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Abstract

Models trained on ultrasound images from one
institution typically experience a decline in effec-
tiveness when transferred directly to other insti-
tutions. Moreover, unlike natural images, dense
and overlapped structures exist in fetus ultrasound
images, making the detection of structures more
challenging. Thus, to tackle this problem, we
propose a new Unsupervised Domain Adapta-
tion (UDA) method integrated with the Topol-
ogy Knowledge Transfer (TKT) and the Morphol-
ogy Knowledge Transfer (MKT) module for fe-
tus structure detection, named ToMo-UDA. TKT
leverages prior knowledge of the medical anatomy
of fetal as topological information, reconstruct-
ing and aligning anatomy features across source
and target domains. Then, MKT formulates a
more consistent and independent morphological
representation for each substructure of an organ.
To evaluate the proposed ToMo-UDA for ultra-
sound fetal anatomical structure detection, we
introduce FUSH2, a new Fetal UltraSound bench-
mark, comprises Heart and Head images collected
from Two health centers, with 16 annotated re-
gions. Our experiments show that utilizing topo-
logical and morphological anatomy information
in ToMo-UDA greatly improves organ structure
detection. This expands the potential for structure
detection tasks in medical image analysis.
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Figure 1: Ultrasound images contain prior knowledge across
domains. All substructures of the same view remain con-
sistent in topology (position, size, relationship) and mor-
phology (shape, patterns, representation), which provides
us with new insights into UDA, enhancing our capacity to
bridge the domain gaps effectively (Best view in color).

1. Introduction
In clinical practice, the observation of anatomical structures
allows for the direct diagnosis of many diseases (Xue et al.,
2021; Lin et al., 2019; Arnaout et al., 2021; Zheng et al.,
2023; Dai et al., 2022; Li et al., 2018). For example, the
absence of cavum septi pellucidi structure in fetal head view
is diagnosed as a severe disease called holoprosencephaly
(Monteagudo, 2020). Therefore, anatomical structure detec-
tion serves as an essential foundation for disease diagnosis.
Recently, deep learning (DL)-based methods as a power-
ful tool have already achieved significant progress in fetal
anatomical structure detection, such as standard view qual-
ity control (Pu et al., 2021; Chen et al., 2017; Zhao et al.,
2022; Wu et al., 2017), and disease diagnosis (Gong et al.,
2019; Xu et al., 2022).
Nonetheless, applying DL-based models directly to anatom-
ical structure detection in ultrasound data often yields subop-
timal results, especially for data from multiple health centers
(Guan & Liu, 2021). This is because real-world datasets
have domain gaps (Oza et al., 2023; Li et al., 2023a) due
to variations in data collection devices and obstetricians’
scanning techniques across different hospital centers. Fine-
tuning the DL models on the target data may solve the
problem, but obtaining accurate annotations from obstetri-
cian experts is either costly or unavailable. The diversity of
machines equipped with various transducers further chal-
lenges annotations, presenting a significant hurdle for DL
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approaches.

Unsupervised domain adaptation (UDA) has been proposed
to solve the aforementioned challenges by mitigating the do-
main gaps. UDA aims to maximize the performance of the
target domain while minimizing expert supervision through
invariant feature learning (Vs et al., 2021), self-training
(Zhao et al., 2020; Kim et al., 2019a), image translation
(Chen et al., 2020; Hsu et al., 2020), domain randomization
(Kim et al., 2019b; Rodriguez & Mikolajczyk, 2019), etc.
In natural images, for example, the relationship between the
objects is always chaotic and lacks specific patterns. In con-
trast, in ultrasound images, the relationship of anatomical
structures, e.g., left ventricle and right ventricle, conforms
to the theory of human anatomy and knowledge of topology
regardless of health centers (domains). For example, as
illustrated in Figure 2, the thalamus (T) structure in the fetal
head view always appears in symmetrical pairs. Similarly,
the two ribs (R) flanking the heart are another common ex-
ample. In addition, sonographers diagnose mainly based on
topological and morphological features (Chen et al., 2023),
which provides us with new insights into UDA. As shown in
Figure 1, substructures of the same view remain consistent
in topology and morphology. In medical images, topological
information focuses on the relationship between anatomical
composition and positional relationship, while morphologi-
cal information refers to the textural, shape, and morphology
features of the interior of the anatomical structures.

The unique characteristics of ultrasound images indicate
that previous methods for UDA object detection (UDAOD)
in natural scenarios are not suitable or available for our task.
UDAOD methods for natural scenarios do not consider a
priori knowledge of medical images, yet this is one of the
most significant properties in medical scenarios. For exam-
ple, previous medical UDAOD methods have not considered
topology knowledge and morphology information charac-
teristic consistency for different domains. Motivated by the
above discussion, we propose a novel UDA method named
ToMo-UDA for fetus anatomical structure detection. The
method includes two modules - Topology Knowledge Trans-
fer (TKT) and Morphology Knowledge Transfer (MKT).
TKT aligns features by reconstructing anatomy features,
while MKT formulates consistent and independent represen-
tations for each substructure of an organ.

Collecting datasets from different health centers is chal-
lenging, and annotating multi-structure for these datasets
is especially difficult, as it requires the participation of nu-
merous experienced obstetricians. Therefore, multicenter
ultrasound datasets with multiple structures of detailed box-
level annotations are currently unavailable and scarce. To
address the above discussion, the proposed FUSH2 that
serves as Fetal UltraSound benchmark with 1,978 Heart
and 1,391 Head views, is collected from Two health centers.
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Figure 2: The fetal head and heart view with the key anatom-
ical structures. Fetal ultrasound examination, which is re-
quired to screen for disease during pregnancy, relies on the
presence of anatomical structures that are more challenging
to examine than in adults.

Moreover, ultrasound images of FUSH2 are collected from
different equipment, including Samsung, Sonoscape, and
Philips. The gestational age of the fetus ranges from 20 to
34 weeks. All data were annotated with 16 anatomy regions
and 2 view labels by ultrasonographers who have more than
seven years of clinical experience. In summarize, our
contributions include:
1. A comprehensive real-world fetal ultrasound dataset from
two health centers with 1,978 heart and 1,391 head views,
namely FUSH2, is released. FUSH2 is labeled with 16
anatomy regions by experienced sonographers and includes
various equipment and gestational weeks ranging from 20
to 34 weeks.
2. A new UDA method, namely ToMo-UDA, has been pro-
posed. ToMo-UDA consists of two modules, i.e., TKT and
MKT. TKT and MKT align ultrasound features, focusing
on anatomical structures and morphological features for
accurate diagnosis, respectively.
3. Extensive experiments show that the proposed ToMo-
UDA outperforms all UDAOD baseline and state-of-the-art
(SOTA) structure detection techniques with a clear margin.
Our work opens up new possibilities for accurate and reli-
able object detection in medical image analysis. Datasets
and source code are available at https://github.com/xmed-
lab/ToMo-UDA.

2. Related Work
2.1. UDA Object Detection in Natural Scenarios
Recently, the UDAOD task has become a hot topic (Sindagi
et al., 2020; Wang et al., 2021; Zhao & Wang, 2022; Zhao
et al., 2020; Yu et al., 2022; Chen et al., 2021), and there
have been many studies that can be broadly grouped into ad-
versarial learning (Ganin & Lempitsky, 2015; Zheng et al.,
2020; Vs et al., 2021), self-training (Kim et al., 2019a; Yu
et al., 2019; Huang et al., 2021b), image-to-image transla-
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tion (Kim et al., 2019b; Arruda et al., 2019; Huang et al.,
2021a), and others (Deng et al., 2021; Li et al., 2022b;
Rodriguez & Mikolajczyk, 2019). (He & Zhang, 2019) pro-
posed to find the invariance feature from the source and
target domain through multi-adversarial training. The self-
training technique (Yang et al., 2022) utilizes unlabeled tar-
get data by training with target pseudo-labels, and a typical
study (Liu et al., 2021) explores cycle self-training, a prin-
cipled self-training algorithm that explicitly enforces cross-
domain generalization of pseudo-labels. Recently, some
remarkably new UDAOD algorithms have also emerged,
e.g., mean-teacher training (Chen et al., 2022; Cao et al.,
2023; Deng et al., 2023) and graph-based reasoning meth-
ods (Li et al., 2022a; 2023b; Liu et al., 2023b). Medical
UDAOD differs from natural scenarios, leading to subopti-
mal performance with general object detection methods.

2.2. UDA in Medical Scenarios
Few works in the literature focus on UDAOD studies in
medical scenarios. One pioneering work (Jin et al., 2023)
uses adaptive adversarial training to learn domain-invariant
features to minimize domain shifts. The more relevant top-
ics are source-free (Liang et al., 2020) domain adaptive
medical object detection (Liu et al., 2023a; Liu & Yuan,
2022; Xing et al., 2023) and UDA for segmentation (Shin
et al., 2023; Yang et al., 2023; Huai et al., 2023; Liu et al.,
2020). (Liu et al., 2023a) systematically analyzed the bias
in source-free domain adaptation medical object detection
by constructing a structural causal model and proposed an
unbiased source-free domain adaptation framework based
on the decoupled unbiased teacher. In another popular work,
SMPT (Liu & Yuan, 2022) transfers the domain-invariant
knowledge stored in the pre-trained source model to the
target model via source knowledge distillation. Recently, in
an unsupervised segmentation task, (Yang et al., 2023) pro-
posed a mining prior knowledge of echocardiogram videos
by aligning global and local features from source and target
domains. In a nutshell, few studies have been conducted on
UDAOD in medical scenarios due to the unavailability of
datasets with detailed box-level annotations from multiple
centers. The release of our dataset will benefit UDAOD in
medical scenarios. In addition, previous studies have yet to
fully explore topology and morphology knowledge in both
source and target domains.

3. Method
Taking heart as an example, Figure 3 shows the overall
pipeline of our ToMo-UDA, which consists of a source
domain flow and a target domain flow. First, for both do-
mains, a shared encoder E(·) based on feature pyramid
network (Lin et al., 2017) is leveraged to extract features
{fk}Kk=1, fk ∈ Rhk×wk×d from input images, where d and
K denote the total number of channels and feature map
layers, respectively. Subsequently, the feature maps are

passed to an object detection head (e.g., FCOS head), thus
substructure centroid {ci}Ni=1, ci ∈ R1×d, bounding boxes
yb ∈ RN×4 and organ class yc ∈ RN are predicted from
the detection head, here N represent the total number of
organs. For the source domain, the ground truth annotation
and prediction results are formulated as

Lsupervised = Lclass(y
c) + Lreg(y

b), (1)

for the supervision loss in object detection, where Lclass

is cross-entropy loss and Lreg is the L1 loss. On top of
the above common object detection pipeline, we propose
two modules in ToMo-UDA, named Topology Knowledge
Transfer (TKT) and Morphology Knowledge Transfer
(MKT), to bridge the domain gap from different hospitals.
TKT allows for transferring the heart topology knowledge
from the source to the target domain (see Section 3.1 and Ap-
pendix Section A2). MKT builds the complete inter-graph
knowledge for different substructures, improving morpho-
logical representation consistency of the same substructure
from different domains by minimizing their feature discrep-
ancy (see Section 3.2 and Appendix Section A2).

3.1. Topology Knowledge Transfer

Unlike datasets like Cityscapes (Cordts et al., 2016) and
COCO (Lin et al., 2014) for object detection in nature im-
ages, large domain gaps in ultrasound images actually de-
pend on equipment manufacturers and physician experience
across different medical centers. Despite the significant
differences between the domains, we/sonographers have
observed that substructures of the fetal heart consistently
maintain their relative location. For instance, as shown in
Figure 1, the substructure locations, such as locations of
the left ventricle and left atrium of the heart in ultrasound
images, remain consistent. Therefore, this consistent infor-
mation can be utilized as the robust prior topology knowl-
edge for our domain adaptation problem. Motivated by the
above discussion, we concluded that fully annotated loca-
tion labels of structures from the source domain can serve as
complete structural information, making them suitable to be
used as a standard reference for aligning heart knowledge
in the target domain.

The TKT module is designed to align topology knowledge
across domains to tackle the above problems. In the TKT
module, we first take the centroid feature of each substruc-
ture {ci}Ni=1 generated by E(·) from both the source and
target domain. Subsequently, we construct topology graphs
(V, E) for each domain to represent the heart topology,
where V denote the representation of N (e.g., N = 9 for
heart) substructures, and E denote the set of edges connect-
ing each substructure, respectively. To construct the repre-
sentation of substructures, we introduce memory banks to
maintain substructure features from large-scale data samples.
Then, acquire centroid representation {θi}Ni=1, θi ∈ R1×d
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Figure 3: The overview of the proposed ToMo-UDA. A shared-parameter backbone and a detection head generate
detection results from inputs of source and target domains. In the Topology Knowledge Transfer module, we obtain
centroid representation from ground truth labels and pseudo-labels for the source and target domain, respectively, for
constructing overall topological representations. In Morphology Knowledge Transfer, we sample nodes from feature maps
from bounding boxes as morphological representations for each organ and align low-level and morphological semantics
through the numerical equilibrium approach. In our testing stage, the trained extractor and detector are used for inference.

via average features of the bank of i-th substructure for V .
To ensure that banks can be updated synchronously, we also
use the centroid θi to fill the empty nodes where the network
misses detection.

When averaging the centroid feature of the i-th substruc-
ture, only intra-substructure discrepancy is considered, not
inter-substructure discrepancy. The representation of each
substructure should be distinguished with clear margins, and
the centroid ci in different samples should be close to its
corresponding clustering centers θi. Thus, to complete the
topology graph (V, E) for a sample, the edge E is computed
by the pairwise distance between the centroid ci of cur-
rent sample and clustering center θi in the i-th substructure,
formulated as E = {ci · θTi }Ni=1, and V = {ci}Ni=1.

To obtain the topological representation via graph, we apply
the graph neural network (GNN) (Kipf & Welling, 2016)
to acquire a more cohesive representation G from (V, E)
through G = GNN(V, E),G ∈ RN×d. In the GNN mod-
ule, the embedding size is set to d to stay in line with the
input (V, E). Then, to narrow the discrepancy across source
and target domains, we optimize their transport distance
between the graph Gs and Gt as:

Ldis(s, t) = inf
γ∈Γ(s,t)

(
E(Gs,Gt)∼γ [Gs,Gt]p

) 1
p , (2)

where γ ∈ Γ(s, t) is the set of all couplings of training
samples from source and target domains, γ and Γ denotes
a joint probability measure and all joint probability distri-

bution of γ(Gs,Gt), respectively. In subsequent content,
we use subscript letters s and t to represent the source and
target domains, respectively.

Directly optimizing Equation 2 is challenging. Thus, we
store features of heart substructures from data samples in
memory banks and use centroid clustering to approximate
the overall representation. This allows us to reformulate
Equation 2 as a discrete form:

Ldis (s, t) = inf
π

(∑N

i=1
||Gt,i − Gs,π(i)||p

) 1
p

, (3)

where the i in Gs/t,i denotes the graph nodes of i-th sub-
structure in graph G from source/target domain, and the
infimum (inf) is over all permutations π of N heart sub-
structures, computed by using the Sinkhorn (Cuturi, 2013)
iteration. We use the LTKT = Ldis (Gt,Gθ) to represent
the overall loss of module TKT.

3.2. Morphology Knowledge Transfer

As shown in Figure 1, topology refers to the spatial relation-
ships that remain constant globally, considering the overall
representation of a specific view of the heart. While mor-
phology deals with the form and shape of each substructure
itself. To maintain the consistent representation of substruc-
tures across domains, we propose a technique called MKT to
align the morphology representation of substructures across
different domains.
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Figure 4: The overview pipeline of the proposed Morph-
aware GNN (MAGNN) and cross-domain graphical at-
tention. The weights and bias are the learnable parameters,
where weightsW ∈ Rd×d and β ∈ R1 ×d.

Substructure Morphology Representation Formulation.
To construct heart substructures representation, we sparsely
sample features from each layer of feature map F ac-
cording to the bounding boxes ybt and ybs. As the MTK
module shown in Figure 3, we equidistantly sample M
feature nodes {oi,j}N,M

i,j=1, oi,j ∈ Rd for each substruc-
ture and concatenate sample nodes from deep to shal-
low layers of F (see Appendix A3: line 4-9 of Algo-
rithm 1), where the sampled nodes can be represented by
{Oi}Ni=1 = {oi,j}N,M

i,j=1. For each substructure, to trans-
fer their morphological information across domains, we
introduce the auxiliary network named morph-aware GNN
(MAGNN) to complete the morphological representation
gi = MAGNN({Oi}), gi ∈ RM×d. Refer to Figure 4,
the input nodes is vi = {oi,j}N,M

i,j=1, and adjacent matrix ei
is computed by ei = {LN[µ(oi,j) · ϕ(oi,j)T]}Mj=1, where
LN denotes the layer normalization, µ, ϕ are Linear lay-
ers. Finally, the cross-domain graphical attention is in-
troduced for cross-domain interaction via graph gs

i and
gt
i , formulated as LN

[(
Wq(g

t
i) · Wk(g

t
i)

T
)
Wv(g

s
i )
]
, the

Wq,Wk,Wv ∈ Rd×d are the linear projection layers.

Essentially, all nodes in the source and target domains must
be classified correctly based on the substructure label of
each graph node of gi from the i-th heart substructure, cross-
entropy loss for node classification is defined to train the
model:

Lclass = −
(∑N

i

∑M

j
yci log

(
gi,π(j)

))
s/t

, (4)

where π(j) is the over all permutations of graph node in gi.
The label yci of the source and target domains comes from
annotation and the prediction result, respectively.

As discussed, same substructure across different fetal hearts
should remain a consistent morphological representation,
i.e., intra-class similarity. Similar to the Equation 2 in Sec-
tion 3.1, with the help of MAGNN network that constructs
gi. We can perform the optimal transport to narrow the
distribution discrepancy of i-th substructure across domains,

formulated as:

Wp(gs,gt) =

(∫
M×M

||gs − gt||pdσ (gs,gt)

) 1
p

, (5)

where σ(gs,gt) indicates how much “mass” must be trans-
ported between source and target domains in order to trans-
form their graphical representation. ||gs − gt||p represent
the cost of transporting a unit mass between gs and gt,
measure on M ×M feature nodes of the homologous pair
of heart substructures from source and target domain with
p-norm distance.

Feature Numerical Equilibrium. Equation 5 is designed
to transfer the knowledge of morphology and reduce the
domain gap, while the low-level feature alignment is not
considered. For low-level feature alignment, we noticed a
significant numerical distribution discrepancy between the
source and target domains, which leads graphical represen-
tations gs and gt to the unequal sum of masses. Thus, the
cost of transporting the unit mass may be dominated by
||gs−gt|| instead of γ (gs,gt), which hinders the optimiza-
tion during training. To tackle this problem, we introduce
the feature numerical equilibrium approach.

The numerical equilibrium approach first normalizes the fea-
ture {Oi}Ni=1 to 0 ∼ 1. Specifically, for each substructure,
compute their cumulative distribution P({Oi}) by Proba-
bility Density Function (PDF) p(k) for both domains as the
Equation 6:

P({Oi}) =
∫ 1

k=0

p({oi,j})dk. (6)

Given a mappingM, for numerical equilibrium between
source and target domains, we optimize the mapping func-
tion through Equation 7:

M∗ = argminM

N∑
j=0

D(M[Pt({Ot,i})],Ps({Os,i})),

(7)
where D(·, ·) is the p-norm distance metric, {Os/t,i} de-
notes that sampled nodes from source/target domain. Ac-
cording to Figure 6 in ablation study Section 4.4, the numer-
ical distribution can be shifted from shallow to deep layer
of feature maps, which denotes that this process can be first
implemented in the input image X and formulated as:

M∗ = argminM

N∑
i=1

M∑
j=1

K∑
k=0

D(M[p(ot,i,j)], p(os,i,j)),

(8)
where K denotes the grayscale value, os/t,i,j denotes the
j-th node of i-th substructure from source/target domain.

According to Equation 3 and Equation 8, we then formulate
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Equation 5 to the discrete form as following:

Ldis (gs,gt) =

N∑
i=1

inf
π

 M∑
j=1

||gt,i,j −M(gs,i,π(j))||p
 1

p

,

(9)
where the infimum is over all permutations π of M graph
nodes, gs/t,i,j denotes that the j-th graph node of i-th sub-
structure from source/target domain, and mappingM is for-
mulated by Equation 8. The lossLMKT of the MKT module
in Section 3.2 is written as LMKT = Lclass+Ldis (gs,gt).

Finally, the overall loss of our proposed ToMo-UDA can be
summarized as:

Lall = αLTKT + βLMKT + Lsupervised, (10)

where α and β is the decay ratio of the loss LTKT and
LMKT . Our experiment found that when both α and β
are set to 0.1, it can achieve the best domain adaptation
performance.

4. Experiment
4.1. Datasets and Evaluation

The proposed FUSH2 dataset was collected from two
medical centers and includes fetal head and heart images.
The dataset collection and experiment are approved by the
local ethics committee with the approval number LLYJ2022-
014-005. A senior and experienced sonographer annotated
the bounding box of the organ structures and its class name.
These ultrasound images are obtained by local sonogra-
phers from various ultrasound devices such as Samsung and
SonoScape. There are a total of 1,391 fetal head images and
1,978 heart images in the FUSH2 dataset.

When compared to other counterparts like CAMUS (Leclerc
et al., 2019) and EchoNet (Ouyang et al., 2020), FUSH2

collects data from multiple health centers with a wide range
of resolutions. In contrast, CAMUS and EchoNet use data
from a single health center. Additionally, when compared to
CardiacUDA (Yang et al., 2023), FUSH2 has wide-ranged
resolutions and remarkably 16 annotated regions (9 for heart
and 7 for head), whereas CardiacUDA only has 4. The ben-
efits of our dataset compared to existing datasets are shown
in Table 1. The main anatomical structure abbreviations are
shown in Table 2.

MMWHS (Zhuang et al., 2019) consists of 20 unpaired
MRI and 20 CT volumes with corresponding pixel-level seg-
mentation ground truth. We use the pre-processing methods
of PnP-AdaNet (Dou et al., 2019) and convert the segmen-
tation masks into bounding boxes for four regions present
in both MRI and CT modalities: the ascending aorta (AA),
the left atrial blood cavity (LA-blood), the left ventricular
blood cavity (LV-blood) and the left ventricular myocardium

(LV-MYO). The dataset split ratios are also consistent with
PnP-AdaNet.

Table 1: The comparison of our FUSH2, Car-
diacUDA (Yang et al., 2023), CAMUS (Leclerc et al., 2019),
and EchoNet (Ouyang et al., 2020).

Dataset Our FUSH2 dataset CardiacUDA CAMUS EchoNet
Annotated Images 3,369 4,960 1,000 20,060
Multiple Centers ✓ ✓ × ×

Views 2 4 1 1
Resolution 480-1080p 720p 480p 120p

Annotated Regions
LV, RV, LA, RA, DAO,

VS, SP, CR, R, LS
CSP, BM, T, S, C, CP

LV, RV, LA, RA LV, LA LV

Table 2: Professional terms and abbreviations of FUSH2.
Heart Head

Structure Abb Structure Abb
Left Atrium LA Thalamus T

Right Atrium RA Lateral Sulcus LS
Left Ventricle LV Choroid Plexus CP

Right Ventricle RV Cavum Septi Pellucidi CSP
Cross CR Brain Midline BM
Rib R Skull S

Ventricular Septum VS Cerebellum C
Spine SP / /

Descending Aorta DAO / /

4.2. Implementation Details

We use ResNet101 (He et al., 2016) as our feature extrac-
tor. For the detection head, we choose one-stage (Tian
et al., 2019) (two-stage (Ren et al., 2015) is shown in the
Table A1) detection strategies. During training, we apply
the Stochastic Gradient Descent (SGD) optimizer with an
initial learning rate of 0.001, a batch size of 6, a momen-
tum of 0.9, and a total of 100 training epochs. We apply
proportional scaling, random flipping, and random erasing
as preprocessing operations. For each dataset, we split it
into training, validation, and test sets with a ratio of 7:1:2,
respectively.

4.3. Comparison with SOTA

We performed extensive domain adaptive detection experi-
ments on fetal heart and head from different medical centers.
For example, the adaptive detection from center1 to cen-
ter2 is denoted as center 1→2. The detection results were
evaluated by mean Average Precision (mAP) with Intersec-
tion over Union (IoU) (Lin et al., 2014) thresholds over 0.5.
In our table, the Source Only refers to evaluating weights
trained only on the source domain directly to the target, with-
out using any DA methods, while the Target Only refers to
training on the target domain in a fully supervised manner.

UDA on heart. As reported in Table 3, On both center 1→2
and center 2→1, ToMo-UDA outperforms all the latest UDA
SOTA methods, achieving the significant performance of
71.33% mAP and 88.71% mAP respectively. As shown
in Figure 2, organs such as LA, RA, LV, RV, VS, and CR
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Table 3: Domain adaptation results on the heart.
Methods Center 1→2 Center 2→1

LA RA LV RV CR R VS SP DAO mAP (%) LA RA LV RV CR R VS SP DAO mAP (%)
Source Only 35.06 38.77 34.46 36.67 52.86 52.51 42.19 54.66 48.01 43.90 70.58 80.29 76.08 65.34 79.98 61.64 75.96 88.07 79.21 75.23

Few-shot Methods Few-shot Methods
AcroFOD (Gao et al., 2022) 22.51 28.43 22.94 21.92 26.02 26.04 29.02 24.51 26.60 25.33 39.54 38.81 41.59 41.17 39.48 27.25 41.46 35.32 38.43 38.11
AsyFOD (Gao et al., 2023) 55.57 59.79 57.04 54.90 58.24 54.91 53.71 66.02 59.00 57.78 56.64 61.72 58.52 56.93 57.34 58.04 59.28 62.63 60.45 59.03

Unsupervised Methods Unsupervised Methods
ConfMix (Mattolin et al., 2023) 43.90 59.53 61.37 53.55 46.12 51.67 50.83 60.33 61.94 54.36 59.97 66.83 67.22 62.30 56.76 45.77 63.32 66.11 53.97 60.25

SIGMA (Li et al., 2022a) 50.11 62.10 49.52 51.30 58.94 55.61 46.68 54.00 47.85 52.04 83.86 86.42 83.60 78.08 82.47 68.87 78.06 90.46 85.64 81.94
LRA (Piao et al., 2023) 41.68 24.37 34.43 32.18 41.05 70.21 46.14 27.88 25.32 38.14 88.43 71.82 79.30 84.66 84.83 64.46 83.76 82.33 80.53 80.01
CMT (Cao et al., 2023) 56.39 57.30 61.42 55.51 58.58 75.80 59.23 60.94 59.08 60.47 79.89 91.51 85.90 83.79 87.87 65.53 85.74 85.18 75.37 82.31

SIGMA++ (Li et al., 2023b) 57.12 56.97 60.21 58.32 56.05 58.87 55.46 59.08 60.11 57.83 86.88 88.19 82.83 79.55 87.17 66.66 82.20 82.62 86.48 82.50
Ours 64.23 75.62 70.40 64.32 66.69 75.03 75.48 77.24 72.99 71.33 93.91 90.25 94.72 88.20 89.92 69.86 90.66 90.91 90.06 88.71

Target Only 65.95 75.63 72.39 73.88 72.86 76.60 76.70 77.41 71.55 73.66 82.91 86.61 83.47 82.75 89.09 72.50 85.93 90.15 89.61 84.78

Table 4: Domain adaptation results on the head.

Methods Center 1→2 Center 2→1
T LS CP CSP BM S C mAP (%) T LS CP CSP BM S C mAP (%)

Source Only 63.88 64.02 53.86 53.40 90.91 59.78 45.25 61.58 42.33 77.52 79.89 50.73 43.43 82.89 30.83 58.23
Few-shot Methods Few-shot Methods

AcroFOD (Gao et al., 2022) 42.98 36.11 40.25 41.61 47.52 41.47 38.52 41.20 61.28 60.42 61.34 60.95 59.38 61.87 36.16 57.34
AsyFOD (Gao et al., 2023) 39.96 35.07 39.79 39.20 47.01 39.17 34.03 39.17 60.92 60.06 60.95 60.61 58.98 61.51 36.16 57.03

Unsupervised Methods Unsupervised Methods
ConfMix (Mattolin et al., 2023) 62.38 60.88 53.79 71.44 48.97 95.23 50.34 63.29 69.31 73.40 52.45 66.53 36.82 96.11 40.51 62.16

SIGMA (Li et al., 2022a) 72.62 64.94 62.15 67.96 64.72 95.63 58.58 69.51 48.40 71.97 79.89 54.42 49.13 77.68 28.58 58.58
LRA (Piao et al., 2023) 59.00 61.74 66.93 71.29 64.62 99.43 67.92 70.13 54.04 30.98 32.68 27.60 46.77 93.25 62.11 49.63
CMT (Cao et al., 2023) 79.53 80.84 75.56 77.57 52.33 98.00 64.73 75.94 33.84 66.16 86.17 42.42 47.92 99.97 29.17 57.95

SIGMA++ (Li et al., 2023b) 80.72 65.70 69.63 77.27 67.63 98.22 61.02 74.31 53.81 75.04 85.17 53.86 51.83 79.08 55.99 64.96
Ours 86.57 76.86 77.71 84.31 74.34 90.91 78.39 81.30 64.00 72.69 72.04 64.19 62.36 88.68 67.96 70.27

Target Only 79.76 88.17 77.62 82.12 71.10 96.51 70.02 80.75 97.00 99.05 90.54 87.81 87.06 100.00 73.83 90.75

Table 5: Cross-modal adaptation results on MMWHS.

Methods CT −→MRI MRI −→ CT
LV-MYO LA-blood LV-blood AA mAP (%) LV-MYO LA-blood LV-blood AA mAP (%)

Source Only 27.02 9.09 59.06 22.14 29.32 34.51 56.80 32.36 32.22 38.97
ConfMix (Mattolin et al., 2023) 58.43 32.00 70.29 24.01 46.18 45.77 53.20 59.88 39.03 49.46

SIGMA (Li et al., 2022a) 62.12 24.52 80.09 16.30 45.76 51.71 65.50 53.33 48.14 54.67
LRA (Piao et al., 2023) 75.18 8.85 74.97 10.74 42.43 71.34 55.79 79.32 61.00 66.86
CMT (Cao et al., 2023) 84.41 17.37 82.14 39.98 56.97 67.75 72.59 66.49 74.72 70.39

SIGMA++ (Li et al., 2023b) 60.91 44.59 79.52 23.63 52.16 67.10 61.25 74.24 60.89 65.87
AT (Li et al., 2022b) 81.87 17.87 79.49 23.73 50.74 65.52 74.25 66.20 78.27 71.06

Ours 77.10 51.16 82.60 40.35 62.80 82.43 80.07 81.00 70.02 78.38
Target Only 85.38 74.49 86.45 77.00 80.83 83.68 86.43 81.78 80.72 83.15

Table 6: Domain adaptation results on CardiacUDA dataset.

Methods Site R→ Site G
LV RV LA RA mAP (%)

Source Only 72.76 76.68 75.49 66.52 72.86
ConfMix (Mattolin et al., 2023) 66.38 71.76 64.62 51.29 63.51

SIGMA (Li et al., 2022a) 78.37 81.20 75.83 69.12 76.13
CMT (Cao et al., 2023) 87.13 80.46 74.85 57.11 74.89

SIGMA++ (Li et al., 2023b) 84.71 85.76 75.44 66.08 77.99
Ours 85.12 83.83 85.38 86.53 85.21

Target Only 83.73 81.92 81.58 82.17 82.35

Methods Site G→ Site R
LV RV LA RA mAP (%)

Source Only 97.33 87.48 90.91 90.03 91.44
ConfMix (Mattolin et al., 2023) 53.90 65.80 66.40 59.30 61.40

SIGMA (Li et al., 2022a) 97.21 84.48 94.96 95.28 92.98
CMT (Cao et al., 2023) 90.89 81.32 87.86 74.64 83.68

SIGMA++ (Li et al., 2023b) 90.17 87.66 99.08 94.69 92.90
Ours 90.12 90.34 98.83 99.03 94.58

Target Only 96.33 90.79 99.07 99.71 96.48

exhibit dense overlapping in these views. Traditional de-
tection methods are prone to false positives and negatives
under these conditions. In contrast, our approach, which
synergizes topological and morphological knowledge, effec-
tively overcomes these challenges. As shown in Table 3, our
detection capability on center 1→2 is approaching the target
only, and remarkably, it surpasses the target only on center
2→1. This superior performance can be attributed largely
to the diverse styles captured in the center2 dataset, which

Table 7: Ablation results on heart and head datasets.

Methods Center 1→2 on heart Center 1→2 on head
TKT MKT NE mAP (%) TKT MKT NE mAP (%)

Baseline - - - 43.90 - - - 61.58

Ours

✓ ✗ ✗ 58.60 ✓ ✗ ✗ 77.16
✗ ✓ ✗ 62.24 ✗ ✓ ✗ 76.89
✓ ✓ ✗ 68.97 ✓ ✓ ✗ 78.96
✓ ✓ ✓ 71.33 ✓ ✓ ✓ 81.30

Methods Center 2→1 on heart Center 2→1 on head
TKT MKT NE mAP (%) TKT MKT NE mAP (%)

Baseline - - - 75.23 - - - 58.23

Ours

✓ ✗ ✗ 82.97 ✓ ✗ ✗ 59.96
✗ ✓ ✗ 84.72 ✗ ✓ ✗ 62.72
✓ ✓ ✗ 86.66 ✓ ✓ ✗ 67.56
✓ ✓ ✓ 88.71 ✓ ✓ ✓ 70.27

endows the trained models with enhanced generalization ca-
pabilities and robustness. One observation is that individual
few-shot UDA methods that are lower than Source Only,
which may be caused by the samples selected not being
the representation of the overall target domain, may lead to
domain bias.

UDA on Head. We conducted experiments focused on the
adaptive detection of key structures in the fetal head. As
depicted in Figure 2, although the overlap of brain structures
is less compared to cardiac sections, ultrasound detection
of the brain remains a significant challenge. This is due to
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Source Only SIGMA++CMT ToMo-UDA (Ours) Ground Truth

Heart: LA LV RV VS CR SP DAO RRA Head: BT LS CSPCP S C

Figure 5: Qualitative result comparison of Source Only, CMT (Cao et al., 2023), SIGMA++ (Li et al., 2023b), ToMo-UDA
and Ground Truth. The first and second rows show the results from center 1→2 and center 2→1 on the heart of the FUSH2

dataset. The third and last rows show the results from center 1→2 and center 2→1 on the head of the FUSH2 dataset.
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Figure 6: The distribution of the numerical value from the feature maps. Black box: source domain. Magenta box: target
domain. Green box: source domain after the proposed Numerical Equilibrium (NE).

the considerable individual variability in fetal development,
coupled with the complexity of brain anatomy. Despite
these challenges, our method demonstrated excellent detec-
tion performance. As shown in Table 4, we achieved the
best detection results between the two centers. On center
1→2, our method improved by 5.36%, and on center 2→1,
we observed an improvement of 5.31%. It’s notable that
on center 2→1, despite achieving the best detection met-
rics, there remains a considerable gap from the target only.
We attribute this to the lower resolution of images in cen-
ter2 compared to center1, with resolutions typically around
648 × 480 in center2, whereas center1 images are gener-
ally around 1280 × 872. This resolution disparity makes
it challenging for models trained on center2 to extract de-
tailed organ structural information, leading to less effective
domain adaptation.

UDA on CardiacUDA Dataset. CardiacUDA was origi-
nally proposed in (Yang et al., 2023) to explore unsuper-
vised domain adaption for echocardiogram video segmen-
tation. We test the proposed ToMo-UDA using the heart
view from the CardiacUDA dataset for comparison with
existing methods. Specifically, for CardiacUDA, each video
was labelled with 5 frames, and the segmentation mask
annotations were transformed into the bounding box, in-
cluding LA, RA, LV, and RV structures. The performance
of ToMo-UDA on the CardiacUDA is summarized in Ta-
ble 6. The results suggest that our method still outperforms
all UDAOD methods. From Site R→ Site G, our method
slightly underperforms other methods by 2.01% and 1.93%
on the LV and RV structures. However, for the LA and RA,
which are relatively more challenging to detect, our method
surpasses the second-best method by 9.55% and 17.41%,
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respectively. Existing UDAOD methods often experience
performance degradation when detecting smaller objects.
By incorporating topological and morphological priors from
medical images, our approach achieves balanced detection
results for each organ structure.

UDA on MMWHS Dataset. Table 5 shows the compar-
isons of our ToMo-UDA with other SOTA methods for cross-
modal adaptation. Our method outperforms the second-best
by 5.83% mAP on CT→MRI and by 7.32% mAP on MRI
→ CT. This demonstrates the effectiveness and scalability
of our ToMo-UDA.

4.4. Analysis and Ablation Study.
Ablation on Source Only. As shown in Table 7, com-
pared to the Source Only baseline, ToMo-UDA substan-
tially improves the cross-domain fetal structure detection
task. For example, ToMo-UDA outperforms Source Only
by 27.43% mAP and 19.72% mAP for the adaptation center
1→2 detection on fetal heart and head, respectively, which
demonstrates the effectiveness of the proposed method.

Ablation on TKT. Compared to Source Only, TKT in-
creases mAP by 14.70% and 7.74% for adaptive center 1→2
and center 2→1 heart detection, respectively, as shown in
Table 7. The same pattern can be found in head detection.
For example, TKT improves mAP by 15.58% compared to
Source Only in adaptive center 1→2 head detection. This
indicates that TKT can transfer topological knowledge be-
tween source and target domains to facilitate better adaptive
detection through invariant topological knowledge.

Ablation on MKT. Similarly, compared to the Source Only
again, MKT enhances mAP by 15.31% and 4.49% in center
1→2 and center 2→1 head detection, respectively. In heart
structure detection, MKT significantly improves detection
performance. These experimental results demonstrate the
effectiveness of aligning morphological knowledge within
the structure.

Ablation on Numerical Equilibrium. As noted in Section
3.2, inter-domain discrepancies in low-level numerical dis-
tributions can impact the performance of our model. Given
the challenges of computing continuous distributions, we
have adopted a domain-mapping approach based on the nu-
merical distribution of the input image. Figure 6 visualizes
the numerical distributions of feature maps from the first
two layers, demonstrating the impact of our numerical equi-
librium. It highlights significant differences in numerical
distributions of the feature map layers between the source
and target domains (magenta box). However, after apply-
ing the numerical equilibrium operation (green box), the
low-level feature distribution of the source domain has been
adjusted closely to the target domain, and this equilibrium ef-
fect is equally applicable to deeper layers. The performance
improvement is shown in Table 7. These results show the

Heart

LA RA LV RV VS CR SP DAO R

Heart

LA RA LV RV VS CR SP DAO R

(a) Source Only (b) ToMo-UDA (Ours)

(d) ToMo-UDA (Ours)(c) Source Only

Head

T LS CP CSP B S C

Head

T LS CP CSP B S C

Figure 7: Feature visualization by t-SNE technique is per-
formed by Source Only and our ToMo-UDA on the fetal
heart and head of the target domain.
effectiveness of the proposed numerical equilibrium.

Qualitative Result Comparison. A comparison of the
quantitative detection results is presented in Figure 5. We se-
lected Source Only and the latest UDA methods CMT (Cao
et al., 2023) and SIGMA++ (Li et al., 2023b) for visual
comparison. On complex views such as the heart, Source
Only struggles to detect intricate and overlapping structures,
especially in color ultrasound. Both CMT and SIGMA++
have varying degrees of false detections, missed detections
or duplicate detections. In contrast, the results of our ToMo-
UDA closely match the ground truth annotations. The same
is true for the head view.

Figure 7 shows the feature distribution visualization by our
method and Source Only. In Figure 7(a) and (b), we can
clearly observe that our method can distinguish the various
anatomical structures. However, the entangled distribution
of categories shows that Source Only is difficult to separate
the key structures. Similarly, in Figure 7(c) and (d), we find
the same advantage of our ToMo-UDA.

5. Conclusion
This work proposes the ToMo-UDA for the issue of adap-
tive detection of fetal key structures in medical scenarios by
aligning the morphological knowledge and topology knowl-
edge of the source and target domains. Extensive experi-
ments verify the effectiveness of ToMo-UDA in UDAOD on
the collected and public datasets. We intuitively understand
how the proposed ToMo-UDA works in the UDAOD task
through ablation experiments and visualizations. In addi-
tion, we will release a new valuable dataset (FUSH2) for
fetal structure detection across domains, and we believe that
FUSH2 and ToMo-UDA can further inspire the community
to address object detection and domain adaptive problems.
Please see Appendix Section A3 for Limitations.
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rich, M. P., Oster, J., Wang, C., Smedby, Ö., Bian, C., et al.
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A1. More Ablation Studies
The results of different backbones and detection heads for the adaptive detection task are shown in Table A1

Table A1: Quantitative adaptation results on the heart.

Center 1→2
Detection head Feature extractor RA RV LV VS SP LA CR DAO R mAP (%)

Faster-RCNN (Ren et al., 2015)

VGG-16 (Simonyan & Zisserman, 2014) 61.21 62.31 64.17 60.18 69.14 61.70 70.47 65.61 66.30 64.57
ResNet-50 (He et al., 2016) 65.27 77.12 64.40 73.69 68.53 60.63 72.04 69.99 77.20 69.88

ResNet-101 (He et al., 2016) 65.47 75.36 71.96 67.61 75.21 75.36 60.57 78.17 71.96 71.29
ResNet-152 (He et al., 2016) 66.19 73.91 78.82 72.88 77.40 70.17 64.14 78.22 64.46 71.80

FCOS (Tian et al., 2019)

VGG-16 (Simonyan & Zisserman, 2014) 60.78 62.69 63.12 60.89 61.98 71.63 61.40 69.31 75.08 65.21
ResNet-50 (He et al., 2016) 61.04 64.47 60.49 70.49 65.39 77.18 72.19 76.99 64.73 68.11

ResNet-101 (He et al., 2016) 64.23 75.62 70.40 64.32 66.69 75.03 75.48 77.24 72.99 71.33
ResNet-152 (He et al., 2016) 60.94 71.24 76.39 72.14 69.67 76.40 72.93 67.83 71.01 70.95

We have tabulated the number of trainable parameters, FLOPs, and the time cost per step (forward and backward propagation)
for various settings. The results are presented in the following Table A2. In the baseline, we used ResNet101 with an FCOS
detection head. Upon adding the TKT module, the number of trainable parameter increased by 0.92M, FLOPs increased
by 28.54G, and the time increased by 0.01s. Continuing with the addition of the MKT module, the parameters, FLOPs,
and time increased by 2.21M, 113.52G, and 0.06s respectively. Upon incorporating NE, there was no significant change
in parameters and FLOPs, but the time increased by 0.48 seconds. This is due to NE’s inability for parallel computation,
involving interactions between CPU and GPU, which affects network speed.

The ablation experiments of sensitivity for α and β in Equation 10. We trained on heart center 1→2 for 50 epochs and
selected the weights from the last epoch for testing on the test set. We set α and β at four different levels each. The final
results are shown in the Table A3.

Table A2: Additional implementation details.

Module TKT MKT NE Params. (M) GFLOPs Time (s)
Baseline ✗ ✗ ✗ 55.24 742.57 0.63

Ours
✓ ✗ ✗ 56.16 771.11 0.64
✓ ✓ ✗ 58.37 884.63 0.70
✓ ✓ ✓ 58.37 884.81 1.18

Table A3: The mAP(%) under different α and β.

α
β

0.01 0.1 0.5 1

0.01 67.15 69.23 69.80 68.03
0.1 68.34 71.08 70.03 70.24
0.5 68.57 70.44 69.11 67.29
1 67.90 69.98 68.27 66.47
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A2. Algorithm Pipeline.
Algorithms 1 and 2 outline the basic procedures of our proposed Topology Knowledge Transfer (TKT) and Morphology
Knowledge Transfer (MKT), respectively.

A3. Limitations
In medical images, different structures of the cardiac or head actually do not overlap in the real scenario. However, the
bounding box in object detection may include some irrelevant information, such as background or even information from
other structures (see Figures 2 and 5). Hence, when we construct the topology and morphology information for the ultrasound
image, that irrelevant information will also be introduced for training, which may degrade the performance of our method.

Our method focuses more on the data that have a fixed structure, which is suitable for most of the human body, such as the
cardiac and brain. However, in some cases, such as the fundus photographs and optical coherence tomography that are not
able to define the fixed structural information, where our method may not obtain efficient performance in the UDA task
in such a situation. Also, in some cases, due to the ultrasound image is in a very low-quality format, which may limit its
performance. For example, the cardiac view scanned under Doppler mode contains blood (see Figure 5 row 2), which may
obscure part of the structures, leading to the failure of detection.
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Algorithm 1 Topology Knowledge Transfer (TKT)
Output: LTKT : The overall loss of TKT;
Input: fs,t: Feature maps from source and target domains;

ybs: The ground truth bounding boxes of the source domain;
ybt : The pseudo bounding boxes of the target domain;
N : The total classes number of detection organ;
(1). For Source Domain

1: for each i ∈ [1, N ] do
2: ci ← The organ centroid feature obtained from fs and ybs.
3: Build memory banks: θi ← ci.
4: end for
5: Build visual graph: (V, E), where V = {ci}Ni=1, and E = {ci · θTi }Ni=1.
6: Build topological representation graph: Gs ← GNN(V, E), GNN is the graph neural network.

(2). For Target Domain
7: for each i ∈ [1, N ] do
8: ci ← The organ centroid feature obtained from ft and ybt .
9: ci ← θi IF ci is NULL.

10: end for
11: Gt ← GNN(V, E).

12: Ldis (Gs,Gt) = inf
π

(∑N
i=1 ||Gt,i − Gs,π(i)||p

) 1
p

, where π are all permutations of N organs.
Overall Loss of TKT

13: LTKT = Ldis (Gs,Gt).
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Algorithm 2 Morphology Knowledge Transfer (MKT)
Output: LMKT : The overall loss of MKT;
Lsupervised: The supervised loss for training the detection head;
Lcls: Cross-entropy loss of the classification;
Lbbox: Regression loss of bounding box;
Lclass: The classification loss of the MKT;
Ldis: The discrete form of distribution discrepancy;
fs,t: Feature maps of source and target domains;

Input: Xs,t: Input images from source and target domain;
yb,cs : The bounding boxes and organ class ground truth annotations from the source domain;
E: Feature extractor;
D: Detector head;
N : The total classes number of detection organ;

1: Get the feature maps: fs,t ←E(Xs,t).
2: Get the predict detection result: ybs,t, y

c
s,t ←D(fs,t).

3: Lsupervised ← Lcls(ycs) + Lbbox(ybs).
(1). Nodes Sampling

4: for each i ∈ [1, N ] do
5: f i

s,t ← Get different substructure feature maps {f i
s/t,k}

K
k=1 from feature maps fs,t according to ybs,t, y

c
s,t.

6: Collect all feature nodes of i-th substructure form f{f i
s/t,k}

K
k=1.

7: Concatenate feature nodes of i-substructure from feature maps {f i
s/t,k}

K
k=1, from layer k to 1.

8: {oi,j}Mj=1 ← Sample M feature nodes {oi,j}N,M
i,j=1 for i-th substructure with the sample rate equal to the number of

all collected feature nodes divided by M , and prioritize sample nodes close to k-th layer.
9: end for

(2). Morphological Representation
10: Get the morphological representation: gi ← MAGNN({Oi}), where {Oi} ← Concatenate({oi,j}N,M

i,j=1).
11: Get the cross-domain interaction of morphological representation: gi,π(j) ← GA(gi), GA is graphical attention.

(3). Node Classification
12: Lclass = −

(∑N
i

∑M
j yci log

(
gi,π(j)

))
s/t

.

(4). Numerical Equilibrium
13: M∗ ← argminM

∑N
i=1

∑M
j=1

∑K
k=0D(M[p(ot,i,j)], p(os,i,j)), where p(k) is the probability density function.

14: Ldis (gs,gt) =
∑N

i=1 infπ

(∑M
j=1 ||gt,i,j −M∗(gs,i,π(j))||p

) 1
p

.
Overall Loss of MTK

15: LMKT = Lclass + Ldis (gs,gt).
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