LeCun,
Mahmoud Assran, and Nicolas Ballas. Revisiting feature prediction for learning visual repre-
sentations from video. arXiv preprint arXiv:2404.08471, 2024.

Loic Barrault, Paul-Ambroise Duquenne, Maha Elbayad, Artyom Kozhevnikov, Belen Alastruey,
Pierre Andrews, Mariano Coria, Guillaume Couairon, Marta R Costa-jussa, David Dale, et al.
Large concept models: Language modeling in a sentence representation space. arXiv preprint
arXiv:2412.08821, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Rocio Cabrera Lozoya, Arnaud Baumann, Antonino Sabetta, and Michele Bezzi. Commit2vec:
Learning distributed representations of code changes. SN Computer Science, 2(3):150, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1—
113, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
John Schulman, Jacob Hilton, Melanie Knight, Adrian Weller, Dario Amodei, et al. Training
verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
Towards complex text-to-sql in cross-domain database with intermediate representation. arXiv
preprint arXiv:1905.08205, 2019.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16000-16009, 2022.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. Cc2vec: Distributed representations
of code changes. In Proceedings of the ACM/IEEE 42nd international conference on software
engineering, pages 518-529, 2020.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettlemoyer.
Learning a neural semantic parser from user feedback. arXiv preprint arXiv:1704.08760, 2017.

196
197
198

200

201
202
203

204

206
207

209
210
211

212
213
214
215

216
217
218
219

220
221
222
223

224
225
226

227
228
229
230

231
232
233
234

235
236
237

238
239

240
241
242

[16] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R. Narasimhan. Swe-bench: Can language models resolve real-world github issues? In
International Conference on Learning Representations (ICLR), 2024. Oral presentation.

[17] LilJing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse
in contrastive self-supervised learning. arXiv preprint arXiv:2110.09348, 2021.

[18] Tristan Kenneweg, Philip Kenneweg, and Barbara Hammer. Jepa for rl: Investigating joint-
embedding predictive architectures for reinforcement learning. arXiv preprint arXiv:2504.16591,
2025.

[19] Yann LeCun. A path towards autonomous machine intelligence (version 0.9.2). OpenReview,
62(1):1-62, jun 2022. Version 0.9.2, released June 27, 2022.

[20] Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 13067—-13075, 2023.

[21] Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by ratio-
nale generation: Learning to solve and explain algebraic word problems. arXiv preprint
arXiv:1705.04146, 2017.

[22] Etai Littwin, Omid Saremi, Madhu Advani, Vimal Thilak, Preetum Nakkiran, Chen Huang,
and Joshua Susskind. How jepa avoids noisy features: The implicit bias of deep linear self
distillation networks. Advances in Neural Information Processing Systems, 37:91300-91336,
2024.

[23] Nicholas Locascio, Karthik Narasimhan, Eduardo DeL.eon, Nate Kushman, and Regina Barzilay.
Neural generation of regular expressions from natural language with minimal domain knowledge.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
pages 1918-1923, 2016.

[24] Sachin Mehta, Mohammad Hossein Sekhavat, Qingqing Cao, Maxwell Horton, Yanzi Jin,
Chenfan Sun, Iman Mirzadeh, Mahyar Najibi, Dmitry Belenko, Peter Zatloukal, et al. Openelm:
An efficient language model family with open training and inference framework. arXiv preprint
arXiv:2404.14619, 2024.

[25] Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. arXiv preprint
arXiv:2501.00656, 2024.

[26] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin,
Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé,
et al. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

[27] Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques Klein, and
Tegawendé F Bissyandé. Evaluating representation learning of code changes for predict-
ing patch correctness in program repair. In Proceedings of the 35th IEEE/ACM international
conference on automated software engineering, pages 981-992, 2020.

[28] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson.
Rat-sql: Relation-aware schema encoding and linking for text-to-sql parsers. arXiv preprint
arXiv:1911.04942, 2019.

[29] Boshi Wang and Huan Sun. Is the reversal curse a binding problem? uncovering limitations of
transformers from a basic generalization failure. arXiv preprint arXiv:2504.01928, 2025.

[30] Xi Ye, Qiaochu Chen, Xinyu Wang, Isil Dillig, and Greg Durrett. Sketch-driven regular
expression generation from natural language and examples. Transactions of the Association for
Computational Linguistics, 8:679-694, 2020.

243
244
245
246

247
248
249
250

251
252
253

[31]

[32]

[33]

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for
complex and cross-domain semantic parsing and text-to-sql task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, 2018.

Zexuan Zhong, Jiaqi Guo, Wei Yang, Jian Peng, Tao Xie, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. Semregex: A semantics-based approach for generating regular expressions
from natural language specifications. In Proceedings of the 2018 conference on empirical
methods in natural language processing, 2018.

Xin Zhou, Bowen Xu, DongGyun Han, Zhou Yang, Junda He, and David Lo. Ccbert: Self-
supervised code change representation learning. In 2023 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 182—-193. IEEE, 2023.

254

255

256
257
258
259

Table 2: Generated samples by model pretrained by paraphrase dataset. The pretrained model is not good at
terminating sentence. prompt and generation

| Ground Truth vs. Generation

Ground Truth | A garden of flowers and a bench stating "City of London."
Generation A garden of flowers and a vase with a flower in it.............
Ground Truth | A person that is riding on a horse in a grass field.
Generation A person that is riding in a field.................
Ground Truth | A man is riding a horse in a field.
Generation A man is riding a horse in a field................
Ground Truth | There are two birds standing on top of a building
Generation There are two birds standing on a rock.................
Ground Truth | Two hawks sit on top of a roof spire.
Generation Two hawks sit on top of a wooden bench................
Ground Truth | .A young woman serving herself at a cookout.
Generation .A young woman serving herself in a kitchen.................
Ground Truth | 2 bowls of fruit sit on a table.
Generation 2 bowls of fruit sit on a table.................
Ground Truth | A wooden bench written *"CITY OF LONDON’ at the park
Generation A wooden bench written ’CITY and a tree.................

Table 3: Fine-tuning accuracy on dataset NL-RX-SYNTH, LoRA vs. full fine-tuning, both by L,1,m loss and
Lrim—jyepra loss (our method). Configuration is I = 2e — 5, A = 1, k = 1. Each cell runs five times. Average
accuracy and standard deviation are reported. At every LoRA rank, L1,1,m—jEpa (ours) has better accuracy. At
LoRA rank 512 (22.59% trainable parameters), Lr,1,v—JEpa (ours) achieves same accuracy as full fine-tuning,
but L1,1,m still has a significant gap from full fine-tuning.

LoRA Rank | Method Accuracy (%) 1
32 Lrim 6.09 £ 0.55
Li1M—JEPA (OUrS) 7.45 + 1.87
64 Lrrm 21.09 +1.90
LiiM—jEPA (OUrs) 32.46 +1.26
128 Liim 34.21 +2.82
L11M—JEPA (OUrS) 48.45 £ 3.66
956 Lrim 45.57 +4.52
Lrim—Jepa (ours) 60.80 £+ 2.31
512 Lrim 50.18 = 5.15
Liim—Jiepa (ours) 72.41 +£2.94
Full Lrim 57.29 £+ 5.32
»CLLMfJEPA (ours) 70.42 £+ 2.36

A Appendix

A.1 Faster LoRA Convergence

TableE]demonstrates that LoRA fine-tuning with Ly - jepa loss not only achieves substantially
higher accuracy than using £ 1,m alone, but also converges more quickly. Notably, at a LoRA rank
of 512, our method already reaches accuracy comparable to full fine-tuning, whereas LoRA with only
L11m still exhibits a clear performance gap.

260

261
262

273

274
275

276

277
278
279
280

Table 4: Pretraining + fine-tuning L1ama-3.2-1B-Instruct accuracy on pretraining dataset paraphrase
and fine-tuning dataset rotten_tomatoes by Next Token Prediction (Lr1,m) loss vs. Li1,m—JjEpa loss (our
method). Note that L1,1m—JjEPA is applied only at pretraining. We tune 7y, and I7¢¢ by L1, and stick to
them in LLM-JEPA pretraining. We run pretraining 5 times, and for each pretrained model, we run fine-tuning 5
times. Average accuracy and standard deviation are reported. We also report p-value of paired, single-tailed
t-Test.

FT Dataset \ Method Accuracy (%) 1T p-value | Config
Liim 56.57 £+ 1.66 lrpre =8¢ — 5,lryy =4e — 5
rotten_tomatoes | o iea(ours) 57764133 o€ =4 N 05,k = 2, same Irpre, I e

Table 5: Fine-tuning accuracy on dataset NL-RX-SYNTH with LrLm—sepa loss (ours) over various v/
Configuration is Ir = 2e — 5, A\ = 1,k = 0. We maintain max(~, A) = 1.0 to use a fixed lr. Each cell runs
five times. Average accuracy and standard deviation are reported. When v = 0.0, it generate only empty output.

/A | Config Accuracy (%) t

00 | v=00,X=1.0 0.00 + 0.00
0.001 | y=001,A=1.0 1.38+0.06
01 | y=01,A=10 45.80+5.04
1.0 | y=10,A=10 70.42+2.36
100 | y=1.0,A=0.1 67.52+1.45
100.0 | y=1.0,A=0.01 66.83 % 3.89
0o | y=10,A=00 57.294+5.32

A.2 Ablation Study on the Role of L1\

One limitation of eq. is that the contribution of L1, cannot be effectively reduced to 0. To
address this, we introduce an additional hyperparameter -y to explicitly control its relative strength:

L
L1M—JEPA = 7 X Z ,CLLM(TeXtLg_l, Teth) +A % d(Pred(Enc(Text)), Enc(Code)), 3)
=2

abstraction capabilities

generative capabilities

We vary the ratio -/ within [0, 1] while enforcing max(+, A) = 1 to maintain a constant learning
rate. Table E] shows that L1y, remains essential for generative performance: when v = 0, the
fine-tuned model produces only empty outputs. This indicates that the JEPA component primarily
serves as a regularization term, complementing the generative loss.

A.3 Hyperparameter Tuning for LLM-JEPA

Despite its strong accuracy gains, LLM-JEPA introduces two additional hyperparameters. As shown
in fig. [3| the optimal configuration may occur at any point in the grid (A, k) € {0.5,1.0,2.0,4.0} x
{0,1,2,3,4}, which imposes a significant cost for hyperparameter tuning. While we have not
identified an efficient method to explore this space, we empirically observe that adjacent grid points
often yield similar accuracy, suggesting the potential for a more efficient tuning algorithm.

A.4 Additional Generation Examples

Table [7] presents additional examples generated by fine-tuning L1ama-3.2-1B-Instruct on the
NL-RX-SYNTH dataset using Lp v and L11m—JEPA, respectively.

A.5 Opverfitting Behavior in LoRA Fine-Tuning

We also conducted experiments to examine whether LoRA fine-tuning with L1\ jgpa exhibits
similar resistance to overfitting. As shown in fig. @ accuracy under Ly 1\ jgpa generally continues
to improve with additional epochs, whereas fine-tuning with Ly shows clear signs of overfitting.
Notably, the standard deviation is much higher than in full fine-tuning, likely reflecting the lower

281

k=0 k=1 k=2 k=3 k=4
A=0.5 35.68% 36.12% 36.32% 36.13% 36.36%
A=1.0 36.03% 33.83% 33.01% 33.86% [36.15%
A=2.0 31.11% 33.54% 24.64% 17.27% 34.13%

(a) Llama on GSMS8K, Ir = 2¢ — 5
k=0 k=1 k=2 k=3 k=4
A=0.5 34.87% 34.87% 36.10% 38.57% 35.25%
A=1.0 34.87% 35.60% 36.32% 37.28% 38.36%
A=2.0 32.69% 34.49% 37.50% 41.70% 43.12%

(¢) Gemma on SYNTH, lr = 1le — 5
k=0 k=1 k=2 k=3 k=4
A=1.0 87.43% 87.38% 87.30% 83.40% 83.53%
A=2.0 87.52%| 87.14% 87.33% 82.64% 78.17%
A=4.0 87.12% 87.10% 87.30% 87.27% 87.36%

k=0 k=1 k=2 k=3 k=4
A=05 49.43% 49.52% 49.55% 49.61% 49.18%
A=1.0 48.13% 48.54% 49.00% 50.55% 50.13%
A=2.0 46.95% 47.20% 48.79% 47.41% 48.50%

(b) Llama on Spider, Ir = le — 5
k=0 k=1 k=2 k=3 k=4
A=1.0 14.18% 10.52% 13.53% 12.96% 17.92%
A=2.0 12.87% 12.00% 19.70% 19.33% 13.72%
A=4.0 15.63% 13.11% 18.67% 25.40% 16.63%

(d) OpenELM on SYNTH, lr = 8¢ — 5
k=0 k=1 k=2 k=3 k=4
A=0.5 57.69% 57.62% [60.26% 60.15% 60.47%
A=1.0 57.65% 58.43% 59.92% 59.78% 59.74%
L=2.0 57.48% 56.64% 60.03% [60.59% 60.14%

(e) OLMo on SYNTH, Ir =8e — 5 (f) Llama on SYNTH, Pretrain, Ir = 8¢ — 5

Figure 3: In general we didn’t find any pattern on where the best accuracy could appear. It could be at either
high-end or low-end of either A or k. Furthermore, there can be dips and spikes in random locations. Nonetheless,
adjacent cells have close accuracy most of times, and sweeping (k, A) € {0, 1,2, 3,4} x {0.5,1, 2,4} normally
yield satisfiable results. Each cell is an average of five runs, epoch = 4.

Table 6: Regular expressions generated by L1lama-3.2-1B-Instruct after fine-tuning with Lr,r.m loss and
LiiM—Jiera loss (ours). Color code: wrong , extra , missing

Ground Truth Lrrmv-sepa (ours)

ELLM

lines not having the string dog’ followed by a number, 3 or more times
((dog.*[0-91.%)3,) ((dog.*[0-91.%)3,) ((dog.*[0-9].%){3,})

lines containing ending with a vowel, zero or more times
() ((TAEIOUaeiou])*). * (-*)(TAEIOUaeiou])*) * (.*) (%) { (TAEIOUaciou])* }

lines with a number or a character before a vowel
(([0-9DI()).*([AEIOUaeiou]).* (([0-9DI(.)).*([AEIOUaeiou]).* .* ([0-9DI(.)).*([AEIOUaeiou]).*

lines with words with the string *dog’, a letter, and a number
(((10-9])&(dog)I([A-Za-z]))* (((10-9D)&(dog)I([A-Za-z]))* (C [0-9D&(dog)I(([A-Za-z]) *)

= baseline (NTP) - baseline (pred)
LLM-JEPA (NTP) = LLM-JEPA (pred)

i i Wk il a1 i

01 A N YT ey (i) ik mr

Figure 4: Losses in fine-tuning with Lr.r loss (Lrim) and Lrim—Jjepa loss (LLLm—JEpA, our method). We
measure both the cross-entropy loss for next token prediction (Lossr,rar, L1, in chart) and JEPA prediction
loss (D(+, -), pred in chart), although the latter does not contribute in the baseline case. The accuracy is 51.95%
for L:LLM and 71.10% for ELLMf‘]EpA. Since ACLLM and ;cLLMfJEPA share similar £LLM IOSS, the ﬁLLM loss
cannot explain the gap between the accuracy. pred stays a constant in Ly,1,m, while is minimized in Lr,r.Mm—JEPA,
hence pred should be the main reason behind the accuracy gap.

capacity of LoRA fine-tuning. An interesting pattern emerges: for Lrrm-jepa, larger standard

10

Table 7: More regular expressions generated by Llama-3.2-1B-Instruct after fine-tuning with Lr,r.m loss
and Lr.m-JEpa loss (ours). Color code: wrong , extra , missing

Ground Truth Lrim Lrrmv-sepa (ours)

lines ending with a vowel or starting with a character
([AEIOUaeiou].*[A-Za-z].*)+ ([AEIOUaeiou].*[A-Za-z].*)+ ([AEIOUaeiou].*[A-Za-z].*)+

ines containing either a lower-case letter, a vowel, or a letter
((F)[AEIOUaeiou)I(()(-*)) (.*) C (IAEIOUaeiou]) 1(()(.*))) (.*) C (TAEIOUaeiou]) 1(()(.*)))

lines starting with the string *dog’ before a vowel

(([A-Za-z])7,).*(dog).* (([A-Za-z])7,).*(dog).* .* (([A-Za-z])7,).*(dog).*
lines not containing a letter and the string ’dog’
((TA-ZDH)I([a-z])(-*) ((TA-ZD)H)l([a-z]D)(.*) + ((TA-ZDH)l([a-z]))(-*)
lines with a character before a vowel and the string *dog’, zero or more times
F()&([0-9])&(dog). * F()&([0-9])&(dog).* . * FO)&([0-9])&(dog).* *.*
lines with a vowel at least once before not a character
(([A-Za-z])+).*(~([0-9])).* (([A-Za-z])+).*(~([0-9])).* .* (([A-Za-z])+).*(~([0-9])).*

Table 8: Fine-tuning accuracy on dataset NL-RX-SYNTH by Next Token Prediction (Lr,1,m) loss vs. L1,LM—JEPA
loss (our method). Each cell is the best possible accuracy over a set of configurations. Each configuration runs
five times. Average accuracy and standard deviation are reported. We also report p-value of paired, single-tailed

t-Test.
Model ‘ Method Accuracy (%) 1 p-value | Config
. »CLLM 33.65 +3.24 lr=1e—5
gemma-2-2b-it Coiatsmoa (ours) 43124261 2273 N2 k=4 samelr
Ciin 12.07 £ 1.81 Ir=8¢—5
OpenELM-1_IB-Instruct | = =0 ours) 25404240 €T N4 k=3 sameir
Ciint 87.00 £ 0.36 Ir=8¢—5
OLMo-2-0425-1B-Instruct | = = (ours) 87524029 2273 \=9 k=0, samelr

282 deviations often coincide with dips in accuracy, whereas for L1\ they tend to accompany accuracy
283 spikes. This suggests that such fluctuations may be unreliable indicators of generalization quality.

Accuracy (%)
w (=2
o o

N
o

w
o

=== |LM-JEPA (Ours)
= Baseline

34.6

20

1 2 3 4 5 6
Epoch

Figure 5: LLM-JEPA resists overfitting in LoRA fine-tuning. Fine-tuning with Lr,r,m—jepa loss (our method)
resists overfitting. When fine-tuning with Ly, loss start to overfit, L1,1,m—jEpa kept improving. However the
trend is not as stable as in full fine-tuning, possibly due to limited capacity of LoRA fine-tuning.

284 A.6 Structured Representations Induced by LLM-JEPA

285 We also examine the representation space to better understand how LLM-JEPA regularizes learned fea-

286 tures. Specifically, we plot t-SNE embeddings for both Text and Code across three settings: the base

11

287
288

290
291
292
293
294
295

296

297
298

300
301
302
303

Table 9: Fine-tuning accuracy by model Llama-3.2-1B-Instruct, LM loss vs. LrLv—JEpa loss (our
method). Each cell is the best possible accuracy over a set of configurations. Each configuration runs five times.
Average accuracy and standard deviation are reported. We also report p-value of paired, single-tailed ¢-Test.

Dataset ‘ Method Accuracy (%) 1 p-value | Config
LM 57.29 +5.32 Ir=2e—-5
NL-RX-SYNTH LriMm_jEpa (ours) 71.46 +1.34 Le=3 _ 1,k =1, same Ir
LLLM 22.49 +£1.91 lT =2e—5
NLRX-TURK | smea (ours) 3094+ 113 24 ~4% N1 k=1, samelr
LM 32.36 & 0.58 lr=2e—5
GSM8K Coinsmea (ours) 36364020 2072 N 05 k=4, sameir
. »CLLM 47.52 &+ 2.44 lr=4e -5
Spider Coinsmea (ours) 50554208 20673y 1 k=3 sameir

Table 10: LLM-JEPA is almost a linear transformation from Enc(Text) to Enc(Code).
‘ minx || Enc(Text) - X — Enc(Code)||2 Avg. Top 100 Singular

Base model 3953.11 310.73

LM 3035.01 341.80
LLM-JEPA (Ours) k =1 4.47 94.84
LLM-JEPA (Ours) k = 0 4.04 16.82

model, a model fine-tuned with Ly, and a model fine-tuned with Ly 1,0 jepa. As shown in fig. @
clear structure emerges after fine-tuning with L1y, jepa- We hypothesize that L1171 jepa enforces
structure in the representation space by constraining the mapping from Enc(Text) to Enc(Code)
within a narrow subspace. If this is the case, the SVD decomposition of Enc(Text) — Enc(Code)
should yield significantly smaller singular values, which is confirmed in fig. [/} Furthermore, we
hypothesize that the mapping is approximately linear. To test this, we compute the least-squares
regression error, and table[I0]supports this hypothesis. Together, these results suggest that LLM-JEPA
promotes a near-linear transformation between Text and Code representations, which may underlie
its accuracy improvements.

A.7 Performance Across Model Sizes

We also evaluate LLM-JEPA across different model sizes. As shown in table we observe
statistically significant improvements at all scales. Since there is no official 8B version of Llama-
3.2, we instead use Llama-3.1-8B-Instruct, where performance collapsed due to the model’s
difficulty in properly terminating regular expressions. To address this, we additionally evaluate using
a startswith criterion—that is, a prediction is considered correct if the generated regular expression
begins with the ground-truth expression, removing the need for exact termination. Under this metric,
we again observe statistically significant accuracy improvements.

12

e Text
' (3 ’ Code

(a) Base model: No fine-tuning (b) Baseline: Fine-tuned by NTP loss

o Text e Text
Code Code

(¢) LLM-JEPA (Ours) k = 0 (d) LLM-JEPA (Ours) k = 1

Figure 6: t-SNE plot of Text and Code representations in (a) Base mode without fine-tuning, (b) Baseline that
is fine-tuned with NTP loss, (¢) LLM-JEPA (ours) with £ = 0, and (d) LLM-JEPA (ours) with £ = 1. Clearly
LLM-JEPA (ours) induced nice structure on the representations while fine-tuning with NTP loss disrupted the
structure in the base model.

—— Base Model
Regular Fine-tuning
1004 |L —— LLM-JEPA k=1 (ours)

—— LLM-JEPA k=0 (ours)

102 4

Singular Value

10! 4

0 20 40 60 80 100
Index

Figure 7: The top 100 singular values of Enc(Text) — Enc(Code). The curves of LLM-JEPA (ours) are a few
magnitudes lower than that of base model and regular fine-tuning, meaning the mapping from Text to Code are
confined within a narrow subspace, fostering the nice structure we see in Figure|§|

13

Table 11: Fine-tuning accuracy on NL-RX-SYNTH by Next Token Prediction (Lr.Lm) loss vs. Lrv—yepa loss
(our method). Each case runs five times. Average accuracy and standard deviation are reported. We also report
p-value of paired, single-tailed ¢-Test. Note that Llama does not have official 3.2-8B, and we have to use 3.1-8B,
which collapsed on NL-RX-SYNTH as the fine-tuned model doesn’t learn how to terminate the generated regular
expression. We report both exact match and startswith-match, where we test if the generated regular expression
starts with the ground truth. For exact match, the accuracy is more than doubled, though p > 0.05.

Model ‘ Method Accuracy (%) 1 p-value | Config
Lrim 57.29 £+ 5.32 Ir=2e—5
Llama-3.2-IB-Instruct | 0 oa (ours) 71464134 20973 N1 k=1, samelr
LLLM 74.55 £+ 3.58 lT =2e—5
Llama-3.2-3B-Instruct | = ours) 7716 +£3.66 002 N9 k=0, samelr
LM 3.03 £ 0.27 Ir=2e—5
Llama-3.1-8B-Instruct LLL]v[f‘]EPA (ours) 7.29 +6.04 0.0962 A= 0.5, k= 4, same [r
Llama-3.1-8B-Instruct Lrim 84.92 £0.10 0.0117 Ir=2e—5
(startswith) Lrinv—gepa (ours) 85.15+0.13 ’ A=1.0,k =1, same Ir

14

	Introduction
	JEPA-LLM: Improving LLMs' Reasoning and Generative Capabilities
	Primer on Large Language Models
	The LLM-JEPA Objective
	Empirical Validation: LLM-JEPAs Outperforms LLMs

	Conclusion and Future Work
	Appendix
	Faster LoRA Convergence
	Ablation Study on the Role of LLLM
	Hyperparameter Tuning for LLM-JEPA
	Additional Generation Examples
	Overfitting Behavior in LoRA Fine-Tuning
	Structured Representations Induced by LLM-JEPA
	Performance Across Model Sizes

