
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROXY-GS: EFFICIENT 3D GAUSSIAN SPLATTING VIA
PROXY MESH

Anonymous authors
Paper under double-blind review

Proxy-GS

Octree-GS

Redundant

Sparse

Dense

Culled

FPS 106PSNR 24.51

FPS 32PSNR 25.65 FPS 150PSNR 25.80

Octree-GS Naive Densify Implementation 3DGS Ground Truth

Proxy-GS Proxy-Guided Densify Octree-GS Proxy-GS

Figure 1: We propose Proxy-GS, an occlusion-aware training and inference framework built upon
lightweight proxies. By introducing proxy-guided densification, our method effectively guides an-
chors to grow in more geometrically meaningful regions. As a result, Proxy-GS not only achieves
higher rendering quality but also delivers significantly faster rendering compared to state-of-the-art
MLP-based 3DGS approaches.

ABSTRACT

3D Gaussian Splatting (3DGS) has emerged as an efficient approach for achiev-
ing photorealistic rendering. Recent MLP-based variants further improve visual
fidelity but introduce substantial decoding overhead during rendering. To allevi-
ate computation cost, several pruning strategies and level-of-detail (LOD) tech-
niques have been introduced, aiming to effectively reduce the number of Gaussian
primitives in large-scale scenes. However, our analysis reveals that significant
redundancy still remains due to the lack of occlusion awareness. In this work,
we propose Proxy-GS, a novel pipeline that exploits a proxy to introduce Gaus-
sian occlusion awareness from any view. At the core of our approach is a fast
proxy system capable of producing precise occlusion depth maps at resolution
1000×1000 under 1ms. This proxy serves two roles: first, it guides the culling of
anchors and Gaussians to accelerate rendering speed. Second, it guides the den-
sification towards surfaces during training, avoiding inconsistencies in occluded
regions, and improving the rendering quality. In heavily occluded scenarios, such
as the MatrixCity Streets dataset, Proxy-GS not only equips MLP-based Gaus-
sian splatting with stronger rendering capability but also achieves faster rendering
speed than the original 3DGS. Specifically, it achieves more than 2.5× speedup
over Octree-GS, and consistently delivers substantially higher rendering quality.
Code will be public upon acceptance.

1 INTRODUCTION

With the emergence of Neural Radiance Fields (NeRF) (Mildenhall et al., 2020), high-quality novel
view synthesis has become possible, but the slow rendering speed limits its practical use. Recently,
3D Gaussian Splatting (3DGS) (Kerbl et al., 2023b) has significantly improved efficiency, greatly
advancing AR and VR applications. However, vanilla 3DGS often produces heavily redundant

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Gaussians that attempt to fit every training view while neglecting the underlying scene geometry.
To address this limitation and pursue higher-fidelity representations, structured MLP-based Gaus-
sian approaches such as scaffold-GS (Lu et al., 2024) and Octree-GS (Ren et al., 2024) have been
introduced.

At the core of the MLP-based 3DGS method lies an MLP decoder that conditions on the camera
viewing direction to dynamically generate Gaussian attributes. Although these structured Gaussian
variants substantially strengthen the modeling of challenging and view-dependent details, they also
impose extra decoding operations at inference, leading to increased computational cost. This draw-
back becomes particularly critical in large-scale scene reconstruction, where the number of Gaussian
primitives and rendering complexity grow dramatically, making efficient decoding and rendering in-
dispensable.

Although pruning strategies (Fan et al., 2024; Lee et al., 2024; Liu et al., 2025) can be introduced
to reduce redundancy, they inevitably lead to a loss in rendering quality. Meanwhile, following
works (Ren et al., 2024; Kerbl et al., 2024; Cui et al., 2024) employ a level-of-detail (LOD) struc-
ture to mitigate redundancies from distant scene contents, but this approach is mainly effective in
relatively occlusion-free environments. In contrast, real-world scenarios are full of occlusions, espe-
cially in large-scale modern city streets and complex indoor environments with multiple rooms. For
future ultra-large VR walkthroughs that seamlessly span from indoor to outdoor scenes, effective
occlusion culling becomes an essential and intuitive requirement.

Moreover, since most practitioners rely on consumer-grade GPUs rather than datacenter-oriented
ones such as A100s, it is important to consider the hardware characteristics of these devices. Con-
sumer GPUs, typically designed for gaming and graphics applications, are equipped with dedicated
hardware rasterization units. The widespread adoption of 3DGS thus requires careful adaptation to
hardware rasterization (fas, 2024).

To address the above limitations, we propose Proxy-GS, a proxy-guided Gaussian representation
that leverages lightweight proxy meshes obtained through dedicated design. By bridging hardware
rasterization with a PyTorch-based proxy renderer, Proxy-GS can efficiently cull occluded anchors
with negligible time consumption and seamlessly integrate this process with the original frustum
selection strategy. Furthermore, during training, the proxy guidance is incorporated again to provide
stronger structural cues for anchor selection and densification.

As shown in Fig. 1, Proxy-GS not only achieves up to a 3× speedup in rendering on top of existing
MLP-based LOD frameworks Octree-GS (Ren et al., 2024) but also improves occlusion awareness
in anchor selection, leading to higher rendering quality. Our main contributions can be summarized
as follows:

• We design a proxy-guided training pipeline that incorporates structural priors from proxy
meshes, enabling MLP-based approaches to be occlusion-aware and achieve higher render-
ing quality.

• Under a consistent training and testing setting, Proxy-GS achieves more than a 3× FPS
speedup over the LOD baseline on occlusion-rich scenes, while simultaneously improving
rendering quality.

• We leverage engineering optimizations to reduce the time of acquiring a 10002-resolution
depth map to under 1ms.

2 RELATED WORK

2.1 NEURAL RENDERING

Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) pioneered the idea of representing a scene
as a volumetric radiance field, enabling high-quality novel view synthesis for bounded scenes, typ-
ically centered around a single object. Subsequent extensions improved the scalability and visual
fidelity of NeRF-based methods: Mip-NeRF (Barron et al., 2021) introduced proper anti-aliasing
to handle multi-scale observations, NeRF++ (Zhang et al., 2020) lifted the constraint of strictly
bounded scenes, and Mip-NeRF 360 (Barron et al., 2022) extended anti-aliased representations to

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

unbounded, object-centric settings. Despite these advances, NeRF-style volumetric rendering re-
mains computationally expensive due to the need for dense ray sampling and neural field evaluation.

To overcome this inefficiency, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023a) was recently
proposed as an explicit point-based alternative. By representing a scene with a set of anisotropic 3D
Gaussian primitives and employing a splatting-based rasterization pipeline, 3DGS enables real-time
rendering while preserving high visual quality. This paradigm shift bridges the gap between neural
radiance fields and traditional graphics pipelines, offering both efficiency and scalability. While
3DGS achieves real-time performance with explicit Gaussian primitives, its reliance on directly
optimized parameters often leads to limited expressiveness, particularly in capturing fine-grained
appearance details and complex view-dependent effects. To address this shortcoming, MLP-based
extensions such as Scaffold-GS (Lu et al., 2024) and Octree-GS (Ren et al., 2024) introduce neural
decoders that generate Gaussian attributes from learned anchor features. By leveraging structured
anchors and neural decoding, these approaches significantly improve the representational capacity,
enabling more accurate modeling of geometry and appearance in large and challenging scenes.

However, this enhanced expressiveness comes at the cost of efficiency. The dependence on per-
anchor MLP decoding introduces substantial computational overhead during inference, making ren-
dering speed a critical bottleneck. Even with level-of-detail (LOD) designs to reduce the number
of anchors processed per view, MLP-based methods still struggle to balance quality and efficiency,
especially in large-scale urban or indoor environments with heavy occlusions. To this end, we are
the first to address such occlusion-induced redundancy through a lightweight proxy mechanism.

2.2 TOWARD FASTER 3D GAUSSIAN SPLATTING RENDERING

For rendering acceleration, many studies (Lee et al., 2024; Fan et al., 2024; Liu et al., 2025; Wang
& Xu, 2025) have explored pruning or compression strategies to reduce the number of Gaussians
and thus alleviate computational overhead. While such pruning-based methods can be effective to
some extent, they inevitably face scalability bottlenecks in large scenes, where aggressive prun-
ing results in performance degradation. Beyond pruning strategy, another line of research focuses
on architectural designs for rendering acceleration. Among them, level-of-detail (LOD) architec-
tures have become particularly influential. Hierarchical-GS (Kerbl et al., 2024) merges neighboring
Gaussians to reduce rendering cost, achieving higher frame rates at the expense of some visual fi-
delity. LetsGo (Cui et al., 2024) jointly optimizes multi-resolution Gaussian models and demon-
strates strong performance in LiDAR-based scenarios, yet its reliance on multi-resolution point
cloud inputs incurs substantial training overhead and creates a strong dependence on point cloud
accuracy. CityGaussian (Liu et al., 2024) further combines pruning strategies (Fan et al., 2024) with
LOD-based rendering to enhance scalability in urban scenes.

While the aforementioned works improve efficiency for explicit 3DGS, LOD mechanisms have also
been extended to MLP-based Gaussians. Octree-GS (Ren et al., 2024) organizes anchors into a
multi-level octree, where the level selection is determined by the distance to the camera, thereby
reducing the number of anchors decoded at each frame. This strategy alleviates part of the com-
putational burden in large-scale scenes, but the rendering speed still leaves considerable room for
improvement. Recent work Cache-GS (Tao et al., 2025) provides further acceleration by reusing
decoded Gaussians, effectively doubling the rendering speed of Octree-GS, although this comes
with a noticeable loss in rendering quality. In parallel, methods like FLASH-GS (Feng et al., 2024)
target low-level CUDA optimizations of the original 3DGS pipeline, aiming to improve efficiency
at the kernel level. Recent work has also explored leveraging occlusion for accelerating rendering.
For example, Ye et al. (2025) proposed using pre-rendered depth maps to guide 3DGS rendering.
However, their depth acquisition relies on 2DGS rendering, which is less efficient compared to our
lightweight proxy-based approach.

3 PRELIMINARIES

3.1 MLP-BASED 3DGS

To exploit the structural priors provided by Structure-from-Motion (SfM), a line of work such as
Scaffold-GS (Lu et al., 2024) and Octree-GS (Ren et al., 2024) has been developed. Instead of
reconstructing Gaussians directly from sparse SfM points, Scaffold-GS first builds a coarse voxel

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Proxy-GS Framework. We first construct a lightweight proxy mesh. During rendering,
hardware rasterization produces a depth map in under 1 ms, which is then used to efficiently cull
anchors that are occluded. During training, in addition to the same rendering pipeline, we further
introduce structure-aware anchor densification, encouraging anchors to grow adaptively along the
proxy mesh geometry.

grid and places anchor points at the voxel centers. Each anchor is associated with a latent feature
vector f , which is fed into a multi-layer perceptron (MLP) to decode the corresponding Gaussian
attributes:

{µj ,Σj , cj , αj}j∈M = MLPθ(fi, vi)i∈N , (1)

where θ denotes the MLP parameters, and µj , Σj , cj , and αj represent the mean, covariance, color,
and opacity of the j-th Gaussian derived from the i-th anchor under viewing direction vi. The
generated neural Gaussians are subsequently rasterized in the same way as explicit 3D Gaussians.

The advantage of anchor-based placement is that the decoded Gaussians inherit structural cues from
the underlying SfM prior, which reduces redundancy and improves robustness for novel view ren-
dering. Octree-GS extends this framework by substituting the voxel grid with an explicit octree
representation, enabling the scene to be modeled at multiple resolutions.

The hierarchical design of the octree naturally supports level-of-detail (LOD) construction. During
rendering, appropriate LOD levels can be selected adaptively based on the camera distance, thereby
reducing decoding cost and improving scalability to larger-scale scenes.

3.2 HARDWARE RASTERIZATION

Hardware rasterization denotes the GPU’s fixed/near–fixed-function graphics path that transforms
vertices to clip/NDC, discretizes primitives into fragments, interpolates attributes, and resolves vis-
ibility via depth/stencil tests and blending before writing to render targets. This behavior is stan-
dardized in modern graphics APIs and is executed by specialized units. The pixel backend, com-
monly called the Raster Operations Processor (ROP, a.k.a. render output unit) houses depth/stencil
units that perform depth and stencil tests and update the corresponding buffers, and color units that
handle blending, format conversion/MSAA resolves, and render-target writes. These mechanisms
underpin the extreme throughput and bandwidth efficiency of the pipeline. Architecturally, raster-
ization evolved from fixed-function to programmable/unified shader models and is realized across
immediate-mode and tile/binning GPU designs, but the visibility tests and depth buffering remain
conceptually consistent. In this work, we will later exploit this machinery in a depth-only pass
on a proxy mesh to obtain a conservative Z-buffer at negligible cost, which we then consume as a
visibility prior.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 METHOD

4.1 MOTIVATION

Reconstructing large-scale scenes with high occlusion presents unique challenges due to the vast
number of Gaussians and anchors involved. As illustrated in Fig. 1, When visualizing the anchors
used for decoding, we observe a significant mismatch between the decoded anchors and those that
are intuitively required for accurate rendering. In particular, a large proportion of anchors correspond
to heavily occluded regions, which substantially increases the decoding burden without contributing
to the final image quality. Effective occlusion culling, therefore, has the potential to greatly reduce
computational cost.

Existing MLP-based works, such as Octree-GS Ren et al. (2024) and Scaffold-GS Lu et al. (2024),
design anchor structures to better exploit the inherent hierarchy and structural priors. However, since
their anchor selection does not explicitly account for occlusions, the anchors are optimized merely to
fit RGB images. As a result, the binding between anchors and their associated Gaussians can become
inconsistent in space, leading to redundant decoding and degraded structural interpretability

4.2 PROXY GUIDED FILTER

A central question in our study is how to obtain occlusion relationships both efficiently and with
negligible loss of accuracy. We find that leveraging lightweight proxy meshes for hardware raster-
ization enables depth rendering at only a marginal time cost. For many outdoor large-scale scenes,
dense point clouds are already available or can be generated using tools such as COLMAP. In con-
trast, indoor scenes often contain texture-less regions that cause SfM-based reconstruction to fail,
so we adopt a hybrid strategy. Specifically, we combine state-of-the-art monocular depth estima-
tion Wang et al. (2025) with PGSR Chen et al. (2024), in a manner similar to recent indoor surface
reconstruction approaches Zhang et al. (2024); Ren et al. (2025). Further implementation details are
provided in the Appendix A.4. We construct proxy meshes using existing engineering pipelines and
apply surface simplification to retain only coarse geometric structures. This proxy is sufficient to
fully exploit the high throughput of hardware fixed-function units for efficient depth generation.

To further accelerate the process, the scene is partitioned into fine-grained clusters, and hierarchical
visibility checks such as Hierarchical Z-buffer (Hi-Z) culling Greene et al. (1993) are employed to
quickly cull invisible clusters. In the fragment stage, early-fragment tests (Early-Z) are enabled, and
we keep the fragment shader minimal by removing operations unrelated to depth writes. This allows
our method to output depth maps at a high speed even in complex and large-scale urban scenes, as
shown in Fig. 3. The depth map is kept on GPU and directly exploited in CUDA occlusion culling
to avoid GPU-CPU-GPU round-trip overhead. For more details, please refer to the Appendix A.5.

Then we fuse the occlusion culling and frustum culling of anchors in a single CUDA kernel: Given
an original anchor point porig = (x, y, z) ∈ R3, the point is first transformed into the camera (view)
coordinate system via the view matrix V ∈ R4×4:

pview = V

[
porig
1

]
. (2)

Then it transfers to the homogeneous clip space using the projection matrix P ∈ R4×4:

phom = Ppview = (xh, yh, zh, wh)
⊤. (3)

To obtain normalized device coordinates (NDC), we divide by the homogeneous component:

pndc =

(
xh

wh + ϵ
,

yh
wh + ϵ

,
zh

wh + ϵ

)
, ϵ = 10−7. (4)

We denote the resulting coordinates as (xndc, yndc, zndc).

A visibility check is then performed: points with zh ≤ τ, τ = 10−4, are regarded as invalid
(filtered), since they lie behind the camera or are too close to the near plane. After projecting to
normalized device coordinates (NDC), we map the coordinates to discrete pixel indices (u, v):

xpix =

⌊
(xndc + 1)

2
·W

⌋
, ypix =

⌊
(yndc + 1)

2
·H
⌋
, (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where W and H denote the image width and height, respectively. A pixel is discarded if it falls
outside the image boundary:

xpix < 0 ∨ xpix ≥W ∨ ypix < 0 ∨ ypix ≥ H. (6)

For valid pixels, we retrieve the hardware depth zhw ∈ [0, 1] at (xpix, ypix) from the depth image.
We then convert it to the linear camera-space depth using the near/far planes n, f :

dmesh(xpix, ypix) =
n f

f − zhw(xpix, ypix)
(
f − n

) . (7)

Finally, we apply a small safety margin γ:

d̂(xpix, ypix) = dmesh(xpix, ypix) + γ. (8)

If the depth value is invalid, the point is not culled. Otherwise, we apply the depth test:

Cull(p) =

{
true, zh > d̂(xpix, ypix),

false, zh ≤ d̂(xpix, ypix).
(9)

To summarize, a point is removed if its camera-space depth lies behind the depth map at the corre-
sponding pixel, which effectively performs occlusion culling on the image plane.

4.3 PROXY-GUIDED DENSIFICATION

Block 1 Block 2 Block 3 Block 4 Block 5
Datasets

0

5

10

15

20

25

30
Ti

m
e

(m
s)

Rendering
Anchor filter
Depth rendering

Proxy-GS
Octree-GS

Figure 3: Comparison of the time propor-
tion of each inference component (Render-
ing, anchor filter, depth rendering) with
that of Octree-GS.

In the original anchor-growing densification strategy,
new anchors are generated around Gaussian splats
that exhibit large gradients during training. However,
this procedure may introduce redundant anchors be-
hind the proxy mesh depth: although these Gaussians
have large gradients, the newly grown anchors do not
contribute to rendering due to occlusion.

To tackle this limitation, and inspired by the multi-
view depth densification strategy in Li et al. (2024),
we introduce proxy-guided densification, which ex-
plicitly projects anchors onto the surface of the proxy
mesh. Since proxy depth maps are pre-computed, we
can measure the patch-wise L1 loss and identify re-
gions where the rendering error is consistently large.

To achieve this, patches with abnormally high error
are identified by comparing to the mean error ℓ̄ within the same frame. We compute the per-patch
loss as the average of pixel losses:

ℓP =
1

|ΩP |
∑

(u,v)∈ΩP

ℓ(u, v), ℓ̄ =
1

|S|
∑
P∈S

ℓP .

We select patches that satisfy
ℓP > τ, τ = 3 ℓ̄.

For each selected patch P , choose a representative pixel (uP , vP) (e.g., the patch center), read the
hardware depth zh(uP , vP), and convert it to linear camera-space depth with near/far (n, f), to
obtain dmesh(uP , vP). We then back-project this pixel to 3D and take it as the new anchor position:

p̂P = o+R⊤

dmesh(uP , vP)K
−1

uP
vP
1

 , a← p̂P .

To prevent redundancy in 3D space, we maintain a proxy-grid with cell size h and origin bmin, and
allow up to K anchors per cell:

c(a) =

⌊
a− bmin

h

⌋
∈ Z3, insert a if κ[c(a)] < K,

where κ[·] ∈ N tracks the current number of anchors in each cell.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Quantitative results on MatrixCity (Li et al., 2023). We report average results over Block
1&2, Block 3&4, and Block 5. (Block 1&2 and 3&4 represent the average evaluation metrics of
their respective two blocks.) The best and second-best are highlighted.

Block 1&2 Block 3&4 Block 5
Methods PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑

3DGS (Kerbl et al., 2023a) 21.55 0.730 0.366 115 20.78 0.739 0.372 114 20.70 0.697 0.425 121
Scaffold-GS (Lu et al., 2024) 21.44 0.721 0.375 81 20.56 0.727 0.376 66 20.56 0.693 0.426 71
Hierarchical-GS (Kerbl et al., 2024) 20.50 0.707 0.418 61 20.38 0.719 0.422 41 20.22 0.673 0.463 60
Hierarchical-GS(τ1) 20.50 0.706 0.419 62 20.38 0.718 0.424 45 20.22 0.672 0.466 66
Hierarchical-GS(τ2) 20.46 0.702 0.423 71 20.30 0.711 0.431 49 20.20 0.671 0.467 75
Hierarchical-GS(τ3) 20.01 0.678 0.450 85 19.71 0.680 0.464 63 20.01 0.657 0.483 90
Octree-GS (Ren et al., 2024) 21.94 0.737 0.347 32 20.95 0.743 0.354 30 21.41 0.731 0.375 48
Proxy-GS 22.11 0.751 0.330 126 21.06 0.751 0.348 134 21.68 0.744 0.362 151

Table 2: Quantitative results on real world Outdoor and Indoor datasets (Xiong et al., 2024; Kerbl
et al., 2024; Barron et al., 2023). best and second-best are highlighted.

CUHK-LOWER Berlin Small City
Methods PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑

3DGS (Kerbl et al., 2023a) 25.48 0.729 0.389 138 27.79 0.907 0.223 187 22.90 0.727 0.372 132
Scaffold-GS (Lu et al., 2024) 26.30 0.785 0.282 117 27.80 0.912 0.213 128 20.00 0.713 0.370 62
Hierarchical-GS (Kerbl et al., 2024) 25.18 0.707 0.408 90 27.65 0.902 0.228 145 22.07 0.728 0.377 89
Hierarchical-GS(τ1) 25.19 0.708 0.408 82 27.65 0.901 0.229 150 22.07 0.728 0.377 90
Hierarchical-GS(τ2) 25.14 0.705 0.411 96 27.60 0.899 0.232 152 22.07 0.728 0.378 106
Hierarchical-GS(τ3) 24.58 0.678 0.435 120 27.34 0.890 0.244 160 22.02 0.722 0.386 119
Octree-GS (Ren et al., 2024) 26.42 0.794 0.267 212 27.83 0.911 0.218 263 23.03 0.731 0.355 51
Proxy-GS 26.44 0.795 0.262 239 27.85 0.912 0.216 275 23.09 0.736 0.344 139

5 EXPERIMENT

Datasets. We begin by comparing our approach with other methods on the large-scale urban
dataset (Li et al., 2023) to assess rendering quality. We follow the partition script of the MatrixCity,
and divided the 8477 street images in its Small City into 5 blocks. Details can be seen in the Ap-
pendix A.1. The evaluation is further extended to large-scale indoor scenes from Zip-NeRF (Barron
et al., 2023). In addition, we also test on real-world street scenes from the Small City dataset (Kerbl
et al., 2024), as well as real-world aerial-view scenes from CUHK-LOWER (Xiong et al., 2024),
which contain relatively fewer occlusions.

Evaluation Criterion. We adopt three widely used image quality metrics to evaluate novel view
synthesis: peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and learned percep-
tual image patch similarity (LPIPS) (Zhang et al., 2018). In addition, we report frames per second
(FPS) to measure the rendering efficiency of different methods.

Implementation Details. Our method is implemented on top of the state-of-the-art MLP-based
Octree-GS (Ren et al., 2024), following its default initialization and LOD strategy. For comparison,
we also re-implement 3DGS (Kerbl et al., 2023a), Scaffold-GS (Lu et al., 2024), and Hierarchical-
GS (Kerbl et al., 2024), and train all methods for 40k iterations. Specifically, for the evaluation
of Hierarchical-GS, we set the τ1, τ2, τ3 = 3, 6, 15. For approaches that do not employ MLPs,
such as 3DGS and Hierarchical-GS, their default configurations typically yield higher rendering
FPS but exhibit a noticeable quality gap compared to Octree-GS. Since an increased number of
Gaussian primitives generally leads to better rendering quality (Zhao et al., 2024), we reduce the
densification threshold to 10−4 across all scenes to ensure a fair comparison, resulting in rendering
quality closer to that of Octree-GS. Unlike Octree-GS, Scaffold-GS initializes with fewer anchors
due to the absence of multi-round sampling. To improve its rendering fidelity, we adopt a smaller
voxel size of 10−4 together with a lower densification threshold of 10−4. All training experiments
are performed on a single NVIDIA A100-40GB GPU. For inference, we employ a consumer-grade
RTX 4090 GPU to reflect real-world deployment scenarios better.

5.1 MAIN RESULTS

Novel View Synthesis and rendering FPS. As shown in Tab. 1 and Tab. 2, our method achieves
higher or comparable rendering quality compared to all other baselines. Moreover, Fig. 4 illustrates

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

CU
H

K
-L

O
W

ER

Octree-GS

BL
O

CK
 0

Scaffold-GS 3DGS Hierarchical-GS Ours GT

Be
rli

n
Sm

al
l C

ity

Figure 4: Qualitative comparison. Visualization on different datasets (Li et al., 2023; Xiong et al.,
2024; Barron et al., 2023; Kerbl et al., 2024).

that our approach better preserves fine details such as building windows and crosswalk patterns. In
particular, as shown in Tab. 1, the large urban street scenes simulated in MatrixCity are highly suited
to our approach, where we consistently outperform existing methods in both rendering quality and
speed.

Furthermore, to demonstrate the generality of our method, in Tab. 2 We also evaluate our method on
aerial-view scenes, indoor environments, and real-world town streets, where it achieves comparable
or superior performance against current state-of-the-art methods. Although aerial scenes typically
involve limited occlusions and the current indoor dataset often contains relatively few rooms with
sparse occlusion patterns, our method still yields noticeable improvements. Moreover, for small-city
street scenes, which bear resemblance to the MatrixCity dataset, our approach delivers substantial
improvements over the MLP-based method Octree-GS, achieving higher rendering quality while
boosting FPS by nearly 3×. These results collectively demonstrate the broad applicability of our
method across diverse scenarios, while also highlighting that the extent of performance gains may
vary depending on the characteristics of the scene.

5.2 ABLATIONS

Table 3: Ablations of different safety
margin of depth culling γ trained on
Small City Kerbl et al. (2024).
γ PSNR↑ SSIM↑ LPIPS↓ FPS ↑

0.1 22.94 0.734 0.349 142
0.3 23.09 0.736 0.344 139
0.6 23.02 0.735 0.348 135
1.0 23.05 0.736 0.345 128

Effect of training procedure. As shown in Tab. 4, we
conduct ablation studies on different training strategies.
ID 1 corresponds to the default Octree-GS training and
testing pipeline, which serves as our baseline. ID 2 ap-
plies our proxy-guided rendering strategy at test time
only, without modifying the Octree-GS training process.
Although this setting brings more than a 3× FPS in-
crease, the inconsistency between anchors and their as-
sociated Gaussians during training leads to a noticeable
drop in rendering quality. ID 3 further enforces consistency by employing proxy-guided render-
ing also during training. In this case, rendering quality surpasses the baseline, while FPS slightly
decreases compared to ID 2, mainly because more anchors grow before being culled by occlusion.

ID 4 incorporates the proposed proxy-guided densification strategy in addition to proxy-guided
training and rendering. This setting achieves the best balance, delivering further improvements
in rendering quality while maintaining a comparable FPS to ID 3.

Rendering time analysis. In Fig. 3, we quantify the proportion of inference time spent on each
component. The lightweight proxy-based depth rendering takes nearly negligible time (around

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablations of different training and inference strategies on Block 5. Average anchor
denotes the average number of decoded anchors in the scene.

ID Occlusion
Training

Proxy-guided
Densification

Proxy-guided
Inference PSNR↑ FPS↑ Average

anchor

1 % % % 21.41 48 719k
2 % % ! 19.06 165 82k
3 ! % ! 21.50 147 93k
4 ! ! ! 21.68 143 106k

1ms). Our anchor filtering is also faster due to the reduced number of anchors. The rendering
stage is where most of the savings come from: with fewer anchors, both the decoding overhead and
Gaussian rasterization are significantly reduced. For more details, we also record the average decode
anchors in the Appendix A.3.

Table 5: Integration with different 3DGS render-
ing accelerations. We evaluate our method combined
with existing approaches (Feng et al., 2024; fas, 2024)
on Block 1.

Method PSNR↑ SSIM↑ LPIPS↓ FPS↑
Original 3DGS 23.27 0.786 0.322 112
FlashGS 23.27 0.785 0.322 115
Hardware 3DGS 23.20 0.781 0.328 155

Integration with different 3DGS render-
ers. Since our method primarily optimizes
anchors and thus indirectly reduces the num-
ber of rendered Gaussians, it can be nat-
urally combined with existing acceleration
techniques for the original 3DGS to achieve
even higher speed. In Table 5, we evaluate
on Block 1. Here, Original 3DGS denotes
the default renderer used in Proxy-GS. Re-
placing it with FlashGS brings a minor im-
provement, while using a hardware rasterizer for 3DGS slightly compromises rendering quality but
further boosts the frame rate by nearly 40 FPS.

Figure 5: Visualization on different
safety margins.

Safety margin of the occlusion culling. In the Ap-
pendix A.2, we report all the results with the hardware
3DGS as the default renderer.

In Tab. 3, we report results on the Small City dataset by
varying the depth culling threshold γ in Eq. 8. We ob-
serve that γ = 0.3 yields the best trade-off between ren-
dering quality and speed. As can be seen in Fig. 5, when
the threshold is too small γ = 0.1, it leads to rendering
artifacts in nearby regions. However, setting γ too large
is also undesirable: a larger threshold introduces exces-
sive anchors, which increases structural redundancy and
reduces FPS, while a too small threshold restricts anchor
growth and degrades rendering quality.

6 CONCLUSION

In this work, we propose Proxy-GS, a proxy-guided training and inference framework for MLP-
based 3D Gaussian Splatting. Our carefully designed proxy-guided filter enables nearly lossless
depth acquisition and occlusion culling, while the proxy-guided densification effectively leverages
geometric priors from proxies to provide a more structured densification mechanism. Extensive
experiments demonstrate that our framework consistently improves both rendering quality and effi-
ciency across diverse scenarios. In particular, on occlusion-rich scenes, Proxy-GS achieves up to a
2.5× speedup, significantly advancing the practicality of MLP-based methods for VR/AR applica-
tions, and establishing a new state-of-the-art in efficient 3D scene representation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY

To ensure reproducibility, we will release the complete training and inference code. All results
reported in this paper can be reproduced using the released repository, along with the same exper-
imental settings described in the main text and Appendix. The final model of all the datasets will
also be made publicly available.

ETHICS STATEMENT

Our research is devoted to enhancing the efficiency and rendering quality of 3D reconstruction tech-
niques. No experiments involve human participants, personally identifiable information, or sensitive
content. The datasets employed are openly released for academic purposes and have been broadly
utilized in prior literature. We adhered to their licensing terms and conducted all experiments in
a manner consistent with data privacy and integrity. We consider this work to present no evident
ethical concerns or potential societal risks.

REFERENCES

Fast gaussian rasterization. GitHub, 2024. URL https://github.com/dendenxu/
fast-gaussian-rasterization.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 5855–5864,
2021.

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. CVPR, 2022.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Zip-nerf:
Anti-aliased grid-based neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 19697–19705, 2023.

Danpeng Chen, Hai Li, Weicai Ye, Yifan Wang, Weijian Xie, Shangjin Zhai, Nan Wang, Haomin
Liu, Hujun Bao, and Guofeng Zhang. Pgsr: Planar-based gaussian splatting for efficient and
high-fidelity surface reconstruction. arXiv preprint arXiv:2406.06521, 2024.

Jiadi Cui, Junming Cao, Fuqiang Zhao, Zhipeng He, Yifan Chen, Yuhui Zhong, Lan Xu, Yujiao
Shi, Yingliang Zhang, and Jingyi Yu. Letsgo: Large-scale garage modeling and rendering via
lidar-assisted gaussian primitives. ACM Transactions on Graphics (TOG), 43(6):1–18, 2024.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, Zhangyang Wang, et al. Lightgaus-
sian: Unbounded 3d gaussian compression with 15x reduction and 200+ fps. Advances in neural
information processing systems, 37:140138–140158, 2024.

Guofeng Feng, Siyan Chen, Rong Fu, Zimu Liao, Yi Wang, Tao Liu, Zhiling Pei, Hengjie Li,
Xingcheng Zhang, and Bo Dai. Flashgs: Efficient 3d gaussian splatting for large-scale and
high-resolution rendering. 2025 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 26652–26662, 2024. URL https://api.semanticscholar.org/
CorpusID:271874687.

Yuanyuan Gao, Hao Li, Jiaqi Chen, Zhengyu Zou, Zhihang Zhong, Dingwen Zhang, Xiao Sun, and
Junwei Han. Citygs-x: A scalable architecture for efficient and geometrically accurate large-scale
scene reconstruction. arXiv preprint arXiv:2503.23044, 2025.

Ned Greene, Michael Kass, and Gavin Miller. Hierarchical z-buffer visibility. In Proceedings of the
20th annual conference on Computer graphics and interactive techniques, pp. 231–238, 1993.

Jiahui Huang, Zan Gojcic, Matan Atzmon, Or Litany, Sanja Fidler, and Francis Williams. Neural
kernel surface reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4369–4379, 2023.

10

https://github.com/dendenxu/fast-gaussian-rasterization
https://github.com/dendenxu/fast-gaussian-rasterization
https://api.semanticscholar.org/CorpusID:271874687
https://api.semanticscholar.org/CorpusID:271874687

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023a.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, July 2023b.

Bernhard Kerbl, Andreas Meuleman, Georgios Kopanas, Michael Wimmer, Alexandre Lanvin, and
George Drettakis. A hierarchical 3d gaussian representation for real-time rendering of very large
datasets. ACM Transactions on Graphics (TOG), 43(4):1–15, 2024.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 21719–21728, 2024.

Yixuan Li, Lihan Jiang, Linning Xu, Yuanbo Xiangli, Zhenzhi Wang, Dahua Lin, and Bo Dai.
Matrixcity: A large-scale city dataset for city-scale neural rendering and beyond. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 3205–3215, 2023.

Zhuoxiao Li, Shanliang Yao, Yijie Chu, Ángel F. Garcı́a-Fernández, Yong Yue, Eng Gee Lim,
and Xiaohui Zhu. Mvg-splatting: Multi-view guided gaussian splatting with adaptive quantile-
based geometric consistency densification. ArXiv, abs/2407.11840, 2024. URL https:
//api.semanticscholar.org/CorpusID:271217827.

Yang Liu, Chuanchen Luo, Lue Fan, Naiyan Wang, Junran Peng, and Zhaoxiang Zhang. Citygaus-
sian: Real-time high-quality large-scale scene rendering with gaussians. In European Conference
on Computer Vision, pp. 265–282. Springer, 2024.

Yifei Liu, Zhihang Zhong, Yifan Zhan, Sheng Xu, and Xiao Sun. Maskgaussian: Adaptive 3d
gaussian representation from probabilistic masks. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 681–690, 2025.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
Structured 3d gaussians for view-adaptive rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20654–20664, 2024.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu, Zhangkai Ni, and Bo Dai. Octree-
gs: Towards consistent real-time rendering with lod-structured 3d gaussians. arXiv preprint
arXiv:2403.17898, 2024.

Xuqian Ren, Matias Turkulainen, Jiepeng Wang, Otto Seiskari, Iaroslav Melekhov, Juho Kannala,
and Esa Rahtu. Ags-mesh: Adaptive gaussian splatting and meshing with geometric priors for
indoor room reconstruction using smartphones. In 2025 International Conference on 3D Vision
(3DV), pp. 1080–1090. IEEE, 2025.

Miao Tao, Yuanzhen Zhou, Haoran Xu, Zeyu He, Zhenyu Yang, Yuchang Zhang, Zhongling Su, Lin-
ning Xu, Zhenxiang Ma, Rong Fu, Hengjie Li, Xingcheng Zhang, and Jidong Zhai. Gs-cache: A
gs-cache inference framework for large-scale gaussian splatting models. ArXiv, abs/2502.14938,
2025. URL https://api.semanticscholar.org/CorpusID:276558388.

Ruicheng Wang, Sicheng Xu, Yue Dong, Yu Deng, Jianfeng Xiang, Zelong Lv, Guangzhong Sun,
Xin Tong, and Jiaolong Yang. Moge-2: Accurate monocular geometry with metric scale and
sharp details. arXiv preprint arXiv:2507.02546, 2025.

Zipeng Wang and Dan Xu. Hyrf: Hybrid radiance fields for efficient and high-quality novel view
synthesis. NeurIPS, 2025.

Butian Xiong, Nanjun Zheng, Junhua Liu, and Zhen Li. Gauu-scene v2: Assessing the reliability
of image-based metrics with expansive lidar image dataset using 3dgs and nerf. arXiv preprint
arXiv:2404.04880, 2024.

11

https://api.semanticscholar.org/CorpusID:271217827
https://api.semanticscholar.org/CorpusID:271217827
https://api.semanticscholar.org/CorpusID:276558388

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Keyang Ye, Tianjia Shao, and Kun Zhou. When gaussian meets surfel: Ultra-fast high-fidelity
radiance field rendering. ACM Trans. Graph., 44:113:1–113:15, 2025. URL https://api.
semanticscholar.org/CorpusID:278032885.

Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing and improving
neural radiance fields. arXiv preprint arXiv:2010.07492, 2020.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Wanting Zhang, Haodong Xiang, Zhichao Liao, Xiansong Lai, Xinghui Li, and Long Zeng. 2dgs-
room: Seed-guided 2d gaussian splatting with geometric constrains for high-fidelity indoor scene
reconstruction. arXiv preprint arXiv:2412.03428, 2024.

Hexu Zhao, Haoyang Weng, Daohan Lu, Ang Li, Jinyang Li, Aurojit Panda, and Saining Xie. On
scaling up 3d gaussian splatting training. In European Conference on Computer Vision, pp. 14–36.
Springer, 2024.

12

https://api.semanticscholar.org/CorpusID:278032885
https://api.semanticscholar.org/CorpusID:278032885

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DIVISION DETAIL ON MATRIXCITY

We divide all the Horizon street scenes in MatrixCity’s small city into five blocks (eg. Block 1,
Block 2), The partition margin details is in Tab. 6

A.2 COMBINE WITH HARDWARE 3DGS

We combine our method with Hardware 3DGS (fas, 2024) in Tab. 7 and Tab. 8. As observed, the
FPS improves across all datasets, but due to the precision settings used, there is a noticeable decline
in rendering quality.
Table 7: Combine with Hardware 3DGS (fas, 2024), quantitative results on MatrixCity (Li et al.,
2023) .

Block 1&2 Block 3&4 Block 5
Methods PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑

Proxy-GS 22.11 0.751 0.330 126 21.06 0.751 0.348 134 21.68 0.744 0.362 151
+Hardware 3DGS (fas, 2024) 22.05 0.747 0.338 167 20.86 0.743 0.357 174 21.58 0.735 0.372 196

Table 8: Combine with Hardware 3DGS (fas, 2024), quantitative results on real world Outdoor and
Indoor datasets (Xiong et al., 2024; Kerbl et al., 2024; Barron et al., 2023).

CUHK-LOWER Berlin Small City
Methods PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑

Proxy-GS 26.44 0.795 0.262 239 27.85 0.912 0.216 275 23.09 0.736 0.344 139
+Hardware 3DGS (fas, 2024) 26.28 0.787 0.265 280 27.78 0.906 0.210 325 22.91 0.732 0.343 163

A.3 AVERAGE DECODED ANCHOR NUMBER ON ALL THE DATASETS

Table 6: Partition information in MatirxiCity.
Block xmin xmax ymin ymax

1 −9.80 −2.64 0 3.9
2 −2.64 0.44 0 3.9
3 0.44 3.52 0 3.9
4 3.52 8.70 0 3.9
5 −6.90 6.90 3.9 7.4

. In Tab. 9, we report the average number of an-
chors used during training and inference across
all datasets. It can be observed that our method
consistently reduces the decoding burden, al-
though the degree of improvement varies across
different scenes.

A.4 MESH
EXTRACTION ON DIFFERENT DATASETS

A.4.1 INDOOR AND OUTDOOR SCENES WITH DENSE POINT CLOUDS

We describe the mesh extraction process when dense point clouds are available for both indoor
and outdoor environments. This category includes real-world datasets that provide LiDAR point
clouds (e.g., Xiong et al. (2024)), where mesh generation can be directly performed using surface
reconstruction methods, such as (Huang et al., 2023). In addition, for synthetic datasets such as
MatrixCity, ground-truth depth maps are available, which can be fused via TSDF to obtain high-
quality meshes.

A.4.2 INDOOR SCENES WITH SPARSE COLMAP POINT CLOUDS

We describe the workflow of mesh extraction in indoor scenes where only sparse COLMAP recon-
structions are available. Directly relying on COLMAP to generate dense point clouds in indoor envi-
ronments is often unreliable, as such scenes frequently contain large textureless regions. To address
this challenge, we follow the recent advances in 3DGS-based indoor reconstruction methods (Ren
et al., 2025; Zhang et al., 2024), where sparse texture cues are complemented by state-of-the-art
monocular depth estimation (e.g., MoGe2 (Wang et al., 2025)) and further refined with multi-view
constraints from PGSR Chen et al. (2024). This hybrid strategy enables the recovery of reasonable
indoor meshes despite the limitations of sparse COLMAP input.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 9: Average anchor number used to decode all the datasets
Method Block 1&2 Block 3&4 Block 5 Berlin CUHK-LOWER Small City

Proxy-GS 190k 190k 80k 40k 110k 350k
Octree-GS 800k 1040k 720k 60k 120k 840k

MatrixCity CUHK-LOWER Small CityBerlin

Figure 6: Mesh visualization. Scenes include different datasets (Li et al., 2023; Xiong et al., 2024;
Barron et al., 2023; Kerbl et al., 2024).

A.4.3 OUTDOOR SCENES WITH SPARSE COLMAP POINT CLOUDS

For outdoor environments where the reconstruction relies solely on sparse COLMAP point clouds,
the abundance of feature points generally mitigates the issue of sparse textures. However, due to the
large spatial extent, many 3DGS-based indoor reconstruction methods encounter out-of-memory
(OOM) problems when applied to outdoor scenes. To address this, we employ CityGS-X (Gao
et al., 2025), a state-of-the-art large-scale geometric reconstruction framework, which leverages
multi-GPU parallelism to achieve scalable mesh generation with competitive performance.

A.4.4 MESH VISUALIZATION

As shown in Fig. 6, we visualize all the lightweight proxies. Our method does not require highly
accurate meshes; an approximate geometry is sufficient. Thanks to the anchor-based filtering, the
subsequent growth of Gaussians introduces offsets that provide additional tolerance, thereby ensur-
ing that our approach maintains a certain degree of robustness to mesh inaccuracies.

A.5 FAST DEPTH ACQUISITION

A.5.1 OVERVIEW.

We follow a modern real-time rendering pipeline to obtain high-quality depth maps at minimal
latency. The key ideas are: (i) preprocess the reconstructed mesh into compact clusters; (ii) perform
fully GPU-resident frustum and hierarchical-Z (Hi-Z) occlusion culling at cluster granularity each
frame; (iii) emit a depth-only pass that leverages Early-Z; and (iv) zero-copy the resulting depth
buffer into the learning runtime (PyTorch) via Vulkan–CUDA interop, avoiding CPU round trips.
This section details each component.

A.5.2 PREPROCESSING: FROM RECONSTRUCTED MESH TO CLUSTERS.

Given a triangle mesh M = (V,F) obtained by the reconstruction routine above, we apply the
following:

1. Topology-preserving simplification. We reduce face count with a quadric-error-metric
(QEM) style simplifier while enforcing feature and boundary preservation. For a ver-
tex in homogeneous coordinates x̃ = (x, y, z, 1)⊤ and its incident face planes {pf =
(a, b, c, d)⊤} (with ∥(a, b, c)∥2 = 1 for all f), the local quadric is

Q =
∑
f

pfp
⊤
f ,

These per-vertex quadrics are accumulated and then used by an edge-collapse procedure
to decide the contraction position and cost, which removes superfluous micro-triangles
commonly produced by reconstruction and improves cache locality and GPU occupancy.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Edge-collapse simplification with QEM. For each vertex v, accumulate Qv =∑
f∈N(v) pfp

⊤
f . To collapse an edge (i, j), combine quadrics

Q′ = Qi +Qj , E(x̃) = x̃⊤Q′x̃.

Partition Q′ as Q′ =

[
A b
b⊤ c

]
with A ∈ R3×3, b ∈ R3, c ∈ R. The optimal contraction

position is

x∗ = argmin
x∈R3

x⊤Ax+ 2b⊤x+ c = −A−1b (if A is invertible),

with cost δ = E([x∗⊤, 1]⊤).
If A is singular, evaluate {xi,xj , (xi + xj)/2} and pick the one with minimal E. We
maintain a priority queue keyed by δ and iteratively collapse the lowest-cost edge, up-
dating connectivity and setting the new vertex quadric to Q′. Collapses that would break
manifoldness or flip triangle orientations are forbidden.

Boundary/feature preservation. For a boundary or sharp-crease edge with unit tangent
t and unit average normal n̂, add two constraint planes whose intersection is the edge line,

p1 = (n̂, −n̂⊤x0)
⊤, p2 = (t̂× n̂, − t̂× n̂

⊤
x0)

⊤,

and augment incident vertex quadrics by

Qv ← Qv + λb p1p
⊤
1 + λb p2p

⊤
2 ,

with a large weight λb. Alternatively, restrict collapses so boundary vertices only collapse
along the boundary, and forbid collapses across edges whose dihedral angle exceeds a
feature threshold.

2. Cluster construction. We partition the simplified mesh into triangle sets {Lk}Kk=1 such
that

⊔
k Lk = F and τmin≤ |Lk| ≤ τmax. For each cluster we precompute: (a) an object-

space axis-aligned bounding box (AABB) AABBk = [bmin
k ,bmax

k]; and (b) a conservative
screen-space bounding rectangle at level-0, R(0)

k , for any given view. Project the AABB’s
eight corners {xk,j}8j=1 with the view-projection PV :

yk,j = PV

[
xk,j

1

]
, undc

k,j =
(

yx
k,j

yw
k,j

,
yy
k,j

yw
k,j

)
.

Let the viewport be W ×H (origin at the top-left). Map to pixels

sk,j =
(

W
2 (undc

x + 1), H
2 (u

ndc
y + 1)

)
,

then take an outward-rounded, padded box (padding ∆∈{0, 1}) and clip to the screen:

R
(0)
k =

[
⌊min

j
sk,j⌋ −∆, ⌈max

j
sk,j⌉+∆

]
∩ [0,W−1]× [0, H−1].

Such cluster construction helps us to do cluster-level culling, increasing granularity com-
pared to per-triangle culling while retaining high selectivity.

Per-frame visibility: frustum and Hi-Z occlusion. Let {Πi}6i=1 be the frustum planes with in-
ward normals ni and offsets di. A cluster Lk with AABBk corners {xj}8j=1 is frustum-culled if

∃ i s.t. max
j

(
n⊤
i xj + di

)
< 0. (10)

Let Z(0)(u, v) be the base depth. The Hi-Z pyramid for standard depth is

Z(ℓ+1)(u, v) = max
δx,δy∈{0,1}

Z(ℓ)(2u+ δx, 2v + δy). (11)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Level snapping and conservative depth. Given R
(0)
k , choose a pyramid level ℓ (e.g., ℓ =

clamp(⌊log2(max(width(R
(0)
k), height(R

(0)
k)))⌋ − c, 0, Lmax) with a small constant c∈{1, 2}),

and snap the rectangle to level ℓ by outward rounding:

R
(ℓ)
k =

[⌊
R

(0)
k,min

2ℓ

⌋
,
⌈
R

(0)
k,max

2ℓ

⌉]
.

Let yk,j = PV
[
x⊤
k,j , 1

]⊤
denote the clip-space 4-vectors of the eight AABB corners introduced

above (the same ones used to build R
(0)
k). A conservative near-depth estimate for the cluster is

ẑk = min
j=1,...,8

(
max

(
zndc

near,
yzk,j
ywk,j

))
,

If any ywk,j ≤ 0, the near-plane clamp above makes the estimate conservative; alternatively, one may
skip the occlusion test for full safety.

Given the screen-space bounding box Rk of Lk snapped to level ℓ, and a conservative near depth ẑk
of Lk, the occlusion test is

occluded(Lk) ⇐⇒ ẑk ≥ max
(u,v)∈R

(ℓ)
k

Z(ℓ)(u, v). (12)

Depth-only pass with early-Z. After visibility, we render only the surviving clusters in a solid,
depth-only pipeline (color writes disabled, depth writes enabled). A minimal fragment shader lets the
rasterizer perform early-depth testing. This produces the depth map D ∈ RH×W used downstream.

Zero-copy interop to PyTorch. In order to obtain the depth every frame efficiently, a naive path
would be to read back the GPU depth buffer to host memory and then upload it to CUDA, introducing
synchronization and PCIe traffic. Instead, we adopt a fully GPU-resident path: we render with
Vulkan and export the depth image’s memory as an external file descriptor (FD). On the CUDA
side, we import that FD as external memory and map it to a device pointer; the pointer is then
wrapped as a PyTorch CUDA tensor without a copy. This eliminates CPU involvement, avoids extra
copies, and preserves real-time throughput.

LLM USAGE

We acknowledge the assistance of OpenAI’s ChatGPT in the preparation of this manuscript. Chat-
GPT was used for language refinement, LaTeX formatting, and figure illustration to improve the
clarity of the presentation. All conceptual ideas, methodological designs, and final decisions were
solely made by the authors.

16

	Introduction
	Related Work
	Neural Rendering
	Toward Faster 3D Gaussian Splatting Rendering

	Preliminaries
	MLP-based 3DGS
	Hardware Rasterization

	Method
	Motivation
	Proxy Guided Filter
	Proxy-Guided Densification

	Experiment
	Main Results
	Ablations

	Conclusion
	Appendix
	Division detail on MatrixCity
	Combine with Hardware 3DGS
	Average decoded anchor number on all the datasets
	Mesh extraction on different datasets
	Indoor and Outdoor Scenes with Dense Point Clouds
	Indoor Scenes with Sparse COLMAP Point Clouds
	Outdoor Scenes with Sparse COLMAP Point Clouds
	Mesh visualization

	Fast Depth Acquisition
	Overview.
	Preprocessing: from reconstructed mesh to clusters.

