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ABSTRACT

We propose Long-LRM, a generalizable 3D Gaussian reconstruction model that
is capable of reconstructing a large scene from a long sequence of input images.
Specifically, our model can process 32 source images at 960×540 resolution within
only 1.3 seconds on a single A100 80G GPU. Our architecture features a mixture of
the recent Mamba2 blocks and the classical transformer blocks which allowed many
more tokens to be processed than prior work, enhanced by efficient token merging
and Gaussian pruning steps that balance between quality and efficiency. Unlike
previous generalizable 3D GS models that are limited to taking 1∼4 input images
and can only reconstruct a small portion of a large scene, Long-LRM reconstructs
the entire scene in a single feed-forward step. On large-scale scene datasets
such as DL3DV-140 and Tanks and Temples, our method achieves performance
comparable to optimization-based approaches while being two orders of magnitude
more efficient. Project page: https://longgggglrm.github.io

Input Views Novel Views

Ours (1.3sec), PSNR: 30.78

Wide-coverage Gaussian Reconstruction

3D GS (13min), PSNR: 24.74

Ours (1.3sec), PSNR: 26.86 3D GS (13min), PSNR: 25.57

Figure 1: We introduce Long-LRM, a novel Gaussian reconstruction model capable of reconstructing a large
real scene from a long sequence of up to 32 input images, with a wide viewing coverage at a resolution of
960× 540, in just 1.3 seconds. Notably, as a feed-forward generalizable model, Long-LRM can achieve instant
large-scale GS reconstruction with high rendering quality comparable to (and, as shown in the figure, sometimes
even surpassing) the optimization-based 3D Gaussian splatting (3D GS), which requires over 13 minutes for
optimization.

1 INTRODUCTION

3D reconstruction from multi-view images is a fundamental problem in computer vision, with
applications ranging from 3D content creation, VR/AR, to autonomous driving and robotics. Recently,
NeRF (Mildenhall et al., 2021) and various radiance field-based methods (Müller et al., 2022; Xu
et al., 2022; Chen et al., 2022; Barron et al., 2023) have shown great potential in reconstructing
high-quality 3D scenes from a set of posed images via differentiable rendering. However, these
models are slow to reconstruct and not generalizable to unseen scenes, as they require optimization
for each scene independently. While 3D Gaussian splatting (GS) (Kerbl et al., 2023) has significantly
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advanced the reconstruction and rendering efficiency, it still typically requires at least 10 minutes to
optimize for each scene and can not achieve an instant reconstruction.

Recently, generalizable 3D GS models (Szymanowicz et al., 2024; Tang et al., 2025) have been
proposed to enable fast feed-forward GS reconstruction, avoiding per-scene optimization. Several
methods (Charatan et al., 2024; Zhang et al., 2025; Liu et al., 2024a; Chen et al., 2025) have
shown promising scene-level reconstruction results on real 3D captures by regressing per-pixel
Gaussian primitives. In particular, GS-LRM (Zhang et al., 2025), following the principles of 3D large
reconstruction models (LRMs) (Hong et al., 2024; Li et al., 2023; Wang et al., 2023) and leveraging a
densely self-attention-based transformer (Vaswani, 2017) without using 3D inductive biases such as
epipolar attention or sweeping volumes, has achieved state-of-the-art novel-view rendering quality on
multiple challenging datasets. However, the previous generalizable GS models are designed to handle
a small number of input images (typically 1-4) with limited viewing coverage, thus are incapable of
reconstructing large real-world scenes, which require a wide view span and at least dozens of images.
In such cases, per-scene optimization-based methods were still the only viable option.

Our goal is to enable fast and accurate GS reconstruction of large scenes with wide viewing coverage
through direct feed-forward network prediction. To this end, we propose Long-LRM, a novel GS-
based LRM that is able to handle long-sequence input and achieve high-quality 3D GS reconstruction
of large scenes from as many as 32 widely-displaced multi-view images at 960×540 resolution within
only 1.3 seconds on a single A100 80G GPU. As shown in Fig. 1, the photorealistic novel-view
renderings produced by our approach has a quality comparable to or even better than 3D GS (Kerbl
et al., 2023) that takes over 10 minutes for per-scene optimization.

Specifically, as inspired by GS-LRM, we patchify the multi-view input images into a sequence
of patch tokens and consider the task of GS reconstruction as a sequence-to-sequence translation
to regress pixel-aligned Gaussian primitives. However, unlike GS-LRM that focuses on 2-4 input
images, our input setting with 32 960×540 images corresponds to an extremely long token sequence –
about 250K context length (considering a patch size of 8×8) – which is highly challenging for dense
transformers (as used by GS-LRM) due to their quadratic time complexity. Note that this length is
even larger than many modern large language models (LLM), such as LLama3 (Dubey et al., 2024)
with a context length of 128K.

To address this challenge, we leverage the recent advancements of state space models (SSMs) (Gu
& Dao, 2023), designed to handle long-context reasoning efficiently with linear complexity. In
particular, we propose a novel LRM architecture that combines Mamba2 (Dao & Gu, 2024) blocks
with transformer blocks, enabling efficient sequential long-context reasoning while preserving critical
global context. Additionally, we introduce a token merging module to further reduce the number of
tokens in the middle of the network processing, along with a Gaussian pruning step to encourage
efficient use of the dense per-pixel Gaussians. These combined designs allow us to train our Long-
LRM using similar computational resources to GS-LRM, while successfully scaling up the input
sequence length and achieving over 10× faster training on long-sequence inputs, enabling fast,
high-quality, wide-coverage reconstruction of large real scenes (see Tab. 3).

We train our Long-LRM on the recent DL3DV dataset (Ling et al., 2024), which comprises ap-
proximately 10K diverse indoor and outdoor scenes. We evaluate our model on both the DL3DV
test set and the Tanks and Temples dataset (Knapitsch et al., 2017), using 32 input images for each
scene. The results show that our direct feed-forward reconstruction achieves comparable novel view
synthesis quality to the per-scene optimization results of 3D GS, while substantially reducing the
reconstruction time – by two orders of magnitude (1.3 seconds vs. 13 minutes). Our approach is
the first feed-forward GS solution for wide-coverage scene-level reconstruction and the first to
enable large-scale GS scene reconstruction in seconds.

2 RELATED WORK

3D Reconstruction. Many traditional and learning-based 3D reconstruction methods have been
focusing on pure geometry reconstruction, where surface meshes (Murez et al., 2020; Sun et al., 2021;
Bozic et al., 2021; Stier et al., 2021) or depth maps (Zbontar & LeCun, 2016; Schönberger et al.,
2016; Yao et al., 2018; Cheng et al., 2020; Kar et al., 2017; Duzceker et al., 2021; Sayed et al., 2022)
are the target output. These methods usually involve explicit feature matching along the epipolar
lines, followed by the prediction of TSDF or depth values performed by the neural networks. In

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

contrast, we adopt the recent 3D GS representation for joint geometry and appearance reconstruction,
allowing for photo-realistic novel view synthesis.

Neural reconstruction and rendering. Instead of directly predicting the surface geometry,
NeRF (Mildenhall et al., 2021) proposes to leverage differentiable volume rendering to regress
novel-view images, supervised with a rendering loss. This implicit way of reconstruction elimi-
nates the need for hard-to-obtain ground-truth 3D supervision while producing visually pleasing
reconstruction results. However, NeRF reconstruction requires optimizing its network for each
scene independently, taking hours or even days for reconstruction. Follow-up works have introduced
advanced neural scene representations (Barron et al., 2023; Müller et al., 2022; Chen et al., 2022;
Xu et al., 2022; Tancik et al., 2023; Barron et al., 2022), significantly improving time and memory
efficiency. Among these, 3D Gaussian splatting (Kerbl et al., 2023) stands out for reducing recon-
struction time to just dozens of minutes while maintaining high reconstruction quality and enabling
real-time rendering. Variants of 3D GS, such as CityGaussian (Liu et al., 2025) and Octree-GS (Ren
et al., 2024), further extend its capabilities to large-scale optimization and rendering. However,
these methods are still unable to achieve instant prediction. We aim to build a scalable feed-forward
reconstruction model, capable of achieving instant 3D GS reconstruction in seconds.

Generalizable NeRF and 3D GS. Previous attempts to develop generalizable NeRF models have
primarily relied on classical projective geometric structures, such as epipolar lines (Yu et al., 2021;
Wang et al., 2021; Liu et al., 2022; Suhail et al., 2022) or plane-sweep cost volumes (Chen et al.,
2021; Johari et al., 2022; Lin et al., 2022; Zhang et al., 2022), to aggregate multi-view features from
nearby views for local NeRF estimation. Recently, similar designs have been adapted to enable
feed-forward scene-level 3D GS reconstruction with generalizable models (Charatan et al., 2024;
Chen et al., 2025; Liu et al., 2024a). However, since both epipolar geometry and plane-sweep
volumes depend on significant overlap between input views, these GS-based methods (as well as
most prior NeRF-based methods) are limited to local reconstructions from a small number (1-4) of
narrow-baseline inputs. On the other hand, GS-LRM (Zhang et al., 2025) avoids these 3D-specific
structural designs and adopts an attention-based transformer, achieving state-of-the-art performance
in this domain. However, GS-LRM still focuses on solving the problem of local reconstruction
from just 2-4 views. In contrast, we incorporate Mamba (Gu & Dao, 2023; Dao & Gu, 2024) in our
model architecture, enabling feed-forward GS reconstruction from 32 images, achieving complete
large-scene reconstruction. Meanwhile, Gamba (Shen et al., 2024) and MVGamba (Yi et al., 2024)
have recently utilized purely Mamba-based architectures for object-level GS reconstruction from 1-4
input views. Our model is instead a novel hybrid model that combines transformer and Mamba2
blocks, designed for long-sequence, high-resolution, scene-level reconstruction from up to 32 views.

Efficient models for long sequences. Transformer-based 3D large reconstruction models (LRMs)
have emerged (Hong et al., 2024; Li et al., 2023; Xu et al., 2023; Wang et al., 2023; Wei et al., 2024;
Xie et al., 2024; Zhang et al., 2025), enabling high-quality 3D reconstruction and rendering from
sparse-view inputs. While transformers dominate various AI fields due to their flexibility with input
modalities and scalability in model sizes, their quadratic time complexity makes them extremely slow
when handling long sequences, often requiring thousands of GPUs for parallel computing (Dubey
et al., 2024). Efficient architectures such as linear attention (Katharopoulos et al., 2020) and structured
state space model (SSM) (Gu et al., 2021) have been proposed in NLP to deal with large corpus of
text. Mamba (Gu & Dao, 2023), a variant of SSM, offers significant improvements by computing
state parameters from each input in the sequence and has been successfully extended to tackle vision
tasks (Zhu et al., 2024; Liu et al., 2024b; Lieber et al., 2024; Huang et al., 2024; Shen et al., 2024; Yi
et al., 2024; Dong et al., 2024). Mamba2 (Dao & Gu, 2024) further restricts the state matrix A and
expands state dimensions, showing performance comparable to transformers on multiple language
tasks. However, empirical studies (Waleffe et al., 2024) indicate that transformers still outperform
Mamba2 in in-context learning and long-context reasoning—both critical for 3D reconstruction.
Inspired by Waleffe et al. (2024) and Jamba (Lieber et al., 2024), we propose to apply a hybrid
architecture combining transformer and Mamba2 blocks for long-sequence 3D GS reconstruction,
achieving a balance between training efficiency and reconstruction quality (see Tab. 3).

3 METHOD

We present our Long-LRM method in this section. We give an overview in Sec. 3.1, the implemen-
tation details of the Mamba2 blocks in Sec. 3.2 and additional designs for memory reduction (e.g.,
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Figure 2: Long-LRM takes up to 32 input images along with their Plücker ray embeddings as model input,
which are then patchified, linearly transformed, and concatenated into token sequences. These tokens are
processed through an optional token merging module, followed by a sequence comprising Mamba2 blocks (×7)
and a Transformer block (×1). This entire processing structure is repeated three times (×3) to ensure effective
handling of the long-sequence inputs and comprehensive feature extraction. Fully processed, the tokens are
unpatchified and decoded into Gaussian parameters, followed by Gaussian pruning to generate the final 3D GS
representation. The bottom section of the figure illustrates the resulting novel view synthesis and wide-coverage
Gaussian reconstruction, demonstrating Long-LRM’s capability to handle extensive view coverage and produce
high-quality, photorealistic reconstructions.

token merging) in Sec. 3.3. We end with a discussion of the training objectives in Sec. 3.4 that help
the model to effectively converge.

3.1 OVERALL ARCHITECTURE

As shown in Fig. 2, we follow prior work (Xu et al., 2023; Wei et al., 2024; Zhang et al., 2025) to
tokenize the channel-wise concatenated RGB images and Plücker rays. Similar to GS-LRM (Zhang
et al., 2025), we view the per-pixel GS prediction as a sequence-to-sequence mapping. But crucially,
we use a hybrid of Mamba2 blocks and transformer blocks, following the studies in Waleffe et al.
(2024) and Lieber et al. (2024), for better scalability to higher resolution and denser views, while
GS-LRM solely builds upon transformer blocks.

In our implementation, each hybrid block consists of 7 Mamba blocks and one transformer block,
which we empirically observe to be a balanced configuration. For the transformer blocks, we use
global self-attention, as done in recent LRMs (Wei et al., 2024; Zhang et al., 2025). We detail our
implementation of Mamba2 blocks in Sec. 3.2. A token merging stage is optionally injected before
the hybrid block to further speed up the processing, which is detailed later in Sec. 3.3.

We decode per-pixel Gaussian parameters from the output tokens in the same way as GS-LRM. But
we apply additional training-time and test-time pruning of the extremely dense Gaussians to improve
efficiency at high resolution and increased views.

3.2 MAMBA2 BLOCK

A Mamba block (Gu & Dao, 2023), similar to a transformer block, processes a token sequence of
shape L×D by mixing the token information, and outputs a token sequence of the same shape. For a
sequence of length L, transformer block has a computational complexity of O(L2) while Mamba
effectively reduces it to O(L). Thus, it is suitable for the dense reconstruction task in our Long-LRM.

Being a variant of SSM, Mamba at its core processes each input token x by formula
ht = Aht−1 + Bxt (1)
yt = Cht (2)

where h is the hidden state, y is the output token, t is the sequence index, and A,B,C are parameters.
Different from previous work (Gu et al., 2021), Mamba computes A,B,C from the input with a linear
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layer instead of storing them as model parameters. It’s worth noting that similar to transformer block,
Mamba block can be highly parallelized in terms of computation for leveraging the massive GPU
compute power, which is one core factor driving its increasing popularity.

The novel Mamba2 (Dao & Gu, 2024) block improves over Mamba by further restricting the state
matrix A to be a scalar times identity structure, allowing the usage of efficient block multiplication and
expansion to larger state dimensions, showing performance comparable to transformers on multiple
language tasks. However, since the Mamba2 block is designed for language tasks, it only scans
through the tokens in one direction, which is suboptimal for images. Following Vision Mamba (Zhu
et al., 2024), we take bi-directional scans over the concatenated token sequence. Specifically, we first
compute the state parameters from the input using one linear layer; then we run the SSM block in both
forward and backward directions on the token sequence. Finally, we sum up the output tokens from
the two scans before going through another linear layer. We also did some preliminary exploration of
more complex scan patterns as in VMamba (Liu et al., 2024b) and LocalMamba (Huang et al., 2024),
but we observed a substantial decrease in speed, and hence we decided not to adopt them.

3.3 TOKEN MERGING AND GAUSSIAN PRUNING

Boosting up input view number and image resolution can drastically increase the token sequence
length. With 32 960×540 images and patch size 8, the length can reaches about 260k, highly
challenging even for linear-complexity models like Mamba. Empirically, we also find even the
all-Mamba2 variant of our model runs out of memory under our highest resolution setting (see Tab. 3).
To further reduce memory usage, we propose to merge the tokens in the middle of the model as well
as to prune the Gaussians before rendering novel views.

Token merging achieves a fine-to-coarse effect similar to the traditional multi-level CNN encoders
and effectively reduces token sequence length down to 1/4. We first reshape the token sequence from
L×D back to N×H

p ×W
p ×D where p is the original patch size. Then, we apply a channel-wise

2×2 2D convolution with stride 2, resulting in output shape N× H
2p×

W
2p×D′, where D′ is the new

token dimension that can differ from the original one. Finally, we reshape it back to L
4 ×D′ where

each token now has an ‘effective’ patch size of 2p. In our ablation studies (Tab. 3), we find our token
merging design does not sacrifice much reconstruction quality, while significantly reducing memory
usage and increasing training speed.

Even with token merging, our per-pixel Gaussian prediction still brings us an enormous quantity of
Gaussians at the end (∼17 million for 32 images with resolution 960×540), which is likely more
than we need for a high-quality reconstruction due to the overlap between the input view frustums.
To encourage the model to use a compact set of Gaussians, we apply a punishment on the opacity of
all Gaussians (detailed in Sec. 3.4). With the effective reduction in the number of visible Gaussians,
we can thus simply prune away a certain percentage of Gaussians with low opacity. Empirically, we
find no difference in rendering quality if we prune away Gaussians with opacity below 0.001. Beside
pruning during inference, we also apply the Gaussian pruning to the 960×540 resolution training.
We keep fixed-number Gaussians instead of using opacity threshold to ensure near-constant training
memory usage. O.w., the training can go out of memory for some scenes.

3.4 TRAINING OBJECTIVES

Lastly, we illustrate the training objectives for Long-LRM.

Rendering loss. Following previous work (Zhang et al., 2025), we use a combination of Mean
Squared Error (MSE) loss and Perceptual loss

Limage =
1

M

M∑
i=1

(
MSE

(
Igt
i , I

pred
i

)
+ λ · Perceptual

(
Igt
i , I

pred
i

))
(3)

to supervise the quality of the rendered images, where λ is set to 0.5. While training solely with
rendering loss can achieve competitive visual quality to our final model (see Sec. 5.2), we further
introduce two regularization terms to improve training stability and inference efficiency.

Depth regularization for training stability. Training instability is a well-known curse for large-scale
training. In our task, we observe that the instability comes from the difficulty of optimizing the
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Gaussian positions. With rendering loss only, the model will produce ill-posed Gaussians known as
“floaters”, which does not lie on the actual 3D surface – a common issue for novel view synthesis (see
the black “floaters” in Fig. 1). To stabilize training, we add a scale-invariant depth loss

Ldepth =
1

M

M∑
i=1

Smooth-L1
(
Dda

i ,D
pred
i

)
(4)

where Dda
i is the disparity map predicted by DepthAnything (Yang et al., 2024), and Dpred

i is the
disparity map obtained from the predicted position of the per-pixel Gaussians. Following Yang et al.
(2024), we normalize the disparity maps by subtracting their medians t(di) and then dividing by
their mean absolution deviation from the medians 1

HW

∑
|di − t(di)|. This soft depth supervision

effectively helps reduce the chance of the training divergence.

Opacity regularization for inference efficiency. Since our per-pixel prediction strategy renders
a dense set of Gaussians, to encourage an efficient use of the Gaussians, we apply a small L1
regularization on the opacity

Lopacity =
1

N

N∑
i=1

|oi| (5)

where the opacity values are between 0 and 1. Intuitively, L1 can encourage the sparsity of the
regularized terms (Tibshirani, 1996). We empirically observe that adding this loss can drastically
push the percentage of Gaussians with opacity above 0.001 from 99% down to around 40% (see
Tab. 5). With these near-zero opacity Gaussians, we can perform Gaussian pruning as discussed
above in Sec. 3.3 and both reduce the Gaussian splatting loading time and increase the rendering
speed for better model serving experience. This regularization also enables the extreme 960×540
resolution training where in-training pruning is used.

Overall training loss. Our total loss is thus the rendering loss and the weighted regularization loss
terms discussed above:

L = Limage + λopacity · Lopacity + λdepth · Ldepth (6)
where we set λopacity = 0.1 and λdepth = 0.01.

4 EXPERIMENTS

4.1 DATASETS

DL3DV (Ling et al., 2024) is a recently published large-scale, real-world scene dataset for 3D
reconstruction and novel view synthesis. It features a diverse variety of scene types, with both indoor
and outdoor captures. It consists of two parts: DL3DV-10K is the training split, consisting of 10,510
high-resolution videos, each accompanied by 200∼300 keyframes with camera pose annotation
(obtained from COLMAP (Schönberger et al., 2016)); DL3DV-140 Benchmark is the test split,
containing 140 test scenes. We train our model on DL3DV-10K and evaluate on the DL3DV-140
Benchmark. We also perform zero-shot inference on Tanks and Temples (Knapitsch et al., 2017),
another real-world scene dataset for novel view synthesis. It also contains 200∼300 keyframes with
camera pose annotation (obtained from COLMAP) for each scene. Following previous work (Kerbl
et al., 2023; Liu et al., 2024a), we use the train and the truck scene from Tanks and Temples.
In addition, a comparison with SOTA feed-forward GS methods under a sparse two-view setting is
conducted on RealEstate10K (Zhou et al., 2018), a real-world indoor scene dataset, following the
same train test split and evaluation setting introduced by pixelSplat Charatan et al. (2024).

4.2 IMPLEMENTATION AND EXPERIMENT DETAILS

Architecture Details. Our model consists of 24 blocks in total, with every 7 Mamba2 blocks
followed by 1 transformer block, repeating 3 times. We start with patch size 8 and token dimension
256. We perform token merging at the beginning of the 9th block, with patch size expanded to 16 and
token dimension expanded to 1024. For Mamba2 blocks, we use a state dimension 256, an expansion
rate 2 and a head dimension 64. For transformer blocks, we use a head dimension 64 and an MLP
dimension ratio of 4. We use the FlashAttentionV2 (Dao, 2024) implementation which optimizes the
GPU IO utilization for long sequences.

6
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Training Settings. Directly training the model on high-resolution images is extremely inefficient;
therefore we opt for an low-to-high-resolution curriculum training schedule, with three training stages,
using image resolutions of 256×256, 512×512 and 960×540.

Specifically, in the 1st stage, training images are resized so the shorter side is 256 and then center-
cropped to square. For the training view selection, we first randomly pick a consecutive subsequence
ranging from 64 frames to 128 frames, then uniformly sample 32 images as input and sample 8
images as target. Input and target are sampled independently and thus they can overlap. We randomly
shuffle the input view order with probability 0.5 and reverse the input view order also with probability
0.5. We train with a peak learning rate of 4E−4 and the AdamW optimizer (Loshchilov & Hutter,
2017) with a weight decay of 0.05. The learning rate is linearly warmed up in the first 2K steps and
then cosine decayed. We use a batch size of 256, and train for 60K steps.

In the 2nd stage, we resize and crop the images to 512×512, decrease the peak learning rate to 4E−5,
and train the model for 10K steps at batch size 64. The view selection protocol remains the same.

In the last stage, we resize the images to 960×540 without square cropping, expand the view selection
sampling range to the entire sequence (about 200∼300 frames for DL3DV), and keep training the
model for another 10K steps at batch size 64. We perform Gaussian pruning in this stage to save GPU
memory usage, where we only keep top 40% of the Gaussians ranked by opacity plus 10% randomly
sampled from the rest. We augment the FOV of the images by randomly center-cropping the images
to 0.77∼1.0 of the original size and resize back, in order to fit a broader range of camera models. We
optionally finetune a model with 16 images as input.

Evaluation Settings. During evaluation, our goal is to reconstruct the scene captured by the entire
video sequence. Following previous work (Barron et al., 2022; Kerbl et al., 2023), we uniformly pick
every 8-th image of the sequence as the test split. From the rest of the sequence, we use K-means
clustering (based on camera positions and directions) for choosing the input views to ensure the
coverage of the scene. The number of clusters is set of the number of input views. We simply choose
the cameras closest to the cluster centers as the input split. We use an image resolution of 960× 540
during the evaluation. We perform Gaussian pruning during evaluation by only keeping the top 50%
of the Gaussians with highest opacity values, where 50% is a safe range with negligible quality loss.

4.3 RESULTS

Input
Views Method Time↓ DL3DV-140 Tanks&Temples

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

16
3D GS30k 13min 21.20 0.708 0.264 16.76 0.598 0.334
Ours 0.7sec 22.66 0.740 0.292 17.51 0.555 0.408

32
3D GS30k 13min 23.60 0.779 0.213 18.10 0.688 0.269
Ours 1.3sec 24.10 0.783 0.254 18.38 0.601 0.363

Table 1: Quantitative comparison to 3D Gaussian splatting opti-
mization. ‘Time’ refers to the total inference/optimization time for
each scene. The image resolution is 960× 540.

Method PSNR↑ SSIM↑ LPIPS↓

pixelSplat 25.89 0.858 0.142
MVSplat 26.39 0.869 0.128
GS-LRM 28.10 0.892 0.114

Ours (w/ TM) 27.26 0.872 0.130
Ours (w/o TM) 28.44 0.893 0.113

Table 2: Quantitative comparison on
RealEstate10K under 2-view setting.
‘TM’ refers to token merging. The image
resolution is 256× 256.

Our approach achieves wide-coverage, scene-level 3D Gaussian splatting reconstruction from up to 32
high-resolution input images, which, to the best of our knowledge, no other method can accomplish.
Recent works like pixelSplat (Charatan et al., 2024), MVSplat (Chen et al., 2025), MVSGaussian (Liu
et al., 2024a), and GS-LRM (Zhang et al., 2025) are limited to processing 1–4 input images, with
pixelSplat and MVSplat showing results only at 256×256 resolution. Most of these methods rely
on traditional 3D inductive biases, such as epipolar projection and cost volumes, which are suited
for narrow-view inputs with large overlaps but struggle with wide-coverage, high-resolution settings.
Moreover, naively extending these methods to handle more input views and higher resolutions leads
to out-of-memory issues and requires significant architectural changes. Therefore, we compare our
method with the original optimization-based 3D Gaussian splatting in the high-resolution, wide-
coverage setting on the DL3DV and Tanks&Temples datasets, and also compare with previous
feed-forward methods in the low-resolution two-input setting on the RealEstate10k dataset.
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High-resolution, wide-coverage reconstruction. In Table 1, we show the quantitative comparison
results with the optimization-based 3D GS on two real-world large-scene datasets: DL3DV-140
Benchmark (Ling et al., 2024) and Tanks and Temples (Knapitsch et al., 2017). We show results
under the sparser 16 input-view setting as well as the 32 input-view setting. Our model is capable
of reconstructing an unseen novel scene from long-sequence input in a feed-forward manner within
as little time as 1.3 seconds, 600× faster than 3D GS optimization (13 minutes for 30K steps).
Reconstruction quality-wise, our feed-forward reconstruction results are comparable with 3D GS with
30K optimization steps. Our model takes lead in terms of PSNR (with the gap larger in the sparser
16-view setting: +1.2 for DL3DV-140 and +0.4 for Tanks and Temples), while 3D GS performs better
in terms of LPIPS. We speculate this is because 3D GS optimization is much stronger at directly
“copying” the input images into the reconstructed scene with these many optimization steps, and
thus can render images with local color distribution extremely similar to the test images. However,
without any prior knowledge in 3D geometry, it can easily overfit to the input views when the input is
sparse. As demonstrated in our qualitative comparisons with 3D GS (Fig. 1 and 3), Long-LRM shows
significant improvements in reducing floater artifacts. This improvement can be attributed to two key
factors. First, as a feed-forward method, Long-LRM leverages prior knowledge distilled from a large
training dataset, helping to avoid floaters in unseen views. Second, we have adopted regularization
terms like the opacity loss and the soft depth supervision, which are effective in mitigating floater
artifacts. More visualization and interactive results can be found on our website and in Appendix.

Low-resolution, sparse-view reconstruction. In Table 2, we present a quantitative comparison with
state-of-the-art feed-forward GS methods on the RealEstate10K dataset at a 256×256 resolution
with 2 input views, a setting commonly used in prior works. Our Long-LRM, without token merging,
achieves the best overall quality, outperforming pixelSplat and MVSplat by a large margin of over 2dB
PSNR and slightly surpassing the transformer-based GS-LRM, highlighting the effectiveness of our
hybrid model. While adding token merging slightly reduces quality in this sparse-view setting, it still
achieves competitive results, surpassing pixelSplat and MVSplat. Importantly, token merging enables
Long-LRM to handle higher resolutions and longer sequences, effectively addressing the scalability
challenges that are central to our work. Overall, our approach not only leads to state-of-the-art
rendering quality in the classical sparse-view setting but also enables wide-coverage, high-resolution,
large-scene reconstruction that other feed-forward methods cannot achieve.

5 ANALYSIS

5.1 ABLATION STUDIES OF MODEL DESIGNS

Input
Views

Image
Size

Batch Size
/ GPU

Train
Step Block Type Token

Merge
Patch
Size

Token
Dimension #Param Iteration

Time (sec)
GPU

Memory (GB) PSNR↑

4 256 16 100K

Transformer (GS-LRM) / 8 1024 327M 2.3 44 21.13
Mamba2 / 8 1024 190M 2.8 35 19.82
{7M1T}×3 / 8 1024 206M 2.6 35 21.58
{7M1T}×3 @9 8 →16 256 →1024 162M 1.9 20 21.25

32 256 4 60K

Transformer (GS-LRM) / 8 1024 327M 14.5 68 too slow
Mamba2 / 8 1024 190M 6.0 70 24.28
{7M1T}×3 / 8 1024 206M 7.1 70 26.82
{7M1T}×3 @9 8 →16 256 →1024 162M 3.5 25 25.62

32 512 1 10K∗

Transformer (GS-LRM) / 8 1024 327M 50.5 44 too slow
Mamba2 / 8 1024 190M 7.4 62 24.83
{7M1T}×3 / 8 1024 206M 11.5 64 28.16
{7M1T}×3 @9 8 →16 256 →1024 162M 4.0 23 27.46

32 960×540 1 10K∗ All other variants are out of memory.
{7M1T}×3 @9 8 →16 256 →1024 162M 12.6 53 27.32

Table 3: Ablation studies on model architecture. We study how the model architecture affects training time
and memory efficiency as well as the reconstruction quality. All variants have 24 blocks in total. {7M1T}×3
refers to our “7 Mamba2 blocks + 1 Transformer block, repeating 3 times” model architecture. @9 means the
token merging happens at the beginning of the 9th block. Models are trained on DL3DV-10K and evaluated on
DL3DV-140 Benchmark. ∗The 512-resolution models are finetuned from the checkpoints of their 256-resolution
counterparts, and the 960-resolution from the 512-resolution checkpoints.
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We study how the model architecture variants scale with long input image sequence for both training
efficiency and reconstruction quality. As shown in Table 3, we consider 4 experimental setups with
different sequence lengths: 1. sparse low-resolution (‘Input Views’=4, ‘Image Size’=256), 2. dense
low-resolution (‘Input Views’=32, ‘Image Size’=256), 3. dense high-resolution (‘Input Views’=32,
‘Image Size’=512), 4. dense ultra-resolution (‘Input Views’=32, ‘Image Size’=960×540) 1. The
results of different model architecture under the same setup are presented within a Table block
(i.e., every four rows). We study four model variants: all transformer blocks (row 1; equivalent to
GS-LRM), all Mamba2 blocks (row 2), hybrid blocks but without token merging (row 3), and hybrid
blocks with token merging (row 4; our final model). All variants have 24 blocks in total. We illustrate
the number of model parameters (‘#Param’), the training iteration time, the GPU memory usage, and
PSNR reconstruction metric in the last four columns. The detailed experimental setup of this ablation
study can be found in Appendix. We next highlight the key observations.

Comparisons to Transformer. Transformer’s performance is comparable to our model under the
4-view 256-resolution (the 1st block in Tab. 3) setting. However, its training speed explodes for larger
visual inputs, either with dense view or high resolutions. In our 3rd experiment setup (32 views with
resolution 512), the per-iteration training time with batch size=1 can go up to 50.5 seconds, which is
unaffordable to train. This is due to the quadratic time complexity of transformers.

Comparisons to Mamba2. The Mamba2 variant shows a more manageable increase in time as the
input scales up but leads to a noticeable decline in reconstruction quality compared to other variants.
For instance, in the 256-resolution, 4-view setting (1st block in Tab 3 ), the Mamba2 variant exhibits
a 1.8 PSNR drop compared to our hybrid model (row 3). This performance gap widens with longer
sequences, reaching 2.5 PSNR for 32 views (2nd block in Tab 3) and 3.3 PSNR at 512 resolution
(3rd block in Tab 3). This decrease in quality is possibly due to Mamba’s purely state-based design,
which struggles to capture long-range dependencies effectively.

Effectiveness of Token Merging. Comparing with transformer and Mamba2, our hybrid variant
(third row in each block) gets the best of both worlds – the reconstruction quality (in terms of ‘PSNR’)
comparable to transformer and the speed (in terms of ‘Iteration Time’) comparable to Mamba2. On
top of it, with the token merging design (last row in each block), our final model successfully reduces
both time and memory usage down to 1/3 in the 512×512 setting, without sacrificing too much
reconstruction quality. Token merging with Gaussian pruning also further enables scaling up to
960× 540 resolution with stable reconstruction, where all other variants are out-of-memory.

5.2 ABLATION STUDIES OF TRAINING OBJECTIVES

Input
Views

Image
Size Loss Type PSNR↑ % Gaussians w/

opacity>0.001

4 256
rendering-only 20.43 99.2
+opacity 20.96 68.3
+opacity+depth 21.25 70.1

Table 4: Ablation studies on training objec-
tives. We study how the opacity loss and the
depth supervision affect the reconstruction qual-
ity as well as the Gaussian usage.

Input
Views

Image
Size

Input Sampling
Range (frame) w/ opacity loss % Gaussians w/

opacity>0.001

4 256×256 16 ✗ 99.2
4 256×256 16 ✓ 68.3
32 256×256 64 ∼ 128 ✓ 41.8
32 512×512 64 ∼ 128 ✓ 34.1
32 960×540 200 ∼ 300 ✓ 33.3

Table 5: Gaussian usage impacted by opacity loss and
input size.

Impact of the regularization terms. In Tab. 4, we show the impact of the two regularization terms
introduced in Sec. 3.4: the opacity loss and the depth supervision. From the table, we see that adding
the opacity loss can significantly reduce the number of visible Gaussians (% of Gaussians with
opacity above 0.001), while having negligible impact on model rendering performance. The depth
supervision help improve the rendering quality by guiding the “floater” Gaussians to the position of
the true surfaces. We observe it also slightly lifts the number of visible Gaussians, which is reasonable
because now the model can drive the “floater” Gaussians to their correct positions instead of simply
deleting them by assigning them low opacity values. Also due to this, training with depth supervision
significantly reduces the chance of gradient explosions in our experiments.

1Note that here the terminology of ‘sparse’, ‘dense’, ‘low’, ‘high’, ‘ultra’ are all relative. We use these
terminology for simplicity and clarity.
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Impact of opacity loss on Gaussian Usage. In Tab. 5, we show how the opacity loss and the input
size affects the Gaussian usage (percentage of Gaussians with opcacity > 0.001). Comparing row-1
and row-2, we observe that the opacity regularization loss introduced in Sec. 3.4 can effectively
reduce the number of ‘high’-opacity Gaussians shown in the last column. Furthermore, our model
learns to adaptively use a different number of Gaussians when the input varies. As the image
resolution increases (hence more per-pixel Gaussians predicted), the chance that multiple pixels
can be covered by the same Gaussian increases as well, and thus the percentage of Gaussian usage
decreases. However, as the sampling range (i.e., the maximum difference in frame indices of the input
views, shown as ‘Input Sampling Range’) increases, the overlap between input views decreases, and
thus the model needs to retain more Gaussians to keep reconstruction quality, resulting in negligible
drop in Gaussian usage in the last row.

Wide-coverage Gaussian Reconstruction

Ours, PSNR: 21.60

Ours, PSNR: 25.71

3D GS, PSNR: 23.37

3D GS, PSNR: 24.13

Wide-coverage Gaussian Reconstruction

Ours, PSNR: 25.63 3D GS, PSNR: 26.02

3D GS, PSNR: 27.92Ours, PSNR: 28.09

Figure 3: Qualitative comparisons between Long-LRM and 3D GS, reconstructed from 32 input images
at 960 × 540 resolution. The left two columns show our wide-coverage Gaussian reconstruction, while the
right column shows results from 3D GS. Our approach maintains high-quality reconstruction with competitive
or even superior PSNR values, demonstrating the ability to generate accurate details and fewer artifacts in
challenging regions. The red ellipses highlight areas where 3D GS struggles with artifacts or inaccuracies,
whereas Long-LRM produces cleaner and more photorealistic outputs.

6 CONCLUSIONS

In this work, we introduce Long-LRM, a novel model for fast and scalable 3D Gaussian splatting
reconstruction. By combining Mamba2 and transformer blocks, along with token merging and
Gaussian pruning, Long-LRM can instantly reconstruct a wide-coverage 3D GS scene from 32
images at a high resolution of 960 × 540 in just 1.3 seconds, leading to high rendering quality
comparable to optimization-based methods such as 3D Gaussian splatting. Our approach is the first
feed-forward GS solution for wide-coverage scene-level reconstruction.
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Wide-coverage Gaussian Reconstruction Novel View Synthesis

Figure 4: Demonstration of our Long-LRM’s novel view synthesis capabilities. The left column
illustrates the wide-coverage Gaussian reconstruction achieved by our model, while the right columns
show high-quality synthesized novel views from different perspectives. These examples demonstrate
Long-LRM’s ability to handle diverse and complex scenes, accurately reconstructing fine-level details,
and generating photorealistic views from multiple angles, effectively capturing both geometric and
appearance variations across different scenes.

A MORE QUALITATIVE RESULTS

We show more qualitative results of our Long-LRM on large-scale scenes using 32 wide-coverage
input views at 960 × 540 image resolution in Fig. 4. For more visual results with rendered long-
trajectory videos, please refer to our project webpage (https://longgggglrm.github.io).

B EXPERIMENTAL DETAILS FOR MODEL ARCHITECTURE ABLATION STUDIES

In Table 3, we present the model architecture ablation studies with different length of input sizes.
We train all variants on DL3DV-10K and evaluate on DL3DV-140. The number of training steps are
empirically decided based on the model convergence, and set to be the same. We study the model
behavior under four different settings: 4 input views at 256×256, 32 input views at 256×256, and 32
input views at 512×512, and our extreme setting: 32 input views at 960×540.

For these ablation studies, we use a shorter frame range during evaluation for fair comparisons among
each experiments. In details, we choose the first 96 frames from the original video frame sequence,
then uniformly sample 8 test views. The training 4 to 32 training views are then uniformly sampled
from the rest views, i.e., not overlapping to the testing views. We kept the same set of training and
testing views for different experimental setups. The input images are resized and center-cropped to
squares except for the last row.

C ADDITIONAL EXPERIMENT RESULTS

Comparison with other 3D GS variants. We show comparison with 3D GS and two of its variants,
Scaffold-GS and Mip-Splatting, in Table 6. In particular, under the same input setting, Mip-Splatting
achieves similar performance to 3D GS while Scaffold-GS leads to superior quality. It is important to
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note that the contributions of these works are orthogonal to ours. Our work focuses on large-scale
feed-forward GS, addressing challenges in scalability and efficiency. We leverage the original 3D
GS representation in our model. In contrast, Mip-Splatting and Scaffold-GS focus on improving the
3D GS representations, instead of developing feed-forward solutions. In particular, Mip-Splatting
emphasizes anti-aliasing during rendering, while Scaffold-GS focuses on regularizing the positions
of Gaussians during optimization. Our approach could potentially be extended to incorporate these
advanced representations, which we leave as a direction for future research.

Input
Views Method Feed-

Forward Time↓ DL3DV-140 Tanks&Temples

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

16

3D GS30k ✗ 13min 21.20 0.708 0.264 16.76 0.598 0.334
Mip-Splatting30k ✗ 13min 20.88 0.712 0.274 16.82 0.616 0.332
Scaffold-GS30k ✗ 16min 22.13 0.738 0.250 17.02 0.634 0.321
Ours ✓ 0.7sec 22.66 0.740 0.292 17.51 0.555 0.408

32

3D GS30k ✗ 13min 23.60 0.779 0.213 18.10 0.688 0.269
Mip-Splatting30k ✗ 13min 23.32 0.784 0.217 18.39 0.700 0.262
Scaffold-GS30k ✗ 16min 24.97 0.816 0.188 18.92 0.728 0.242
Ours ✓ 1.3sec 24.10 0.783 0.254 18.38 0.601 0.363

Table 6: Quantitative comparison with per-scene optimization-based GS methods. ‘Feed-forward’ column
indicates whether the method performs zero-shot feed-forward prediction. ‘Time’ refers to the total infer-
ence/optimization time for each scene. First place is in bold, and second place is underlined. The image
resolution is 960× 540.

D LIMITATIONS

We now briefly discuss the limitations. While we successfully scaled the model to support 32
high-resolution views and achieved wide-coverage large-scale GS reconstruction, we observed only
marginal performance improvements when further increasing the number of input views. Specifically,
increasing the input to 64 views only lead to less than 1 dB PSNR improvement. Notably, 64 high-res
images correspond to extremely long sequences, exceeding 500k in context length, which presents a
significant challenge for current sequence processing models. Addressing this limitation will require
future work to better manage ultra-long sequences. Additionally, since the entire DL3DV training
set contains images with a fixed wide field of view (FOV), we found that our model struggles to
generalize on test sets with significant FOV variations (e.g., the MipNeRF360 dataset with a much
smaller FOV). We suspect this limitation is due to the use of Mamba2 blocks, as differing FOVs can
alter the meaning of tokens at different positions. Developing models that can generalize effectively
across varying FOVs may require more diverse datasets with a range of various FOVs, at a scale
similar to DL3DV.

16


	Introduction
	Related Work
	Method
	Overall Architecture
	Mamba2 Block
	Token Merging and Gaussian pruning
	Training Objectives

	Experiments
	Datasets
	Implementation and Experiment Details
	Results

	Analysis
	Ablation Studies of Model Designs
	Ablation Studies of Training Objectives

	Conclusions
	More Qualitative Results
	Experimental Details for Model Architecture Ablation Studies
	Additional Experiment Results
	Limitations

