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Abstract

Visual Language Navigation (VLN) for autonomous robots presents a significant1

challenge, requiring models to ground textual instructions in visual environments.2

This paper addresses the CityNav aerial navigation benchmark by fine-tuning a3

small, open-source Vision-Language Model, Qwen2.5-VL-3B. Our investigation4

reveals that model performance is critically affected by a severe action imbalance5

in the training data and is substantially improved by incorporating recent flight6

trajectory history as an input. By addressing these factors, we achieve an 8%7

success rate on the Test Unseen split of CityNav, establishing a new state-of-the-art.8

Despite this result, we observe pronounced overfitting due to data scarcity. To9

mitigate this limitation, we propose a synthetic data generation strategy focused10

on explicitly teaching critical navigational skills, such as map interpretation. This11

work demonstrates that targeted, skill-based data synthesis is a promising direction12

for building more capable VLN agents.13

1 Introduction14

Recent advances in Vision-Language Models (VLMs) have opened new paths for tackling complex15

real-world tasks, including embodied navigation. Aerial navigation, in particular, presents unique16

challenges due to its expansive 3D search space and the need for nuanced understanding of visual17

and linguistic cues. Datasets like CityNav [Lee et al., 2024] provide a valuable environment for18

developing aerial navigation agents, offering realistic 3D settings and human-generated flight paths.19

However, training effective agents on such datasets faces significant difficulties. Baseline models20

often struggle with generalization and can be influenced by artifacts in the training data, such as21

a severe imbalance in the action distribution. Our approach is to directly fine-tune a compact,22

open-source VLM Qwen2.5-VL-3B-Instruct [Wang et al., 2024], to teach it how to read the map23

effectively. The model receives three kind of inputs: a natural language instruction, a top-down24

landmark map showing the agent’s position with a landmark polygon, and a first-person RGB image25

from the drone’s perspective. Moreover, because of pronounced overfitting, we then target the core26

failure mode, misreading the map, with a small, purpose-built synthetic dataset that explicitly teaches27

the discrete geometric cases the agent must master.28

Aerial VLN systems such as OpenFly [Gao et al., 2025] introduce large-scale simulated data and29

engineering to scale training and also employ multi-granularity forward actions to mitigate action30

imbalance. Our action grouping follows the same intuition. In parallel, FlightGPT [Cai et al.,31

2025] tackles UAV VLN by feeding the model a global semantic map of the entire environment32

(annotated with landmarks and agent pose) and reasoning over that map before emitting actions;33

this setting gives the model a view of its entire environment not just the drone’s first-person view,34

which makes their problem formulation meaningfully different from ours. We show that, even under35

local-observation regime, careful treatment of actions and history plus targeted synthetic supervision36
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already yields competitive navigation. Our method outperforms the more complex baseline models37

from the original CityNav paper, highlighting the importance of data-centric strategies for improving38

VLM performance on specialized tasks.39

2 Related Works40

Recent efforts in aerial vision-and-language navigation have produced several complementary bench-41

marks. Aerial Vision-and-Dialog Navigation (AVDN) [Fan et al., 2022] introduced dialog-driven42

drone control with a continuous photorealistic simulator and a human-collected dataset (~3k trajec-43

tories), emphasizing interactive instruction-following and human attention modeling. AerialVLN44

[Liu et al., 2023] proposed a city-scale, outdoor VLN task using a 3D simulator and near-realistic45

renderings across multiple city scenarios, highlighting the difficulty of spatial reasoning and height-46

aware control in aerial settings. More recently, OpenFly [Gao et al., 2025] introduced an automated47

toolchain and a very large-scale benchmark (~100k trajectories) that fuses multiple rendering engines48

and real-to-sim techniques to scale diversity and visual fidelity for aerial VLN research.49

CityNav [Lee et al., 2024] occupies an important niche between these efforts by providing human-50

piloted trajectories rendered from real aerial imagery and 3D point clouds (enabling AirSim-based51

photogrammetric simulation) at a scale (~32k trajectories) that is larger than earlier human-curated52

aerial datasets. Importantly, CityNav exposes limitations in how landmark maps are incorporated and53

used by baseline models; this motivates our focus on teaching VLMs to better interpret landmark54

maps.55

3 CityNav Dataset56

In this study, we selected the CityNav dataset [Lee et al., 2024] due to several key advantages. First, it57

provides trajectories generated by human pilots in environments constructed from real aerial imagery,58

offering a more authentic setting compared to simulation-focused datasets [Liu et al., 2023, Gao59

et al., 2024]. Another strength of CityNav lies in the realism of its environment. Unlike datasets such60

as AVDN [Fan et al., 2022], which rely on pre-projected 2D satellite images, CityNav incorporates61

3D point cloud data [Hu et al., 2022] that can be rendered in AirSim [Shah et al., 2018], enabling62

immersive and realistic drone flight simulations. Additionally, the dataset stands out for its scale,63

comprising over 32,000 human-curated trajectories, making it, to our knowledge, the largest publicly64

available instruction-based aerial navigation dataset with these characteristics.65

4 Method66

We use Qwen2.5-VL-3B-Instruct as the base VLM. At each step, the model takes three inputs: (i) the67

natural language instruction, (ii) the current landmark map image with the agent’s pose, and (iii) the68

first-person RGB image from the drone’s camera. The model autoregressively predicts one of the69

following actions: STOP, MOVE FORWARD, TURN RIGHT, TURN LEFT, GO UP, GO DOWN, and their70

grouped variants. We fine-tune the model with next-token prediction using a cross-entropy loss.71

Qwen2.5-VL-3B

[Forward]
"The building 

with a car

 park in front..."

[Forward]

    Prompt                      Map1           View1           Action1   Map16       View16   

, ,. . .

Figure 1: Overview of the method pipeline. The chart illustrates the input (map + state) and the
autoregressive prediction of actions.
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As shown in Figure 1, the model processes both visual and textual states to predict navigation actions.72

4.1 Training Details73

The training was carried out with a peak learning rate of 2× 10−5, employing a cosine learning rate74

scheduler with warmup. The model was trained with a batch size of 4 per GPU across 8 NVIDIA75

H100 GPUs. We trained with a landmark map size of 112× 112 and a local view of size 224× 22476

to ensure both efficiency and sufficient spatial information for navigation. In all experiments, the77

vision encoder was frozen.78

4.2 Action Imbalance79

Initially, our action space consisted of six basic navigation commands: stop, move forward, turn80

right, turn left, go up, and go down. However, as shown in Figure 2(a), after analyzing the81

distribution of actions in the dataset, we observed a significant imbalance actions, particularly move82

forward and move down, occurred much more frequently than others. Since our model predicts83

actions token by token, this imbalance introduced a bias toward more frequently repeated actions.84

To address this, we introduced action grouping, where consecutive repetitions of the same action are85

combined into a single higher-level action token. This technique has also been effectively used in86

other aerial navigation works, such as OpenFly [Gao et al., 2025], to balance action distributions.87

Specifically, we added three new composite actions: go up ×4, go down ×4, and move forward ×2.88

These tokens represent scaled versions of the original actions, for example, four consecutive 2-meter89

upward steps are replaced by a single 8-meter upward action, and two consecutive 5-meter forward90

steps are represented as a single 10-meter forward action.91

This grouping strategy, as illustrated in Figure 2(b), reduced the skew in the action distribution,92

yielding a more balanced action space and allowing the model to generalize more effectively without93

overpredicting the most frequent actions.94

(a) Before Action Grouping (b) After Action Grouping

Figure 2: Action distribution in the training set (excluding the ’Stop’ action). (a) shows the original
imbalanced distribution where ’move forward’ is dominant. (b) shows the more balanced distribution
after applying action grouping.

4.3 History Size95

The agent’s ability to make informed decisions is dependent on its awareness of past actions and96

observations. To identify the optimal amount of historical context, we fine-tuned our model with97

varying history sizes: 0, 8, and 16 past landmark maps provided as input. A larger history can offer98

more trajectory context, helping the model understand its movement and avoid repetitive cycles.99

We evaluated each configuration on the Val Unseen dataset to assess generalization. The results,100

presented in Table 1, show a non-linear relationship; performance improved significantly from 0 to 8101

history frames, but the model with 16 history frames showed a little improvement in performance,102

suggesting potential difficulty in processing longer sequences. Based on these findings, we selected a103

history size of 16 for all subsequent experiments.104
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Table 1: Performance on the Val Unseen split with different history sizes.

History Size NE ↓ SR ↑ OSR ↑
0 190.0 0.82 0.91
8 120.0 6.05 10.90
16 160.0 6.11 14.46

5 Synthetic Dataset105

A key challenge we observed was significant overfitting when training on the CityNav dataset alone,106

likely due to its limited size and diversity for fine-tuning a large VLM. As shown in Figure 3, the107

training loss consistently decreases while the validation loss stagnates, indicating that the model is108

memorizing the training data rather than learning generalizable navigation skills.109

Figure 3: Training and validation loss curves. The divergence between the two curves indicates
significant overfitting on the CityNav training data after several epochs.

To mitigate this and enhance our model’s ability to perform the navigation task, we generated a110

synthetic dataset to support fine-tuning. This dataset was specifically designed to teach fundamental111

navigation concepts and enable the model to better generalize to different scenarios.112

We categorized the drone’s position and corresponding action into six distinct classes:113

1. Far from the landmark, random arrow direction114

The drone is positioned far from the landmark, and the direction arrow is random. In this115

case, the model should predict a corrective action—either turning left or right—based on116

the landmark’s relative position.117

2. Far from the landmark, arrow towards the landmark118

The drone is far from the landmark, but the direction arrow is correctly pointing towards it.119

The expected action in this scenario is to move forward.120

3. Near the landmark, target not visible121

The drone is close to the landmark, but the target is no longer visible. This situation122

introduces ambiguity, as there is no definitive correct next step. Since it cannot be supervised,123

no synthetic data was generated for this class.124

4. Near the landmark, target visible, random arrow125

The drone is near the landmark, the target is visible, but the arrow direction is random. Here,126

the correct action is to adjust orientation by turning left or right.127

5. Near the landmark, target visible, arrow towards the target128

The drone is close to the landmark, the target is visible, and the arrow points towards it. The129

drone should proceed forward or downwards, depending on proximity and altitude.130

6. Very close to the landmark and the target131

When the drone is within 20 meters of both the landmark and the target, the only correct132

action is to stop.133
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We generated a large number of synthetic data points covering five of these six cases. The third134

scenario, due to its inherent ambiguity and lack of a definitive action label, was intentionally excluded.135

We generated two distinct sets of this synthetic data: one for training, created from the original136

CityNav training samples, and another for evaluation, generated from the remaining validation and137

test samples. Furthermore, each of these sets was divided into three subsets, each dedicated to138

a specific corrective action: forward, turn left, and turn right. This structured approach allowed139

us to systematically teach and evaluate the model’s response to different navigational scenarios.140

The synthetic samples were then incorporated into the model’s fine-tuning process, improving its141

decision-making capabilities in real-world navigation tasks.142

Forward Left Right

Right Forward/Down Left

Figure 4: Six representative cases from the synthetic dataset. The top row displays landmark-based
navigation samples, while the bottom row shows target-based navigation samples. The correct
actions for those states are written at the bottom of each picture. Red rectangles on the images show
the ground truth target locations. Red polygons on the maps are the landmarks and the arrows show
the current locations and orientations of the drone.

6 Experiment Results143

We evaluated our model with a history size of 16 and compared its performance against the baseline144

from the original CityNav paper. The comprehensive results are presented in Table 2. Our model145

demonstrates competitive performance across all splits. Notably, on the challenging Test Unseen split,146

our model achieves a Success Rate (SR) of 8.05, surpassing the baseline’s 6.37. While the baseline147

model achieves a lower Navigation Error (NE), our model’s higher success rate indicates it is more148

effective at reaching the target destination. Illustrative examples of various trajectory outcomes can149

be seen in Figure 5.150

We further analyzed the impact of our synthetic data augmentation. Table 3 shows the action151

prediction accuracy of the 16 history model before and after augmentation with synthetic data. Each152

score is calculated on correspoing153

The effect of synthetic data augmentation is further highlighted in Table 4. The augmented model154

shows a significant improvement in NE, reducing it from 137.4 to 108, while having a similar SR155

and OSR scores. This suggests that the synthetic data helps the model to learn a little more precise156

navigation paths.157
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(a) Success Trajectory (b) Oracle Success (c) Non-Success

Figure 5: Examples of predicted trajectories on the Test Unseen split. (a) A successful trajectory
where the agent reaches the target. (b) An unsuccessful trajectory where the agent fails but the goal
was reachable within the oracle path. (c) An unsuccessful trajectory where the goal was not reachable
even by the oracle.

Table 2: Comparison with CityNav Baseline Model

Easy Medium Hard All
NE SR OSR NE SR OSR NE SR OSR NE SR OSR

Val Seen
CityNav Baseline 64.7 8.73 49.40 55.7 9.67 40.15 58.7 7.72 17.54 59.75 8.69 35.59
Our Model (16 Hist) 96.4 14.25 27.65 137.92 7.0 16.68 136.73 6.42 13.56 123.5 9.25 19.3

Val Unseen
CityNav Baseline 80.0 5.95 35.96 73.1 5.14 23.25 73.3 6.38 11.38 75 5.83 22.27
Our Model (16 Hist) 113 10.64 25.0 166.8 5.19 10.8 188.16 3.6 10.15 160 6.11 14.46

Test Unseen
CityNav Baseline 98.9 6.15 39.89 90.9 6.29 21.47 90.0 6.80 12.10 93.83 6.37 26.16
Our Model (16 Hist) 111.83 12.06 25.8 147.45 5.83 13.94 162.15 4.86 10.06 137.4 8.05 17.57

Table 3: Action Prediction Accuracy on Synthetic Data

16 History Model 16 History Model + Augmentation
Action Landmark Based Target Based Landmark Based Target Based
Forward 0.86 0.35 0.57 0.92
Turn Right 0.20 0.24 0.79 0.53
Turn Left 0.24 0.41 0.58 0.4

Table 4: Test Unseen Scores

NE ↓ SR ↑ OSR ↑
16 History Model 137.4 8.05 17.57
16 History + Augmentation 108 8.07 16.36
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7 Conclusion158

In this work, we fine-tuned the Qwen2.5-VL-3B model for aerial navigation on the CityNav bench-159

mark, achieving a new state-of-the-art success rate on the Test Unseen split by addressing action160

imbalance and incorporating trajectory history. We observed significant overfitting, which we mit-161

igated by generating a targeted synthetic dataset to explicitly teach map interpretation skills. Our162

results highlight the effectiveness of using small, open-source VLMs for embodied AI when paired163

with data-centric strategies, and suggest that skill-specific synthetic data is a promising direction for164

creating more robust navigation agents.165

References166

Hengxing Cai, Jinhan Dong, Jingjun Tan, Jingcheng Deng, Sihang Li, Zhifeng Gao, Haidong167

Wang, Zicheng Su, Agachai Sumalee, and Renxin Zhong. Flightgpt: Towards generalizable and168

interpretable uav vision-and-language navigation with vision-language models. arXiv preprint169

arXiv:2505.12835, 2025.170

Yue Fan, Winson Chen, Tongzhou Jiang, Chun Zhou, Yi Zhang, and Xin Eric Wang. Aerial vision-171

and-dialog navigation. arXiv preprint arXiv:2205.12219, 2022.172

Chen Gao, Baining Zhao, Weichen Zhang, Jinzhu Mao, Jun Zhang, Zhiheng Zheng, Fanhang Man,173

Jianjie Fang, Zile Zhou, Jinqiang Cui, et al. Embodiedcity: A benchmark platform for embodied174

agent in real-world city environment. arXiv preprint arXiv:2410.09604, 2024.175

Yunpeng Gao, Chenhui Li, Zhongrui You, Junli Liu, Zhen Li, Pengan Chen, Qizhi Chen, Zhonghan176

Tang, Liansheng Wang, Penghui Yang, et al. Openfly: A comprehensive platform for aerial177

vision-language navigation. arXiv preprint arXiv:2502.18041, 2025.178

Qingyong Hu, Bo Yang, Sheikh Khalid, Wen Xiao, Niki Trigoni, and Andrew Markham. Sensaturban:179

Learning semantics from urban-scale photogrammetric point clouds. International Journal of180

Computer Vision, 130(2):316–343, 2022.181

Jungdae Lee, Taiki Miyanishi, Shuhei Kurita, Koya Sakamoto, Daichi Azuma, Yutaka Matsuo, and182

Nakamasa Inoue. Citynav: Language-goal aerial navigation dataset with geographic information.183

arXiv preprint arXiv:2406.14240, 2024.184

Shubo Liu, Hongsheng Zhang, Yuankai Qi, Peng Wang, Yanning Zhang, and Qi Wu. Aerialvln:185

Vision-and-language navigation for uavs. In Proceedings of the IEEE/CVF International Confer-186

ence on Computer Vision, pages 15384–15394, 2023.187

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual and188

physical simulation for autonomous vehicles. In Field and Service Robotics: Results of the 11th189

International Conference, pages 621–635. Springer, 2018.190

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,191

Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the192

world at any resolution. arXiv preprint arXiv:2409.12191, 2024.193

7


	Introduction
	Related Works
	CityNav Dataset
	Method
	Training Details
	Action Imbalance
	History Size

	Synthetic Dataset
	Experiment Results
	Conclusion

