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ABSTRACT  

When conducting spine-related diagnosis and surgery, the three-dimensional (3D) upright posture of the spine under natural 

weight bearing is of significant clinical value for physicians to analyze the force on the spine. However, existing medical imaging 

technologies can’t meet current requirements of medical service. On the one hand, the mainstream 3D volumetric imaging 

modalities (e.g. CT and MRI) require patients to lie down during the imaging process. On the other hand, the imaging modalities 

conducted in an upright posture (e.g. radiograph) can only realize 2D projections, which lose the valid information of spinal 

anatomy and curvature. Developments of deep learning-based 3D reconstruction methods bring potential to overcome the 

limitations of the existing medical imaging technologies. To deal with the limitations of current medical imaging technologies as 

is described above, in this paper, we propose a novel deep learning framework, ReVerteR, which can realize automatic 3D 

Reconstruction of Vertebrae from orthogonal bi-planar Radiographs. With the utilization of self- attention mechanism and 

specially designed loss function combining Dice, Hausdorff, Focal, and MSE, ReVerteR can alleviate the sample-imbalance 

problem during the reconstruction process and realize the fusion of the centroid annotation and the focused vertebra. 

Furthermore, aiming at automatic and customized 3D spinal reconstruction in real-world scenarios, we extend ReVerteR to a 

clinical deployment-oriented framework, and develop an interactive interface with all functions in the framework integrated so 

as to enhance human-computer interaction during clinical decision-making. Extensive experiments and visualization conducted 

on our constructed datasets based on two benchmark datasets of spinal CT, VerSe 2019 and VerSe 2020, demonstrate the 

effectiveness of our proposed ReVerteR. In this paper, we propose an automatic 3D reconstruction method of vertebrae based 

on orthogonal bi-planar radiographs. With the 3D upright posture of the spine under natural weight bearing effectively 

constructed, our proposed method is expected to better support doctors make clinical decision during spine-related diagnosis 

and surgery.  

 



Background  

Clinically, capturing the 3D models of spines is crucial for surgical planning, implant fitting, and postoperative 
evaluation1. However, existing 3D volumetric imaging modalities, i.e., magnetic resonance imaging (MRI) and 
computed tomography (CT) are not applicable for spine-related diagnosis and surgery under all the circumstances. 
First, regarding spine-related diagnosis, analysis of the spine’s shape and vertebral arrangement should be carried 
out in an upright posture under natural weight bearing, while the acquisition schemes of these 3D imaging 
modalities require the patient to be in a prone or supine position, which means that the patients must lie on their 
chest or back2,3. Second, regarding spine-related surgery, there are a series of spinal surgeries, e.g., scoliosis 
correction surgery, lumbar spondylolisthesis surgery, and lumbar spinal stenosis surgery, involved with high-risky 
screw-based fixation operations, where accurate 3D modeling of spinal posture is the necessary reference to avoid 
improper placement of spinal screws4. However, due to the limitation of the imaging equipment, it is infeasible to 
conduct MRI or CT imaging during the surgical process. Third, given the large radiation dose of CT and the 
prohibitive cost of CT and MRI, frequent imaging based on these 3D modalities is not appropriate from the 
perspective of either health or expense. Therefore, in view of the various problems when conducting CT and MRI 
on the real clinical scenarios, currently, 2D radiographs is actually the only choice for spinal modeling on many 
occasions. However, compared with 3D images, 2D radiographs lack enough spatial information and cannot provide 
doctors with intuitive features of spines from different views. To deal with the conflict between the limitations of 
existing 3D imaging modalities and the clinical requirements of 3D spinal modeling, research on computer-aided 
methods for 3D reconstruction of vertebrae based on 2D radiographs is expected to be an effective solution.  

In the field of 3D reconstruction of spines, there have been a series of methods proposed5–9. For example, Pomero 
et al.10 and Humbert et al.11 proposed to infer the 3D vertebrae based on transversal and longitudinal information 
and determine the overall spine morphological information through part of parameters of vertebrae based on priori 
knowledge. However, these methods are too dependent on manual regulations and morphological databases, which 
is complicated and time-consuming.  

In order to improve the automation of 3D reconstruction of the spine, Gajny et al.12 proposed an automatic corner 
detection method on the basis of transversal and longitudinal inference. The method first utilizes the database of 
spine parameters to estimate the 3D vertebral morphology, and then automatically detect lumbar and cervical 
vertebral corners and visible thoracic endplates. Finally, the performance was improved by manual rigid 
registration of the vertebrae. It can be seen that this method still requires manual intervention, which greatly limits 
the application scenario of the method and makes it difficult to provide intraoperative assistance.  

Recently, with the development of deep learning algorithms, it has been feasible to further optimize the 
automation of reconstruction from 2D radiographs to 3D morphology of anatomical objects. For example, Yoni et 
al.13 successfully segmented the 3D structure of knee joint by utilizing the 3D U-Net architecture which fuses bi-
planar radiographs. With the help of Convolutional Neural Networks (CNN), the method does not need manual 
operations and is thereby convenient and fast. However, different from the simple structure of the knee joint, the 
shape of the vertebra is much more complicated, which means that the effectiveness of neural network model on 
vertebral reconstruction still needs to be verified.  

In terms of deep learning-based automatic 3D shape reconstruction of spines, Bayat et al.14 proposed TransVert. 
Based on a Fully Convolutional Network (FCN) architecture, TransVert can realize 3D reconstruction of spine 
morphology by utilizing digitally reconstructed radiographs (DRR) images from two perspectives: coronal and 



sagittal planes. TransVert is a representative method in the field of spine reconstruction. However, it is still difficult 
to verify the feasibility of TransVert, since the related experiments are conducted on non-open-source data, the 
designed framework of TransVert is simple, and the optimization purpose of TransVert is not clear. Additionally, 
Chen et al.15 also proposed a CNN-based encoder–decoder architecture BX2S-Net to reduce the semantic gap 
between feature maps and achieve information fusion for bi-planar X-ray- based 3D spinal reconstruction. However, 
they cropped vertebral-level images based on the annotation ground truth of CT images, which is impossible to 
conduct in clinical application stage and is not robust for noisy cases in real-word clinical scenarios.  

In view of the relatively primitive and limited research status of automatic 3D reconstruction of spines, in this 
paper, we aim to propose a novel generative adversarial network (GAN) based framework, ReVerteR, which can 
realize automatic 3D Reconstruction of Vertebrae from orthogonal bi-planar Radiographs. The contributions of this 
work are summarized as follows:  

• We propose a novel GAN-based architecture for fusing orthogonal radiographs to generate 3D shapes. with 
the utilization of ResUnet as the backbone of the generator, multi-scale information can be better obtained 
to make up for the lack of information in 3D vertebral reconstruction from two perspectives.  

• We specially designed an integrated loss function in ReVerteR, which combines Dice, Hausdorff, Focal, and 
MSE to further alleviate the sample-imbalance problem during the 3D reconstruction process.  

• We introduce self-attention mechanism into the architecture. Based on the Non-local network, ReVerteR 
can realize the information fusion of the centroid annotation and the focused vertebra.  

• We extend ReVerteR to a clinical deployment-oriented framework for automatic and customized 
application in real-world scenarios and develop an interactive interface with all functions in the framework 
integrated to enhance human-computer interaction during clinical decision-making.  

• Extensive experiments and visualization are conducted on two benchmark datasets of spinal CT, 
VerSe2019 and VerSe2020, which demonstrates the effectiveness of our proposed framework for 3D 
reconstruction of spines.  

Related Work  

Medical imaging modalities  

At present, there are three commonly used radiological diagnostic modalities in the field of spinal disease diagnosis: 
radiograph, CT, and MRI16–19. Although radiographs are more suitable for the diagnosis of spinal diseases than the 
other two modalities, they still have shortcomings due to their 2D form, e.g., lacking viewing angles, unintuitive, and 
insufficient in spatial information. CT images can provide rich 3D information, but they are not only with a high 
dose of radiation, but also expensive. Essentially, CT is the overlaying of 2D images, when doctors perform medical 
analysis, they take only one slice from the CT images which is still in 2D form. In addition, CT/MRI requires supine 
imaging, which may change the true curvature of the spine and is easy to result in misdiagnosis. In addition, the 
conduction of CT and MRI imaging is very limited, which means that intraoperative imaging is difficult. Therefore, 
the imaging of spines based on CT and MRI is quite limited.  

Medical 3D reconstruction methods  

Regarding medical image reconstruction, the Department of Radiation Oncology, Stanford University20 first 
attempted to utilize a single-view radiograph to reconstruct CT images with a deep learning-based transformation 



module. Ying et al.21 proposed X2CT-GAN, which is the first work to explore CT reconstruction from bi-planar 
radiographs with a GAN-based architecture. Both works utilize deep learning methods to reconstruct CT images 
from radiographs and are not involved with the more challenging task, 3D reconstruction of the morphology of 
anatomical objects.  

Regarding medical 3D reconstruction, Kasten et al.22 utilized an U-Net-based architecture to realize the end-to-
end 3D reconstruction of the knee joint from bi-planar radiographs. In terms of 3D reconstruction of spine 
morphology, There have been also some studies conducted. However, most of these proposed methods are based 
on priori knowledge from morphological database and statistical models10–12,23, which means that doctors need to 
frequently intervene the inference of vertebral information. Recently, a FCN-based method TransVert was proposed, 
which utilized coronal and sagittal DRR images to reconstruct the 3D morphology of spines. However, the feasibility 
of TransVert is not verified. First, the experiments conducted on TransVert are based on the dataset whose ground 
truth is generated by a semantic segmentation model. the performance of the semantic segmentation model is 
important, since the structure of a vertebra is very complicated, the bad performance of semantic segmentation 
model will result in the information loss of the ground truth, which may overvalue the performance of the 3D 
reconstruction method. However, the semantic segmentation model utilized to generate ground truth for TransVert 
is not introduced in detail. In addition, the architecture design of TransVert is simple, it is expectable that the 
architecture can be further modified to improve the performance of 3D reconstruction.  

Medical 3D semantic segmentation  

Regarding the semantic segmentation task, FCN24 is the first proposed architecture and has been the basic 
framework of semantic segmentation. Subsequent methods are all improved from this framework. Based on FCN, 
Ronneberger et al.25 proposed U-Net, which achieved impressive performance in the semantic segmentation for 
medical image.  

Given that biomedical images usually need to present stereoscopic structures, e.g., CT. It is too complicated to use 
2D segmentation methods to process 3D data. Therefore, on the basis of 2D Unet, 3D U-Net26, 3D ResUnet27 , and 
Vnet28 are proposed to improve the performance of 3D semantic segmentation. Compared with 3D U-Net, 3D 
ResUnet and Vnet introduce the residual structure into the architecture, which further improves the training 
efficiency of 3D images. In this paper, 3D features and masks require to be mapped in the generator. Therefore, the 
3D semantic segmentation architecture is also a key component in the proposed framework.  

Method  

In this section, we would introduce the design of our proposed framework ReVerteR in detail. The overall workflow 
of ReVerteR is shown in Figure 1. ReVerteR is based on a GAN architecture, and thereby mainly consisting of two 
parts: a generator and a discriminator. The generator and the discriminator fight each other and adjust the 
parameters constantly, so that the discriminator network cannot judge whether the output of the generated 
network is true or not. Through the idea of game antagonism, we constantly optimize the performance of the 
generator to make it generate more realistic vertebrae. Therefore, the design of the generator is the core content of 
the whole model architecture, which includes 3 modules: 1) the centroid fusion module, 2) the 2D-3D 
transformation module, 3) and the fully convolutional segmentation network module.  



 

Figure 1. The overall processing workflow of our proposed ReVerteR. 

 

Figure 2. Architecture of ReVerteR, where the detailed design of the centroid fusion module and the 2D-3D 
transformation module are presented particularly. 

Specifically, the centroid fusion module is designed to highlight coronal or sagittal radiographs in order to 
reconstruct the position of the vertebrae; The 2D-3D conversion module is mainly responsible for mapping coronal 
and sagittal 2D images from different perspectives to features in 3D space. The fully convolutional segmentation 
network module is designed make segmentation on the masked vertebral information from the 3D features based 
on supervised learning method. Detailed design of the modules in ReVerteR architecture is shown in Figure 2.  

Centroid fusion module  

An adult spine is composed of 26 vertebrae, and the structure of each vertebra is complicated. If the spine is 
reconstructed as a whole structure, small components such as spinous process and transverse process of vertebrae 
are easily ignored. Meanwhile, a single radiograph contains a various information of bones, which means that it may  



 

Figure 3. the fusion of centroid information and vertebral information under self-attention mechanism conducted 
by the Non-local architecture.  

also include redundant information such as ribs and leg bones. In order to better focus the model’s attention on the 
effect of vertebral reconstruction, each vertebra in the radiograph is segmented (cropped by 120x120 in width and 
height), which is like the radiograph input shown in Figure 3. As a result, each patch is cropped for only one vertebra 
and may contain little redundant information from at most two adjacent vertebrae of the cropped object.  

In order to make the model focus on the single vertebra expected to be reconstructed, the centroid mask is added. 
As shown in Figure 3, the vertebrae expected to be reconstructed are annotated with centroid. Each patch pair with 
one centroid mask, the number of whom equals the number of vertebrae to be reconstructed. Concatenation 
operation is conducted to fuse the patch and the centroid information. Then, self-attention mechanism, which is 
conducted via Non-local blocks in Non-local Neural Networks29, is utilized to obtain the dependency relationship 
between non-adjacent pixels in the image, so as to fully integrate centroid information and vertebral information. 
Detailed architecture of Non-local is shown in Figure 2 and the formula is shown below:  

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑥𝑥 + α�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�θ(𝑥𝑥)𝑇𝑇ϕ(𝑥𝑥)�σ(𝑥𝑥)𝑇𝑇�           (1) 

where θ(x), φ(x), σ(x) denote the 1x1 convolution operations conducted on the feature x, respectively, which 
transforms feature map to one dimension. Then, the dot production is conducted between θ (x) and φ (x), and 
softmax function is utilized for normalization, so as to obtain the similarity between each point on the feature map 
and all other pixels. Finally, the weight is product with σ (x) and the output is obtained.  

2D-3D transformation module  

The main purpose of the 2D-3D transformation module is to extend 2D features into 3D features. The difference 
between 2D images and 3D images is that 2D images lack depth information. Therefore, we duplicate the 2D images 
and pile them together to obtain the 3D information.  

First, each view (lateral and anterior) is duplicated 120 times in one dimension. That is, we expand the lateral 
view on the coronal axis, and expand the frontal view on the sagittal axis. Second, given the antero-posterior and 
latera angle information, the sagittal features are rotated with the coronal plane as the main direction. Finally, the 
coronal and sagittal planes are fused by conducting concatenation operation.  



Fully convolutional segmentation network module  

Fully convolutional segmentation network module is designed as the process from 3D features to 3D vertebra 
masks, which can be regarded as a 3D semantic segmentation task. In this module, our designed ReVerteR utilize 
3D ResUnet architecture27 as the main backbone network. Through supervised learning, each individual voxel is 
classified, and the vertebral information is annotated from the features in shape of 120x120x120. ResUnet 
introduces the residual module and the Batch Normalization layer on the basis U-Net network, in which way to 
construct deeper network structure and avoid vanishing gradient. Meanwhile, 2D images are directly input into the 
ResUnet model after dimension amplification without reshaping operations were performed, in which way to retain 
the information from each view as much as possible. The skip-connection module in ResUnet is utilized to integrate 
multi-scale and multi-level semantic information, which can provide richer information for vertebral segmentation.  

In general, the generator in ReVerteR utilizes 3D ResUnet as the main backbone network. With the introduction 
of self-attention mechanism, the complementary information from different perspectives can be fused based on 
centroid annotation information, and 2D features can then be transformed into 3D features. Finally, 3D vertebra 
mask is utilized for supervised learning of 3D features to realize the reconstruction task from 2D image to 3D 
morphology. Meanwhile, the discriminator in ReVerteR is mainly based on PatchGAN30, which can focus more on 
the localized impact in the form of full convolution. Specifically, in a PatchGAN, the discriminator network is 
designed to classify individual patches (small regions) of an image as real or fake, rather than classifying the entire 
image. This approach allows for more localized and fine-grained feedback to the generator network during training, 
which can lead to improved image quality and detail preservation in the generated images.  

Design of integrated loss function  

In addition to a MSE-based adversarial loss, we propose an integrated loss function which mainly combines Dice 
loss, Hausdorff loss, and Focal loss as the optimization objective. We set the hyper parameter λ, α, β, and γ to adjust 
the weight of Dice loss, Hausdorff loss, Focal loss and MSE loss in the integrated loss function, respectively. Dice loss 
was proposed in V-Net28 and has been widely applied in medical image segmentation. When 3D vertebrae are 
segmented, the focused structure of the vertebrae occupies only a very small area in the shape of 120x120x120. If 
the proportion of target voxels is too small, the learning process will easily fall into the localized minimum of the 
loss function. Therefore, it is necessary to optimize the optimization objective reasonably and increase the weight 
of the foreground area. Dice loss is a region-related loss function. The intersection and union between the prediction 
and the mask are calculated, so that the loss error is only related to the foreground target. Although Dice loss can 
better deal with the issue of unbalanced positive and negative samples, training loss is prone to instability. 
Therefore, we further introduce two other metrics, Hausdorff loss and Focal loss into the integrated loss, 
considering their significance for vertebra reconstruction from different perspectives. In this paper, λ is set as 10,α 
is set as 0.0001, β is set as 10, and γ is set as 0.1 for ReVerteR. The integrated loss function of this model is as follows:  

ℒ(𝐺𝐺,𝐷𝐷) = 𝜆𝜆ℒ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐺𝐺) + 𝛼𝛼ℒHausdorff(𝐺𝐺) + 𝛽𝛽ℒFocal(𝐺𝐺) + 𝛾𝛾ℒ𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺,𝐷𝐷)      (2) 

where λ, α, β, and γ denotes the hyper parameters we set to adjust the weight of the losses. ℒ𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺,𝐷𝐷) consists of 
the generator G and the discriminator D: 

ℒ𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺) = 𝐸𝐸𝑥𝑥∼𝑝𝑝𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋�𝐷𝐷�𝐺𝐺(𝑥𝑥)� − 1�2             (3) 



ℒ𝐺𝐺𝐺𝐺𝐺𝐺(𝐷𝐷) = 𝐸𝐸𝑦𝑦∼𝑝𝑝𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌
(𝐷𝐷(𝑦𝑦) − 1)2 + 𝐸𝐸𝑥𝑥∼𝑝𝑝𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋�𝐷𝐷�𝐺𝐺(𝑥𝑥)� − 0�2       (4) 

where x denotes the corresponding centroid information of the radiograph or the DRR image, and y denotes the 
vertebral morphology we expect to reconstruct. 

ℒ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐺𝐺) = 1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 1 −
2�𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∩𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�

�𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�+|𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|
            (5) 

where Ypredict denotes the prediction result, which is also the output of the framework. Ymask denotes the vertebral 
morphology we expect to reconstruct. 

ℒ𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝐺𝐺) = 𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠DT(𝑞𝑞,𝑝𝑝) = 1
�Ω�

∑ �(𝑝𝑝 − 𝑞𝑞)2 ∘ �𝑑𝑑𝑝𝑝α + 𝑑𝑑𝑞𝑞α��Ω         (6) 

where p denotes the predicted result, q denotes the ground truth, and dp denotes the distance from the predicted 
segmentation result to the boundary. 

ℒ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐺𝐺) = −α𝑡𝑡(1 − 𝑝𝑝𝑡𝑡)γ log(𝑝𝑝𝑡𝑡)              (7) 

where pt denotes the probability of prediction as a positive sample, αt is set as 0.2, and γ is set as 5.  

Clinical deployment-oriented automatic framework & interactive interface  

Aiming at automatic clinical deployment of our proposed 3D reconstruction method in real-world scenarios. We 
further extend ReVerteR to a whole framework which integrates both ReVerteR as the 3D reconstruction module 
and an automatic centroid annotation module inspired by our previous work MPF-net31.  

Regarding the design of MPF-net, it is a CNN-based multi-task framework which focuses on both anterior-
posterior (AP) view X-rays and lateral (LAT) view X-rays, conducting joint learning of vertebra detection and 
landmark prediction. With information from neighbor vertebra and bi-planar X-rays get fully integrated. MPF-net 
can realize effective and automatic detection on the four key landmarks on each vertebra, and thereby being further 
utilized to generate the centroid mask for each vertebra.  

The whole framework flowchart is shown in Figure 4 below. Specifically, all bi-planar radiographs will first be 
automatically annotated with centroid masks based on the MPF-net-based architecture, and then directly perform 
automatic 3D shape reconstruction based on ReVerteR if no further adjustment required. Therefore, the whole 3D 
shape reconstruction process can be conducted in an automatic approach. Furthermore, aiming to enhancing the 
interactive between the 3D reconstruction system and clinicians so as to facilitate clinical decision-making, we 
design two parts of customized adjustment functions based on the automatic system. First, based on the automatic 
centroid annotation results, clinicians can choose whether get involved a) to choose the vertebrae required for 
reconstruction, and b) to correct centroid masks manually if they don’t agree with the model-based annotation 
result. Second, clinician can conduct angular rotation of the visualization results of vertebral 3D shape 
reconstructed by ReVerteR. Consequently, the vertebrae can be observed from any different views according to 
clinicians’ preference.  



 

Figure 4. Flowchart of the whole framework for automatic 3D reconstruction of vertebra designed based on 
ReVerteR for clinical deployment.  

 

Figure 5. Interactive interface developed based on our proposed clinical deployment-oriented 3D spinal 
reconstruction framework, where automatically centroid-annotated bi-planar radiographs and reconstructed 3D 
shape are both presented. A series of customized functions are also integrated.  

Additionally, we have also developed an interactive interface based on the clinical deployment-oriented 
framework as is shown in Figure 5. It can be seen that all customized adjustment functions are integrated in the 
interface. Specifically, the input bi-planar radiographs are presented on the left side, where automatically annotated 
centroid masks marked and can be removed or corrected. Here we simply use two centroid-annotated DRRs to 
simulate the presentation of bi-planar radiographs in the interface. The output reconstructed 3D vertebrae or spine 
is presented on the right side, where the view of the visualization result can be adjusted by the sliding button. To 
our best knowledge, this is the first study which proposes a clinical deployment-oriented 3D vertebral 
reconstruction framework and develop an interactive interface for the reconstruction system.  



 

Figure 6. Histograms and matrix plots which of the sample distribution of different types of vertebrae in the 
datasets VerSe-full and VerSe-small.  

Ethical approval 

This project is waived from ethical approval and only involves data from two publicly available datasets VerSe 2019 
and VerSe 2020 for the validation. 

Results  

In this section, we would conduct a series of experiments, including performance comparison, ablation study, and 
visualization, on the two benchmark datasets of spinal CT, VerSe2019 and VerSe2020, to demonstrate the 
effectiveness of our proposed ReVerteR.  

Dataset  

Ideally, to train and validate our proposed vertebral reconstruction method, we would need a large database of 
paired radiographs and their corresponding vertebral masks. However, there is currently no public paired spine 
dataset, and there are rarely two medical images taken at the same time clinically. Therefore, we utilize the two 
publicly available spine segmentation datasets, VerSe2019 and VerSe202032, which provide spine CT data and 
corresponding spine 3D mask annotation, and construct two versions of datasets VerSe-full and VerSe-small.  

In terms of VerSe-full we simply combine all the vertebrae datasets from VerSe19 and VerSe20, which contains 
374 spines and 4522 vertebrae in total. In terms of VerSe-small, aiming to maintain the balance of distribution of 
different types of vertebrae and the consistency of vertebrae in a spine, we further screen samples from VerSe-full 
in units of spine following 3 constraints. Specifically, we would filter out the whole spine-level sample if it contains 
a) a T13, L6 or cervical vertebra; b) no more than 2 thoracic vertebrae; and c) metal occlusion (e.g., pedicle nail 
occlusion). As a result our constructed VerSe-small dataset contains 140 spines and 1407 vertebrae.  



Table 1. Statistics of our constructed datasets VerSe-full and VerSe-small. 

 VerSe-full VerSe-small 
Number of subjects 355 140 
Number of spines 374 140 

Number of vertebrae 4522 1407 

 

Figure 7. Samples of paired DRR images. 

The statistics of VerSe-full and VerSe-small are shown in Table 1. Detailed distribution of different types of 
vertebral samples in the two datasets are shown in the histograms and matrix plots in Figure 6. It can be seen that 
the vertebra samples screened in VerSe-small are much more densely, evenly, and consistently distributed in each 
spine samples.  

We integrate the images in both datasets and there by generating a whole dataset. The corresponding bi-planar 
radiographs are synthesized by conducting digital reconstruction radiography (DRR) technology33. Figure 7 
presents the synthesized samples based on DRR technology.  

DRR is a method used to simulate the projection of 3D reconstructed images from a specific direction or from the 
direction of an X-ray target similar to that of a simulation positioning device. This method finds wide applications 
in CT simulation positioning, Image-Guided Radiation Therapy (IGRT), and computer-assisted surgery, among 
others. Our DRR reconstruction algorithm primarily employs X-ray casting techniques. Specifically, we first input 
the 3D image data into our algorithm. Subsequently, our algorithm simulates the passage of X-rays through this 3D 
image from a particular direction, recording the intensity of X-rays passing through each pixel. Finally, we map these 
intensity values onto a 2D plane, resulting in a 2D radiographic image. Regarding cropping of DRR images, we first 
perform DRR on the original 3D CT images, and then crop the DRR images for each vertebra based on the cropping 
box with centroid as the center.  

Experimental Settings  



The proposed framework is implemented with Pytorch platform on a machine equipped with an Intel Xeon Gold 
6230 CPU and NVIDIA GeForce RTX 4090 GPU, the generator and the discriminator are trained alternately. In our 
experiment, the epoch number is set as 100, the batch size is set as 8, the learning rate is initially set as 0.0001, 
decaying to one-tenth of its original value every 20 epochs, and the input image size is set as 120. In both two 
datasets, we split samples for the training set and test set in units of patient with the ratio set as 4:1. All methods 
are trained using the Adam optimizer, and are parallelly computed on two GPUs. The input size of the coronal and 
sagittal vertebral images is set to 120×120, and the output size of the methods is set to 120×120×120. For baseline 
methods in comparative experiments, the input and output dimensions of the model are kept consistent with our 
method, while the remaining parameters are set according to the parameter settings in their paper. In the 
experiments, we run all the models 10 times and report the mean value of them so as to avoid bias because of 
randomization.  

Evaluation metrics  

To better evaluate the effectiveness of our proposed method, being consistent with previous domain-related work, 
in this study, we utilize Dice value, the 95th percentile Hausdorff distance (HD95), and the Normalized Surface 
Distance (NSD) as the evaluation metrics to reflect the effect of 3D vertebral morphology reconstruction.  

Dice: Dice is the most frequently used metric in medical image segmentation tasks. As a set similarity metric, Dice 
is designed to calculate the similarity of two samples, and thereby can be utilized to evaluate the overlap rate 
between our reconstructed result and ground truth spinal morphology. The value threshold is [0, 1], where the best 
segmentation result is 1, while the worst segmentation result is 0.  

HD95: Hausdorff distance is a measure that describes the degree of similarity between two sets of points. Dice is 
sensitive to the internal region of mask, while Hausdorff distance is sensitive to the segmented boundary, which 
corresponds to the complex anatomy of vertebrae and can reflect the segmentation effect on morphology. HD95 
capture the extent of variation in distance values while also being less sensitive to outliers compared to the 
traditional Hausdorff distance. A higher HD95 value indicates greater dissimilarity between the two sets of points, 
while a lower value suggests greater similarity.  

NSD: NSD measures the average distance between corresponding points on the reconstructed surface and the 
reference surface, normalized by a characteristic length of the object being reconstructed. NSD is a dimensionless 
metric that ranges from 0 to 1. A higher NSD value indicates better alignment and agreement between the 
reconstructed and reference surfaces.  

Comparative experiment  

To verify the effectiveness of our proposed ReVerteR, we conduct extensive comparative experiments on 8 domain-
related representative baseline methods which can generally be decomposed into 4 types as listed below. (a) 
TransVert14, BX2S-Net15, and an Unet-based method13 which are all CNN-based methods designed for the task of 
3D shape reconstruction of bones, e.g., vertebra and patella. (b) SwinUNETR34, UNETR35, and AttentionUnet36 which 
are CNN or transformer-based methods designed for the task of medical image segmentation, e.g., MRI and CT. (c) 
OneDConcat37 which is spinal reconstruction method designed based on Electro-Optical System (EOS) imaging 
technology. (d) X2CT-GAN-inspired method38, 39 which are CNN-based methods designed for the task of the 
reconstruction of CT images. In terms of the baselines that are not originally designed for the task of 3D shape 



reconstruction, we modify their architectures by adding the 2D-3D feature fusion module or the 3D image 
segmentation architecture, respectively, as designed in our proposed method ReVerteR. Detailed results of the  

Table 2. Performance of our proposed ReVerteR and the representative baseline methods. We run all models 10 
times and report the mean value of Dice value, the 95th percentile Hausdorff distance (HD95), and the Normalized 
Surface Distance (NSD) as the evaluation metrics. The symbol ‘+’ and ‘-’ indicate that the higher and lower the value 
is, the better the model performs, respectively. Best results are marked bold.  

 VerSe-full VerSe-small 
 Dice (+) HD95 (-) NSD (+) Dice (+) HD95 (-) NSD (+) 

TransVert [1] 0.7743 5.4480 0.6718 0.7647 6.6468 0.6094 
BX2S-Net [2] 0.7558 6.2984 0.6345 0.7494 7.5000 0.5824 

Unet [3] 0.7712 5.5935 0.6691 0.7582 6.7097 0.6160 
SwinUNETR [4] 0.7759 5.2873 0.6821 0.7531 6.9923 0.5964 

UNETR [5] 0.7584 5.9160 0.6546 0.7421 6.7891 0.6012 
AttentionUnet [6] 0.7696 5.6788 0.6660 0.7535 6.8888 0.6085 
OneDConcat [7] 0.7822 5.0832 0.6904 0.7637 6.6105 0.6106 
X2CT-GAN [8,9] 0.7870 4.4931 0.7136 0.7600 6.5289 0.6073 
ReVerteR (Ours) 0.7938 4.5836 0.7182 0.7685 6.3129 0.6198 

 

Figure 8. Box plots of Dice metric, which present the position-specific performance of ReVerteR on VerSe-full and 
VerSe-small, respectively.  

comparative experiments in two datasets VerSe-full and VerSe-small are listed in the Table 2. It can be seen that 
our proposed method ReVerteR outperforms all the representative baselines on two the datasets only except the 
X2CT-GAN-inspired method in terms of the metric HD95 in the dataset VerSe-full, which demonstrates the 
effectiveness of our method regarding the task of 3d vertebrae reconstruction from orthogonal bi-planar 
radiographs. 

Specifically, our proposed ReVerteR outperforms TransVert and BX2S-Net which are the only two methods 
originally designed for the task of 3D shape reconstruction of vertebrae. Neither of the two methods performs as 
reported in their paper, which result from different dataset settings in the experiment. First, in the experiments in 
their original paper, both methods involve extra noisy labelled datasets apart from the VerSe dataset. The training 
set of TransVert is augmented by involving 954 X-ray images annotated by themselves based on a pre-trained image 
segmentation model, while the dataset of BX2S-Net is augmented with 1,000 noisy-labelled x rays from dataset 



CTSpine1K40. Such data augmentation may lead to noise and biases during model training. Second, in the 
experiments of BX2S-Net, the vertebra-level patches are cropped based on ground truth of CT images and thereby  

Table 3. Ablation study on the design of loss function, centroid fusion module, and adversarial learning strategy. 
We run all models 10 times and report the mean value of Dice value, the 95th percentile Hausdorff distance (HD95), 
and the Normalized Surface Distance (NSD).  

 VerSe-full VerSe-small 
 Dice(+) HD95(-) NSD(+) Dice(+) HD95(-) NSD(+) 

Fusion of centroid (w/o) 0.7774 5.2345 0.6703 0.7512 7.3896 0.5702 
Non-Local (w/o) 0.7800 5.3749 0.6763 0.7492 7.8278 0.5681 
Dice loss (w/o) 0.4991 13.7402 0.3261 0.4574 11.5412 0.4144 

Focal loss+Hausdorff loss (w/o) 0.7852 5.00988 0.6896 0.7557 7.1701 0.5823 
adversarial learning (w/o) 0.7859 5.0647 0.6896 0.7559 7.3753 0.5802 

ReVerteR (Ours) 0.7938 4.5836 0.7182 0.7685 6.3129 0.6198 

getting rid of redundant information of adjacent vertebrae. However, such patch preprocessing measure is 
impossible to conduct and not robust for cases in real-word clinical scenarios.  

Furthermore, we conduct a more fine-grained analysis on our proposed ReVerteR. Figure 8 presents the position-
specific Dice performance of ReVerteR on VerSe-full and VerSe-small. It can be seen that our proposed method 
overall performs robustly on all positions of vertebrae. However, a relative performance gap can be observed on 
the cervical vertebrae compared with lumbar and thoracic vertebrae, which should be reasoned for the relatively 
lacking annotated samples in the datasets, which is alleviated in VerSe-small, as well as the its tiny morphology, 
which makes the 3D shape reconstruction of cervical vertebrae a more difficult task.  

Ablation study  

We also conduct a series of ablation study to demonstrate the effectiveness of a series of architectures and strategies 
designed in our proposed method ReVerteR, including the centroid fusion module, the non-local architecture, the 
Dice loss, the Focal+Hausdorff loss function, and the adversarial learning architecture. We tested different without 
(w/o) settings to separately remove each key architecture and compare them with the original setting. As is shown 
in Table 3, in terms of the design of loss function, compared with our designed integrated loss function, the Dice 
value of the function without Dice loss drops to 0.4991 and 0.4574, while the Hausdorff distance significantly 
increase to 13 and 11. Such huge model performance deteriorate demonstrates the key effect of the Dice loss. Given 
that a vertebra only occupies a small region in a patch, Dice loss can help focus more on the targeted voxels by 
enlarging the attention to foreground samples, which significantly improves the reconstruction performance. 
Additionally, Focal loss and Hausdorff loss also contribute to better performance of our proposed method, which 
demonstrate the integrated loss functions are complementary to each other when capturing the features during the 
3D reconstruction. The Non-local architecture utilized in the stage of 2D-to-3D transformation does effectively fuse 
the features from two perspectives of radiographs. Meanwhile, in terms of the centroid fusion module since multiple 
vertebrae may simultaneously appear in a single patch image. the fusion of centroid information is expected to 
provide the priori knowledge of the targeted vertebrae we’d like to reconstruct. The ablation results shown in Table 
3 do demonstrate our hypothesis that the introduction of centroid annotation can help the method focus more on 



the targeted vertebra. Last but not least, it can be seen that the adoption of the adversarial learning architecture 
does have a positive effect on the performance of 3D vertebra reconstruction from all the three evaluation metrics.  

Table 4. Statistics of the average implementation time (in second) of ReVerteR for different positions of vertebrae 
tested on VerSe-full.  

Position C1 C2 C3 C4 C5 C6 C7 T1 T2 
Time  0.0756 0.0739 0.0732 0.0819 0.0954 0.0783 0.0782 0.0765 0.0758 

Position T3 T4 T5 T6 T7 T8 T9 T10 T11 
Time  0.0772 0.0789 0.0772 0.0777 0.0753 0.0766 0.0785 0.0785 0.0785 

Position T12 T13 L1 L2 L3 L4 L5 L6 Spine 
Time  0.0780 0.0838 0.0788 0.0796 0.0775 0.0801 0.0770 0.0849 7.7204 

Statistics of implementation time  

Our proposed method conducts 3D shape reconstruction of spine in units of vertebra, which means that clinicians 
can flexibly select which part of the spine needs to be reconstructed and visualized. To quantitatively present the 
implementation time for the reconstruction of the whole spine (26 vertebrae), here we make statistics of the 
average reconstruction time for each position of vertebra and the overall spine. We tested our proposed ReVerteR 
on VerSe-full dataset. As is shown in Table 4, our proposed method is efficient for different types of vertebra 
reconstruction and the overall average reconstruction time for the whole spine is 7.7204 seconds, which is efficient 
and usable for clinical deployments.  

Visualization  

Figure 9 shows the visualization results of 3D shape reconstruction of single vertebra samples and combine spine 
samples from different views based on Python, respectively. It can be seen that our method not only reconstructed 
the overall structure of the vertebral body, but also well reconstruct the complicated small components such as 
spinous process, transverse process and superior articular process. Additionally, the adjacent vertebrae can fit each 
other as is presented in the spine under natural weight bearing. Such variable visualized reconstruction results of 
vertebrae and spines from different views are accessible by deploying our developed interactive interface where 
the reconstructed object can be rotated with customized angles and directions.  

Discussion  

This study focuses on the 3D shape reconstruction of spine based on bi-planar radiographs, proposing a novel 
method ReVerteR, which effectively optimize the clinical decision-making requirement of 3D upright posture of the 
spine under natural weight bearing 3D) upright posture of the spine under natural weight bearing. Specifically, we 
propose a self-attention mechanism- based centroid fusion module, which adopts non-local architecture to realize 
cross-channel information fusion of the centroid annotation and the focused vertebra, thereby effectively leveraging 
the vertebra-related knowledge while getting rid of the redundant information in X-ray images. Then, the 2D-3D 
feature fusion module is proposed to integrate the sagittal and coronal features through an orthogonal approach 
and get deeply fused with a ResUnet-based architecture. Furthermore, an integrated loss function which combines 
Dice loss, Hausdorff loss, Focal loss, and MSE loss is designed to optimize the training so as to better fit vertebral 3D 
morphology. Last but not least, a complete framework which consists of automatic centroid annotation and 3D 



reconstruction based on ReVerteR is designed for automatic clinical deployment of the system. An interactive 
interface is also developed based on ReVerteR to provide customized and visualized clinical assistance. To our best 
knowledge, this is the first study which proposes a clinical deployment-oriented 3D vertebral reconstruction  

 

Figure 9. Visualization of the 3D reconstruction results of ReVerteR, where samples of both reconstructed vertebra 
and further combined spine are presented from different views.  

framework and develop an interactive interface for the reconstruction system. Extensive comparative experiments 
and ablation study have been conducted based on our constructed two versions of VerSe datasets demonstrate the 
effectiveness of both the overall 3D reconstruction method and a series of architectures and strategies designed in 
the framework.  

In future work, further study can be conducted to optimize our proposed ReVerteR and the developed interface. 
First, although we have involved knowledge of centroid mask into the method, more landmarks and more fine-
grained relative coordinate can be involved as calibration information of the 3D environment, which is expected to 
improve the performance of 3D shape reconstruction. Second, regarding the clinical deployment of the 3D 
reconstruction system, although we have designed a framework to achieve full automation, given the complex real-



world clinical decision-making scenarios, more efforts should be put into the optimization of collaboration between 
3D reconstruction method and clinicians. With the aim to balance the accuracy and efficiency of decision-making, 
human-in-the-loop learning framework thereby should be treated as a potential solution to further optimize the 
human-computer interaction of the 3D reconstruction system. Third, given that lacking real-world bi-planar 
radiographs, in this work, we adopt DRR to simulate the multi-view radiograph inputs, which, however, would cause 
biases due to style transferring issue. Therefore, in future work, collection of real-world bi-planar radiographs 
should be a significant requirement to put forward. Additionally, transfer learning based on real-world radiograph 
datasets would be a promising approach to improving the robustness and the adaptability of the 3D reconstruction 
method in clinical scenarios.  

Conclusion  

Aiming to deal with the conflict between the limitations of existing 3D imaging modalities and the clinical 
requirements of 3D spinal modeling, in this paper, we propose a ReVerteR, a novel GAN-based framework to realize 
automatic 3D reconstruction of vertebras from orthogonal bi-planar radiographs. Based on supervised learning on 
DRR images, ReVerteR can fuse the vertebral information from 2D sagittal and coronal radiographs and the centroid 
information from the annotations. Extensive experiments conducted on the benchmark datasets demonstrate the 
effectiveness and rationality of our designed framework. In the future work, we will further modify the for the real-
world clinical deployment to assist spine-related analysis.  
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