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ABSTRACT

Vision-Language pretraining aims to learn universal cross-modal representations
and to create models with broad capabilities. While most models have taken the
direction of scaling training to increasingly large models and datasets, in this paper,
we propose a dynamic pretraining resampling approach which utilizes a variety
of pretraining tasks, and which results in more sample-efficient models. We show
that a set of diverse self- and weakly-supervised pretraining tasks dynamically
sampled according to task difficulty provides strong performance. We show that a
single 330M param pretrained model using only smaller and publicly accessible
image-language datasets, achieves competitive or SOTA performance on three
diverse groups of tasks: visual question answering, text-based image localization
by referring expressions, and video question answering.

1 INTRODUCTION

We propose to improve the pretraining of vision-language models by leveraging existing datasets
and tasks in more effective ways, showing improvements across a variety of vision-language tasks.
Recent work suggests that incorporating more than one task or dataset can improve the downstream
performance (Zhang et al., 2021; Yuan et al., 2022). Yet an unsolved question is how to leverage
different pretraining mechanisms and mix all these tasks together. With the increasing number of
tasks and datasets, the number of pretraining objectives can grow quickly. Standard hyperparameter
methods, such as grid search, are computationally expensive when dealing with big data and big
models. Naive solutions, such as uniform sampling, or sampling based on dataset size, we show, are
not optimal. Instead, we address this by proposing dynamic difficulty sampling, which dynamically
updates the sampling weights based on a task’s current difficulty, which we find to highly correlate to
downstream tasks performance and to outperform alternatives even with smaller task mixtures.

The key contributions of this paper are:

• Vision-language multi-task pretraining with a more label-efficient use of data. Our approach
uses smaller but diverse datasets as opposed to large and inaccessible ones (Jia et al., 2021).
• A novel dynamic difficulty sampling method, based on curriculum learning, which dynami-

cally updates the mix. This reduces the training steps to achieve similar performance.
• Results on a wide variety of tasks, showing strong performances on VQA, referring expres-

sions comprehension and VideoQA.

2 RELATED WORK

Inspired by the success in language learning, image-language methods have offered powerful pre-
training models (Tan & Bansal, 2019; Lu et al., 2019; Zhang et al., 2021; Kim et al., 2021; Li et al.,
2022). Most common pretraining tasks directly inherit the tasks or losses from the language-learning
counterparts, such as captioning or Masked Language Modeling (Lu et al., 2019; Chen et al., 2020).

In the context of text understanding, a mixture of pretraining tasks is more commonly used (Raffel
et al., 2020), in some cases including supervised ones (Aribandi et al., 2021). Pretraining meth-
ods for image-language learning have mostly leveraged very large datasets or mixed a number of
datasets (Yuan et al., 2022; Zhang et al., 2021; Chen et al., 2020; Cho et al., 2021). Furthermore,
many use a fixed (typically) uniform sampling of the data or tasks or use ‘round-robin’ schedules (Lu
et al., 2020), or alternatively sample according to data sizes.

Our approach is related to curriculum learning Bengio et al. (2009); Xu et al. (2020); Wang et al.
(2019a); Li et al. (2020a), and is focused on trying to create better training batches. Prior works
relied on measuring downstream validation loss Gottumukkala et al. (2020) or based on specific
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heuristics for single modality tasks Xu et al. (2018). Others adjust the batches based on other metrics,
e.g., Li et al. (2020b) measures difficulty based on item response theory, which requires variational
Bayesian inference to determine the curriculum schedule. Liu et al. (2022); Xu et al. (2020) uses
multiple metrics, computed over the entire training set, then re-ranks individual samples to create
subsequent batches. Some use curriculum learning to adjust for class imbalance Wang et al. (2019b).
Most of those works are focused on using samples from a single dataset and tasks, whereas here, we
are focused on mixing different tasks which have different difficulties. Further, our approach is more
generic and simple than the previous ones, applicable to a wide variety of tasks and modalities and
requires no evaluation of the downstream tasks.

3 PRETRAINING MIXTURE LEARNING

The tasks are diverse in two dimensions: 1) the amount of supervision and accompanying noise, 2)
the task the model is trying to solve, focusing on tasks that exercise different parts of the model.

Cross-modal weakly-supervised and self-supervised tasks. We use Image-Text Matching (ITM)
and variations of Masked Language Modeling (MLM). Specifically, we use MLM (20% of random
text masked out), Captioning (Cap) (all text masked out) and Caption Completion (CMP) (second
half of text masked out).

Supervised tasks: Object-aware tasks. We further construct additional tasks, using labeled object-
specific information (e..g, image-level or localization class labels). The tasks are designed to teach
the model different aspects of image-text and object data, especially in the case of non-exhaustively
annotated objects. The tasks are:

1. Input: ‘List all objects’ Output: ‘[obj1], [obj2], ...’

2. Input: ‘Does [object] exist?’ Output: Yes/No

3. Input: ‘Does [obj1], [obj2] and/or [obj3] exist?’ Output: Yes/No

4. Input: ‘Which of [obj1], [obj2] and [obj3] exist?’ Output: [obj1], [obj2].

These tasks exercise the model in different ways. For example, listing all the objects requires the
model’s decoder to generate the names for all the objects, however, since the image has some objects
which are not annotated, this task can be quite difficult for the model.

We note that these tasks use the labeled data differently than traditional classification tasks. Ex-
perimentally, we find this to be better than training the vision model with classification data (see
supp.).

3.1 DYNAMIC DIFFICULTY SAMPLING
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Figure 1: Difficulty (pretrain-
ing loss) vs downstream task
accuracy for GQA, SNLI-VE
and MSRVTT-QA datasets, il-
lustrating the correlation be-
tween the pretraining loss and
downstream accuracy.

Consider a set of pretraining tasks t ∈ T . For each of these tasks,
we have an associated loss, Lt, which is computed for a batch. The
final loss for a mixture of tasks, M = t1, t2, . . . tn is computed as
LM =

∑
t∈M Lt. In this work, we equally weight the loss terms,

instead focusing on weighting the number of samples in a batch.

Inspired by curriculum learning (Bengio et al., 2009), we argue that
when a task has a higher loss, it is currently harder for the model to
solve. Thus, the core of our approach is to sample tasks with higher
losses more. Further, in the context of visual-language learning, we
observed that for two mixtures of tasks, M1 and M2, if LM1 > LM2 ,
then the accuracy of the model finetuned on a VQA task from M1

is greater than M2. In Figure 1, we show a plot of the cross-entropy
loss and downstream performance for a variety of tasks, confirming
this observation. We believe this is because when the pretraining
loss is higher (after sufficient training), the tasks are harder or more
diverse and the model is able to learn more from those tasks. For
example, a yes/no task is easy for the model to learn and does not
provide as many learning signals as an open-vocab captioning task.
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Table 1: Performance on image VQA datasets. Our model gives strong results, even with smaller
pre-training datasets (e.g. BLIP-L uses 129M, METER uses CLIP, pretrained on 400M image-text
pairs, etc). Our model is only 0.17 points away on VQA2.0 from SimVLM-huge (1.5B params with
1.8B dataset) although we use open-vocabulary. Recent unpublished 80B Flamingo (Alayrac et al.,
2022) outperforms us only by 2 points. We use very few GFLOPs (GF) (GF measured or obtained
from authors). Note that our 14M data results use the same data as ALBEF.

GF Data Params GQA SNLI-VE VQA2.0

SimVLM-huge* (Wang et al., 2021) 900 1.8B 1.5B - 86.21 80.03
UNITER (Chen et al., 2020) - - - - 79.39 72.5
12-in-1 (Lu et al., 2020) - - - 60.5 - 71.3
VinVL (Zhang et al., 2021) - - - 65.05 - 76.52
CFR (Nguyen et al., 2022) - - - 73.6 - 69.8
FLAVA (Singh et al., 2022) 70 70M 240M - 78.9 72.5

METER-CLIP-ViT-B (Dou et al., 2022) 130 400M 330M - 80.86 77.68
ALBEF (Li et al., 2021) 160 4M 418M - 80.30 74.54
ALBEF (Li et al., 2021) 160 14M 418M - 80.80 75.84
BLIP (Li et al., 2022) 122 14M 475M - - 77.54
BLIP-L (Li et al., 2022) 250 129M 475M - - 78.25

Ours (14M data) 54 14M 330M 80.7 81.0 78.43
Ours (39M data) 54 39M 330M 81.3 82.5 79.86

By sampling in this way, we avoid training and evaluating exponential number of combinations of
pretraining tasks.

Based on the above observations, we propose the dynamic difficulty sampling as follows. For each
task and dataset in the training mixture we sample the next batch by re-weighting the sample size of
each task as: St =

Lt

L . Here St is the percent of the batch used for task t. We enforce a minimum of
4 samples per-batch for each task, ensuring that we can always compute the difficulty of each task
for the subsequent iterations. For stability, we accumulate the losses over K steps (here K = 100).
Algorithm 1 summarizes the key steps of the dynamic difficulty sampling. We note that this method
has very little computation overhead.

The pretraining tasks are selected so that they are likely helpful to the visual-language understanding
at hand (by design), so we do not have tasks that are unnecessarily difficult, irrelevant or harmful
and apply the same training objective, e.g., per-token cross-entropy loss, summed over all tasks. We
note that while here we use the same loss for all tasks, the approach does not require this, any set of
tasks and losses can be used. Though different losses (e.g., L2) may have different ranges, requiring
normalization before resampling.

Algorithm 1 Dynamic resampling pretraining algorithm
M - model
D - mixture of datasets, SD - current sample/batch
Lt - loss for task t
for s = 1 to Iterations do

for k = 1 to K (accumulation steps) do
M,Lk,t ← train(M,SD) . Train with current mix SD , accumulate per-task loss.

end for
Lt ←

∑
k Lk,t . Measure performance (losses) of pretraining tasks for last K steps.

SD ← D ∼ (D,Lt) . Resample the data according to task difficulty.
. The next iteration of training (i.e., the next K steps) will be trained with the new mixture weights.

end for
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Table 2: Results on VideoQA (video+text) datasets MSRVTT-QA (Xu et al., 2016), MSVD-QA (Xu
et al., 2017), IVQA (Yang et al., 2021). Accuracy (%). We note that VQA-T (Yang et al., 2021) uses
much larger video pretraining dataset 100M, whereas we use 39M image-only dataset. *ClipBERT
also uses image-only pretraining for the VideoQA tasks, similar to ours.

Model MSRVTT-QA MSVD-QA IVQA

HCRN (Le et al., 2020) 36.1 35.6 -
ClipBERT* (Lei et al., 2021) 8x2, image-only pretraining 37.4 - -
VQA-T (Yang et al., 2021), pretr. HowToVQA69M 41.5 46.3 35.4
MERLOT (Zellers et al., 2021), pretr. YT180M 43.1 - -
AllInOne (Wang et al., 2022), pretr. YT180M,HowTo100M 44.3 47.9 -

Ours, image-only pretraining 45.1 47.1 35.8

Table 3: Experiments on localizing objects in the image by referring expressions. Without using
any pretraining localization labels or localization components (e.g., box proposals or regression
heads), we provide competitive performance to existing models. We compare to the best and most
contemporary ones in the interest of space. With the exception of the top row and ours, all others
use stronger backbone ResNet-101.*MDETR (Kamath et al., 2021) uses additional label supervision
during training.

RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val test

TransVG (Deng et al., 2021) (R50) 80.32 82.67 78.12 63.50 68.15 55.63 50.6 -

TransVG (Deng et al., 2021) (R101) 81.02 82.72 78.35 64.82 70.70 56.94 67.02 -
UNITER (Large) (R101) 81.41 87.04 74.17 75.90 81.45 66.70 74.86 75.77
VILLA (Large) (R101) 82.39 87.48 74.84 76.17 81.54 66.84 76.18 76.71
MDETR* (R101) 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89

Ours (R50) 88.9 90.7 82.8 78.4 84.3 72.6 80.9 81.5
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Table 4: Ablating different sampling mechanisms for the tasks, including the popular round robin (Lu
et al., 2020). Mixtures of all tasks are used in each experiment. Experiments are conducted with only
2/5 of the steps.

GQA SNLI-VE

Easiest Task 71.3 67.5
Most Difficult 74.2 76.4

Uniform Sampling 75.6 77.4
Sampling by dataset size 75.7 77.9
Loss Reweighting 75.9 77.5
DSG Round Robin, 12-in-1 (Lu et al., 2020) 76.4 77.8

Dynamic Sampling (ours) 77.4 (+1.0) 78.2 (+0.3)

4 EXPERIMENTS

We pretrain a single model, and then finetune it on three diverse sets of tasks (image-language,
object localization and video-language), some of which are outside the initial domain of pretraining,
without additional heads. Specifically we report results on VQA datasets GQA (Hudson & Manning,
2019), VQA2.0 (Agrawal et al., 2015)), visual entailment (SNLI-VE (Suhr et al., 2017)) (Table 1), on
VideoQA datasets MSRVTT-QA (Xu et al., 2016) and MSVD-QA (Xu et al., 2017) and IVQA (Yang
et al., 2021) (Table 2) and on object localization tasks with refering expressions RefCOCO (Yu
et al., 2016), RefCOCO+ (Yu et al., 2016), RefCOCOg (Mao et al., 2016) (Table 3). For each of
the datasets we follow the evaluation metrics and protocols established in prior work. Please see the
supp. materials for training and evaluation details.

4.1 DATA SAMPLING METHODS AND PRETRAINING MIXTURES ABLATIONS

We compare different methods of sampling the data. We compare to common approaches: uniform
sampling, e.g., the batch is composed of BS/|T | samples from each task for |T | tasks, and dataset-
size based sampling. We also compare sampling proportional to difficulty and sampling only the
most difficult/easiest task. We also compare to reweighting the loss, rather than changing the batch;
and compare to the DSG algorithm (Lu et al., 2020). The results are shown in Table 4.

5 CONCLUSIONS

We present a visual-language model with a novel pretraining approach based on dynamic difficulty
sampling utilizing self-, weak and supervised sources of pretraining. We demonstrate effectiveness on
three classes of tasks including vision-language tasks, video ones and object localization ones. Our
approach achieves competitive results despite using order of magnitude less data and smaller models.
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A VISUALIZATIONS

Figure 2 shows sampling weights over time. We can see the weights change over time, reflecting
how hard the task is for the model at the current iteration. Some tasks that are easy consistently
decrease, e.g., ITM. ITM is likely an easy task for two reasons: (1) The outputs are only ‘yes’ or
‘no’ and (2) since ITM is done by randomly picking other captions for the no case, often it is easy
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Figure 2: The sampling weights for the 24 tasks over the 500k steps of training. The y-axis is the
percent of the batch of each task. We can see that the tasks dynamically change in importance within
a batch, for example, ‘easy’ tasks, such as ITM, get low weights quickly, while more challenging
tasks, such as captioning increase in importance over time. We can also see that some tasks change in
different ways over time, for example, ‘List Objects’ for ImageNet21k has a small decrease for the
first 300k steps, then starts to increase.
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to solve the task. We also see that other tasks increase, e.g., MLM. Others, such as listing objects,
decrease then increase. This suggests that the model started to find those tasks a bit more difficult
after lowering the sample weights. This figure helps show the effects of dynamic sampling, and
shows the benefit of using it vs. manual tuning of the sampling weights. It also shows the ability of
this method dynamically adjust the weights over time, which existing approaches do not do.

In Figure 1, we plot the loss of a training mixture M after 200k steps of pretraining. This loss is
computed on the training split of the pretraining dataset mixtures. We then finetune each model on
GQA, SNLI-VE and MSRVTT-QA and plot the resulting accuracy on their validation splits.

This observation may seem counter-intuitive. However, we argue here that because some of these
tasks are inherently easier, e.g., ‘yes’ or ‘no’ outputs, they are easy for the model to learn, and their
loss drops to nearly 0 quickly. Thus by having a mixture with a higher loss, here, indicates a more
useful data mixture. Because all these models are trained for the same number of steps, with the
same learning rate and other settings, they are directly comparable. This observation may not hold
for other settings, e.g., learning rate.

B IMPLEMENTATION DETAILS

Model Details. We use a simple model (330M params), as our focus is on pretraining. It is a standard
encoder-decoder – ResNet-50 (He et al., 2016) to extract images features, T5 (Raffel et al., 2020)
encoder for text, and a T5 decoder to generate the answer. We concatenate the image and text features
before decoding. Our model is trained from scratch, using public image+text datasets; the same
pre-trained model is used for fine-tuning all tasks in the paper, including video and localization ones.

The model consists of a ResNet-50 for the image encoder. We take the feature map from conv4,
which has shape of 14 × 14 as the visual feature. We use an image size of 224x224 as input. For
the text, we use the T5-base T5 model with the standard 32,000 token vocabulary. After the encoder
layers, we concatenate the 196 vision features with the text features (we use an input sequence length
of 32). These are then used as the input to the decoder layers. Specifically, we use 12 encoder and
decoder layers with 768-dimension representations, following the T5-base settings. All models are
trained from scratch.

Datasets. We use only 39M images, as opposed to other works, using hundreds of millions, or 1-2
billion images (Singh et al., 2022), (Yuan et al., 2022), (Wang et al., 2021). We use the Conceptual
Captions 3M and 12M datasets (Sharma et al., 2018; Changpinyo et al., 2021), abbreviated as
CC3+12M, ImageNet21k (IN) (Deng et al., 2009), Visual Genome (VG) (Krishna et al., 2016), Open
Images (OI) (Kuznetsova et al., 2020) and its text annotations provided by the Localized Narratives
(LN) (Pont-Tuset et al., 2020) dataset (we only use the annotations for OI). Note that we removed
any images in the downstream validation/tests sets from these training sets.

Tasks. To create a pretraining mix, we define two groups of tasks over the datasets. For Localized
Narratives, CC12m and CC3m, we use the 4 cross-modal image-text tasks: Captioning (Cap),
Caption completion (CMP), Image-Text Matching (ITM) and Masked Language Modeling (MLM).
For OpenImages, ImageNet21k and Visual Genome we use the 4 object aware tasks (Section 3). Note
that while some of these datasets have bounding box labels, we omit those, using only class names.
This results in a total of 3 · 4 + 3 · 4 = 24 tasks, by mixing together all these datasets and tasks. Note
that this approach is also easily extendable to other tasks and datasets.

Training Details. The final model is trained for 500k steps with a batch size of 4096. The loss is a
per-token cross entropy loss over the 32,000 tokens from the vocabulary. We set the learning rate to
1e-4, use a linear warmup for the first 10,000 steps, followed by a cosine decay. We use the Adam
optimizer with weight decay set to 0.1. We use label smoothing set to 0.1. We clip the gradient norm
to 1. Due to computational constraints, these are the only hyperparameters we tried. Note that for
most ablations, we only pretrain for 200k steps due to computational constraints, while the other
settings are the same.

For finetuning, on the image datasets, we use the same learning settings as above. The batch size is
256 for 200k steps. For the VideoQA datasets, we use a smaller learning rate, 1e-6, batch size of 64,
and 20,000 steps. For the RefCOCO tasks, we use 6e-4, with a batch size of 128 for 200k steps.
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Dataset Splits. We train on the standard training sets splits. For the pretraining, we remove any
images used in the validation and test sets of the downstream VQA datasets. We evaluate on the
validation splits of the VQA datasets and the test splits for IVQA, MSRVTT-QA and MSVD-QA.

Model costs. Our model pretraining is of much lower cost compared to SOTA methods such as
SimVLM (Wang et al., 2021), which takes about 244,000 TPU hours (2,048 for 5 days) for training.
Our model takes only 384 TPU hours (16 for 1 day, 635x cheaper), still obtaining competitive
performance. This is an order of magnitude cheaper than other methods. Our pre-trained model is
also used for downstream video-based tasks and object localization tasks, thus sharing the costs. Both
are challenging tasks which other models did not evaluate on.

Box-As-Text Representation Details. For the RefCOCO tasks, we represent the boxes as
text pix2seq. We first represent the box as [ymax, xmax, ymin, xmin] where each x and y are floats
between 0 and 1, which are the coordinates of a box in the image, normalized with respect to the
image size. Following Pix2Seq pix2seq, we convert the normalized bounding boxes to integers by
quantizing them into 100 intervals. We then convert these integers into tokens by treating them as
strings in the T5 text tokenizer. An end of sequence token is appended at the end of the box.

To convert a prediction into a box for evaluation, we simply reverse the process. We convert the
output tokens into integers, map the integer to the float by inversing the quantiziation step, then
construct the box by un-normalizing the coordinates. We then compute the metrics using the standard
RefCOOC evaluation code.

Compute Usage. Our model used 16 TPUs for 1 day to complete the pretraining. When finetuning
the model, we used 4 TPUs for 8 hours. Both image and video tasks use the same pretrained model so
this cost is shared. The VideoQA fine-tuning took 4 TPUs for about 8 hours too as it uses fewer steps.
Note that these are the average times it took to train the model, machine downtime also affected the
walltime used to train these models.

Pretraining MLM Details. For the pretraining tasks, we mask out 25% of the tokens for MLM. For
the Caption Completion task, we mask out the last 20-60% of the tokens, where the exact portion is
taken at random per example.

Evaluation details. We follow the standard evaluation settings from prior work. Since our model
generates open-ended responses, we compare the generated string to the ground truth string. This is a
more challenging setting since our model can generate close answers, e.g., ’oak trees’ where a ground
truth answer of ‘tree’ would be considered incorrect. For the VideoQA datasets, in order to compare
directly with all prior work, we mask out the answers which are outside the standard vocabulary.

Given the generated answer for a model, we use the standard evaluations per dataset. For SNLI-VE,
GQA, VQA2.0, MSRVTT-QA, MSVD-QA we use accuracy. For IVQA, we use their accuracy metric
of min( # ground truth answers == a

2 , 1), since there are multiple annotations per question. For RefCOCO,
we use the standard AP50 metric which is the Average Precision with IoU threshold of 0.5.

B.1 VIDEO QUESTION AND ANSWERING

We further evaluate the performance of our pretraining on VideoQA tasks, here on the three datasets.
The same 330M-parameter model, which provides pretraining for the VQA tasks above, is used for
videos. We apply the ResNet per-frame, then concatenate the frames together to form the visual
feature. As seen, our pretraining yields strong models for video, outperforming SOTA on all three
datasets tested. This is also despite using image-only pretraining, which is of fewer images than e.g.
the video pretraining of VQA-T (Yang et al., 2021), which uses 100M or 69M video snippets, or of
MERLOT (Zellers et al., 2021) which uses 180M videos.

B.2 OBJECT LOCALIZATION WITH REFERRING EXPRESSIONS COMPREHENSION

We also evaluate on three datasets of the Referring expressions comprehension task (Yu et al., 2016;
Mao et al., 2016), in which a text describing an object in the image is given and the model needs to
output the bounding box for it. This is an object localization task, for which the pretrained model is
not explicitly trained. To accomplish that, in our generative text API, we use the pix2seq (Chen et al.,
2022) approach where box coordinates are tokenized and treated as text (please see supp. for details).
Our results on this challenging task with boxes represented as text during training, also achieves
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Table 5: Comparison between uniform sampling vs. the proposed difficulty sampling, for an
increasing number of pretraining task mixtures. Each entry shows the performance for a ‘uniform
sampling/difficulty sampling’ pair on GQA and SNLI-VE. The improvement of difficulty sampling is
consistent across all datasets and task mixtures. We note that using difficulty sampling even for 8
tasks is often outperforming the uniform sampling of 24 tasks (the latter also involving more datasets
in the mix). A 330M model and only 2/5 of the steps (i.e. 200k steps) are used in this experiment.

GQA SNLI-VE

4 tasks 75.4 / 76.1 76.1 / 76.7
8 tasks 75.8 / 76.5 77.5 / 77.7

12 tasks 75.9 / 76.9 77.7 / 77.9
16 tasks 75.7 / 77.3 77.6 / 78.1
24 tasks 75.6 / 77.4 (+1.8) 77.4 / 78.2 (+0.8)

Table 6: Experiments on RefCOCO datasets which require localization of objects referred by text. We
observe that combining Object Aware tasks are much more beneficial than only image-text pretraining
tasks which are commonly used in large image-language models. Mixing many tasks with dynamic
difficulty sampling performs the best, competitive with SOTA models on RefCOCO. SOTA results
for RefCOCO/RefCOCO+ are from (Kamath et al., 2021), for RefCOCOg from (Deng et al., 2021).

RefCOCO RefCOCO+ RefCOCOg

SOTA 86.75 79.52 67.02

No pretraining 69.5 55.4 43.5
Cross-Modal (4 tasks) 73.7 59.7 48.7
Object Aware (4 tasks) 75.9 62.4 50.6
Difficulty Sampling (Ours, all 24 tasks) 88.9 78.4 80.9

SOTA or better than SOTA results (Table 3), compared to UNITER (Chen et al., 2020), VILLA (Gan
et al., 2020), MDETR (Kamath et al., 2021), etc. We note that the RefCoco* benchmarks have been
evaluated by more than 30 approaches, we only list the best here.

C ADDITIONAL ABLATIONS

We here include some additional experiments.

Using the dynamic difficulty sampling, we then explore the effects of adding more tasks. The results
are shown in Table 5. We note that across datasets, for both small and large number of tasks the
difficulty sampling is beneficial, and with the proposed difficulty sampling, the performance improves
as more tasks are added. Interestingly, difficulty sampling for only 8 tasks tends to outperform
uniform sampling for 24 tasks. We can also see that, as more tasks are added with uniform sampling,
the performance can drop.

Table 6 shows the effect of our approach on localization tasks. As seen, the object-aware tasks
are better than cross-modal tasks, confirming their ability to learn objects. However, they are not
sufficient, as the proposed pretraining mixture tasks and dynamic difficulty sampling performs best.

We compare pretraining the vision model for classification to the object-aware tasks. For these
experiments, we use the OpenImages dataset and the localized narrative annotations of the images for
the cross modal tasks. This lets us keep the image data fixed and explore the different effects of the
tasks. Table 7 shows the results. Note that these are pretrained for smaller number of steps (200k
steps). These experiments use uniform sampling, to study the effects of adding them independently
from difficulty sampling. We find that the object aware tasks are better than classification pretraining
for these image-language tasks.

We observe that when only using the OpenImages data, the performance at 200k steps is roughly
the same as at 500k steps, compared to Table 9. This suggests that when only using this data, 200k
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Table 7: Comparison of pretraining with OpenImages as classification or object-aware tasks. We find
that for vision-language tasks, the object-aware tasks provide a better model than the classification
task. We also see benefit from combinations of the object-aware and cross-modal tasks.

GQA SNLI-VE

Classification PT 71.3 70.5
Object-Aware Tasks 75.5 74.6
Cross-Modal Tasks 77.4 73.2
Classification then Cross-Modal 77.6 73.8
Object-Aware + Cross-Modal 76.2 79.9

Figure 3: Performance of Uniform Sampling (U)
and Difficulty Sampling (D) when pretrained for
different numbers of steps then finetuned on VQA
datasets. We observe that even to 500k steps, diffi-
culty sampling is outperforming uniform sampling.
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Figure 4: Comparing tasks. Individual tasks
provide variable downstream performance,
while mixtures of tasks with difficulty sam-
pling are better.

steps is sufficient for pretraining, which is reasonable as 200k steps is roughly 91 epochs. The further
benefits of additional training are observed when using the larger mixtures.

Table 5 Mixtures. In Table 5, we report results for 4, 8, 12, 16, and 24 task mixtures. For clarity,
here we detail each of the mixtures.

• 4 Tasks: CC12M MLM, CC12M ITM, OI List Objs, OI Which Objs
• 8 Tasks: (above 4) + LN MLM, LN ITM, IN21k Which Objs, IN21k List Objs
• 12 Tasks: (above 8) + VG Which Objs, VG List Objs, CC3M MLM, CC3M ITM
• 16 Tasks: (above 12) + OI Exists, VG Exists, IN21k Exists, LN CMP
• 24 Tasks: (above 16) + (LN, CC3M, CC12M) Cap, (CC3M, CC12M) CMP, (VG, IN21k,

OI) Multi-Exists

Here, OI is OpenImages, LN is Localized Narratives, CC is Conceptual Captions, VG is Visual
Genome and IN21k is ImageNet 21k. ITM is Image Text Matching, CMP is Caption Completion,
Cap is Captioning, and MLM is Masked Language Modeling. The ‘List objects’ task is Task 1 among
the Object-Aware tasks, ‘Exists’ is task 2, Multi-Exists is task 3 and ‘Which objs’ is task 4.

Figure 3 further tracks the performance for a number of steps of uniform sampling vs. difficulty
sampling. In Figure 4, we compare individual tasks to mixtures.

In Table 8, we find that using dynamic sampling also benefits other models, e.g., ViLT (Kim et al.,
2021), showing it is not specific to the chosen architecture.

C.1 SMALL-SAMPLE MIXTURES ABLATIONS

In this section, we conduct experiments on even smaller mixture of pretraining tasks and a single
dataset (here OpenImages, ∼9M samples). This illustrates the ability of the approach to leverage the
data thanks to the mixture and dynamic difficulty sampling during pretraining very efficiently.
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Table 8: Dynamic difficulty sampling applied to an alternative model architecture, ViLT (Kim et al.,
2021) shows consistent improvements, as well.

GQA SNLI-VE

ViLT + Uniform Sampling 74.6 77.1
ViLT + Dynamic Diff. Sampling (Ours) 77.2 77.9

Table 9: Performance of VQA tasks on pretraining mixtures from OpenImages-only (with 9M images)
and our model. The 4 tasks are the Cross-Modal tasks and the 8 are the Cross-Modal and Object
Aware ones. Even in this setting our approach performs very competitive to SOTA.

GQA SNLI-VE

SOTA 65.5 (Zhang et al., 2021) 86.2 (Wang et al., 2021)

Uniform Sampling - 4 tasks 77.5 73.5
Difficulty Sampling - 4 tasks (ours) 76.2 79.2

Uniform Sampling - 8 tasks 76.4 80.0
Difficulty Sampling - 8 tasks (ours) 78.7 81.5

We train our model and consider the following tasks only: 4 cross-modal tasks (using the text annota-
tions for OI) and 4 Object Aware tasks on OI. In the results, we see very competitive performance
when dynamic difficulty sampling is used, even in this smaller model and smaller data scenario
(Table 9). In summary we see that the pretraining mixture can bring in a lot of benefits and competitive
results for even small-model, small-data scenarios.
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