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ABSTRACT

With recent advances in large language models (LLMs), there has been emerg-
ing numbers of research in developing Semantic IDs based on LLMs to enhance
the performance of recommendation systems. However, the dimension of these
embeddings needs to match that of the ID embedding in recommendation, which
is usually much smaller than the original length. Such dimension compression
results in inevitable losses in discriminability and dimension robustness of the LLM
embeddings, which motivates us to scale up the semantic representation. In this
paper, we propose Mixture-of-Codes, which first constructs multiple independent
codebooks for LLM representation in the indexing stage, and then utilizes the
Semantic Representation along with a fusion module for the downstream recom-
mendation stage. Extensive analysis and experiments demonstrate that our method
achieves superior discriminability and dimension robustness scalability, leading to
the best scale-up performance in recommendations.

1 INTRODUCTION

Recently, the emergence of large language models (LLM) (Dubey et al., 2024; Achiam et al., 2023)
sheds light in improving the recommendation systems via the semantic knowledge from LLM (Hou
et al., 2024; Bao et al., 2023). An intuitive practice is to simply project the LLM embeddings to
low-dimension embeddings via only MLPs into the recommendation systems for feature interactions.
However, such application is ineffective, largely due to the massive semantic gap between the
embedding spaces of LLM and recommendation systems (Lin et al., 2023; Pan et al., 2024).

Several works (Rajput et al., 2024; Singh et al., 2023) have proposed to derive Semantic IDs (i.e.,
codes) based on clustering methods such as VQ-VAE (Van Den Oord et al., 2017) or RQ-VAE (Lee
et al., 2022) to capture information from the LLM embedding. In particular, they first train an
auto-encoder with discrete codes and then apply these codes to downstream tasks such as retrieval or
ranking. Such methods aim to transfer knowledge from the LLM embedding space to recommendation
systems, utilizing the codes to capture the local structure of the original space. Besides, embedding
these codes in the downstream stage facilitates the effective training in an end-to-end manner.

Notably, the LLM embeddings usually have very large dimensions, ranging from 4,096 to
16,384 (Dubey et al., 2024). When generating the embeddings for these codes, their dimension needs
to match that of the recommendation IDs. However, the dimension in recommendation is usually
small due to the Interaction Collapse Theory (Guo et al., 2023). Therefore, the code embeddings are
also only able to span a low-dimension space. With one single semantic embedding as the semantic
representation, it may fail to capture the complex, high-dimensional structure of the original LLM
embeddings, lead to inevitable information loss and performance deterioration during the knowledge
transfer. This motivates us to study how to scale up the semantic representation effectively.

We delve into two approaches based on existing works, including Multi-Embedding (Guo et al., 2023)
and RQ-VAE (Lee et al., 2022), to scale up the semantic representation by either using one codebook
with multiple embeddings, or multiple hierarchical codebooks and embeddings. Nevertheless, the
analysis and empirical results demonstrate that the representations of these two methods are not
scalable in terms of discriminability and dimension robustness.

In this paper, we propose Mixture-of-Codes (MoC), a novel two-stage approach to effectively scale
up semantic representations for recommendation. First, we propose a Multi-Codebooks VQ-VAE
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method that learns multiple independent discrete codebooks in the indexing stage. Once we have
these codes for all items, we adopt a Mixture-of-Codes module to fuse the learnable embeddings of
multiple codes in the downstream recommendation stage. We use the name MoC to refer both the
second stage itself, as well as the whole two-stage approach. Comprehensive analysis shows that
our method successfully achieves scalability regarding discriminability, dimension robustness, and
performance. Our contributions can be summarized as follows:

• We pioneer a study on the scalability of semantic representation on transferring knowledge
from LLM to recommendation systems, and reveal that several baseline approaches fail to
scale up effectively.

• We propose a novel two-stage Mixture-of-Codes approach, which learns multiple codebooks
in the indexing stage based on LLM embeddings and then employs a Mixture-of-Codes
module to fuse the embeddings of multiple codes in the downstream recommendation stage.

• Comprehensive experiments on three public datasets show that our method successfully
achieves scalability regarding both discriminability, dimension robustness, and performance.

2 PRELIMINARIES

VQ-VAE. VQ-VAE first encodes the input x with an encoder E and then train a codebook to transform
embedding into discrete tokens. Formally, a codebook Z = {zk}Kk=1 is define as a finite set with
prototype vectors zk ∈ Rnz , where K is the codebook size and nz is the dimensionality of code
embeddings. Given the encoder output z := E(x) ∈ Rnz , VQ-VAE quantities the embedding with
the code whose embedding is nearest to z, that is,

zq = argmin
zk∈Z

∥z− zk∥22. (1)

Then the reconstruction is derived based on the quantized output zq and a decoder D: x̂ = D(zq).
The model and codebook can be trained end-to-end via the loss function

LVQ(E ,D,Z) = ∥x− x̂∥2 + ∥sg[zq]− z∥22 + ∥sg[z]− zq∥22 , (2)

where sg[·] denotes the stop-gradient operation, the first term Lrec = ∥x− x̂∥2 is a reconstruction
loss, the second term is the commitment loss that is used to force the encoder output zq commits to
the codewords and the bottleneck codewords are optimized by the third term. In practice, we perform
moving averages update (Van Den Oord et al., 2017) instead of adding auxiliary losses for stable
training of the codebook. Then the selected index can be used as Semantic IDs for clustering in the
context of the semantic codebook, therefore capturing local structure of the original embedding.

Semantic IDs for Feature Interaction. In recommendation system, feature interaction models how
different attributes from users and items influence each other to affect recommendation outcomes.
When incorporating the Semantic ID from quantization, the models treat the Semantic ID xsid as a
new feature field. The features are fed with other N features into the embedding layer Ei for each
field and subsequently into the feature interaction modules for prediction.

ei = E⊤
i 1xi , ∀i ∈ {1, 2, ..., N},

esid = E⊤
sid1xsid

,

h = I(e1, e2, ..., en, esid),

ŷ = F (h),

(3)

3 ON THE SCALING OF SEMANTIC REPRESENTATION

In this section, we first revisit the design of one single codebook for recommendation and discover
the information loss due to dimension compression. Based on this observation, we are motivated
to design scalable semantic representations and propose two quantitative metrics to measure the
information and dimension gain from scaling. Next, we conduct a detailed analysis of existing scaling
methods based on these metrics.
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Figure 2: Scalability on discriminability of various methods.

3.1 LIMINATION OF A SINGLE CODE

The original LLM embeddings span a high-dimensional space, e.g., ranging from 1,024 to 416,384
dimensions. (Dubey et al., 2024). When we build a semantic representation based on the LLM em-
beddings to transfer their knowledge to recommendation, the dimension of these representation needs
to match that of the recommendation ID embeddings. However, the dimension of recommendations
is usually no more than 256 due to the Interaction Collapse Theory (Guo et al., 2023), and hence is
much smaller than that of the LLM embeddings. Such dramatic dimension compression may result
in huge information loss.

To illustrate this empirically, we conduct a toy study based on the reconstruction error of the LLM
embeddings in a VAE-based generative model. As shown in Fig 1, we utilize a two-layer MLP
with 512 hidden units to reconstruct the original 4096-dimensional LLM embedding. When using
only single set of Semantic ID as input, the reconstruction error is extremely high, indicating the
significant information loss. However, the error drops significantly when we scale up the dimensions
via using multiple (i.e., 2x and 3x) independent codebooks. This demonstrates the original single
code embedding only preserves limited information of the LLM embeddings. Therefore, we aim to
scale up the semantic representation appropriately to preserve the rich information from the LLM,
thereby improving the performance of downstream recommendation tasks.

3.2 BASELINE APPROACHES TO SCALABLE SEMANTIC REPRESENTATION

Below we present two baseline approaches to scale up semantic representation based on Multi-
Embedding (Guo et al., 2023) and RQ-VAE (Lee et al., 2022).

Single Codebook with Multi-Embeddings. Inspired by the recent Multi-Embedding (Guo et al.,
2023) approach to scale up embeddings in recommendation systems, our first choice is to assign
multiple embeddings for each semantic ID. Specifically, we still learn only one single codebook during
the indexing stage, while we build M independent embeddings {e1sid, . . . , eMsid} in the downstream
stage. Formally, we have

eisid = (Ei
sid)

⊤1xsid
, ∀i ∈ {1, 2, ...,M},

h = I(e1, e2, ..., en, e
1
sid, ..., e

M
sid).

(4)

RQ-VAE (i.e., Multiple Hierarchical Codebooks and Multi-Embeddings). RQ-VAE is a common
practice for deriving Semantic IDs in recommendation systems (Rajput et al., 2024; Jin et al., 2023;
Zheng et al., 2024). It applies quantization on residuals at multiple levels with different codebooks.
The reconstructed target in the next level is the residual representation in the current level:

zi
q = argmin

zk∈Zi

∥zi − zk∥22,

zi+1 = zi − zi
q.

(5)

Due to the hierarchical design of RQ-VAE, the Semantic IDs obtained from the codebooks are highly
dependent and entangled. With M levels of hierarchical Semantic IDs {xsidi}Mi=1, it is practical to
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Figure 3: Normalized Mutual Information(NMI) of Semantic Representation with 7x scaling factor.
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Figure 4: Scalability of Dimension Robustness regarding different scaling factors. Each figure
presents the singular spectrum of the semantic representation at the given scaling factor.

utilize to scale the Semantic Representation as follows.

esidi
= (Esidi

)⊤1xsidi
, ∀i ∈ {1, 2, ...,M}

h = I(e1, e2, ..., en, esid1
, ..., esidM

).
(6)

3.3 MEASUREMENT ON SCALABILITY OF SEMANTIC REPRESENTATION

Below we present two ways to quantify the scalability of semantic representations, one from a
discriminability perspective and another from a dimension robustness perspective.
Definition 3.1 (Discriminability Scalability of Semantic Representation). With each scaling factors
from 1x to Mx, the discriminability of a Semantic Representation in the continuous space is defined
as the mutual information between its quantized representation Q(r) and the supervised label in the
downstream tasks Y , i.e., MI(Q(r), Y ).

Following previous approach (Jawahar et al., 2019), we apply K-means as the discrete method
for normalized mutual information (NMI) calculation and analyze the flatten embedding of the
concatenated Semantic Representations among different methods in Fig. 2. We present results with
respect to different scaling factors with 100 clusters and provide flattened embedding NMI under
varying cluster numbers in Fig. 1b. We observe that the discriminability of the ME does not increase
with the scaling factor and may even decrease slightly. This is because all these extra embeddings still
correspond to the same Semantic IDs from a single codebook, thus containing minimal additional
information and redundancy.

Regarding RQ-VAE, its discriminability also does not consistently increase with the scaling factor
due to the fact that the additional fine-grained Semantic IDs introduced at higher level contain
diminishing information. We illustrate this by comparing NMI across different Semantic IDs and
their representations in downstream tasks in Fig. 3. Another surprising observation from the results in
Fig. 3 is that the lowest level Semantic ID, i.e., SID 1, and its representation contain more information
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Figure 5: Comparison among Multi-Embedding VQ, RQ-VAE and Mixture-of-Codes. The codebooks
with deeper color contain more information relevant to the input data. (a) Multi-Embedding VQ builds
independent embeddings for a single set of semantic IDs and is equivalent to perform index copying for
downstream models. (b) RQ-VAE utilizes hierarchical codebooks and high-level semantic IDs are less
informative. (c) Our Mixture-of-Codes uses parallel codebooks to capture important semantics in the
original LLM space and employs a fusion network for better generalization in downstream tasks.

than the flattened embedding of all the Semantic IDs. We provide the NMI results across various
cluster numbers in Fig. 1c and observe that the NMI of SID 1 is consistently larger than that of the
flattened embedding when the cluster number exceeds 50, demonstrating that higher-level Semantic
IDs may hinder the generalization of lower-level Semantic IDs.

When scaling up the Semantic Representation, the interaction between low-frequency information
and high frequency becomes important as the dimension increases. Therefore, we propose a new
metric to measure the dimension robustness of the scaling Semantic Representation.

Definition 3.2 (Dimension Robustness Scalability of Semantic Representation). The dimension
robustness scalability of Semantic Representation can be measured by the singular spectrum of the
Semantic Representation under different scaling factors. A robust Semantic Representation should
have higher top singular values without suffering from dimension collapse.

We plot the singular spectrum of ME and RQ-VAE in different scaling factors in Fig. 4 to compare the
dimension robustness and its scalability between models. And we have the following observations.

Observation 1. RQ-VAE doesn’t suffer from dimensional collapse since that its long-tail singular
values don’t diminish. However, its top singular values are not large enough compared with ME.

Observation 2. ME has the largest top singular values. However, it suffers from dimensional collapse
since its long-tail singular values diminishes suddenly after index 250 in 5x and 275 in 7x setting.

We conclude with the following finding:

Finding 1. Existing methods such as ME and RQ-VAE are not scalable semantic representations
for recommendation regarding discriminability and dimension robustness.

4 METHOD

In this section, we propose Mixture-of-Codes (MoC) as a novel two-stage method to scale up semantic
representation. We first introduce multiple codebooks in the indexing stage to generate multiple sets
of Semantic IDs, and then present Mixture-of-Codes in the downstream recommendation modeling
stage for better knowledge transfer.

5
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Figure 6: The overall architecture of MoC Fusion. A bottleneck network is adopted for feature fusion in
the downstream stage.

4.1 MULTI CODEBOOKS FOR VECTOR QUANTIZATION

Motivated by the observation that multi-embedding does not provide new information due to the same
Semantic ID while RQ-VAE focuses on hierarchical indices that are less informative for downstream
tasks, we aim to uncover more information from the LLM embedding at a more fundamental level.
Specifically, instead of the hierarchical design of RQ-VAE, we utilize multiple parallel codebooks to
capture complementary information of the LLM embedding. Different codebooks project the hidden
embedding into various spaces and collaborate to extract information from the LLM embedding.
Formally, given encoder E , decoder D and N Codebooks {Zi}Ni=1, we perform an average over their
quantized embedding and the training loss is

LMoC(E ,D, {Zi}Ni=1) = ∥x− x̂∥2 + ∥sg[zq]− z∥22 + ∥sg[z]− zq∥22 ,
zq = AVG({zqi }

N
i=1),

(7)

where zq is the average quantization results and we select the corresponding indices as Semantic IDs.

4.2 MIXTURE-OF-CODES FOR IMPLICIT FUSION

For traditional mixtures of experts, a gating router is used to select some of the experts and perform
mixing based on the weights generated by the router with the help of the task-specific loss. However,
this approach is impractical in MoC since we do not train the codebooks in an end-to-end style, and
the embeddings are initialized and tuned in the downstream stage.

Therefore, we propose a fusion network in the downstream stage for implicit fusion of the codebooks.
Specifically, we employ a bottleneck network following the embedding layer to ensure information
flow across different features before the feature interaction modules, as shown in Figure 6. This
implicit fusion design is trained using task-specific loss and mixes the embeddings for better perfor-
mance, serving a role similar to the gating network. Formally, given N original attributes and M
Semantic IDs, we have

econcat = CONCAT(e1, ..., en, esid1 , ..., esidM ),

e′concat = econcat + econcat ·Wdown ·Wup,

e1, ..., en, esid1 , ..., esidM = SPLIT(e′concat),

(8)

where Wdown and Wup denotes the down and up projection layer, respectively.
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Table 1: Test AUC of different methods over various models. We report the test AUC results with 1x,
2x, 3x and 7x scaling factors.

Model Toys Beauty Sports

1x 2x 3x 7x 1x 2x 3x 7x 1x 2x 3x 7x

DeepFM
ME

0.7406
0.7403 0.7397 0.7390

0.6651
0.6651 0.6649 0.6638

0.6931
0.6942 0.6928 0.6917

RQ-VAE 0.7409 0.7405 0.7398 0.6676 0.6670 0.6687 0.6945 0.6932 0.6937
MoC 0.7408 0.7415 0.7418 0.6656 0.6674 0.6681 0.6931 0.6936 0.6953

DeepIM
ME

0.7404
0.7396 0.7404 0.7395

0.6648
0.6620 0.6635 0.6637

0.6931
0.6907 0.6910 0.6925

RQ-VAE 0.7401 0.7403 0.7404 0.6651 0.6660 0.6678 0.6918 0.6925 0.6938
MoC 0.7401 0.7417 0.7422 0.6641 0.6668 0.6691 0.6927 0.6935 0.6942

AutoInt+
ME

0.7415
0.7430 0.7419 0.7414

0.6630
0.6648 0.6630 0.6641

0.6911
0.6935 0.6930 0.6929

RQ-VAE 0.7430 0.7419 0.7418 0.6672 0.6642 0.6677 0.6934 0.6933 0.6915
MoC 0.7414 0.7420 0.7447 0.6661 0.6651 0.6689 0.6939 0.6926 0.6927

DCNv2
ME

0.7445
0.7445 0.7449 0.7459

0.6701
0.6717 0.6716 0.6722

0.6962
0.6955 0.6963 0.6976

RQ-VAE 0.7457 0.7457 0.7469 0.6719 0.6720 0.6726 0.6965 0.6966 0.6979
MoC 0.7462 0.7458 0.7474 0.6714 0.6730 0.6729 0.6970 0.6972 0.6989

4.3 IN-DEPTH SCALABILITY ANALYSIS OF MOC

Scalability of Discriminability We study the discriminability of MoC by the mutual information
between quantized representation and the label at various scaling factors in Fig. 3b. It can be observed
that the discriminability of MoC at 1x is comparable with that of RQ-VAE and much higher than
ME. Furthermore, the discriminability of MoC gets higher with larger scaling factors from 1x to 7x,
indicating that it has better scalability regarding discriminability.

Scalability of Dimension Robustness We plot the singular spectrum of MoC on various scaling
factors in Fig. 4., and find that it gets higher values on the low-index singular, compared to the
RQ-VAE, even though not as high as ME. Besides, its singular values on high-indices are also robust,
not diminishing as ME in 5x and 7x factors. In conclusion, the dimension of MoC are more robust
than ME and RQ-VAE when we scale up its representation.

Based on the observations above, we conclude with the following finding:

Finding 2. Our proposed MoC successfully enables scalable Semantic Representation regarding
both discriminability and dimension robustness.

5 EXPERIMENTS

5.1 SETUP

Datasets. We conduct experiments on three domains from Amazon review benchmark (He &
McAuley, 2016): Amazon-Beauty, Amazon-Sports, and Amazon-Toys. We follow LMINDEXER
(Jin et al., 2023) and keep the users and items that have at least 5 interactions to filter out unpopular
interacting behavior. Given textual description of items comprising of title, brand and categories,
we utilize LLM2Vec (BehnamGhader et al., 2024) with LLama3 (Dubey et al., 2024) as backbone
to obtain their LLM embeddings. Early stop strategy are adopted over 8/1/1 training/validation/test
splits of all the three datasets.

Implementation Details. We follow TIGER (Rajput et al., 2024) to set 256 as the codebook size
and 32 as the latent representation. The encoder in the indexing stage has three hidden layers of
size 512, 256 and 128 with ReLU activation. We evaluate the performance of DeepFM (Guo et al.,
2017), DeepIM (Yu et al., 2020), AutoInt+ (Song et al., 2019) and DCNv2 (Wang et al., 2021) in the
downstream tasks. We adpot the Adam optimizer with batch size 8012 and learning rate 0.001. All
the experiments are run across three trials with different seeds and the averaged results are reported.

5.2 OVERALL PERFORMANCE

We compare the three semantic scaling methods upon four representative CTR models, e.g., DeepFM,
DeepIM, AutoInt+ and DCN V2 on three public datasets. With the same number of IDs, our MoC
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(b) RQ-VAE correlation.
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(c) ME correlation.

Figure 7: Correlation analysis of different methods.

outperforms the baselines by a large margin, especially in scenarios with a larger number of IDs, e.g.,
7x. Specifically, with 7x scaling factor, all the four models benefits from MoC on Toys datasets and
surpass RQ-VAE by 0.20%, 0.18%, 0.29% and 0.05%, respectively.

More interestingly, in many scenarios, our MoC succeed in achieving scaling law regarding the
scaling factors, i.e., the performance increases when we include more Semantic Representations. In
contrast, ME suffers from performance degradation due to the redundant semantic information, while
RQ-VAE gain slight performance gain because of the less informative Semantic IDs at the high level.

5.3 CORRELATION BETWEEN MULTIPLE REPRESENTATION.

The Semantic Representation from different IDs have a deep influence on each other in downstream
tasks, and hence we analyze the correlation between different representations to measure the extent
of their similarity. Here we calculate Person correlation coefficient (Cohen et al., 2009) between
Semantic Representation esidi

and esidj
over n samples, and adopt dot product for multiplication of

embedding vectors:

rij =

∑n
k=1(e

k
sidi

− ēsidi
)(eksidj

− ēsidj
)√∑n

k=1(e
k
sidi

− ēsidi)
2
√∑n

k=1(e
k
sidj

− ēsidj )
2
.

As shown in Fig. 7, the Semantic Representation in ME are highly correlated with each other, i.e.,
many different Semantic Representation have strong correlation, i.e., representation 1 and 3, 4 and
6 are strongly correlated with each other. Such strong correlation makes the representation easily
influenced by each other, leading to unstable optimization and ineffective scalability. Regarding MoC
and RQ-VAE, the correlation between different Semantic Representation are low, as evidenced by the
low correlation score in the off-diagonal cells in Fig. 7.

5.4 MORE COMPARISON RESULTS WITH RQ-VAE

To further verify the information contained in the semantic IDs at each level, we provide a more
detailed comparison with RQ-VAE in terms of adding a single ID at each level in Fig. 8a and adding
multiple IDs starting from the lowest level in Fig. 8b. As the results in Fig. 8a indicate, adding
a single semantic ID at the low level of RQ-VAE provides a larger performance gain than at the
high level, proving that semantic IDs at the high level hold little information. In contrast, MoC
performs uniformly across various Semantic IDs and consistently show better performance than
RQ-VAE. When equipping multi Semantic IDs starting from the lowest level, MoC gains significant
improvements than RQ-VAE under different scaling factors, showcasing better generalization.

5.5 ABLATION ON MOC FUSION

We conduct an ablation study on MoC Fusion to verify the importance of mixing in the downstream
stages. We equip both RQ-VAE and MoC with the fusion module and surprisingly find that both
methods benefit from it when scaling up. We also examine the discriminability and dimension
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Figure 8: More comparison results with RQ-VAE.
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Figure 9: Discriminability scala-
bility of MoC Fusion.

Table 2: Ablation on MoC Fusion. The experiments are conducted
over Toys dataset with DeepFM as the backbone.

Method 2x 3x 7x

w/o w/ w/o w/ w/o w/

RQ-VAE 0.7409 0.7414 0.7405 0.7407 0.7398 0.7413
MoC 0.7409 0.7408 0.7404 0.7415 0.7416 0.7418 0 5 10 15 20 25 30

0.0
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20.0 MOC w/o Fusion

MOC w/ Fusion

Figure 10: Dimension robust-
ness scalability of MoC Fusion.

robustness scalability of MoC Fusion. In Fig. 9, it can be observed that the fusion module enhances
the overall discriminability scalability of MoC by mixing the features. In Fig. 10, we truncate the
singular spectrum and surprisingly find that the fusion module amplifies the principal components of
the Semantic Representation, resulting in significantly higher top singular values. Additionally, the
long-tail part is close to that of RQ-VAE and does not suffer from dimension collapse.

6 RELATED WORK

Discrete representation learning. Discrete representation is first introduced by (Van Den Oord et al.,
2017) and shows feasibility and great success in the field of generate models (Esser et al., 2021;
Lee et al., 2022; Rombach et al., 2022; Peebles & Xie, 2023; Mentzer et al., 2023). It utilize vector
quantization (VQ) to model distributions over discrete variables with a codebook and define a simple
uniform prior instead of Gaussian prior in VAE (Kingma, 2013) to avoid posterior collapse. RQ-VAE
(Lee et al., 2022) further introduces residual quantization for better minimization of reconstruction
error. FSQ (Mentzer et al., 2023) remove auxiliary losses and replace the vector quantizer in VQ-VAE
with a simple scalar quantization.

Semantic IDs. The discrete representation obtained through VQ-VAE can be employed as a semantic
clustering IDs, thus capturing the local structure of the LLM embedding to a certain extent. In the
context of the recommendation system, TIGER (Rajput et al., 2024) takes advantage of a hierarchical
quantizer (Lee et al., 2022) to convert items into tokens for generative recommendation and retrieval.
LC-Rec (Zheng et al., 2024) improves TIGER by incorporating knowledge from LLMs like LLama
(Touvron et al., 2023) and introducing instruction tuning tasks for effective adaptation to recommender
systems. LMINDEXER (Jin et al., 2023) learns the Semantic IDs in a self-supervised styles to obtain
the document’s semantic representations and their hierarchical structures.

7 CONCLUSION

In this paper, we investigate the scalability of semantic representation based on LLM for recommenda-
tion. We unveil that simple methods, such as using a single codebook with multiple embeddings and
scaling with hierarchical codebooks in RQ-VAE, do not scale effectively in Semantic Representation.
We propose a novel multiple codebooks method which learn multiple independent Semantic IDs in the
VQ-VAE based on LLM embeddings, and then employ these codebooks with a fusion module in the
downstream recommendation models. Comprehensive experiments show that the proposed method
successfully achieves scalability regarding discriminability, dimension robustness, and performance.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
effective and efficient tuning framework to align large language model with recommendation. In
Proceedings of the 17th ACM Conference on Recommender Systems, pp. 1007–1014, 2023.

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados,
and Siva Reddy. Llm2vec: Large language models are secretly powerful text encoders. arXiv
preprint arXiv:2404.05961, 2024.

Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong Chen, Yiteng
Huang, and Israel Cohen. Pearson correlation coefficient. Noise reduction in speech processing,
pp. 1–4, 2009.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12873–12883, 2021.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017.

Xingzhuo Guo, Junwei Pan, Ximei Wang, Baixu Chen, Jie Jiang, and Mingsheng Long. On the
embedding collapse when scaling up recommendation models. arXiv preprint arXiv:2310.04400,
2023.

Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion trends
with one-class collaborative filtering. In proceedings of the 25th international conference on world
wide web, pp. 507–517, 2016.

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin
Zhao. Large language models are zero-shot rankers for recommender systems. In European
Conference on Information Retrieval, pp. 364–381. Springer, 2024.
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