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Abstract

In this work, we consider a variation of the stochastic multi-armed bandit problem
in which the learner is not necessarily trying to compete with the best arm, whose
performance is not known ahead of time, but is satisfied with playing any arm that
performs above a known satisficing threshold S. Michel et al. (2023) considered as
respective performance measure the satisficing regret, that scales in terms of the
gaps between the expected performance of an insufficient arm and the threshold
S, rather than in terms of its gap with the best arm. While Michel et al. propose
an algorithm that achieves time-independent satisficing regret, their results suffer
when arms are too close to the threshold. Is this dependency unavoidable? The first
contribution of our work is to provide an alternative and more general lower bound
for the K-armed satisficing bandit problem, which highlights how the position
of the threshold compared to the arms affects the bound. Then, we introduce
an algorithm robust against unbalanced gaps, which enjoys a nearly matching
time-independent upper bound. We also propose an alternative definition of the
satisficing regret, which might be better tailored to measure algorithm performance
in these difficult instances and derive a lower bound for this regret. Finally, we
include experiments to compare these different regret measures and our proposed
algorithms empirically.

1 Introduction

The stochastic multi-armed bandit problem is one of the most fundamental frameworks when
it comes to studying the trade-off between exploration and exploitation in sequential decision-
making (Thompson, 1933; Auer, 2002; Bubeck & Cesa-Bianchi, 2012; Slivkins, 2019; Lattimore &
Svepesvári, 2020). In the standard version of the problem, the learner’s goal is to achieve performance
as close to the performance of the best arm in expectation as possible. However in practice when
faced with repetitive tasks, it is very common to focus on achieving a sufficient performance rather
than an optimal one. One way to formulate this problem is by considering a satisficing threshold
and modifying the objective of the learner to be satisfied with playing any arm that has an expected
performance above the threshold. Many problems can fit this framework such as problems where a
learner has to stay under a given budget when commissioning work from service providers, dynamic
resource consumption where electric vehicles have to charge at night when electricity is cheap while
ensuring a certain battery charge rate in the morning, or the average student aiming to get a passing
grade rather than the best grade.

This notion of a satisficing threshold has been studied in the literature, mainly in the bandit framework,
but a recent work generalized these results towards reinforcement learning. Early evaluations of
this notion of satisfiability in multi-armed bandits include the works of Kohno & Takahashi (2017);
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Tamatsukuri & Takahashi (2019), which show that if the satisficing threshold, called aspiration
level, is placed between the best arm and the second best arm, then it is possible to achieve a
time-independent regret as the notions of satisficing and optimizing converge.

Recently, Michel et al. (2023) generalized this result and considered as performance measure the
satisficing pseudo-regret. This measure evaluates the satisficing performance by taking into account
only the gaps between ‘insufficient arms’ and the satisficing threshold S rather than the gaps between
these insufficient arms and the best arm. The main downside of this approach is that this measure
can only be optimized in the realizable setting, meaning that we have to know ahead of time that
there exists a satisficing arm. Otherwise, if all the arms are below the threshold then the satisficing
pseudo-regret would necessarily scale linearly with the time horizon T . To counter this issue, Michel
et al. (2023) propose an algorithm that enjoys time-independent satisficing regret in the realizable case
while also ensuring a rate-optimal logarithmic upper bound on the pseudo-regret in the non-realizable
case. In the realizable case, the algorithm of Michel et al. achieves an O

(∑
i:µi<S ∆̃i +

1

∆̃i
+ ∆̃i

∆2
∗

)
satisficing regret guarantee, where ∆̃i = S − µi is the insufficiency gap and ∆∗ = maxj µj − S
is the gap between the best arm and the threshold. This bound is time-independent, but it also
scales inversely proportionally to both ∆̃i and ∆∗. This means that if either of these gaps is small,
for example of order 1

T , then this satisficing regret bound would be vacuous whereas the standard

pseudo-regret bound is still of order O
(∑

i:∆i>0
log T
∆i

)
, and the standard suboptimality gaps ∆i can

be large even when ∆∗ or ∆̃i is not. Michel et al. (2023) also propose a lower bound that scales as
Ω
(∑

i:∆̃i>0
1

∆̃i

)
. In its construction, this lower bound assumes that the gaps ∆̃i = ∆∗ are the same

for all arms i below the threshold.

The first contribution of our work is a novel derivation of this lower bound that specifically focuses
on cases where the gaps can be unbalanced. We consider a satisficing bandit problem in the realizable
case and show a lower bound on the regret of Ω

(∑
i:∆̃i>0

∆̃i

∆2
i

)
.

Then, we propose an alternative definition of the satisficing regret which offers a smoother transition
between the non-realizable case, the realizable case with a unique sufficient arm, and the realizable
case with multiple sufficient arms. This regret definition measures the insufficiency gap in terms
of the gap between a bad arm and the worst of the sufficient arms rather than the gap to the
threshold S. Focusing on the two-armed case, we derive a lower bound on this regret measure of

order Ω
(

log( ∆
∆∗ )

∆

)
which better captures the challenge of unbalanced gaps. We propose a novel

algorithm, uncertain-UCB, and show that it enjoys near-optimal time-independent guarantees with
respect to this novel satisficing regret measure. The proof of this bound is shown confined to the
two-armed setting. However, we present experiments that indicate that the analysis should generalize.
These experiments compare the performance of uncertain-UCB and SAT-UCB (Michel et al., 2023)
against the baseline UCB1 (Auer, 2002) in terms of the standard pseudo-regret, the satisficing regret
of Michel et al. (2023), and our novel satisficing regret.

1.1 Related Literature

Reverdy et al. (2017) introduced the notion of satisficing bandits in the Bayesian setting. Following
the same approach in a frequentist setting, Hüyük & Tekin (2021) propose a reduction of the satisficing
bandit setting to bandits with lexicographically ordered objectives. In this setting, they show that

their algorithm achieves a satisficing pseudo-regret bound of order O
(∑

i:∆̃i>0

log 1

∆̃i

∆̃i

)
. We also

note that similar results can be obtained when running the algorithm of Garivier et al. (2019) using
the satisficing threshold instead of the optimal mean reward to tune the algorithm.

Recently, the first generalization of satisficing bandits to reinforcement learning has been made by
Hajiabolhassan & Ortner (2023). They consider the reinforcement learning problem in a communi-
cating MDP with finite state and action spaces and propose the SAT-RL algorithm, which achieves
time-independent satisficing regret when a satisficing policy exists.

For the lower bounds, Bubeck et al. (2013, Theorem 5) and Garivier et al. (2019, Theorem 7) consider
a two-player bandit game where the mean of the best arm µ∗ is known and show that an asymptotic
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dependency on 1
∆ is unavoidable, even when the gaps are unknown. We generalize this result to

K-armed bandits problems where the learner knows the satisficing threshold S, which includes
knowledge of µ∗ in a regular bandit game as a special case, where S = µ∗.

2 Problem Setting and Notation

We consider a bandit problem with K arms played over the course of T rounds. Following the setting
proposed by Michel et al. (2023), we assume that the environment generates rewards by sampling
them from the class of sub-Gaussian distributions. We recall that for a sub-Gaussian distribution ν
with mean µ and empirical estimate µ̂n computed from n samples it holds for any ε > 0:

P [µ̂n > µ+ ε] ≤ e−nε2/2,

P [µ̂n < µ− ε] ≤ e−nε2/2. (1)

We note that any bounded distribution is sub-Gaussian and refer to Vershynin (2018) for further
properties of sub-Gaussian distributions.

In the classic multi-armed bandit problem, the performance of the learner after T rounds is evaluated
in terms of the pseudo-regret, defined as:

RT :=
∑

i:∆i>0

∆i E [Ni(T )] , (2)

where ∆i := µ∗ − µi is the gap between the optimal mean reward and the mean reward of arm i, and
Ni(T ) denotes the number of times arm i is played in T rounds. In this work, we consider variations
of the bandit problem where the focus is placed on achieving a sufficient performance rather than
an optimal one. In Section 3, we focus on the setting as defined by Michel et al. (2023), where the
learner knows the satisficing threshold S ahead of time, and performance is evaluated in terms of the
satisficing pseudo-regret (short S-pseudo-regret), defined as:

RS
T :=

∑
i:∆̃i>0

∆̃i E [Ni(T )] , (3)

where ∆̃i := max {S − µi, 0} measures the gap between an insufficient arm i and the threshold S.
Furthermore, we also define ∆∗ := µ∗ − S as a shorthand for the gap between the mean reward of
the best arm and the threshold S.
Remark 2.1. As above, in the following we use the terms sufficient (resp. insufficient) to denote
whether the expected reward of an arm is above (resp. below) the threshold S. We also use the term
unbalanced gaps to refer to a problem setting where the order of magnitude of ∆∗ or ∆̃i is very
small compared to ∆i. We also use the following notations: Pν (resp. Eν) defines the probability
(respectively the expectation) of an event happening in the bandit problem ν.
Remark 2.2. It is easy to see that when all the arms are below the threshold S and mini (S − µi) =
∆ > 0, then

RS
T ≥ ∆T.

This means that studying the S-pseudo-regret only makes sense when there exists at least one
sufficient arm.

Definition 2.3. A bandit problem is S-realizable if there exists an arm i ∈ [K] such that µi > S.

3 A Lower Bound for the Satisficing Pseudo-Regret

In this section, we focus on the setting proposed by Michel et al. (2023) and derive a generalized
lower bound that holds for K arms and does not assume that the gaps ∆∗ and ∆̃i are equal. This
result highlights that the algorithms of Michel et al. enjoy tighter guarantees than initially anticipated,
even though there is still a gap when the rewards are unbalanced.

We introduce the following definitions to formalize this result.
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Definition 3.1. An algorithm is considered stable if for any bandit problem ν and arms i, j ∈ [K]
with µi = µj it holds for all t:

E [Ni(t)] = E [Nj(t)] .

This constraint is quite mild as most algorithms are stable by permutation over the arms. We also use
another definition, which ensures that insufficient arms are only played a constant number of times.

Definition 3.2. An algorithm is S-satisficing if for any sub-Gaussian bandit problem ν there exists a
constant C such that:

lim
T→∞

RS
T ≤ C.

This constant C can be problem-dependent and in particular may scale with ∆i or ∆̃i.

With these definitions, we can move on to state the following result, whose proof follows Garivier
et al. (2019, Theorem 7).

Theorem 3.3. For any stable S-satisficing algorithm, there exists an S-realizable bandit problem
with sub-Gaussian distributions for which this algorithm admits the following lower bound:

lim
T→∞

RS
T ≥

∑
i:∆̃i>0

∆̃i

∆2
i

.

Proof of Theorem 3.3. We consider a bandit problem ν with a unique sufficient and optimal arm i∗,
where all the arms follow Gaussian distributions: for all i ∈ [K], νi = N (µi, 1). In this proof, we
use KL(P,Q) to denote the standard Kullback–Leibler divergence between distributions P and Q
and kl(p, q) to denote the Kullback–Leibler divergence between two Bernoulli distributions with
respective parameters p and q.

Following the definition of the S-pseudo-regret in Equation (3), we want to lower bound the number
of times each suboptimal i arm is played in ν. To do so, for each such arm i we consider another
bandit problem ν′ defined such that ∀j ̸= i, ν′j = νj and ν′i = νi∗ . This choice of ν′ fulfills two
important properties. First, the two problems differ only on arm i, meaning that:

K∑
j=1

Eν [Nj(T )] KL(νj , ν
′
j) = Eν [Ni(T )] KL(νi, ν

′
i) ≥ kl(Eν [Z],Eν′ [Z]), (4)

where the last step follows from Garivier et al. (2019, Equation 6) and holds for any bandit problems
ν, ν′ and σ(IT )-measurable random variables Z with values in [0, 1], where IT contains all the
past information obtained by the algorithm up to round T . This holds in particular when picking
Z = Ni(T )/T , as we will do in the following.

As νi = N (µi, 1) and ν′i = N (µi∗ , 1), we can ensure that KL(νi, ν
′
i) =

∆2
i

2 . Combining these two
statements with Equation (4), we obtain:

∆2
i

2
Eν [Ni(T )] = Eν [Ni(T )] KL(νi, ν

′
i) ≥ kl

(
Eν [Ni(T )]

T
,
Eν′ [Ni(T )]

T

)
. (5)

Then, in setting ν′, we know that both arm i and i∗ have the same distribution, meaning that
Definition 3.1 ensures that Eν′ [Ni(T )] = Eν′ [Ni∗(T )]. As these arms are the two only sufficient
arms and our algorithm is S-satisficing, all the other arms are played at most a constant number of
times and we have:

lim
T→∞

Eν′ [Ni(T )]

T
=

1

2
. (6)
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Rearranging Equation (5) and taking the limit on T gives:

lim
T→∞

Eν [Ni(T )] ≥
2

∆2
i

lim
T→∞

kl

(
Eν [Ni(T )]

T
,
Eν′ [Ni(T )]

T

)
≥ 4

∆2
i

lim
T→∞

(
Eν [Ni(T )]

T
− Eν′ [Ni(T )]

T

)2

≥ 4

∆2
i

(
lim

T→∞

Eν [Ni(T )]

T
− lim

T→∞

Eν′ [Ni(T )]

T

)2

≥ 4

∆2
i

(
0− 1

2

)2

=
1

∆2
i

,

where the first step reorganizes Equation (5), the second step applies Pinsker’s inequality, which
ensures that for any p, q ∈ [0, 1], kl(p, q) ≥ 2(p− q)2. Then, the third step uses the properties of the
limit: as both limT→∞

Eν [Ni(T )]
T = 0 and limT→∞

Eν′ [Ni(T )]
T = 1

2 are finite, and the square function
is continuous, we can move the limits inside the square function.

Repeating this bound for all suboptimal arms finishes the proof.

4 A Novel Definition of the Satisficing Pseudo-Regret

In this section, we consider a novel variation of the satisficing pseudo-regret, which measures the
gaps between the smallest sufficient arm µ̄ = mini:µi>S µi and the insufficient arms:

R̄S
T =

∑
i:∆̃i>0

(µ̄− µi)E [Ni(T )] . (7)

We note that by construction, this novel satisficing regret is always larger than the S-pseudo-regret
of Michel et al. (2023), and no larger than the standard pseudo-regret. It offers a smooth transition
between the realizable case and the non-realizable case. This definition is particularly interesting in
cases where there exists a single sufficient arm, as then µ̄ = µ∗, and for all insufficient arms j we
have µ̄ − µj = ∆j and R̄S

T = RT , meaning that the novel satisficing regret matches the standard
pseudo-regret. Furthermore, when the gaps are balanced, both definitions of satisficing regret are
almost equivalent and only differ by a small constant factor.

4.1 Lower bound

In this section, we present a lower bound for this novel satisficing pseudo-regret.

Theorem 4.1 (Lower Bound for Two Arms). For any S-satisficing algorithm, there exist two-armed
bandit problems ν and ν′ and a time horizon T such that for all t ≥ T :

max
(
R̄S

t (ν), R̄S
t (ν

′)
)
≥

max
{
1, log ∆

∆∗

}
8∆

,

where ∆∗ is the gap between the best arm and the threshold and ∆ is the sub-optimality gap between
the two arms.

Proof. Consider a two-armed bandit problem ν and a threshold S where the arms follow Gaussian
distributions such that νi = N (µi, 1) for i = 1, 2, and the means fulfill µ1 = S + ∆∗ and
µ2 = µ1 −∆ < S.

We also consider a modified bandit problem ν′ such that µ′
1 = S −∆∗ and µ′

2 = µ′
1 +∆.

We want to show that for T sufficiently large, no algorithm can achieve low regret on both instances
simultaneously. Let T and α > 0 be constants that we will set later.

5



For any instance of a two-player bandit game and any learning algorithm, after logα
4∆2 + 1

4∆2
∗
+ 1

rounds, exactly one of these conditions hold:

N1

(
logα

4∆2
+

1

4∆2
∗

)
>

1

4∆2
∗︸ ︷︷ ︸

Condition 1

or N2

(
logα

4∆2
+

1

4∆2
∗

)
>

logα

4∆2︸ ︷︷ ︸
Condition 2

.

If the second condition holds for the bandit game ν, then R̄S
T (ν) > logα

4∆ follows and our result
trivially holds. Thus we want to show that when the first condition holds we cannot obtain low regret
for the bandit game ν′.

Consider a time horizon T such that N1(T ) = 1
4∆2

∗
and N2(T ) < logα

4∆2 . Under Condition 1, we
know that such T exists.

We recall that ∀γ > 0, ∀ ν̄ ∈ {ν1, ν2} and ∀i ∈ {1, 2},

Eν̄ [Ni(T )] ≥ γ Pν̄ [Ni(T ) > γ]. (8)

Following Theorem 14.2 of Lattimore & Svepesvári (2020), we have:

Pν [N1(T ) < γ] + Pν′ [N1(T ) ≥ γ] ≥ 1

2
exp (−KL(ν, ν′))

=
1

2
exp

(
−
(
Eν [N1(T )]

4∆2
∗

2
+ Eν′ [N2(T )]

4∆2

2

))
≥ 1

2
exp

(
−
(
1

2
+

1

2
logα

))
≥ 1

2
exp (− logα)

=
1

2α
,

where the second step follows from Lemma 15.1 of Lattimore & Svepesvári (2020) and Proposi-
tion A.2 in the appendix, where we note that the gaps between the two distributions are 2∆∗ and
2∆ − 2∆∗ ≥ 2∆, respectively. Then, the third step uses the value of N1(T ) we picked, and as
exp(−x) is a decreasing function, we can lower bound the second sum by picking an upper bound for
Eν′ [N2(T )] ≥ logα

4∆2 . The fourth step uses that exp(−x) is a decreasing function and upper bounds
1
2 + 1

2 logα by logα, which holds for any α such that logα ≥ 1.

We pick γ = 1
4∆2

∗
so that Pν [N1(T ) <

1
4∆2

∗
] = 0 by definition of T , and we deduce that Pν′ [N1(T ) ≥

1
4∆2

∗
] ≥ 1

2α . Combining this result with Equation (8), we have:

R̄S
T (ν

′) = ∆Eν′ [N1(T )] ≥
1

2α

∆

4∆2
∗
.

This result, combined with our initial assumption, ensures that for all α such that logα ≥ 1:

max
(
R̄S

T (ν), R̄S
T (ν

′)
)
≥ 1

2

(
R̄S

T (ν) + R̄S
T (ν

′)
)
≥ 1

8

(
logα

∆
+

1

2α

∆

∆2
∗

)
. (9)

Then, we note that choosing α such that 2α logα = ∆2

∆2
∗

would maximize the right hand side of

Equation (9). Using our condition logα ≥ 1, we deduce that ∆2

∆2
∗
= α logα ≤ α2. This means that

choosing α such that logα = max
{
1, log ∆

∆∗

}
both fulfills the condition logα ≥ 1 and is close to

the optimal choice of α without the constraint logα ≥ 1. We deduce that:

max
(
R̄S

T (ν), R̄S
T (ν

′)
)
≥

max
{
1, log ∆

∆∗

}
8∆

,

which finishes the proof.
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4.2 Upper Bound

We propose the novel uncertain-UCB algorithm shown as Algorithm 1. Following the structure
of the UCB1 algorithm, the key difference between both methods lies in the construction of the
upper confidence bounds: instead of using the current step count t in the confidence intervals (cf.
Equation 12 below), we use a proxy n0(t), called the number of uncertain rounds. This value, defined
in Equation (10), presents the interesting characteristic of only increasing when the learner plays
an arm whose empirical estimate is not sufficiently far above the threshold S. This means that as
long as the learner cannot be reasonably certain that the arms that are played are satisficing, n0(t)
keeps on increasing and remains close to t. During this phase, the algorithm behaves like the classic
UCB1. Once the algorithm plays arms that are sufficiently far above the threshold, the number of
uncertain rounds n0(t) stops increasing and the upper confidence bounds of the arms stop growing.
This approach slows the exploration of all arms, and in particular of insufficient arms, which allows
the algorithm to achieve a time-independent satisficing regret.

Algorithm 1: uncertain-UCB
Input: number of arms K, satisficing threshold S.
Play each arm once, i.e., for time steps t = 1, . . . ,K choose i(t) = t.
for t = K + 1, . . . do

Compute

n0(t) =
∑
τ<t

I

[
µ̂i(τ)(τ) < S +

√
C2

log ni(τ)(τ)

ni(τ)(τ)

]
, (10)

∀i ∈ [K] : ui(t) = µ̂i(t) +

√
C1

log ni(t) + log n0(t)

ni(t)
, (11)

where µ̂i(t) is the empirical estimate and ni(t) the count of arm i at time t.
Play i(t) = argmaxi∈[K] ui(t).
Observe ri(t)(t) and update the empirical estimate µ̂i(t).

end for

Theorem 4.2. For any S-realizable bandit problem with means µi ∈ [0, 1], uncertain-UCB with
C1 ≥ 4 and C2 ≥ 6 satisfies for all T > 1,

R̄S
T ≤ O

 1

∆2

(
log

1

∆∗
+ log

1

∆2

)
+
∑
κ≥4

κ∆2κ−3
∗ log

1

∆∗

 .

The sum in the bound converges for all ∆∗ < 1, and empirical experiments presented in Section 5
show that small values of ∆∗ don’t seem to affect the behavior of the algorithm noticeably, which
suggests that the algorithm obtains a smaller dependency on 1

∆∗
. The proof of Theorem 4.2 is given

in Appendix B.

5 Experiments

In this section, we provide some experiments to compare the uncertain-UCB algorithm against the
SAT-UCB algorithm. Here uncertain-UCB is run using C1 = 4 and C2 = 6. We also use the UCB1
algorithm as defined by Auer (2002) using index values

ui(t) = µ̂i(t) +

√
2
log t

ni(t)
(12)

in these experiments to serve as a baseline.

Our experiments are run with eight arms and are repeated 10 times. The rewards are sampled
from Bernoulli distributions with respective means [1, 0.875, 0.75, 0.625, 0.5, 0.375, 0.25, 0.125].
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Figure 1: First experiment, with four sufficient arms and four insufficient arms and evenly balanced
gaps. The plots are sorted from the largest regret measure to the smallest.

For each of the algorithms, we plot the empirical regret, the empirical satisficing pseudo-regret, and
the empirical novel pseudo-regret. The plots show the average across the 10 runs, and the shaded
areas represent the standard deviation across these runs.

In the first experiment presented in Figure 1, the threshold is the mean between the fourth and fifth
best arms: we have four sufficient arms and four insufficient arms, and the gaps are evenly balanced
around the threshold. As expected, both notions of satisficing regret behave similarly. We observe
that SAT-UCB has an interesting behavior: when evaluating the pseudo-regret, this algorithm suffers
linear regret, whereas it enjoys near-constant satisficing regret. This suggests that the algorithm
identifies and plays satisficing arms fast, but does not perform further exploration to find a better, and
possibly optimal arm. As expected, UCB1 behaves similarly across all regret measures and the same
holds for and uncertain-UCB. It is worth noting that UCB1 outperforms uncertain-UCB, which
we conjecture is due to the term 4(log ni(t) + log n0(t)) being large compared to 2 log t in the initial
rounds, which forces more exploration.

We then performed a second experiment highlighting the limits of the SAT-UCB algorithm. We
consider a problem with the same arms as before, but instead of having S be centered in between four
sufficient and four insufficient arms, we consider two new cases: one where S is just below the best
arm, and one where the threshold is just below the third-best arm. In both cases, ‘just below’ defines a
gap of 0.001 between the threshold and the corresponding arm, which is orders of magnitude smaller
than the gaps between the arms. As the three performance measures provided similar results, we only
display the results for the novel satisficing regret in Figure 2. These results highlight that SAT-UCB
scales with ∆−1

∗ , and thus its performance appears linear as the time horizon needed to learn ∆−1
∗

is large compared to the time horizon to distinguish between the arms without use of the threshold.
This experiment highlights that arms being close to the threshold, and in particular of the best arm
are especially challenging for the SAT-UCB algorithm and show use-cases where the robustness of
algorithms such as uncertain-UCB is valuable.

6 Discussion

We characterized the complexity of the satisficing bandit problem by deriving new lower bounds for
the problem, highlighting that satisficing can be a difficult problem to optimize for when the gaps
are unbalanced. We proposed a novel definition of satisficing regret and showed both upper and
lower bounds in the two-armed case. Experiments highlight that our new uncertain-UCB algorithm
should perform well in the standard K-arms bandits problem.

The main direction for future work is to generalize the analysis of this algorithm to more than two
arms.
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Figure 2: For the third experiment we considered two settings. The first (shown on the left) has a
single sufficient arm and seven insufficient arms, where the threshold is just below the best arm (with
a gap of 0.001 with that arm). The second setting has (shown on the right) has three sufficient arms
and five insufficient arms, where the threshold is very close to the third best arm (with a gap of 0.001
between the third-best arm and the threshold, and ∆∗ = 0.25 + 0.001). In both examples, the gaps
are unbalanced around S. Both results are plotted in terms of the novel satisficing regret.
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A Useful Results

We recall some straightforward results useful in the remainder of the paper.

Proposition A.1. Let an and bn be two functions of n such that for all n > 0, we have an, bn ≥ 0.
Then we have:

1.
∑

n>0 e
an−bn ≤

∑
n>0 e

an ,

2.
∑

n1,n2>0 e
an1

+bn2 ≤
∑

n1>0 e
an1

∑
n2>0 e

bn2

This result is standard and stated here for completeness.

Proposition A.2. Consider ν1 = N (µ1, 1) and ν2 = N (µ2, 1) two uni-variate Gaussian distribu-
tions with unit variance, such that |µ1 − µ2| = ∆. Then,

KL(ν1, ν2) =
∆2

2
.

B Analysis of the uncertain-UCB Algorithm

While the full proof only holds in the two-armed case due to limitations in the analysis of Lemma B.5
below, we highlight that some parts of the analysis are given for the general K-armed setting.

We consider an S-realizable bandit problem and assume without loss of generality that µ1 > S > µ2

in the two-armed case. We also decompose the number of uncertain rounds and set for any arm j:

n0,j(t) :=
∑
τ<t

I

[
Iτ = j, µ̂i(τ)(τ) < S +

√
C2

log ni(τ)(τ)

ni(τ)(τ)

]
. (13)

Remark B.1. When needed, we use the notation µ̂i,n to denote the empirical mean of any arm i built
from n samples rather than the µ̂i(t) notation, which represents the empirical mean of arm i at round
t.

The key difference between the standard analysis of UCB1 and the present analysis of uncertain-UCB
comes from handling the uncertain rounds. To contribute to the count of uncertain rounds, an arm has
to be played and remain uncertain, and these two cases cannot happen simultaneously too often. For
the arms closest to the best arm, we show that with high probability, the number of times that arm is
uncertain is bounded by a constant.

Lemma B.2. When Algorithm 1 is run with C2 ≥ 6, the probability that sufficient arm j contributes
to more than n rounds of the uncertain rounds is bounded as:

P [n0,j(T + 1) > n] ≤
2 exp

(
−(n− 1)∆̄2

j/2
)

∆̄2
j

,

where ∆̄j := µj − S.

For the other arms, the number of times they are uncertain is trivially bounded by the number of
times they are played. However, we also show that insufficient arms are played almost exclusively
during uncertain rounds.

Lemma B.3. When Algorithm 1 is run with C2 ≥ 6, the probability that after T rounds insufficient
arm i has been played in more than n rounds that are not uncertain is bounded as:

P [ni(T + 1)− n0,i(T + 1) > n] ≤ 2

nC2/2−1
.
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Then, the number of times an insufficient arm i is played can be decomposed as:

T∑
t=1

P [i(t) = i]

≤ Ni +

T∑
t=1

P [ni(t) > Ni, i(t) = i]

≤ Ni +

T∑
t=1

P [i(t) = i, ni(t) > Ni, ui∗ ≤ µi∗ −∆i/2]︸ ︷︷ ︸
Cases where the best arm i∗ under-performs

+

T∑
t=1

P [i(t) = i, ni(t) > Ni, ui ≥ µi +∆i/2]︸ ︷︷ ︸
Cases where arm i over-performs

,

(14)

where each term can be bounded according to the following to lemmas separately. Proofs of the
lemmas are given in the following section.

Lemma B.4. Consider any sub-Gaussian K-armed bandit problem. Using Algorithm 1 with C1 ≥ 4
and C2 ≥ 6, for any insufficient arm i and any Ni ≥ 1, we have:

T∑
t=1

P [i(t) = i, ni(t) > Ni, ui∗ ≤ µi∗ −∆i/2] ≤
21

∆2
i

+ 16.

Lemma B.5. Consider any sub-Gaussian two-armed bandit problem. Using Algorithm 1 with C1 ≥ 4

and C2 ≥ 6, if N2 ≥ 48
∆2

2
C1 log

(
3
log 1

∆∗
∆2

∗

)
+ 144C1

∆2
2

log
(

48C1

∆2
2

)
, then

T∑
t=1

P [n2(t) > N2, i(t) = 2, u2(t) ≥ µ2 +∆2/2] ≤
32

∆2
2

+
∑
κ≥4

κ∆2κ−2
∗ log

1

∆∗
.

Combining these two results allows to prove Theorem 4.2.

Proof of Theorem 4.2. Decomposing the number of times suboptimal arm 2 is played using Equa-
tion (14) as well as Lemma B.4 and Lemma B.5, we deduce that:

T∑
t=1

P [i(t) = 2]

≤ 48

∆2
2

C1 log

(
3
log 1

∆∗

∆2
∗

)
+

144C1

∆2
2

log

(
48C1

∆2
2

)
+

21

∆2
2

+ 16 +
32

∆2
2

+
∑
κ≥4

κ∆2κ−2
∗ log

1

∆∗

= O

 1

∆2
2

(
log

1

∆∗
+ log

1

∆2

)
+
∑
κ≥4

κ∆2κ−2
∗ log

1

∆∗

 .

Plugging this bound in the definition of pseudo-regret, which coincides with the definition of the
novel satisficing regret, finishes the proof.
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B.1 Proofs of the Lemmas

B.1.1 Properties of the Uncertain Rounds

Proof of Lemma B.2. For any sufficient arm j, we set ∆̄j := µj − S and have:

P [n0,j(T + 1) > n]

= P

[
∃t : i(t) = j, n0,j(t) = n, µ̂j(t) < S +

√
C2

log nj(t)

nj(t)

]

≤
∑
nj≥n

P

[
∃t : i(t) = j, nj(t) = nj , µ̂j(t) < S +

√
C2

log nj

nj

]

≤
∑
nj≥n

exp

−nj

(
∆̄j +

√
C2

lognj

nj

)2
2


≤
∑
nj≥n

exp

(
−
nj∆̄

2
j

2

)

≤
2 exp

(
−(n− 1)∆̄2

j/2
)

∆̄2
j

.

The first step uses the definition of n0,j . As we don’t know how many times j is played, the second
step takes a union bound on all possible values of nj(t), noting that nj(t) ≥ n0,j(t) = n. In
the third step, we use the fact that our rewards are sub-Gaussian. In the fourth step, we simplify
using that exp(−x) is a decreasing function of x and that (a + b)2 ≥ a2 + b2 ≥ a2 for a, b ≥ 0.
The last step bounds the sum by an integral, as for any c > 0, we have

∑
ni≥n exp(−cni) ≤

limx→∞
∫ x

n−1
exp(−cni)dni =

exp(−c(n−1))
c .

Proof of Lemma B.3. For any insufficient arm i:

P [ni(T + 1)− n0,i(T + 1) > n]

≤
∑
ni≥n

P

[
∃t : i(t) = i, ni(t) = ni, µ̂i(t) ≥ S +

√
C2

log ni

ni

]

≤
∑
ni≥n

P

[
∃t : i(t) = i, ni(t) = ni, µ̂i(t) ≥ µi +

√
C2

log ni

ni

]

≤
∑
ni≥n

exp

(
−C2 log ni

2

)
≤ 2

nC2/2−1
.

The first step counts the number of rounds where arm i is played and that round is not uncertain, and
we use a union bound on the possible values of ni(t). In the second step, we upper bound by a looser
condition as S ≥ µi. This allows the use of the properties of sub-Gaussian distributions. To finish the
proof, we use that C2/2 ≥ 2 so 1

n
C2/2
i

can be integrated, and we upper bound the sum by an integral∑
ni≥n

1

n
C2/2
i

≤ limx→∞
∫ x

n−1
1

n
C2/2
i

= 1
(C2/2−1)(n−1)C2/2−1 ≤ 1

(n−1)C2/2−1 ≤ 2
nC2/2−1 .
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B.1.2 Handling the Insufficient Arms

Proof of Lemma B.4. For any insufficient arm i:

T∑
t=1

P [i(t) = i, ni(t) > Ni, ui∗(t) ≤ µi∗ −∆i/2]

=

T∑
t=1

P

[
i(t) = i, ni(t) > Ni, µ̂i∗(t) +

√
C1

log ni∗(t) + log n0(t)

ni∗(t)
≤ µi∗ −∆i/2

]

≤
T∑

t=1

P

[
i(t) = i, ni(t) > Ni, µ̂i∗(t) +

√
C1

log ni∗(t) + log n0,i(t)

ni∗(t)
≤ µi∗ −∆i/2

]

≤
T∑

t=1

P

[
i(t) = i, ni(t) > Ni, µ̂i∗(t) +

√
C1

log ni∗(t) + log ni(t)/2

ni∗(t)
≤ µi∗ −∆i/2

]

+

T∑
t=1

P [i(t) = i, ni(t) > Ni, n0,i(t) < ni(t)/2] . (15)

The first step replaces ui∗(t) by its definition. The second step lower bounds n0(t) ≥ n0,i(t).
In the third step, we decompose that probability by taking the cases where n0,i(t) ≥ ni(t)/2 or
n0,i(t) < ni(t)/2.

For the first term of Equation (15), we have:

T∑
t=1

P

[
i(t) = i, ni(t) > Ni, µ̂i∗(t) +

√
C1

log ni∗(t) + log ni(t)/2

ni∗(t)
≤ µi∗ −∆i/2

]

≤
T∑

ni=Ni+1

T∑
ni∗=1

P

∃t : µ̂i∗(t) = µ̂i∗,n∗
i
, µ̂i∗,n∗

i
+

√
C1

log ni∗ + log ni/2

ni∗
≤ µi∗ −∆i/2


≤

T∑
ni=Ni+1

T∑
ni∗=1

P

∃t : µ̂i∗(t) = µ̂i∗,n∗
i
, µ̂i∗,n∗

i
≤ µi∗ −∆i/2−

√
C1

log ni∗ + log ni/2

ni∗


≤

T∑
ni=Ni+1

T∑
ni∗=1

exp

−ni∗

2

∆i/2 +

√
C1

log ni∗ + log ni/2

ni∗

2


≤
T∑

ni=Ni+1

T∑
ni∗=1

exp

(
−ni∗

8
∆2

i −
C1

2
log ni∗ − C1

2
log

ni

2

)

≤
T∑

ni∗=1

exp
(
−ni∗

8
∆2

i

) T∑
ni=Ni+1

exp

(
−C1

2
log

ni

2

)
≤ 21

∆2
i

,

where we first take an upper bound by taking all the possible values ni∗ and ni instead of summing
solely on t. Removing the unnecessary dependencies, we can apply our sub-Gaussian assumption
as defined in Equation (1) and simplify using that exp(−x) is a decreasing function of x and that
(a+ b)2 ≥ a2 + b2 for a, b ≥ 0. Using Proposition A.1, we can decompose the result into a product
of two convergent sums. The first sum is bounded by 8

∆2
i

and the second can be loosely bounded as∑T
ni=Ni+1 exp

(
−C1

2 log ni

2

)
=
∑T

ni=Ni+1

(
2
ni

)C1/2

≤
∑T

ni=2

(
2
ni

)2
≤ 2.6 when C1 ≥ 4 (note

that we are summing from ni = 2, so each term 0 < 2
ni

≤ 1 and thus we take an upper bound by
lower bounding the exponent).
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For the second sum in Equation (15):

T∑
t=1

P [i(t) = i, ni(t) > Ni, n0,i(t) < ni(t)/2]

≤
T∑

t=1

P [i(t) = i, ni(t) > Ni, n0,i(t) < ni(t)− ni(t)/2]

≤
T∑

ni=Ni+1

P [ni(T + 1)− n0,i(T + 1) > ni/2]

≤
T∑

ni=Ni+1

2

(ni/2)C2/2−1

≤ 16,

where we rewrite ni(t)/2 = ni(t)− ni(t)/2. Furthermore, ni(t)− n0,i(t) is an increasing function
of t, so we can rearrange the terms and ni(t)− n0,i(t) is upper bounded by ni(T + 1)− n0,i(T +
1). Then, we take an upper bound by summing on all possible values of ni rather than on the
possible values of t. We can apply Lemma B.3 with n = ni/2. For any C2 ≥ 6, we have∑T

ni=Ni+1
2

(ni/2)C2/2−1 ≤
∑T

ni=Ni+1
2

(ni/2)2
= 8

∑T
ni=1

1
n2
i
≤ 16.

We conclude that for any Ni ≥ 1:

T∑
t=1

P [i(t) = i, ni(t) > Ni, ui∗ ≤ µi∗ −∆i/2] ≤
21

∆2
i

+ 16.

Proof of Lemma B.5. Without loss of generality, we assume that arm 1 is the optimal arm and arm 2
is sub-optimal. Then, we have:

T∑
t=1

P [n2(t) > N2, i(t) = 2, u2(t) ≥ µ2 +∆2/2]

=

T∑
t=1

∑
n2>N2

P

[
n2(t) = n2, i(t) = 2, µ̂2(t) +

√
C1

log n2(t) + log n0(t)

n2(t)
≥ µ2 +∆2/2

]

≤
T∑

t=1

∑
n2>N2

P

[
n2(t) = n2, i(t) = 2, µ̂2(t) +

√
C1

2 log n2(t) + log n0,1(T + 1)

n2(t)
≥ µ2 +∆2/2

]

≤
∑

n2>N2

P

µ̂2,n2
+

√
C1

2 log n2 + log n0,1(T + 1)

n2
≥ µ2 +∆2/2


≤

∑
n2>N2

P

µ̂2,n2
+

√
C1

2 log n2 + log(3N0,1)

n2
≥ µ2 +∆2/2


+
∑

n2>N2

∑
κ≥4

P

(κ− 1)N0,1 < n0,1(T + 1) ≤ κN0,1, µ̂2,n2
+

√
C1

2 log n2 + log(κN0,1)

n2
≥ µ2 +∆2/2


(16)
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≤
∑

n2>N2

P

µ̂2,n2
+

√
C1

2 log n2 + log(3N0,1)

n2
≥ µ2 +∆2/2


+
∑

n2>N2

∑
κ:n2≥κN0,1

P

[
(κ− 1)N0,1 < n0,1(T + 1) ≤ κN0,1, µ̂2,n2

+

√
C1

2 log n2 + log n2

n2
≥ µ2 +∆2/2

]
+
∑

n2>N2

∑
κ:n2<κN0,1

P [(κ− 1)N0,1 < n0,1(T + 1) ≤ κN0,1] , (17)

where the first step replaces ui(t) by its definition and the second step replaces n0(t). Then, we
re-index the sum in terms of ni rather than t. In Equation (16), we decompose the n0,1(T ) according
to its value compared to some constant N0,1. This sum is then decomposed again depending on
whether κ fulfills n2 ≥ κN0,1 or not.

We now bound each of the three terms in Equation (17) separately.

Focusing on the first sum and following the same approach as before, we re-index the sum by only
considering the values of ni(t) rather than all t.

∑
n2>N2

P

µ̂2,n2 +

√
C1

2 log n2 + log(3N0,1)

n2
≥ µ2 +∆2/2


≤

∑
n2>N2

exp{−n2∆
2
2/4 + 2C1 log n2 + C1 log(2N0,1)}

≤ 2
∑

n2>N2

exp{−n2∆
2
2/8}

≤ 16

∆2
2

when N2 is large enough. For this condition to hold, we need√
C1

2 log n2 + log(3N0,1)

n2
≥ ∆2/4. (18)

Choosing N0,1 =
log 1

∆∗
∆2

∗
, we note that the LHS of Equation (18) is a decreasing function of n2, and

so it is sufficient to find an initial value of n2 that fulfills this condition. Reorganizing the terms gives:

n2 ≥ argminn2

√C1
2 log n2 + log(3N0,1)

n2
≥ ∆2/4


⇔ n2 ≥ 16

∆2
2

C1 (2 log n2 + log (3N0,1)) (19)

To upper bound this quantity, we consider two cases: either n2 ≤ 3N0,1 or n2 > 3N0,1. When
n2 > 3N0,1 then Equation (19) implies:

n2 ≥ 48

∆2
2

C1 log (3N0,1) ≥
48

∆2
2

C1 log

(
3
log 1

∆∗

∆2
∗

)
.

If n2 ≤ 3N0,1 then we obtain from Equation (19):

n2 ≥ 48

∆2
2

C1 (log n2) . (20)
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This expression still needs to be solved for n2. To do so, we use the same approach as Rouyer
et al. (2022) and use W−1 to denote the product log function, as defined by Chatzigeorgiou (2013,
Theorem 1). We have that for any constant c ≥ e, the solution of n = c log n is n = −cW−1

(
− 1

c

)
.

Then,

−cW−1

(
−1

c

)
= −cW−1

(
− exp

(
− log

( c
e

))
− 1
)
≤ c

(
1 +

√
2 log

( c
e

)
+ log

( c
e

))
.

We can use this upper bound with c = 48C1

∆2
2

, and assuming that c ≥ e2, we have(
1 +

√
2 log

( c
e

)
+ log

( c
e

))
≤
(
1 +

√
2 log c+ log c

)
≤ 3 log c,

from which we deduce that:

n2 ≥ 144C1

∆2
2

log

(
48C1

∆2
2

)
. (21)

Combining Equation (20) and Equation (21) allows to pick

N2 =
48

∆2
2

C1 log

(
3
log 1

∆∗

∆2
∗

)
+

144C1

∆2
2

log

(
48C1

∆2
2

)
, (22)

which ensures that the terms in Equation (17) can be bounded properly.

Moving on to the second sum in Equation (17), this can be upper bounded by∑
n2>N2

P

[
µ̂2,n2

+

√
C1

2 log n2 + log n2

n2
≥ µ2 +∆2/2

]
≤

∑
n2>N2

exp{−n2∆
2
2/4 + 3C1 log n2}

≤ 2
∑

n2>N2

exp{−n2∆
2
2/8}

≤ 16

∆2
2

,

following the same approach as before.

Finally, for the last term in Equation (17) we have

∑
κ≥4

∑
n2:n2<κN0,1

P [(κ− 1)N0,1 < n0,1(T + 1) ≤ κN0,1]

≤
∑
κ≥4

κN0,1 exp{−(κ− 1)N0,1∆
2
∗}/∆2

∗

≤
∑
κ≥4

κN0,1∆
2κ−4
∗

≤
∑
κ≥4

κ
log 1

∆∗

∆2
∗

∆2κ−4
∗ ,

which converges when ∆∗ < 1.

To conclude, we proved that if N2 ≥ 48
∆2

2
C1 log

(
3
log 1

∆∗
∆2

∗

)
+ 144C1

∆2
2

log
(

48C1

∆2
2

)
, then

T∑
t=1

P [n2(t) > N2, i(t) = 2, u2(t) ≥ µ2 +∆2/2] ≤
32

∆2
2

+
∑
κ≥4

κ∆2κ−4
∗

log 1
∆∗

∆2
∗

.
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