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ABSTRACT

Prompts to large language models (LLMs) have evolved beyond simple user questions.
For LLMs to solve complex problems, today’s practices are to include domain-specific
instructions, illustration of tool usages, and/or long context such as textbook chapters in
prompts. As such, many parts of prompts are repetitive across requests. Recent works
propose to cache and reuse KV state of prompts. However, they are all confined to a single-
GPU optimization, while production LLM serving systems are distributed by nature.
This paper proposes Preble, the first distributed LLM serving platform that targets and op-
timizes for prompt sharing. We designed a distributed scheduling system that co-optimizes
KV state reuse and computation load-balancing with a new scheduling algorithm and a
hierarchical scheduling mechanism. Our evaluation of Preble with real workloads and re-
quest arrival patterns on two open-source LLMs shows that Preble outperforms the SOTA
serving systems by 1.5× to 14.5× on average latency and 2× to 10× on p99 latency.

1 Introduction

Recently, new capabilities and use cases of LLMs have created two common features not seen in traditional
LLM usages. First, prompts to LLMs are significantly longer than generated sequences. For example,
questions about a long document (19) or a video clip (45) are answered by LLMs with short answers.
As another example, detailed instructions and illustrations for LLMs are vital in accomplishing complex
tasks like solving advanced math problems (47). The latest LLMs like OpenAI o1 have built-in reasoning
capabilities; even though the end users’ prompts do not need to be long, these models internally add more
context like chain-of-thought prompting (41), lengthening the total context length (30). As demonstrated
by o1 and other model usage, oftentimes, the longer a prompt is, the better quality the model can generate.
Long prompts with short generations imply that the prefill phase significantly outweighs the decoding phase.
Thus, improving the prefill phase performance is crucial to the overall performance of LLM serving systems.

Second, prompts are partially shared across requests. For example, a long document or video is often queried
many times with different questions (19); different requests using the same tools share tool instructions in
tool-augmented LLMs (11); chain- or tree-structured prompting calls an LLM in steps, with each subsequent
step reusing context from previous steps (47; 50; 46). Real-world production systems like Anthropic have
also reported the wide existence of long and shared prompts (2).

Recent works (52; 9; 26) propose to cache computed key-value (KV) state in GPU memory and reuse the
cached KV when a new request sharing a prompt prefix arrives. These works aim to improve the serving
performance of LLMs with long and shared prompts in a single GPU setting. However, in-production
LLM serving systems typically utilize a distributed set of GPUs to serve user requests. Current distributed
LLM serving systems are not prompt-cache-aware; they attempt to distribute LLM computation load equally
across GPUs to achieve high cluster-level GPU utilization. Yet, this distribution could result in requests
with shared prefixes being sent to different GPUs, causing KV computation at all these GPUs that could
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otherwise be avoided if prefixes are cached and reused on the same GPU. On the other hand, a naive solution
that always sends requests with shared prefixes to the same GPU would result in imbalanced loads and low
overall GPU utilization because the GPU that initially serves a request with a popular prefix will accumulate
a huge load of new requests all trying to reuse the calculated prefix KV.

To properly design a distributed LLM serving system for long and shared prompts, we first perform a com-
prehensive study of five typical LLM workloads: LLM with tool calling (10), LLM as embodied agents in
virtual environments (14), LLM for code generation (28), embedded video QA (45), and long document
QA (19). We find their prompts to be 37× to 2494× longer than generated sequences, and 85% to 97%
tokens in a prompt are shared with other prompts. Additionally, a request often shares prompts with multi-
ple other requests at different amounts (e.g., one prefix sharing being the initial system prompt, one sharing
being the system prompt plus tool A’s demonstration, and one being the system prompt plus tool A and tool
B’s demonstrations). We also analyze the Azure LLM request trace (32) and found these end-user traces
to have large prompt-to-output ratios as well. Additionally, this trace shows that requests arrive at varying
speeds over time and across LLM usages, making designing a distributed LLM serving system challenging.

Based on our findings, we propose a distributed LLM request scheduling algorithm called E2 (standing for
Exploitation + Exploration) that co-designs model computation load-balancing and prefix-cache sharing.
E2 allows requests to exploit (i.e., reuse) computed prompt prefixes on the same GPU but also gives chances
for requests with shared prefixes to explore other GPUs. E2 chooses exploitation when the amount of
recomputation saved is larger than that of new computation, which happens when the number of shared prefix
tokens is larger than the remaining non-shared tokens. Otherwise, E2 chooses exploration. For exploitation,
we send the request to the GPU that caches the longest-matched prefix.

When E2 decides to explore GPUs, it chooses the GPU with the lightest “load”, using a prompt-aware load
definition we propose. This prompt-aware load includes three parts all calculated as GPU computation time.
The first part is a GPU’s computation load in a recent time window H , which is measured by the total prefill
time and decode time incurred by all the requests in H . The second part is the cost of evicting existing KVs
on the GPU to make memory space to run the new request. The third part is the cost of running the new
request on the GPU. When calculating these three parts, we account for prompt sharing that have or would
occur on the GPU by treating the reusable computation as zero cost. E2 picks the GPU with the lowest sum
of the three parts to explore, which balances loads while accounting for cached prompt behavior.

Centered around the E2 scheduling algorithm, we build Preble, a distributed LLM serving system that aims
to provide high serving throughput and low request average and tail latency for long and shared prompts.
Preble consists of a global, request-level scheduler and a per-GPU, iteration-level scheduler. Apart from
E2, Preble incorporates several novel designs to tackle practical LLM challenges. First, with the basic E2
algorithm, a prefix is cached at a GPU after its initial assignment until its eviction. However, the amount
of requests sharing it can change over time, which can cause load imbalance. To mitigate this issue, Preble
detects load changes and redirects requests from a heavily loaded GPU to a light GPU. If the load hitting a
popular prefix increases beyond what a single GPU can handle, Preble automatically scales (autoscales) the
prefix by replicating it on multiple GPUs.

Second, prefill and decoding phases have different computation needs, as discovered and tackled by a set of
recent works (5; 53; 32; 4). We propose a new way to solve this problem based on our insight that a prompt
hitting a cached prefix can be treated as decoding-phase computation, while a missed prompt can be treated
as prefill-phase computation because of the high prompt-to-decoding token length ratio. Thus, our global
scheduler tries to mix the two types of requests on a GPU to balance prefill and decoding computation needs.

Finally, unlike existing works that either honor request fairness or maximize prefix matching, Preble aims to
achieve high prefix reusing while ensuring fairness, which is important in multi-tenancy environments. We
achieve this by assigning priorities to waiting requests based on their prefix cache hit ratio and giving each
priority their respective quota of requests to serve.
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We implement Preble as a standalone layer on top of slightly modified vLLM (18) and SGLang (52), two
popular open-source LLM serving systems both supporting single-GPU prefix caching. We evaluate Preble
using our studied five workloads and the Azure request arrival pattern with the Mistral 7B model (16) and
the Llama-3 70B model (24) on a four-Nvidia-A6000 GPU cluster and an eight-Nvidia-H100 GPU server.
Our results show that Preble outperforms SGLang by 1.5×-14.5× and 2×-10× on average and p99 average
request latency and similarly when compared to vLLM.

Overall, this paper makes the following key contributions: (1) The first study of LLM workloads with long
and shared prompts, resulting in four key insights. (2) E2, a new LLM request scheduling algorithm with
the idea of exploitation and exploration integration. (3) Preble, the first distributed LLM serving system that
targets long and shared prompts. (4) A comprehensive evaluation of Preble and SOTA LLM serving systems
on two popular open-source LLMs, five real workloads, and two GPU clusters. Preble is publicly available
at [link anonymized].
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Figure 1: Prompt Sharing Features of Five Workloads. Green boxes represent shared prefixes. Grey boxes
are non-shared prompts. White boxes are output generation. Red boxes contain statistics in average values: “prompt-
length:output-length; shared token percentage; number of requests sharing a sequence”.

2 Real-World Long and Shared Prompts

This section briefly presents our study results of five LLM use cases and an end-user LLM use trace:
tool use (35), embodied agent in a virtual environment (11; 14), software program generation (28), video
QA (45), long document QA (19), and the Azure LLM usage trace (32) (which contains chat and code-
generation usages). We pick the five workloads to study and evaluate, as they resemble long-and-shared-
prompt use cases reported in production (2). Figure 8 demonstrates the prompt usages and overall features
of these workloads. Appendix A presents our full study methodology and results.

Overall, our study shows that prompts are significantly longer than output lengths in the five workloads and
the Azure trace, ranging from 4× (Azure chat) to 2494× (video QA). Moreover, prompt sharing ranges from
85% (i.e., 85% prefix tokens in a prompt are shared with at least one more request) to 97% across the five
workloads, with embodied agents and program generation having the highest sharing amount. Additionally,
a common sequence in a workload is shared by 8.6 to 126 requests on average, with different deviations
across workloads. Finally, the Azure trace indicates high variations in total request loads manifested as
different end-user request inter-arrival times that range from 2 microseconds to 217 seconds.

Our study results indicate that LLM serving systems for such workloads should focus on optimizing prefill
computation, and a viable way is to cache and share prefixes. However, the variations in prompt-sharing
features and request arrival patterns make it challenging to build an efficient distributed serving system.

3 Preble Design

We now present the E2 algorithm and the design of Preble, beginning with the overall system architecture of
Preble, followed by its global scheduler and local scheduler designs. Preble significantly improves serving
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speed and reduces request latency for workloads with long and shared prompts. For workloads without any
shared prompts, its behavior and performance are the same as SOTA LLM serving systems like vLLM (18).

3.1 Overall System Architecture

Preble is a distributed GPU-based LLM serving system supporting both data parallelism and model par-
allelism. While its model parallelism support is standard (e.g., tensor parallelism), Preble’s scheduling of
requests on data-parallel GPUs is designed specifically for long and shared prompts.

We propose a two-level scheduling system where a global scheduler performs request-level scheduling de-
cisions and orchestrates the overall load balancing across GPUs, while a per-model-instance local scheduler
performs iteration-level scheduling for requests assigned to the GPU, as shown in Figure 2. Depending on
the GPU cluster topology, the global scheduler may be deployed on a separate server for a multi-server GPU
cluster or on the same server as a single-server-multi-GPU cluster. The local scheduler manages one model
instance (multiple GPUs when using model parallelism, single GPU when not) and runs on the CPU of the
same server as the GPUs. Our current implementation of Preble scales to at least 70 to 391 GPUs. To offer
larger, data-center-level scales, one can deploy several Preble clusters, each having one global scheduler.
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Figure 2: Preble Architecture.

This design offers several benefits: 1) by having all
requests in a cluster go through the global sched-
uler, we have a centralized place to maintain a
global view of cluster load and prompt caching in-
formation, both being essential for E2; 2) by per-
forming coarse-grained, request-level scheduling,
a single global scheduler can scale to hundreds
of GPUs, avoiding the complexity of maintaining
multiple distributed global schedulers for a cluster;
and 3) by performing fine-grained, iteration-level
scheduling at each GPU, the local scheduler can
quickly adapt to GPU resource and request avail-
ability changes and make precise decisions.

3.2 E2 Global Scheduler

We now present our global scheduler design, which centers around the E2 distributed scheduling algorithm.

Global scheduler data structures. The global scheduler maintains several data structures to assist its
prompt-aware request scheduling. The primary data structure is global prefix trees, implemented as radix
trees (42). Each tree has a distinct root storing the shared prefix of all prompts under the tree. When insert-
ing a new request to the tree, we match its tokens from the beginning (i.e., prefix matching) until no match
exists, and we insert the remaining tokens as a new leaf node. If no match exists at all, we create a new tree
with this request’s prompt as the root node. If an existing tree node only matches partially to the new request
(i.e., the prefix of a node matches a sub-sequence of the new request), we split the node into the matched
part and the remaining part. For each tree node, we record three pieces of information: the number of tokens
in the tree node, the set of GPUs caching the tree node KVs, and the per-GPU number of requests sharing
the tree node in a history window H . When a tree node has no caching GPU and there is no request within
the window H in the whole system sharing it, we remove it from the tree.

Per-request scheduling policy. To schedule a request, the global scheduler uses our proposed E2 scheduling
algorithm, as illustrated in Algorithm 1. It first matches the request’s prompt in the global prefix trees. When
the amount of recomputation saved (number of tokens in the matched prefix) is larger than the amount of new
computation (number of tokens in the remaining prompt), we favor exploitation over exploration because
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the gain of saved GPU resources (computation for matched tokens) is higher than the load (computation for
unique tokens) that can potentially be balanced in the GPU cluster. For such requests, E2 exploits existing
cache by assigning the request to the GPU that caches the tree node with the longest tokens in the matched
prefix. If multiple such GPUs exist, E2 chooses the GPU with the lightest request load using the load
calculation to be introduced next.

If the matched prefix is shorter than the remaining tokens, E2 explores the best GPU to run the request
based on our proposed new prompt-aware “load cost” definition. Exploration gives E2 a chance to distribute
load to different GPUs, which is the key to striking long-term cluster execution efficiency. E2 unifies three
types of costs when calculating the per-GPU load: the computation cost aggregated across all requests
within a time window, the recomputation cost needed for evicting memory to run the new request, and the
computation cost of the new request. E2 calculates all three costs as GPU computation time and finds the
GPU with the lowest sum. Instead of profiling the actual computation time, we only maintain token counts
at the global scheduler, which largely reduces the system overhead. We leverage transformer-based LLMs’
properties that the computation amount of prefill and decoding are proportional to the number of prompt
tokens and generated tokens (Figures 9 and 10). Below and in Algorithm 2, we detail the three calculations
for scheduling a new request Rk.

The first cost is the overall GPU computation load Li for GPUi. We capture a recent load history on GPUi

with a time window H with a default value of 3 minutes (we test different H lengths and find the results
insensitive to it). We do not use GPUi’s load at the exact request scheduling time for two reasons: 1) a
GPU’s load can change between the time of scheduling Rk to the time of running it, and 2) the placement of
a prefix has a longer-term effect than a single load in time because of other requests’ future exploitation of
it. For each request Rr in the history, we estimate its prefill time PTr with a regression function using the
number of tokens in Rr that do not match any prefixes on GPUi; we estimate its decoding time DTr with
another regression function using the average request output length observed on GPUi in window H . We
have the first category of load, Li =

∑
r∈W (PTr + DTr), where W is the set of requests in the window

H . The regression functions used in this calculation are captured from offline profiling for each GPU type.
Note that even though the number of output tokens is not known a priori, our workload study (Appendix A)
shows that it is small and similar across a type of workload. Thus, we use the average output length in H as
the estimated decoding length for DTr.

The second cost is the potential cost to free GPU memory so that the new request, Rk, can run. Given that
GPUs run at full capacity with our and existing serving policies (5), we expect this cost to always occur.
Intuitively, the more tokens in a sequence that are shared and by more requests, the more costly it is to evict
the sequence. Thus, to calculate the eviction cost, Mi, the global scheduler first uses the eviction algorithm
to be discussed in Section 3.3 to find the tree nodes on GPUi that would be evicted to run Rk. For each
such tree node j, its eviction cost is the recomputation time of the evicted tokens multiplied by the hit rate
of the node, Nj . Thus, we have Mi =

∑
j∈E PTj ×Nj where E is the eviction node set, PTj is the prefill

time for the length of tree node j, and Nj is the the number of requests sharing tree node j in history H over
the total number of requests on GPUi in H . Note that we do not include the decoding time, as a request’s
decoding time is unaffected by prefix cache eviction, and decoding costs have already been counted in Li.

The third cost is the actual cost, Pi, to run the new request Rk on GPUi, which is simply the prefill time of
the missed tokens in request Rk. We do not count its decoding time, as it is the same across GPUs, and our
goal is to compare the per-GPU load across GPUs.

The total cost of assigning the current request to GPUi is Li +Mi + Pi and we choose the GPU with the
lowest total cost to assign the request to.

Post-assignment load adjustment. With the above algorithm, after the global scheduler assigns a request
to a GPU, its prefix lives there until its eviction. This greedy approach works well in cases where the load
to a prefix is relatively stable but not otherwise. We propose two ways of managing post-assignment load
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changes. The first way shifts load between GPUs and is applicable when the load surge can be handled by a
single GPU in the cluster. The global scheduler maintains a per-GPU load as discussed above. If the most
heavily loaded GPU’s load is more than Thbal times higher than the lightest GPU, it shifts load from the
former to the latter until their difference is below Thbal. Thbal is configurable and can be deducted from
profiling GPU and LLM types. To perform this load rebalancing, we direct future requests that are supposed
to exploit the heavy GPU to the light GPU.

The second way is to auto-scale a prefix by replicating it and splitting its subtree by load when we detect
that a certain prefix’s request load is still too high (average queueing time doubles over H) even after the
above load rebalancing. We calculate the subtree’s load using Algorithm 2.

Prefill-decoding balancing. From our study results in Appendix A and reported by others, LLM prefill has
a larger compute-to-memory ratio than decoding, causing inefficient GPU resource utilization and perfor-
mance degradation. While various recent works tackle the prefill-decoding imbalance problem by chunking
prefills (5) and prefill-decoding disaggregation (53; 32; 37; 13; 33), we propose a new way of solving the
problem leveraging prompt sharing features at a cluster level. Our insight is that a request with its entire
prompt shared and cached would only perform the decoding phase. Thus, it can be treated as a decoding-
phase computing unit. Meanwhile, a request with a long prompt not cached and a short output length can
be treated as a prefill-phase computing unit. A partially cached prompt can be treated as being between the
prefill- and decoding-phase units. Thus, we can balance prefill-decoding by combining requests with more
or less prompt sharing instead of or in addition to existing balancing techniques.

Specifically, when a request is about to be explored, the global scheduler first considers the prefill and de-
coding balancing for each GPU. If a GPU is heavily loaded with decoding-phase computing units, the global
scheduler directs the current request to it, as a request to be explored will incur recomputation for prompt
and is considered a prefill-phase unit. We prioritize this policy over the load-cost comparison (Algorithm 2)
because a GPU with heavy decoding has unused computation capacity that we can almost freely use. The
global scheduler performs the load-cost comparison if all GPUs have relatively balanced decoding-prefill
loads. Apart from this prefill-decoding balancing performed at the global scheduler, our local scheduler also
performs traditional chunked prefill for each GPU (Section 3.3).

3.3 Local Scheduler

Local scheduler mechanism. The local scheduler schedules the requests that the global scheduler assigns
to its managed GPU(s). Similar to existing LLM serving systems (48; 18; 52; 6; 25; 38), we run one local
scheduler per GPU and schedule requests at the iteration level. Each local scheduler maintains a request
wait queue, a prefix (radix) tree, and the number of active requests sharing each prefix tree node.

When a new request arrives, the local scheduler matches it to the local prefix tree and updates the tree
accordingly. It also inserts the request into the waiting queue. After each model iteration, the local scheduler
forms the next batch by selecting waiting requests using a priority-based algorithm to be discussed next. If a
selected request has a long and non-shared prompt, we chunk the prompt similar to Sarathi (5). If the GPU
memory is not enough to run the batch, the local scheduler selects a tree node(s) or part of a tree node (if a
part is enough) to evict based on the request accessing time (LRU) of tree nodes. The local scheduler then
asynchronously informs the global scheduler about the eviction, and the latter processes it in the background.

Waiting queue request ordering. Today’s LLM serving systems schedule requests in the waiting queue
according to FCFS (18) or prefix sharing (52) (serve the request with the highest sharing amount the first).
The former ignores prompt sharing and results in more recomputation; the latter ignores fairness and could
result in starvation (43). We propose a priority-based wait queue scheduling policy that considers both
prefix sharing and fairness. Specifically, we create P (a configurable parameter) priority groups and assign a
request to the priority group according to its cached token percentage. For example, if 63 out of 100 tokens
in a request’s prompt are cached on the GPU and P is 10, it will be assigned priority six. When selecting
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requests to form the next batch, the scheduler proportionally selects requests from each priority group, with
the higher priority group getting more requests selected than lower priority ones. For example, if 55 requests
are to be selected to form a batch, the scheduler picks ten from priority group 10, nine from priority 9, etc.

4 Implementation and Evaluation Results

4.1 Implementation

We implemented Preble as a standalone layer to perform distributed LLM serving. As such, Preble can be
added to any existing serving systems with no or minimal changes — we currently support vLLM (18) and
SGLang (52) as two backends.

Global scheduler scalability. In implementing the global scheduler, we use a few techniques to improve
its scalability. Incoming requests are first tokenized by a parallel tokenization layer. Afterward, the global
scheduler spawns asynchronous request handlers to schedule requests. Access to the global radix tree during
request handling is lock-free, as most operations are read-only. The only exceptions are updating a GPU
to be assigned to a tree node and the increment of request count hitting the tree node, both of which can
be expressed as atomic instructions. Additionally, the global scheduler maintains a current load count for
each GPU by updating it every time a new request is assigned to it or when it evicts a tree node. Thus, our
realization of the E2 algorithm is performance-efficient. Finally, to ensure foreground request performance,
the global scheduler runs non-request-scheduling tasks such as rebalancing and eviction bookkeeping in the
background with separate threads.

4.2 Workloads and Environments

Workloads. We evaluate our results on five LLM use cases: LLM generation with tool demonstration and
calling (35), LLM interacting with virtual environments as an embodied agent (11; 14), LLM for software
program generation (28), answering questions about videos (45), and answer questions about long docu-
ments (19). Their properties are presented in Appendix A.

For each workload, we sample enough requests to fulfill the request-per-second (RPS) needs and GPU setup
(e.g., a larger GPU or more GPUs can handle more). For experiments other than the ones using the Azure
Inference Trace, we set the inter-arrival time using a Poisson distribution with a mean that corresponds to
the RPS we test (X-axis in most figures). We then run the experiments until stable state is reached and lasts
for a significant length.

LLMs and environments. We test Preble and baselines using two popular open-source Large Language
Models, the Mistral 7B model (16) and the Llama-3 70B model (24). We run our experiments in one of the
two local testbed environments: a two-server cluster each containing two NVidia A600 GPUs and one eight
NVidia-H100-GPU server.

Baseline. Our baselines are serving systems that support single-GPU prefix sharing, including SGLang (52)
and vLLM (which recently added a beta feature for prefix sharing (26)). To run SGLang and vLLM in
a distributed fashion, we set up a load balancer that sends requests in a round-robin fashion to individual
SGLang/vLLM instances (i.e., non-prompt-aware data parallelism). As round- robin distributes requests
evenly, these baselines capture a distributed serving system that balances request loads and then performs
prefix sharing within each parallel instance.

Metrics. We use three key metrics: request per second, which measures serving capacity; average end-to-
end request latency (including scheduling time, queueing time, prefill, and decoding time); and p99 request
latency. Note that our metrics differ slightly from some existing LLM serving works (18; 48), as we do
not use TPOT (time per output token) or TTFT (time to first token) as key metrics. This is because our
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Figure 3: End-to-end Workload Performance The top and middle two rows run on two and four A6000 GPUs
with the Mistral 7B model. The bottom two rows run on eight H100 GPUs set up as 4-GPU tensor parallelism plus data
parallelism with the Llama-3 70B model.

target LLM use has short output lengths, rendering TPOT not as meaningful and TTFT close to the request
latency. We consider p99 latency since it is important to control the tail latency in LLM serving as with all
other user-facing services (7; 29).

4.3 End-to-End Workload Performance

We first present the overall performance of Preble and the baselines. Below, we focus on the comparison
with SGLang as it is specifically designed for (single-GPU) prefix sharing while being up-to-date on major
LLM serving techniques. We provide Preble’s comparison to vLLM and to different SGLang versions in the
Appendix C.
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Single workload results. We now present the average and p99 latency against increasing requests arriving
per second (RPS) of Preble and SGLang on the five workloads, two LLMs, and two GPU environments,
as shown in Figure 3. Overall, Preble significantly outperforms the data-parallel SGLang baseline for all
settings, as can be seen from Preble’s lower average and p99 latency, especially under higher RPS (or the
other way around, for the same latency target, Preble can serve higher RPS). Our improvements over SGLang
range from 1.5× to 14.5× in terms of average latency and 2× to 10× in p99 latency.

Comparing across workloads, we see bigger improvements of Preble over SGLang on the Toolbench, em-
bodied agent, video QA, and LooGLE workloads than the programming workloads. The programming
workload has the longest decoding length among all the workloads. As decoding time starts to dominate
total request latency, and we do not improve decoding performance, the room for improvement for Preble is
smaller. Nonetheless, Preble still achieves 1.56× to 1.8× improvement in average latency and 3× to 4× in
p99 latency over SGLang in the programming workload.

Comparing across the number of GPUs, Preble’s relative improvement over the baselines stays similar when
going from two to four A6000 GPUs. Considering absolute values, we see Preble successfully maintain
similar latency even as RPS doubles, showing its strong scalability. When changing from A6000 to eight
H100 and switching the Mistral 7B model to the Llama-3 70B model, we find relative improvements of
Preble to increase.

Azure trace and mixed workloads. Our experiments above use a Poisson request arrival distribution
(which is the same as most existing LLM works’ experimental methodology (18; 22)). To understand
Preble’s performance under real-world request load, we run the tool use and video QA workloads using
Azure’s LLM request arrival pattern (Appendix A.6) instead of Poisson distributions. Here, we mix the
two workloads to mimic Azure’s mixed chat and code traces. As shown in Figure 4, Preble has significant
improvements in average and p99 latencies and on average TTFT and TPOT.

4.4 Deep Dive

We now provide a detailed analysis of Preble, including an ablation study and global scheduler scalability
test. Because of H100 GPUs’ high cost and low availability, we run all experiments in this section with
A6000 GPUs.

Ablation study. To understand where the benefits of Preble come from, we evaluate Preble by incrementally
adding features presented in Section 3. We chose the tool use workload with a Zipf-1.1 popularity distri-
bution among the prompts in the dataset to represent real-life skewed tool popularity. Other workloads and
distributions benefit from a different set of techniques. We start with using the SGLang round-robin base-
line. We first add the per-request E2 policy (Section 3.2), which results in an improvement on both average
and p99 request latency because of E2’s dynamic load partitioning. We then add the post-assignment global
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rebalancing and autoscaling, which successfully balances out load even more, resulting in further improve-
ment, especially with p99. Further adding the prefill/decode-aware handling results in more improvement
on both average and p99, since it considers the current batch composition and is able to better utilize the
GPU resources. Finally, we add the local-scheduler priority-based wait-queue scheduling (§3.3), which, as
expected, improves p99 but not average latency, as its goal is fairness.

Global scheduler performance and scalability. We measure the maximum throughput of Preble’s global
scheduler by sending a large number of requests (e.g., 50,000) at once to eliminate the effect of request
arrival patterns and saturate the scheduler. Since the global prefix tree search is the most time-consuming
task at the global scheduler, we test the Toolbench and VideoQA workloads, which have the most complex
and simplest prefix tree structures in our five workloads. Preble’s global scheduler achieves a processing rate
of 245 and 2931 requests per second for Toolbench and VideoQA. We also measure the network processing
speed and find it not to be the bottleneck. With the peak GPU processing rate (30-150 tokens per second
decoding speed with Mistral 7B on A100) and our workloads’ output length (Table 1), one Preble global
scheduler can sustain at least 70 to 391 concurrent A100 GPUs. If accounting for prefill time or running
bigger models, our scheduler would sustain even more GPUs.

5 Related Works

LLMs’ usages are shifting to be more prompt-heavy. As a result, the problem of prefill and decoding having
different compute-to-memory ratios is exacerbated. Several recent works have targeted LLM usages with
long prompts and proposed solutions to solve the imbalance problem (5; 4; 53; 32). The first approach,
called chunked prefill, chunks a prompt and runs each chunk with other decoding requests in a batch in a
single iteration to reduce or avoid waiting (5; 4). The second approach is to separate prefill and decoding to
different GPUs to avoid prefill-decoding interference (32; 53). These solutions target long prompts but do
not consider prompt sharing. Preble consider prompt length and sharing, and we use a novel sharing-based
approach on top of chunked prefill to solve the prefill-decoding imbalance problem.

A recent work, SGLang (52), proposes to share prefixes across requests using a prefix tree. More recently,
vLLM also added the support for prompt prefix sharing (26). Unlike Preble, SGLang and vLLM are both
single-GPU solutions. To run them on a distributed GPU cluster, one would need to add a standard data
or model parallelism layer and then run SGLang or vLLM on each GPU. As no parallelism or distributed
serving systems today are prompt-aware, simply distributing requests or models and then performing prefix-
sharing within a GPU ignores the cluster-level prefix-sharing opportunity. Apart from distributed support for
long and shared prompts (Section 3.2), Preble also improves prefix-caching with fairness over SGLang and
vLLM with a better waiting-request ordering policy (Section 3.3). Another recent work, Prompt Cache (9),
proposes sharing arbitrary user-defined sub-sequences in a prompt by allowing mismatched positional en-
codings and incomplete attention computation. As such, non-prefix sharing is a lossy process that could
result in lower-quality generation. Moreover, like SGLang, Prompt Cache is also a single-GPU solution and
shares SGLang’s limitations discussed above. Hydragen (17) is another recent work that proposes an effi-
cient implementation of the attention operation for shared prefixes, which is orthogonal to Preble, as Preble
can support any underlying attention kernels.

6 Conclusion

This paper identified the problem of distributed serving for long and sharing prompts. To solve this problem,
we performed a study on five LLM workloads and one real LLM trace. We presented E2, a distributed
LLM request scheduling algorithm targeting LLM usages with long and shared prompts. We built Preble, a
distributed LLM serving system on top of the E2 algorithm and a hierarchical scheduling architecture. Our
results show that Preble significantly improves LLM serving performance over SOTA serving systems while
ensuring request fairness and controlling the tail latency.
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7 Appendix

A Study on LLM Prompts

Today’s LLM usage goes beyond simple chatting. As LLM usage becomes more commercialized, LLM
prompts become more structured and complex, outshadowing the text an LLM generates. This section
presents our study results of five popular new LLM use cases: tool (or API, agent) use (35), interacting
with virtual environments as an embodied agent (11; 14), software program generation (28), answering
questions about videos (45), and answer questions about long documents (19). Figure 8 demonstrates the
prompt usages of these workloads. We study each case with real public datasets and understand their prompt
features from a systems perspective. For datasets that do not provide outputs, we use Llama-3 7B model as
the LLM to generate outputs. For each dataset, we construct a prefix tree for all the requests in the dataset
(i.e., assuming an infinite prefix cache).

Table 1 and Figure 6 summarize our study results, including prompt and decoding (output) length, amount
of sharing in a prompt, key portion size in a prompt, and number of requests sharing a key portion. We
define the “key portion” of a request as the deepest node in a path that has more tokens than the sum of its
predecessors.

To understand real-world LLM user request features, we study a recently released public cloud LLM trace.
This section ends with our summary insights.

Workload Prompt Len Output Len Shared Prefix KeyPort. Req Share KeyPort.
in Prompt in Prompt

Toolbench (1835, 742) (43, 16) (85%, 13%) (76%, 16%) (39, 64)
Embodied Agent (2285, 471) (16, 13) (97%, 14%) (76%, 12%) (48, 8)

Programming (3871, 1656) (190, 343) (97%, 7.4%) (78%, 13%) (126, 2157)
Video QA (9865, 5976) (4, 1.5) (88%, 32%) (99%, 0.2%) (8.6, 2)
LooGLE (23474, 6105) (16, 9.9) (91%, 24%) (94%, 15%) (18, 8.6)

Table 1: LLM Prompt Properties Each cell except for number of requests shows (mean, standard deviation).
Length represented using number of tokens. “KeyPort.” stands for Key Portion.

A.1 Tool Use

Today, LLMs are often augmented by various tools such as calculators and web searches. To equip a model
with the ability to invoke a tool, it must be given the correct syntax for querying the tool, along with examples
(or “demonstrations”) of tool use. We evaluate the Toolbench (10) dataset, which consists of more than 210k
queries that call over 16k unique tools. Each query shares the same system prompt followed by tool-specific
instructions. The final part of the query is the user’s specific question or task. These are all concatenated
together to form the final prompt. We find that most of the sharing comes from queries that all share the
same tool, and these instructions can be 43x longer than the output length. The Toolbench workload is also
representative of other tasks that “prep” an LLM in a similar fashion. For example, instead of tool-calling,
LLMs can have roles layered on top of the system prompt, which is popular in emerging systems that utilize
the same LLM with multiple roles to create an ensemble (44; 21; 20).

A.2 Embodied Agents

LLMs are increasingly found in agents that can interact with environments, such as a player in a role-playing
game or controlling a robot. In this scenario, the LLM receives feedback from the environment, forms an
action, and then “performs” the action. This is conducted in a loop until the model has achieved the goal.
The workload we utilize is sourced from the ALFWorld (36) dataset and has 7.5k requests. Prompts first
describe the environment and the task, followed by a demonstration of steps to solve the task. The model
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Figure 6: CDF Plot of Key Metrics Showing CDF for all five workloads on prompt-to-decode ratio, shared prefix

then solves its given task by looping over a planning step followed by an action step. After each action,
the text-based environment returns an observation that the model incorporates into its next planning step.
Every new invocation to the LLM in this loop is treated as a new request, resulting in each step sharing the
context of previous steps. Interestingly, the number of steps is determined by LLM generation, creating an
unpredictable sharing pattern. Because steps are chained together, prompts are still 157x longer than output
tokens.

The embodied agent workload can represent a wide variety of other use cases, such as chain of thought (47;
41), multi-turn tool usage (39; 34), and chatbots (51). Any dependency between the model and the outside
environment can be considered an agent receiving feedback.

A.3 Program Generation

One of the popular uses of LLMs is to generate software programs (28). We study the APPS competitive
programming dataset (12), a dataset of programming problems. To generate better-quality programs, an
approach taken by a recent paper (17) is to add a demonstration of several generic code examples before the
user problem to instruct an LLM. This added demonstration is the same across all problems and becomes
the system prompt. Following the system prompt is the programming problem description. Afterward,
this approach invokes the LLM several times in parallel to generate multiple candidate programs, out of
which the best is chosen to return to the user. As generated code is relatively long (compared to outputs of
other workloads we study), the prompt-to-output ratio (20x) is relatively low. Prompt sharing comes from
two places: the system prompt of code demonstration is shared across all requests, and the programming
problem is shared across all parallel generations. Depending on how complex the problem is, its description
could be longer or shorter than the system prompt; a problem description can also be partially the same
as another problem description. Such complexity results in competitive programming having diverse key-
portion properties. Such example demonstration and parallel generation technique is common in recent
prompt engineering, for example, with ReAct (47), Tree-of-Thoughts (46), and Self Consistency (40).

A.4 Video Question and Answer

The advent of video models like OpenAI Sora (31) has created an explosion of interest in multi-modal
models. The use of LLMs, then, goes beyond natural language. A recent usage is to answer questions about
videos by tokenizing a video segment and inputting it to an LLM (49; 8). To study this, we analyze the
NExT-QA benchmark (45), which consists of 8.5K questions for 1000 video segments. Prompts to the LLM
consist of a tokenized video followed by a multiple-choice question. Because of the multiple-choice nature,
the outputs of this dataset only have six tokens. Long tokens for representing videos plus short outputs result
in this dataset having the highest prompt-to-decoding token ratio of all workloads we explored, with nearly
2500× more prompt tokens. Apart from videos, images and audio can also be tokenized to have LLMs
answer questions, and we expect them to have similar properties as video QA.
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Figure 7: Azure LLM Trace Analysis Results.

A.5 Long Document Question and Answer

With newer models, the maximum context length has increased substantially (27; 23; 15), with the latest
development supporting 1M tokens (27). Longer contexts enable new LLM applications such as asking
questions about a long document or even a book. We evaluate this usage with the LooGLE dataset (19),
a collection of 776 long documents and over 6.4k questions. LooGLE has a small system prompt of 13
tokens followed by a long document and then a question about the document. As a common practice, a
user or multiple users often ask multiple questions to the same document, resulting in large amounts of
shared tokens. Meanwhile, the answers are usually short (e.g., a true or false). These features result in high
prompt-to-decode ratio and high sharing ratio in LooGLE.

A.6 LLM Usages in the Wild

To understand LLM usage in the wild, we analyze the recently released Azure LLM Inference Trace (32).
The trace includes two types of LLM usages: program generation and chat conversation. It provides request
arrival time, prompt length, and decode length. As it does not provide actual request content, it is not
feasible for us to evaluate prompt content or sharing. Figure 7 plot our analysis results in CDF. We find
that the arrival rate is approximately 5 requests per second for chat conversation and 7 requests per second
for programming. On average, chat requests arrive 118 ms apart while programming requests arrive 63 ms
apart. The mean prompt-to-decode ratio for chat conversations is 4. Since we have no details about shared
context from follow-up conversations, this number is expected to be much lower. For the longest 20% of all
chat prompts, the mean prompt-to-decode ratio is 175, which is consistent with our observations on other
workloads. For programming, the mean prompt-to-decode ratio is 92 for all prompts. This falls within the
range of all the workloads we evaluated.

A.7 Summary Insights

Our analysis of the five real-world LLM workloads and a real user LLM request trace reveals several key
findings.

Insight 1: Contrary to popular belief, prompts are significantly longer than output lengths because LLMs
support longer context and new LLM usages keep emerging. We believe this trend will continue as LLMs are
augmented with more capabilities. Implication 1: Optimizing prefill computation can largely improve over-
all application performance, and imbalanced prefill and decoding computation features should be considered
in LLM serving.

Insight 2: Prompt sharing, or reuse, is common, and the sharing amount is high. Sharing can come from
different user requests needing the same tools or instructions to solve a task. It can come from a user asking
multiple questions about the same document or video. Context sharing can also happen within the same user
task that is solved with a chain or a tree of steps. Implication 2: Reuse computation across shared prefixes
can largely improve real workloads’ performance and should be efficiently supported by distributed LLM
serving systems.
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Insight 3: Most requests have a portion of the prompt sequence that gets a different degree of sharing and
is longer than its prefix, reflected as a key portion in prefix trees. Key portions account for the majority of
prompts and are shared by a significant amount of requests. Implication 3: Identifying the key portion of
prompts and optimizing the placement of requests according to their key portions is a viable way of reducing
the complexity of scheduling while achieving good performance.

Insight 4: Real-world LLM usages have varying load intensity, and different usages (programming vs.
conversation) have different loads. Real-world prompts are also much longer than decoding length, but
different usages have different prompt-to-decode ratios. Still, the longest prompts are significantly longer.
Implication 4: An efficient LLM serving system should consider complex, mixed-usage scenarios and
factor in both load and prompt sharing variations.

B Prefill/Decoding Times

The prefill and decoding stages exhibit different computation behaviors, with the former being computation-
bound and the latter being memory-bandwidth bounded. To understand their behaviors and to acquire pre-
fill/decoding computation time functions to be used by E2, we profile the prefill and decoding stage per-
formance with Mistral 7B on the A6000 GPU. Figure 9 plots the prefill time and its breaking downs when
prompt length increases. As seen, longer prompts increase prefill time, suggesting that the more savings we
can get from prefix sharing, the lower prefill time will be. Moreover, since the linear layer dominates the
model forwarding at the prefill stage, the prefill time is overall linear to the prompt length. Figure 10 shows
the performance of a single request’s decoding performance with varying context lengths (the length of the
prompt sequence plus the sequence generated thus far). We observe a similar linear relationship to context
token length. Overall, these profiling results suggest that attention computation is regular. Thus, we could
use the token length with a profile regression function to estimate computation time.
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Algorithm 1 E2 Global Scheduling Algorithm
function SCHEDULEREQUEST(Rk)

Match Rk to global radix tree
cached len← sum of matched length
missed len← prompt len− cached len

if missed len < cached len then ▷ Exploit Rk

K ← GPUs with longest node in matched path
for each GPU i in K do

Costi ← LOADCOST(i, Rk)
end for
return i with lowest Costi

else ▷ Explore Rk

for each GPU i in all GPUs do
Ratioi ← DECODERATIO(i)

end for
▷ IMBALR: calc based on GPU type and LLM
if highest Ratiomax > IMBALR then

return max
end if

for each GPU i in all GPUs do
Costi ← LOADCOST(i, Rk)

end for
return i with lowest Costi

end if
end function
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Algorithm 2 GPU Load Cost Calculation
▷ Load cost calculation for GPU i and request Rk

function LOADCOST(i, Rk)
L← 0; M ← 0; P ← 0;

▷ Calculate total load on GPU i
for each Rj in history H do

missed len← non-cached prompt length for j
L← L+ PREFILLTIME(missed len)
decode len← average request output length in H
L← L+ DECODETIME(decode len)

end for

▷ Calculate eviction cost
E ← tree nodes to evict on GPU i to run Rk

for each j in E do
Nj ← number of requests sharing j in H / number of total requests in H
M ←M+ PREFILLTIME(length of j) × Nj

end for

▷ Calculate cost to run Rk

missed len k ← non-cached prompt length for Rk

P ← PREFILLTIME(missed len k)

return L+M + P
end function

Algorithm 3 E2 Local Scheduling Algorithm
function SCHEDULEREQUESTS

for all requests in waiting queue do
Determine prefix hit ratio
Assign to priority group based on hit ratio

end for
Process groups in round-robin fashion with limits

end function
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Figure 11: vLLM Backend Performance Evaluated on the Video QA workload using the Mistral 7B model on 2
GPUs.

C Comparison with vLLM and Other SGLang Versions

To demonstrate Preble’s versatility with multiple LLM backends, we evaluate Preble on vLLM with the
vanilla vLLM as the baseline. vLLM recently added support for prefix caching, which we include in the
baseline. We use a slightly different version of the Mistral 7B model (v0.2) for this experiment, as vLLM
only supports this version. Figure 11 plots the results of running the VideoQA workload on 2 GPUs and the
Mistral 7B v0.2 model for both Preble and vLLM. Compared to SGLang as a backend, vLLM as a backend
gives Preble less relative improvement for several reasons: 1) local-GPU prefix sharing is in beta version
and not as performant as SGLang; 2) vLLM does not use the flash infer kernel which makes prefix sharing
more efficient; and 3) vLLM does not support chunked prefill together with prefix caching. 4) vLLM has
significant scheduling delay

To demonstrate Preble’s versatility across multiple SGLang versions, we evaluate the latest SGLang version
(v0.3) (3) and the latest FlashInfer kernel (v1.6) (1) in addition to the v0.1.12 we used in Section 4. SGLang
made two major changes between these two versions: 1) the new FlashInfer kernel improved the performance
of sharing 32K context length in the same batch, and 2) SGLang reduced its scheduling overhead and applied
other engine optimizations. Figure 12 plots the results of running LooGLE and Toolbench with SGLang v0.3
and Preble. Overall, Preble’s improvements over SGLang persist across SGLang versions.
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Figure 12: Latest SGLang v0.3 and Flashinfer 0.1.6
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Figure 13: MemServe Results Preble and MemServe performance running Tool and Video workloads on 2, 4 GPUs
on A6000.

D Comparison with Memeserve

We also provide a comparison against MemServe’s scheduler in Figure 13. Preble significantly outperforms
the scheduler due to MemServe’s over exploitation of the prefix.

E Additional Scalability Experiments

In order to test Preble’s scalability at a larger number of GPUs, we tested LooGLE using 8 GPUs and 16
GPUs. We provide the average latency in Figure 14. We also provide a plot showing the max sustainable
RPS under 20 seconds of Preble and Round Robin baseline in Figure 15. Based on the results, we can see
that there’s a linear scalability as instances increase.

F Dynamic E2 Scheduling

We also provide an experiment with dynamically selecting exploitation vs exploration based on the total
load of the cluster as well as token count in Figure 16. The results between the two approaches are relatively
similar. In LooGLE dataset, the default Preble performs (min: -4%, max: 9.2%, avg: 3%) better than the
knob based Preble. In the Toolbench dataset, the default Preble performs (min: -1.6%, max: 15%, avg:
5.43%) than the dynamic knob based Preble.
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Figure 14: Scalability Test with Larger GPU Clusters
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