

000 001 **MR²-BENCH: GOING BEYOND MATCHING TO REA-** 002 **SONING IN MULTIMODAL RETRIEVAL** 003 004

005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Multimodal retrieval is becoming a crucial component of modern AI applications,
012 yet its evaluation lags behind the demands of more realistic and challenging sce-
013 narios. Existing benchmarks primarily probe surface-level semantic correspon-
014 dence (e.g., object-text matching) while failing to assess the deeper reasoning
015 required to capture complex relationships between visual and textual information.
016 To address this gap, we introduce MR²-Bench, a reasoning-intensive benchmark
017 for multimodal retrieval. MR²-Bench presents the following critical values: 1) all
018 tasks are reasoning-driven, going beyond shallow matching to effectively assess
019 models' capacity for logical, spatial, and causal inference; 2) it features diverse
020 multimodal data, such as natural images, diagrams, and visual puzzles, enabling
021 comprehensive evaluation across content types; 3) it supports complex queries
022 and documents containing multiple images and covers diverse retrieval scenarios,
023 more accurately reflecting real-world applications. Our benchmark contains 1,309
024 curated queries, derived either from manual collection and annotation or from se-
025 lective consolidation of public datasets. Despite achieving strong results on exist-
026 ing benchmarks, current state-of-the-art models still struggle on MR²-Bench: for
027 example, the leading Seed1.6-Embedding model attains a Recall@1 of 77.78 on
028 MMEB, but only 9.91 on MR²-Bench. This substantial performance gap high-
029 lights both the increased challenge posed by our benchmark and the pressing need
030 for further advances in reasoning-intensive multimodal retrieval.
031
032

1 INTRODUCTION

033 Multimodal retrieval is a crucial capability in contemporary AI applications, supporting tasks such as
034 image search (Young et al., 2014; Zhang et al., 2024), retrieval-augmented generation (RAG) (Chen
035 et al., 2022; Yu et al., 2024), and multimodal agentic systems (Geng et al., 2025; Wu et al., 2025).
036 The field has evolved from traditional cross-modal matching (e.g., text-to-image retrieval (Chen
037 et al., 2015)) to more advanced multimodal retrieval that accommodates compositional queries over
038 interleaved image-text content (e.g., composed image retrieval (Baldrati et al., 2023) and multimodal
039 knowledge retrieval (Chang et al., 2022; Luo et al., 2023)). Consequently, modern multimodal
040 retrievers (Zhou et al., 2024; Zhang et al., 2025a; Meng et al., 2025) can process queries expressed
041 in text, images, or combinations thereof, efficiently extracting relevant information from diverse data
042 sources and bridging the gap between complex datasets and real-world user needs.
043

044 Despite these advances, current evaluation methods remain misaligned with practical requirements.
045 First, existing benchmarks primarily assess surface-level semantic correspondence, offering limited
046 coverage of knowledge reasoning, spatial perception, and vision-centric challenges critical for di-
047 verse agentic applications. Second, these benchmarks predominantly feature natural images, with
048 insufficient representation of visual puzzles, diagrams, and mathematical figures common in tech-
049 nical and educational contexts. Third, real-world documents often exhibit free-form, interleaved
050 image-text layouts with multiple images positioned arbitrarily within the text. However, current
051 benchmarks frequently limit each example to a single image (Chang et al., 2022; Baldrati et al.,
052 2023; Hu et al., 2023; Jiang et al., 2025), failing to reflect the complex document structures preva-
053 lent in practice. These limitations hinder rigorous evaluation of multimodal retrieval systems in
reasoning-intensive, real-world scenarios.

Benchmarks	#Queries	#Tasks	Multi-Modality	Reasoning-Intensive	Vision-Centric Reasoning	Multi-Domain	Free-Form
MS MARCO (Bajaj et al., 2016)	5,193	1	✗	✗	✗	✗	✗
BEIR (Muennighoff et al., 2022)	54,262	18	✗	✗	✗	✓	✗
RAR-b (Xiao et al., 2024a)	45,745	17	✗	✓	✗	✓	✗
BRIGHT (Hongjin et al., 2025)	1,384	12	✗	✓	✗	✓	✗
CIRR (Liu et al., 2021)	4,148	1	✓	✗	✗	✗	✗
WebQA (Chang et al., 2022)	7,540	1	✓	✗	✗	✗	✗
M-BEIR (Wei et al., 2024)	190,000	10	✓	✗	✗	✓	✗
ViDoRe (Faysse et al., 2025)	3,810	2	✓	✗	✗	✗	✗
MMEB (Jiang et al., 2025)	36,000	36	✓	✗	✗	✓	✗
MR²-Bench (Ours)	1,309	12	✓	✓	✓	✓	✓

Table 1: Comparison of MR²-Bench with existing benchmarks. Columns report the number of test queries (**#Queries**); the number of tasks (**#Tasks**); inclusion of image–text data (**Multi-Modality**); whether the benchmark is explicitly reasoning-focused (**Reasoning-Intensive**); whether it contains tasks solvable purely from images without textual cues (**Vision-Centric Reasoning**); domain coverage (**Multi-Domain**); and support for arbitrary text–image organization—interleaved ordering and multi-image on the query and document sides (**Free-Form**). The first block represents textual retrieval benchmarks, and the second block represents multimodal retrieval benchmarks.

In this paper, we introduce **MR²-Bench** (**M**ultimodal **R**easoning-**I**ntensive **B**enchmark). We summarize the key features of MR²-Bench compared to existing benchmarks in Table 1. In summary, MR²-Bench presents the following critical advantages:

- **It is the first benchmark for multimodal reasoning-intensive retrieval.** MR²-Bench is pioneering in its requirement for reasoning to capture relevance rather than relying on shallow semantic matching, thereby filling a significant gap in current multimodal retrieval benchmarks. While existing text-only reasoning-intensive retrieval benchmarks (Xiao et al., 2024a; Hongjin et al., 2025) have been developed, MR²-Bench emphasizes multimodal capabilities with a variety of visually related reasoning-intensive retrieval tasks.
- **It introduces a broad range of multimodal data domains.** Beyond typical natural images, MR²-Bench incorporates diverse image types such as mathematical visual proofs, visual puzzles, and economic charts, etc. These images have widespread applications and inherently require visual reasoning capabilities. However, previous multimodal retrieval tasks have largely overlooked these data types.
- **It offers diverse evaluation scenarios.** MR²-Bench encompasses three meta-tasks: multimodal knowledge retrieval, visual illustration search, and visual relation reasoning, totaling 12 sub-tasks. These tasks provide a wide array of retrieval scenarios, including text-to-image, image-to-image, and mixed image-text queries, among others. Moreover, unlike previous multimodal benchmarks where queries or documents typically contain at most a single image (Wei et al., 2024; Jiang et al., 2025), both queries and documents in MR²-Bench may include multiple images, more accurately reflecting real-world scenarios.

We conduct comprehensive evaluation experiments on existing methods and derive the following key conclusions. Firstly, *multimodal reasoning-intensive retrieval remains challenging for current retrievers*. Despite Seed1.6-Embedding (Seed, 2025) achieves the best performance on MR²-Bench, it only reaches 30.68 nDCG@10. In contrast, it attains 77.78 Recall@1 on the MMEB dataset (Jiang et al., 2025), while its MR²-Bench Recall@1 is just 9.91. Consistent failures are observed across all methods, particularly in mathematical visual proofs and visual relation reasoning. Secondly, *the capability of visual understanding plays an important role in solving our benchmark*. On the one hand, augmenting text-only retrievers with image captions yields substantial gains compared to ignoring images. On the other hand, despite current multimodal retrievers not being optimized for reasoning-intensive retrieval, the two strongest methods in our evaluation are native multimodal retrievers. Finally, *reasoning capacity holds significant potential for enhancing performance on MR²-Bench*. We implement reasoning-enhanced strategies including query rewriting and reranking, which have demonstrated substantial improvements on MR²-Bench. These insights highlight the challenges and opportunities in multimodal retrieval. By exposing current strengths and weaknesses, we anticipate that MR²-Bench will guide the development of more capable multimodal retrievers.

2 RELATED WORK

Reasoning-intensive Retrieval. Information retrieval (IR) has advanced from lexical matching (Robertson et al., 2009) to capturing deep semantic relevance (Karpukhin et al., 2020; Xiao et al., 2024b; Zhang et al., 2025b). Recently, the rise of applications like retrieval-augmented generation and agentic systems (Li et al., 2025b; Jin et al., 2025; Qian & Liu, 2025) has spurred the need for a more advanced capability: reasoning-intensive retrieval. This paradigm challenges IR systems to address complex information needs where relevance cannot be determined by direct semantic overlap, but must be inferred through deep reasoning. Although there has been significant progress in text-only domains with pioneering benchmarks such as BRIGHT (Hongjin et al., 2025) and the development of specialized retrievers (Shao et al., 2025; Long et al., 2025), its application to multimodal scenarios remains largely unexplored. Our work addresses this gap for the first time. Beyond knowledge-oriented tasks, we introduce novel, vision-centric challenges, including visual illustration search and visual relational reasoning, requiring models to perform complex inference over integrated visual and textual data.

Multimodal Retrieval. As real-world information is increasingly presented in multimodal formats, multimodal retrieval has become essential for effectively searching corpora that integrate text and visual data. Initially, the focus was on cross-modal retrieval, such as text-to-image searches (Chen et al., 2015). The field has since evolved to tackle more complex tasks, including image searches guided by textual instructions (Wu et al., 2021; Zhang et al., 2024), multimodal document retrieval (Chang et al., 2022), and knowledge retrieval using multimodal queries (Luo et al., 2023). With the advent of powerful pre-trained vision-language models (VLMs), researchers have been able to develop unified embedding models that effectively handle queries and documents in various formats (Lin et al., 2024; Zhou et al., 2025). Despite these advances, existing benchmarks and methods have largely concentrated on shallow semantic alignment or instance-level matching, neglecting the complex reasoning required to address many real-world information needs (Wei et al., 2024; Jiang et al., 2025). Moreover, these benchmarks often emphasize natural images, overlooking visually complex and abstract domains that demand visual-centric reasoning abilities, such as visual puzzles, mathematical diagrams, and multi-image relational scenarios. Consequently, there is a pressing need for a benchmark designed to evaluate deeper reasoning capabilities in multimodal retrieval.

3 MR²-BENCH: MULTIMODAL REASONING-INTENSIVE RETRIEVAL BENCHMARK

We propose MR^2 -Bench, the first multimodal reasoning-intensive retrieval benchmark. A brief overview of MR^2 -Bench's statistics is presented in Table 2, and visual examples for each task type are shown in Figure 1. MR^2 -Bench comprises 3 meta-tasks and 12 sub-tasks, encompassing a total of 1,309 queries. Detailed modalities of queries and documents, along with the instructions for each sub-task, are provided in Appendix C.

Meta-task	Multimodal Knowledge Retrieval						Visual Illustration Search			Visual Relation Reasoning			Total
Sub-task	Biology	Cooking	Gardening	Physics	Chemistry	EarthScience	Economics	Mathematics	Nature	Spatial	Puzzle	Analogy	-
#Queries	79	76	129	76	124	99	84	86	100	149	160	147	1,309
#Corpus	4,455	2,786	5,636	6,656	4,317	3,014	7,572	944	2,017	1,000	5,375	3,970	47,742

Table 2: Data statistics of queries and corpus for each sub-task in MR^2 -Bench

3.1 MULTIMODAL KNOWLEDGE RETRIEVAL

Traditional knowledge retrieval has focused primarily on text-only queries and corpora (Chen et al., 2017; Kwiatkowski et al., 2019). However, images play a crucial role in realistic knowledge retrieval scenarios. For instance, when users wish to explore an intriguing scientific phenomenon in their daily lives, capturing an image for querying is often more intuitive and detailed than using text alone. Similarly, knowledge bases frequently integrate text and images, with images providing essential explanatory and knowledge representation functions. Although some benchmarks have been developed for multimodal knowledge search (Chang et al., 2022; Luo et al., 2023; Hu et al., 2023; Chen et al., 2023), they are predominantly based on annotations from sources like Wikidata, with

162 questions that are often straightforward (e.g., *What is this mountain called?*¹). These tasks typi-
 163 cally rely on keyword matching, image instance matching, or simple shallow semantic alignment.
 164 However, real-world user queries can be highly complex, requiring intensive reasoning to identify
 165 relevant documents.

166 BRIGHT (Hongjin et al., 2025) introduced the first benchmark for evaluating reasoning-intensive
 167 knowledge retrieval by constructing retrieval pairs between real user queries from Stack Exchange²
 168 and relevant documents. The relevant documents are identified from external links referenced in
 169 high-scoring answers, establishing retrieval relationships that require reasoning over critical con-
 170 cepts or theories to bridge the query and the document. As a result, retrieval models evaluated
 171 on this benchmark must possess capabilities that go beyond simple lexical or semantic matching.
 172 However, BRIGHT is a text-only benchmark, leaving a gap in multimodal queries and documents.

173 Inspired by BRIGHT’s task construction approach, we have developed a set of reasoning-intensive
 174 multimodal knowledge retrieval tasks in our MR²-Bench. In contrast to BRIGHT, our approach rig-
 175 orously ensures that images are essential components of the questions, rendering these inquiries in-
 176 valid without the accompanying visual data. We also retain images from relevant documents if they
 177 are crucial for conveying knowledge. The annotation process is detailed in the Appendix D. Our
 178 benchmark covers six domains: **Biology**, **Cooking**, **Gardening**, **Physics**, **Chemistry**, and **Earth**
 179 **Science**. Examples of these tasks are illustrated in Figure 1(a)-(c). For instance, in Figure 1(a),
 180 the positive document does not mention *apple* or *grow together*. The key to connecting the doc-
 181 ument and the question lies in the accompanying image, which demonstrates a similar biological
 182 phenomenon in other species.

183 3.2 VISUAL ILLUSTRATION SEARCH

185 Text-to-image retrieval (e.g., Flickr30K (Young et al., 2014), MSCOCO (Chen et al., 2015)) is a
 186 canonical multimodal retrieval task, where the system need to retrieve the image that best matches a
 187 textual query. Classic benchmarks are largely limited to direct and surface-level semantic alignment,
 188 such as identifying a specific animal or a person performing a certain sport. However, real-world
 189 use cases often require domain knowledge and multi-step reasoning to retrieve the target image (e.g.,
 190 professional charts and scientific illustrations). To address this gap, we introduce the **Visual Illus-
 191 tration Search** (VIS) task. In this task, the model is required to retrieve an image that functions
 192 as a visual illustration, intuitively explaining or solving a problem posed in a challenging, domain-
 193 specific textual query. Comprising three sub-tasks: **Economics**, **Mathematics**, and **Nature**, VIS
 194 evaluates a model’s ability to perform cross-modal reasoning and knowledge-grounded understand-
 195 ing in complex multimodal scenarios.

196 **Economics.** Charts serve as intuitive illustrations across various disciplines. However, existing
 197 chart-related tasks (e.g., ChartVQA (Masry et al., 2022), ViDoRe (Faysse et al., 2025)) primarily test
 198 surface-level abilities solvable with basic OCR and arithmetic. To assess a model’s ability to capture
 199 the deeper semantics and domain knowledge embedded in chart, we manually collected reports from
 200 the World Bank³, extracted charts related to economics, and asked human experts to create questions
 201 grounded in these charts. The core annotation principle is that each question must demand sufficient
 202 reasoning to identify the positive chart. For instance, as shown in Figure 1(d), the positive chart does
 203 not explicitly state the conclusion; only by comparing the relative positions of different countries
 204 in the chart and associating *spending quantiles* with *learning poverty rates* can one validate the
 205 hypothesis posed in the question. Following these principles, we constructed a reasoning-oriented
 206 retrieval subset centered on economic charts, comprising 84 high-quality questions.

207 **Mathematics.** Images can effectively reinforce human comprehension of abstract knowledge. This
 208 holds especially in mathematics, where *visual proofs* are conical examples that use geometric rela-
 209 tions to demonstrate abstract theorems intuitively. As shown in Figure 1(e), the recursive partition
 210 of the unit square gives a clear proof of the infinite series $\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$. Although structurally
 211 simple, such proofs embody rigorous logic and require strong reasoning to connect visual patterns
 212 with abstract mathematical principles, providing an effective evaluation of model’s reasoning ability.
 213 However, visual proofs are largely absent from existing multimodal retrieval benchmarks. There-

214 ¹Query example curated from the OVEN benchmark (Hu et al., 2023)

215 ²<https://stackexchange.com>

³<https://data.worldbank.org>

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Multimodal Knowledge Retrieval**(a) Biology****Question**

How did these apples grow together? I came through this pic while scrolling through facebook... I want a biological answer for this.

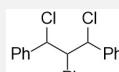
Similar phenomena in other species

Positive Document

Inadequate pollination because of heat and other adverse growing conditions causes that section of the fruit in which the seed did not develop...

(b) Chemistry**Question**

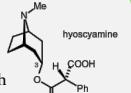
How can I determine the number of possible pairs of diastereomers here? My first guess was: RR with RS and SS with RS. But what about the potential chirality center middle carbon? There are...



The formal definition for a specific chemical problem

Positive Document

The traditional name for a tetrahedral coordinated carbon atom bonded to four different entities, two and only two of which have the same constitution but opposite chirality sense...

**Question**

Cause for round holes in stones. I picked up this stone form a beach on the south coast of England (lancing). How is it possible it has such round holes? Plenty of stones looked similar.

A biological origin for a geological feature

Positive Document

Piddocks are unique in that each side of their shells is divided into 2 or 3 separate sections. Furthermore, one of the piddock's shells has a set of ridges or "teeth", which they use to grind away at clay or soft rock and create tubular burrows. The shape of these burrows is due to...

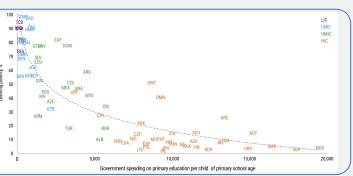
Visual Illustration Search**Query**

Find the chart that best supports answering this question.

Do countries with mid-level primary-education spending achieve learning-poverty rates that equal or surpass those of some higher-spending high-income countries?

(d) Economics

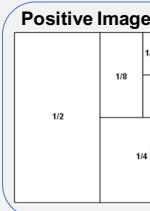
Validating a socio-economic hypothesis with chart data

Positive Chart**(e) Mathematics****Query**

Find the visual proof that best demonstrates this formula.

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$$

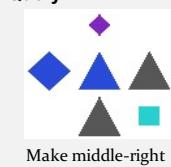
Geometric meaning of infinite series

**(f) Nature****Query**

Given a natural-world expert query, find the most relevant image.

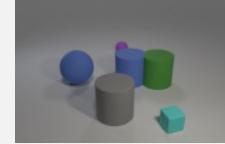
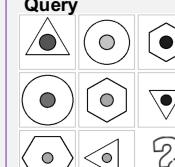
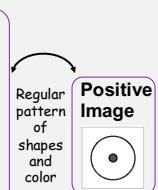
A close-up of a Star-nosed Mole's nose showing all appendages of its Eimer's organs.

Grounding a scientific concept in visual evidence

Visual Relation Reasoning**(g) Spatial****Query**

Make middle-right gray object green

An edit of a 2D layout in a 3D space

Positive Image**(h) Visual Puzzle****Query**

Regular pattern of shapes and color

Positive Image

(i) Analogy**Query**

A

A'

B

B'

Positive Image

Figure 1: Visualized Examples of MR²-Bench: Sub-task illustrations from three meta-tasks, with 3 out of 6 shown for the multimodal knowledge retrieval task.

270 fore, we curate 86 mathematical formulas from *Proofs Without Words* (Nelsen, 2015) and Wikimedia
 271 Commons⁴, using each formula as a query and its corresponding visual proof as the positive image.
 272

273 **Nature.** Natural-world images are more than depictions; they are visual reference for species identi-
 274 fication, ecosystem monitoring, and science education (Van Horn et al., 2015; 2018), which require
 275 images that capture specific traits or morphology, rather than the generic picture of the organism.
 276 For example, as shown in Figure 1(f), the query seeks for *a close-up of star-nosed mole’s distinctive*
 277 *organs*, which demands both expert biological knowledge and fine-grained visual recognition. Satis-
 278 fying such knowledge-intensive visual requests is a challenging yet essential capability for models.
 279 To evaluate this, we carefully selected 100 queries from the publicly available INQUIRE-Rerank
 280 dataset (Vendrow et al., 2024) to construct the expert-level natural-world image retrieval task.
 281

282 3.3 VISUAL RELATION REASONING

283 In prevailing multimodal retrieval benchmarks, textual queries are the primary driver of user intent.
 284 However, this paradigm often overlooks the rich, self-contained semantics inherent in purely visual
 285 structures and relationships that are independent of natural language. To address this gap, we intro-
 286 duce **Visual Relation Reasoning**, a suite of tasks for assessing high-level vision-centric reasoning
 287 through three distinct sub-tasks: **Spatial**, **Visual Puzzle**, and **Analogy**.

288 **Spatial.** The capacity for spatial perception, transformation, and reasoning is essential for models.
 289 To evaluate these capabilities, we incorporate tasks from the CSS dataset (Vo et al., 2019), a con-
 290 trolled synthetic dataset where each sample consists of a reference image, a textual modification
 291 instruction, and a corresponding target image, with scenes rendered as both 2D layouts and photore-
 292 alistic 3D images. As illustrated in Figure 1(g), the query requires jointly parsing descriptions that
 293 combine relative position and attributes (i.e., *middle-right gray object*) and projecting the 2D layout
 294 into the corresponding 3D scene, yielding a comprehensive test of spatial ability. From CSS, we
 295 curated 149 queries to constitute the spatial-reasoning subtask of MR²-Bench.
 296

297 **Visual Puzzle.** Inspired by Raven’s Progressive Matrices⁵, this task is designed to evaluate pattern
 298 recognition and structural reasoning. As shown in Figure 1(h), for a given 3×3 matrix with the final
 299 cell missing, the model need to retrieve the positive image that logically completes the matrix’s
 300 underlying pattern. This task is distinguished by its near-complete absence of linguistic signals,
 301 which compels the model to directly infer abstract patterns to perform higher-order reasoning from
 302 vision alone. We reorganized the RAVEN dataset (Zhang et al., 2019): for each rule-governed visual
 303 attribute, we selected a set of queries, pooled the corresponding candidate images and removed
 304 duplicates to build the corpus. In total, we curated 160 queries for this task.
 305

306 **Analogy.** Derived from the VASR dataset (Bitton et al., 2023), this task tests a model’s capability for
 307 visual analogical reasoning. As shown in Figure 1(i), the query comprises three images (A, A', B),
 308 where the pair (A, A') exemplifies a visual semantic transformation (e.g., *replacing a machine with*
 309 *human labor in a comparable scene*) that is expected to hold between B and B' . The model must
 310 infer the transformation from A to A' , apply it to B , and retrieve the image B' that completes the
 311 analogy. It requires the model abstracts an implicit transformation rule from one image pair and
 312 generalizes it to another, which effectively tests its capacity for high-order visual reasoning. We
 313 instantiate this task by converting VASR analogy triplets into a retrieval setting and curated 147
 314 challenging queries.
 315

316 4 EXPERIMENTS

317 4.1 SETTINGS

318 We evaluated 11 popular embedding models using our MR²-Bench, categorizing them into two main
 319 types: text-only embedding models and multimodal embedding models. We employed nDCG@10
 320 as the primary metric, with additional metric results provided in Appendix G.

321 For *text embedding models*, we assessed two categories: traditional models such as BGE-M3 (Chen
 322 et al., 2024) and Qwen3-Embedding (Zhang et al., 2025b), and models optimized for reasoning-

323 ⁴https://commons.wikimedia.org/wiki/Category%3AProof_without_words

⁵https://en.wikipedia.org/wiki/Raven%27s_Progressive_Matrices

Methods	Multimodal Knowledge Retrieval						Visual Illustration			Visual Relation			Avg.
	Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
<i>Text Embedding Models</i>													
BGE-M3	18.79	12.97	12.04	14.52	6.05	16.35	-	-	-	-	-	-	-
+ Captions	34.19	24.28	17.88	21.24	9.67	25.19	45.46	9.97	23.66	9.48	0.00	3.46	18.71
Qwen3	23.77	20.44	12.61	17.13	8.61	19.79	-	-	-	-	-	-	-
+ Captions	29.97	29.29	18.32	21.46	9.52	23.19	49.44	21.14	26.30	9.11	0.00	4.30	20.17
Diver-Emb.	27.32	16.94	15.17	18.05	10.06	22.57	-	-	-	-	-	-	-
+ Captions	38.46	30.87	22.84	23.62	14.46	31.40	54.67	25.91	24.88	8.52	0.00	7.47	23.59
BGE-Rea.	29.01	15.37	16.31	21.00	10.62	26.20	-	-	-	-	-	-	-
+ Captions	42.60	34.40	24.94	25.61	14.31	34.57	54.31	17.16	29.86	5.52	0.00	5.88	25.35
ReasonIR	29.85	19.72	16.22	21.56	9.83	23.56	-	-	-	-	-	-	-
+ Captions	44.75	41.91	18.79	27.33	17.45	41.22	64.04	34.49	30.70	11.65	0.00	10.89	25.72
<i>Multimodal Embedding Models</i>													
CLIP	32.85	30.57	14.06	14.86	3.50	33.23	12.97	5.64	49.34	20.89	0.19	5.09	18.59
BGE-VL	29.41	18.36	10.50	19.51	7.12	19.73	50.80	14.31	47.97	6.46	0.00	0.75	19.53
GME	34.34	39.50	19.04	19.29	7.73	28.59	36.95	7.19	39.35	15.70	0.22	11.11	21.59
VLM2Vec	39.37	39.38	19.87	20.28	9.03	35.71	51.44	14.16	35.06	13.94	<u>0.62</u>	5.85	23.72
MM-Emb.	49.68	52.19	23.67	30.36	17.44	47.51	42.99	21.58	48.41	22.79	0.21	5.93	<u>30.23</u>
Seed-1.6	40.64	38.12	31.77	<u>27.91</u>	17.80	37.17	<u>56.13</u>	<u>26.10</u>	65.16	17.29	0.93	9.21	30.68

Table 3: **The overall performance of embedding models on MR^2 -Bench.** We report nDCG@10 for all sub-tasks. Avg. denotes the average score across 12 datasets. The best score on each dataset is shown in bold and the second best is underlined.

intensive retrieval, including ReasonIR (Shao et al., 2025), BGE-Reasoner-Embed⁶, and Diver-Embed (Long et al., 2025). We adopted two evaluation approaches for text embedding models: (1) Using only text information from queries and documents, which is limited for tasks where queries or candidates are purely image-based; (2) Replacing images with textual descriptions (captions). For *multimodal embedding models*, we evaluated CLIP (Radford et al., 2021), VISTA (Zhou et al., 2024), BGE-VL (Zhou et al., 2025), MM-Embed (Lin et al., 2024), GME (Zhang et al., 2025a), VLM2VecV2 (Meng et al., 2025), and Seed1.6-Embedding (Seed, 2025). Detailed information on the models and evaluation procedures can be found in Appendix E.

4.2 MAIN RESULTS

We summarize the overall evaluation results for all investigated retrieval baselines in MR^2 -Bench in Table 3. For each sub-task, we report nDCG@10, along with the macro-average (Avg.) across all tasks. All experiments were conducted within each individual sub-task using separate retrieval corpora. Comprehensive evaluation metrics, including Recall@K and MRR@K, can be found in Appendix G. From these results, we draw some primary conclusions:

1) Current state-of-the-art models underperform on MR^2 -Bench. The leading Seed-1.6 Embedding model (Seed, 2025) achieves only 30.68 nDCG@10 on our benchmark. In contrast, it reports 77.78 overall Recall@1 on the popular MMEB leaderboard (Jiang et al., 2025), but its performance drops significantly to 9.91 Recall@1 on MR^2 -Bench. Additionally, the SOTA reasoning-intensive text retriever, Diver-Retriever (Long et al., 2025), achieves 33.90 nDCG@10 on BRIGHT (Hongjin et al., 2025), yet only reaches 23.59 nDCG@10 on MR^2 -Bench when evaluated with auxiliary captions. These results highlight the increased challenges posed by our MR^2 -Bench.

2) Text retrievers augmented with image captions provide a strong and practical baseline on MR^2 -Bench. Since text retrievers cannot directly process images, we replace each image in queries and candidate documents with detailed natural-language descriptions. This augmentation leads to notable improvements. For instance, ReasonIR+Captions surpasses popular open-source multimodal retrievers like VLM2Vec-V2 (Meng et al., 2025). On the Stack Exchange subset, adding captions consistently boosts performance across most tasks. These findings confirm that MR^2 -Bench

⁶<https://huggingface.co/BAAI/bge-reasoner-embed-qwen3-8b-0923>

378 is fundamentally multimodal, with retrieval performance significantly enhanced by the visual information
 379 provided through captions.
 380

381 **3) Reasoning-oriented text retrievers significantly outperform traditional matching-based re-**
 382 **trievers.** Models optimized for reasoning-intensive retrieval, such as ReasonIR and Diver-Retriever,
 383 consistently achieve higher nDCG@10 scores on MR²-Bench compared to matching-centric retrievers
 384 like BGE-M3 and Qwen3-Embedding. This advantage is evident across various meta-tasks and
 385 persists whether visual content is absent or represented as detailed captions. Collectively, these
 386 findings suggest that reasoning-oriented capabilities learned in text retrieval effectively transfer to
 387 multimodal retrieval tasks requiring complex reasoning.
 388

389 **4) Multimodal retrievers show potential on MR²-Bench.** Although not specifically designed for
 390 reasoning-intensive tasks, multimodal embedding models like MM-Embed and Seed1.6-Embedding
 391 lead performance on MR²-Bench. These models notably outperform caption-augmented text re-
 392 trievals, including those optimized for reasoning. This gap suggests a promising direction for future
 393 research in developing reasoning-intensive multimodal retrievers.
 394

395 **5) Existing methods struggle with capturing complex visual relationships and abstract con-**
 396 **cepts.** Current models face challenges in effectively perceiving multi-image relationships (Anal-
 397 ogy), spatial configurations (Spatial), and abstract graphics (Mathematics, Visual Puzzle). We hy-
 398 pothesize that these difficulties stem from the inherently visual-centric nature of these tasks, which
 399 existing embedding models struggle to comprehend fully. Nonetheless, these images are crucial
 400 for real-world applications, as their information is difficult to convey through language alone. This
 401 indicates substantial potential for future research to enhance multimodal embedding models.
 402

4.3 MORE ANALYSIS

4.3.1 THE EFFECTIVENESS OF QUERY REWRITING

403 **6) Query rewriting enhances both text and multimodal baselines on MR²-Bench.** This
 404 generation-augmented retrieval technique clarifies complex user intent and highlights latent con-
 405 straints, thus facilitating reasoning-intensive retrieval. Although extensively studied in text-only
 406 contexts (Gao et al., 2023; Li et al., 2025a), its application to multimodal retrieval remains under-
 407 explored. We evaluated a simple, model-agnostic query rewriting pipeline on MR²-Bench. For
 408 each query, GPT-5 (OpenAI, 2025) generates step-by-step reasoning, which is then utilized by each
 409 retriever (details in Appendix H). As shown in Table 4, both text and multimodal retrievers show
 410 notable average improvements. These results indicate that query rewriting is a practical method
 411 for enhancing multimodal reasoning-intensive retrieval tasks, consistently improving performance
 412 without the need for fine-tuning existing retrievers.
 413

Methods	Stack Exchange						Visual Illustration			Visual Relation			Avg.
	Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
BGE-M3	34.19	24.28	17.88	21.24	9.67	25.19	45.46	9.97	23.66	9.48	0.00	3.46	18.71
+ Rewrite	40.41	32.94	25.66	23.12	11.98	33.63	50.88	20.09	23.38	7.13	0.00	7.91	23.09
Seed-1.6	40.64	38.12	31.77	27.91	17.80	37.17	56.13	26.10	65.16	17.29	0.93	9.21	30.68
+ Rewrite	41.13	41.47	37.68	29.47	20.70	42.02	50.08	30.37	65.84	31.87	1.24	14.62	33.87

420 Table 4: Performance comparison of BGE-M3 and Seed-1.6 Embedding on MR²-Bench before and
 421 after query rewriting, showing significant improvements across most tasks.
 422

4.3.2 THE EFFECTIVENESS OF ADVANCED RERANKING

424 A common approach to improve retrieval performance is to employ rerankers that jointly process
 425 both the query and its retrieved candidates. Existing studies have shown that incorporating an inter-
 426 mediate reasoning step before final scoring can lead to more accurate rankings (Weller et al., 2025;
 427 Zhuang et al., 2025; Liu et al., 2025). We also investigate this by incorporating a reranking stage
 428 after the initial retrieval on MR²-Bench. Specifically, we test a wide range of rerankers to rerank the
 429 top- $k = 20$ candidates retrieved by three base retrievers: Qwen3-Embedding, GME, and Seed-1.6-
 430 Embedding. Their retrieved candidates are reranked by: 1) *textual rerankers*: RankLLaMA-7B and
 431 RankLLaMA-14B (Ma et al., 2024); 2) *reasoning-enhanced textual rerankers*: Rank1-7B (Weller
 432 et al., 2025), RankR1-14B (Zhuang et al., 2025), ReasonRank-32B (Liu et al., 2025), and BGE-

Reasoner-Reranker-32B⁷; 3) *multimodal rerankers*: MonoQwen2-VL-v0.1 (Chaffin & Lac, 2024) and Jina-Reranker-m0 (JinaAI, 2025); and 4) *reasoning-enhanced multimodal rerankers*: Gemma3-27B (Team, 2025), Qwen2.5-VL-72B (Bai et al., 2025), GLM-4.5V (Team et al., 2025), **Gemini-2.5-Pro** (Comanici et al., 2025), and GPT-5 (OpenAI, 2025). Since there are no off-the-shelf multimodal rerankers that natively support reasoning, we prompt these MLLMs to first perform reasoning and then output a relevance score. Full implementation details are available in Appendix I.1. Average performance based on Seed-1.6-Embedding is shown in Figure 2, and detailed results for all three base retrievers are provided Appendix I.2 and Appendix I.3.

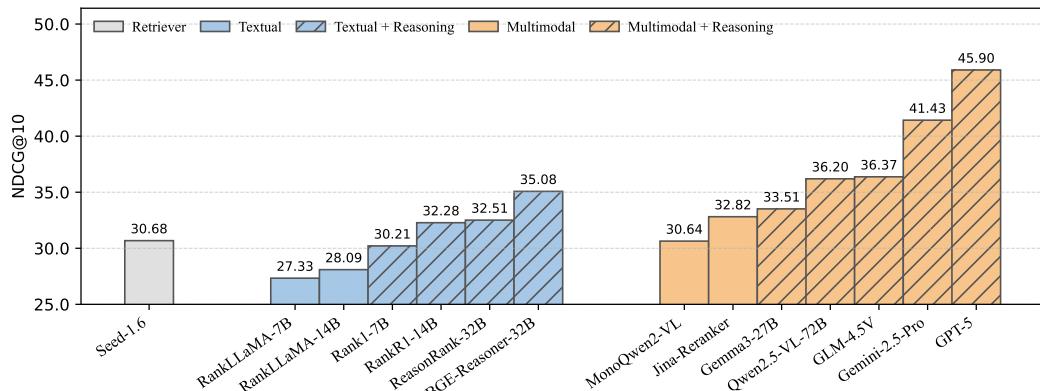


Figure 2: **Reranking performance on $\text{MR}^2\text{-Bench}$ with Seed-1.6-Embedding as the base retriever.**

From the results presented in Figure 2, we have following findings:

7) Rerankers deliver substantial gains on $\text{MR}^2\text{-Bench}$. Most rerankers significantly outperform the strong Seed-1.6-Embedding baseline, demonstrating the benefit of joint modeling of queries and candidates. Notably, GPT-5 achieves an nDCG@10 of 45.90, an absolute gain of 15.22 over the baseline, indicating the substantial headroom for improvement unlocked by reranking.

8) An explicit reasoning step before scoring proves to be beneficial. Across text-only rerankers, those incorporating reasoning consistently outperform their non-reasoning, size-matched counterparts (e.g., Rank1-7B vs. RankLLAMA-7B; RankR1-14B vs. RankLLAMA-14B). This is further substantiated by BGE-Reasoner-Reranker-32B: using only textual input, it achieves an nDCG@10 of 35.08, outperforming the strong base retriever by 4.2 points. Moreover, for multimodal rerankers, models prompted to reason and then rank outperform those trained non-reasoning rerankers. These results confirm that explicit reasoning drives the gains on $\text{MR}^2\text{-Bench}$.

9) Multimodal information plays a significant role in enhancing performance. Despite being built on the lightweight Qwen2-VL-2B backbone, Jina-Reranker-m0 surpasses several larger text-only rerankers, demonstrating clear gains from multimodal information. Furthermore, multimodal models prompted to first reason and then rank (e.g., Qwen2.5-VL-72B, GLM-4.5V, and GPT-5) surpass BGE-Reasoner-Reranker-32B, the best-performing textual reranker specifically trained with reasoning capabilities. GPT-5 achieves the highest overall score, underscoring the importance of utilizing multimodal information with reasoning in tackling the complex retrieval demands posed by $\text{MR}^2\text{-Bench}$.

5 CONCLUSION

In this paper, we introduce $\text{MR}^2\text{-Bench}$, a novel benchmark for the assessment of multimodal reasoning-intensive retrieval. The comprehensive investigation of existing methods reveals that current retrievers perform poorly on $\text{MR}^2\text{-Bench}$, with the best models achieving only 30.68 nDCG@10. Our experimental results underscore the importance of multimodal information and reasoning capabilities for effectively addressing $\text{MR}^2\text{-Bench}$, highlighting significant potential for improvement in this research area. Additionally, we demonstrate that techniques such as query rewriting and reranking can enhance performance on $\text{MR}^2\text{-Bench}$. We anticipate that this benchmark will facilitate future research in multimodal retrieval, contributing to more realistic and challenging AI applications.

⁷https://github.com/FlagOpen/FlagEmbedding/tree/master/research/BGE_Reasoner

486 REFERENCES
487

488 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
489 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
490 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
491 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report. *arXiv*
492 preprint *arXiv:2502.13923*, 2025.

493 Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
494 jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. Ms marco: A human generated
495 machine reading comprehension dataset. *arXiv preprint arXiv:1611.09268*, 2016.

496 Alberto Baldrati, Lorenzo Agnolucci, Marco Bertini, and Alberto Del Bimbo. Zero-shot composed
497 image retrieval with textual inversion. In *Proceedings of the IEEE/CVF International Conference*
498 *on Computer Vision*, pp. 15338–15347, 2023.

499 Yonatan Bitton, Ron Yosef, Eliyahu Strugo, Dafna Shahaf, Roy Schwartz, and Gabriel Stanovsky.
500 Vasr: Visual analogies of situation recognition. In *Proceedings of the AAAI Conference on Artifi-*
501 *cial Intelligence*, volume 37, pp. 241–249, 2023.

502 Antoine Chaffin and Aurélien Lac. Monoqwen: Visual document reranking, 2024. URL <https://huggingface.co/lightonai/MonoQwen2-VL-v0.1>.

503 Yingshan Chang, Mridu Narang, Hisami Suzuki, Guihong Cao, Jianfeng Gao, and Yonatan Bisk.
504 Webqa: Multihop and multimodal qa. In *Proceedings of the IEEE/CVF Conference on Computer*
505 *Vision and Pattern Recognition*, pp. 16495–16504, 2022.

506 Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia to answer open-
507 domain questions. In Regina Barzilay and Min-Yen Kan (eds.), *Proceedings of the 55th Annual*
508 *Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1870–
509 1879, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/

510 *v1/P17-1171*. URL <https://aclanthology.org/P17-1171/>.

511 Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
512 Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
513 tillation. *arXiv preprint arXiv:2402.03216*, 2024.

514 Wenhui Chen, Hexiang Hu, Xi Chen, Pat Verga, and William W. Cohen. Murag: Multimodal
515 retrieval-augmented generator for open question answering over images and text. In Yoav Gold-
516 berg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empiri-*
517 *cal Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates,*
518 *December 7-11, 2022*, pp. 5558–5570. Association for Computational Linguistics, 2022. doi:
519 10.18653/V1/2022.EMNLP-MAIN.375. URL <https://doi.org/10.18653/v1/2022.emnlp-main.375>.

520 Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
521 C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. *arXiv*
522 preprint *arXiv:1504.00325*, 2015.

523 Yang Chen, Hexiang Hu, Yi Luan, Haitian Sun, Soravit Changpinyo, Alan Ritter, and Ming-Wei
524 Chang. Can pre-trained vision and language models answer visual information-seeking questions?
525 In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on*
526 *Empirical Methods in Natural Language Processing*, pp. 14948–14968, Singapore, December
527 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.925. URL
528 <https://aclanthology.org/2023.emnlp-main.925/>.

529 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
530 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
531 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
532 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

533 Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, CELINE HUDELOT, and
534 Pierre Colombo. Colpali: Efficient document retrieval with vision language models. In *The*
535 *Thirteenth International Conference on Learning Representations*, 2025.

540 Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-shot dense retrieval without
 541 relevance labels. In *Proceedings of the 61st Annual Meeting of the Association for Computational*
 542 *Linguistics (Volume 1: Long Papers)*, pp. 1762–1777, 2023.

543

544 Xinyu Geng, Peng Xia, Zhen Zhang, Xinyu Wang, Qiuchen Wang, Ruixue Ding, Chenxi Wang,
 545 Jialong Wu, Yida Zhao, Kuan Li, et al. Webwatcher: Breaking new frontiers of vision-language
 546 deep research agent. *arXiv preprint arXiv:2508.05748*, 2025.

547

548 SU Hongjin, Howard Yen, Mengzhou Xia, Weijia Shi, Niklas Muennighoff, Han-yu Wang, Liu
 549 Haisu, Quan Shi, Zachary S Siegel, Michael Tang, et al. Bright: A realistic and challenging bench-
 550 mark for reasoning-intensive retrieval. In *The Thirteenth International Conference on Learning*
 551 *Representations*, 2025.

552

553 Hexiang Hu, Yi Luan, Yang Chen, Urvashi Khandelwal, Mandar Joshi, Kenton Lee, Kristina
 554 Toutanova, and Ming-Wei Chang. Open-domain visual entity recognition: Towards recogniz-
 555 ing millions of wikipedia entities. In *IEEE/CVF International Conference on Computer Vi-
 556 sion, ICCV 2023, Paris, France, October 1-6, 2023*, pp. 12031–12041. IEEE, 2023. doi: 10.
 557 1109/ICCV51070.2023.01108. URL <https://doi.org/10.1109/ICCV51070.2023.01108>.

558

559 Ziyang Jiang, Rui Meng, Xinyi Yang, Semih Yavuz, Yingbo Zhou, and Wenhui Chen. Vlm2vec:
 560 Training vision-language models for massive multimodal embedding tasks. In *The Thirteenth*
 561 *International Conference on Learning Representations*, 2025.

562

563 Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-
 564 r1: Training llms to reason and leverage search engines with reinforcement learning. *CoRR*,
 565 abs/2503.09516, 2025. doi: 10.48550/ARXIV.2503.09516. URL <https://doi.org/10.48550/arXiv.2503.09516>.

566

567 JinaAI. jina-reranker-m0. <https://jina.ai/news/jina-reranker-m0-multilingual-multimodal-document-reranker/>,
 568 April 2025.

569

570 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick S. H. Lewis, Ledell Wu, Sergey Edunov,
 571 Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answer-
 572 ing. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the*
 573 *2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online,*
 574 *November 16-20, 2020*, pp. 6769–6781. Association for Computational Linguistics, 2020. doi:
 575 10.18653/V1/2020.EMNLP-MAIN.550. URL <https://doi.org/10.18653/v1/2020.emnlp-main.550>.

576

577 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 578 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 579 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
 580 Petrov. Natural questions: A benchmark for question answering research. *Transactions of the*
 581 *Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
 582 <https://aclanthology.org/Q19-1026/>.

583

584 Chaofan Li, Jianlyu Chen, Yingxia Shao, Chaozhuo Li, Quanqing Xu, Defu Lian, and Zheng
 585 Liu. Reinforced IR: A self-boosting framework for domain-adapted information retrieval. In
 586 Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Pro-
 587 ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
 588 *Papers)*, pp. 22061–22073, Vienna, Austria, July 2025a. Association for Com-
 589 putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1071. URL
 590 <https://aclanthology.org/2025.acl-long.1071/>.

591

592 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang,
 593 and Zhicheng Dou. Search-01: Agentic search-enhanced large reasoning models. *CoRR*,
 594 abs/2501.05366, 2025b. doi: 10.48550/ARXIV.2501.05366. URL <https://doi.org/10.48550/arXiv.2501.05366>.

594 Sheng-Chieh Lin, Chankyu Lee, Mohammad Shoeybi, Jimmy Lin, Bryan Catanzaro, and Wei
 595 Ping. Mm-embed: Universal multimodal retrieval with multimodal llms. *arXiv preprint*
 596 *arXiv:2411.02571*, 2024.

597 Wenhan Liu, Xinyu Ma, Weiwei Sun, Yutao Zhu, Yuchen Li, Dawei Yin, and Zhicheng Dou.
 598 Reasonrank: Empowering passage ranking with strong reasoning ability. *arXiv preprint*
 599 *arXiv:2508.07050*, 2025.

600 Zheyuan Liu, Cristian Rodriguez-Opazo, Damien Teney, and Stephen Gould. Image retrieval on
 601 real-life images with pre-trained vision-and-language models. In *Proceedings of the IEEE/CVF*
 602 *International Conference on Computer Vision*, pp. 2125–2134, 2021.

603 Meixiu Long, Duolin Sun, Dan Yang, Junjie Wang, Yue Shen, Jian Wang, Peng Wei, Jinjie Gu, and
 604 Jiahai Wang. Diver: A multi-stage approach for reasoning-intensive information retrieval. *arXiv*
 605 *preprint arXiv:2508.07995*, 2025.

606 Man Luo, Zhiyuan Fang, Tejas Gokhale, Yezhou Yang, and Chitta Baral. End-to-end knowledge
 607 retrieval with multi-modal queries. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki
 608 (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics*
 609 (*Volume 1: Long Papers*), *ACL 2023, Toronto, Canada, July 9–14, 2023*, pp. 8573–8589. As-
 610 sociation for Computational Linguistics, 2023. doi: 10.18653/V1/2023.ACL-LONG.478. URL
 611 <https://doi.org/10.18653/v1/2023.acl-long.478>.

612 Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage
 613 text retrieval. In *Proceedings of the 47th International ACM SIGIR Conference on Research and*
 614 *Development in Information Retrieval*, pp. 2421–2425, 2024.

615 Ahmed Masry, Do Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. ChartQA: A bench-
 616 mark for question answering about charts with visual and logical reasoning. In *Findings of the*
 617 *Association for Computational Linguistics: ACL 2022*, pp. 2263–2279, Dublin, Ireland, May
 618 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.177. URL
 619 <https://aclanthology.org/2022.findings-acl.177>.

620 Rui Meng, Ziyan Jiang, Ye Liu, Mingyi Su, Xinyi Yang, Yuepeng Fu, Can Qin, Zeyuan Chen, Ran
 621 Xu, Caiming Xiong, et al. Vlm2vec-v2: Advancing multimodal embedding for videos, images,
 622 and visual documents. *arXiv preprint arXiv:2507.04590*, 2025.

623 Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text embed-
 624 ding benchmark. *arXiv preprint arXiv:2210.07316*, 2022.

625 Roger B Nelsen. *Proofs without words III: Further exercises in visual thinking*, volume 52. Ameri-
 626 can Mathematical Soc., 2015.

627 OpenAI. Gpt-5. <https://openai.com/gpt-5/>, August 2025.

628 Hongjin Qian and Zheng Liu. Scent of knowledge: Optimizing search-enhanced reasoning with
 629 information foraging. *arXiv preprint arXiv:2505.09316*, 2025.

630 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 631 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 632 models from natural language supervision. In *International conference on machine learning*, pp.
 633 8748–8763. PMLR, 2021.

634 Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and be-
 635 yond. *Foundations and Trends® in Information Retrieval*, 3(4):333–389, 2009.

636 ByteDance Seed. Seed1-6 embedding. <https://seed1-6-embedding.github.io>, June
 637 2025.

638 Rulin Shao, Rui Qiao, Varsha Kishore, Niklas Muennighoff, Xi Victoria Lin, Daniela Rus, Bryan
 639 Kian Hsiang Low, Sewon Min, Wen-tau Yih, Pang Wei Koh, et al. Reasonir: Training retrievers
 640 for reasoning tasks. *arXiv preprint arXiv:2504.20595*, 2025.

641 Gemma Team. Gemma 3. 2025. URL <https://goo.gle/Gemma3Report>.

648 V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale
 649 Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng,
 650 Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi,
 651 Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali
 652 Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong,
 653 Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong,
 654 Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei
 655 Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu,
 656 Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan
 657 An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li,
 658 Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du,
 659 Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and Jie
 660 Tang. Glm-4.5v and glm-4.1v-thinking: Towards versatile multimodal reasoning with scalable
 661 reinforcement learning, 2025. URL <https://arxiv.org/abs/2507.01006>.

662 Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro
 663 Perona, and Serge Belongie. Building a bird recognition app and large scale dataset with citizen
 664 scientists: The fine print in fine-grained dataset collection. In *Proceedings of the IEEE conference*
 665 *on computer vision and pattern recognition*, pp. 595–604, 2015.

666 Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
 667 Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
 668 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 8769–8778,
 669 2018.

670 Edward Vendrow, Omiros Pantazis, Alexander Shepard, Gabriel Brostow, Kate E Jones, Oisin
 671 Mac Aodha, Sara Beery, and Grant Van Horn. Inquire: A natural world text-to-image retrieval
 672 benchmark. *NeurIPS*, 2024.

673 Nam Vo, Lu Jiang, Chen Sun, Kevin Murphy, Li-Jia Li, Li Fei-Fei, and James Hays. Composing text
 674 and image for image retrieval—an empirical odyssey. In *Proceedings of the IEEE/CVF conference*
 675 *on computer vision and pattern recognition*, pp. 6439–6448, 2019.

676 Cong Wei, Yang Chen, Haonan Chen, Hexiang Hu, Ge Zhang, Jie Fu, Alan Ritter, and Wenhui
 677 Chen. Uniir: Training and benchmarking universal multimodal information retrievers. In Ales
 678 Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gü̈l Varol (eds.),
 679 *Computer Vision - ECCV 2024 - 18th European Conference, Milan, Italy, September 29-October*
 680 *4, 2024, Proceedings, Part LXXXVII*, volume 15145 of *Lecture Notes in Computer Science*, pp.
 681 387–404. Springer, 2024. doi: 10.1007/978-3-031-73021-4\23. URL https://doi.org/10.1007/978-3-031-73021-4_23.

682 Orion Weller, Kathryn Ricci, Eugene Yang, Andrew Yates, Dawn Lawrie, and Benjamin Van
 683 Durme. Rank1: Test-time compute for reranking in information retrieval, 2025. URL <https://arxiv.org/abs/2502.18418>.

684 Hui Wu, Yupeng Gao, Xiaoxiao Guo, Ziad Al-Halah, Steven Rennie, Kristen Grauman, and Roge-
 685 rio Feris. Fashion iq: A new dataset towards retrieving images by natural language feedback.
 686 In *Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition*, pp.
 687 11307–11317, 2021.

688 Jinming Wu, Zihao Deng, Wei Li, Yiding Liu, Bo You, Bo Li, Zejun Ma, and Ziwei Liu. Mmsearch-
 689 r1: Incentivizing lmms to search. *arXiv preprint arXiv:2506.20670*, 2025.

690 Chenghao Xiao, G Thomas Hudson, and Noura Al Moubayed. Rar-b: Reasoning as retrieval bench-
 691 mark. *arXiv preprint arXiv:2404.06347*, 2024a.

692 Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-
 693 pack: Packed resources for general chinese embeddings. In *Proceedings of the 47th Interna-
 694 tional ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR*
 695 '24, pp. 641–649, New York, NY, USA, 2024b. Association for Computing Machinery. ISBN
 696 9798400704314. doi: 10.1145/3626772.3657878. URL <https://doi.org/10.1145/3626772.3657878>.

702 Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
 703 denotations: New similarity metrics for semantic inference over event descriptions. *Transactions*
 704 *of the Association for Computational Linguistics*, 2:67–78, 2014.

706 Shi Yu, Chaoyue Tang, Bokai Xu, Junbo Cui, Junhao Ran, Yukun Yan, Zhenghao Liu, Shuo Wang,
 707 Xu Han, Zhiyuan Liu, et al. Visrag: Vision-based retrieval-augmented generation on multi-
 708 modality documents. *arXiv preprint arXiv:2410.10594*, 2024.

710 Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. Raven: A dataset for relational
 711 and analogical visual reasoning. In *Proceedings of the IEEE/CVF conference on computer vision*
 712 *and pattern recognition*, pp. 5317–5327, 2019.

714 Kai Zhang, Yi Luan, Hexiang Hu, Kenton Lee, Siyuan Qiao, Wenhui Chen, Yu Su, and Ming-Wei
 715 Chang. Magiclens: Self-supervised image retrieval with open-ended instructions. In *Forty-first*
 716 *International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*.
 717 OpenReview.net, 2024. URL <https://openreview.net/forum?id=Zc22RDtsvP>.

719 Xin Zhang, Yanzhao Zhang, Wen Xie, Mingxin Li, Ziqi Dai, Dingkun Long, Pengjun Xie, Meishan
 720 Zhang, Wenjie Li, and Min Zhang. Bridging modalities: Improving universal multimodal re-
 721 trieval by multimodal large language models. In *Proceedings of the Computer Vision and Pattern*
 722 *Recognition Conference*, pp. 9274–9285, 2025a.

724 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
 725 An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding and
 726 reranking through foundation models. *arXiv preprint arXiv:2506.05176*, 2025b.

727 Junjie Zhou, Zheng Liu, Shitao Xiao, Bo Zhao, and Yongping Xiong. VISTA: Visualized text
 728 embedding for universal multi-modal retrieval. In Lun-Wei Ku, Andre Martins, and Vivek
 729 Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational*
 730 *Linguistics (Volume 1: Long Papers)*, pp. 3185–3200, Bangkok, Thailand, August 2024. As-
 731 *sociation for Computational Linguistics*. doi: 10.18653/v1/2024.acl-long.175. URL <https://aclanthology.org/2024.acl-long.175>.

734 Junjie Zhou, Yongping Xiong, Zheng Liu, Ze Liu, Shitao Xiao, Yueze Wang, Bo Zhao, Chen Ja-
 735 son Zhang, and Defu Lian. MegaPairs: Massive data synthesis for universal multimodal re-
 736 trieval. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
 737 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics*
 738 *(Volume 1: Long Papers)*, pp. 19076–19095, Vienna, Austria, July 2025. Association for Com-
 739 *putational Linguistics*. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.935. URL
 740 <https://aclanthology.org/2025.acl-long.935/>.

741 Shengyao Zhuang, Xueguang Ma, Bevan Koopman, Jimmy Lin, and Guido Zuccon. Rank-r1: En-
 742 hancing reasoning in llm-based document rerankers via reinforcement learning. *arXiv preprint*
 743 *arXiv:2503.06034*, 2025.

746 APPENDIX

748 A USE OF LLMs

751 In preparing this manuscript, large language models (LLMs) were utilized solely for English gram-
 752 mar checking and polishing. All substantive content and analyses were developed independently by
 753 the authors. For dataset construction, GPT-5 (OpenAI, 2025) was employed only for preliminary fil-
 754 tering of candidate data and generating some challenging negative examples, with all final selections
 755 and included negative examples thoroughly reviewed and validated by human experts. The relevant
 procedures are detailed in the appropriate sections of the paper.

756 **B ETHICS STATEMENT AND DATA COMPLIANCE**
757758 To ensure transparency, legal compliance, and proper re-distribution, we provide a consolidated
759 overview of the data sources, licensing terms, and usage boundaries for all components of MR^2 -
760 Bench. We confirm that all data collection and redistribution activities strictly adhere to the licenses
761 of the original sources.
762763 **B.1 DATA LICENSING AND USAGE**
764765 MR^2 -Bench integrates data from open platforms and established research datasets. The licensing
766 details for each component are as follows:
767768 **Multimodal Knowledge Retrieval.** The data for this task is derived from *Stack Exchange*, which
769 is licensed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
770 license. We strictly follow the attribution requirements by preserving metadata links to the original
771 posts. Furthermore, to address privacy concerns, we ensured that user-specific Personally Identifi-
772 able Information (PII), such as usernames, avatars, and profile citations, is excluded from the dataset.
773 The data is used solely for academic research purposes.774 **Visual Illustration Search.** The economic charts are sourced from *World Bank Open Data*, which
775 is distributed under the CC BY 4.0 license, allowing for redistribution with appropriate attribution.
776 The mathematical visual proofs are curated from *Wikimedia Commons* (Public Domain) and *Proofs
777 Without Words* (used under educational fair use principles), ensuring no copyright infringement for
778 research dissemination.
779780 **Visual Relation and Nature.** We incorporate several public research datasets, all of which allow
781 for academic use and re-distribution. The *INQUIRE* dataset (Nature sub-task) utilizes images from
782 iNaturalist under CC0, CC BY, or CC BY-NC licenses. The *RAVEN* dataset (Visual Puzzle) is
783 licensed under GPL-3.0. The *VASR* dataset (Analogy) operates under the MIT License, and the *CSS*
784 dataset (Spatial) is released under Apache 2.0. Our usage of these datasets is strictly confined to
785 non-commercial research.
786787 **B.2 LICENSE COMPATIBILITY AND DISTRIBUTION**
788789 Due to the diverse licensing terms of the constituent sources, MR^2 -Bench is distributed as a com-
790 posite dataset.
791792

- **Original Content:** All raw data samples (images and text passages) retain their original
793 licenses as detailed in the section above. Users must strictly adhere to the specific terms of
794 each source.
- **New Contributions:** The benchmark structure, curated queries, and expert annotations
795 created by the authors are released under the CC BY-SA 4.0 license. This ensures com-
796 patibility with the ShareAlike requirements of the Stack Exchange data while permitting
797 academic reuse and redistribution of the benchmark’s intellectual contributions.

798 **C DETAILED OVERVIEW OF MR^2 -BENCH**
799800 We provide detailed modalities of queries and documents, along with the instructions for each sub-
801 task in Table 5. Details on the data sources for each sub-task are provided in Table 6.
802803 **D MORE DETAILS OF DATA CONSTRUCTION FOR MULTIMODAL
804 KNOWLEDGE RETRIEVAL TASKS**
805806 We collected real posts from the Stack Exchange platform to construct our multimodal knowledge
807 retrieval sub-tasks. Queries are derived from actual user questions, while positive documents are
808 sourced from external links in highly voted answers. We utilize BRIGHT’s definition to identify
809 a query’s positive document: *A document is relevant only if cited in a highly voted answer and
confirmed by annotators and domain experts as aiding in reasoning through the query with critical*

810
811
812
813

814	Meta-Task	Sub-Task	Modality ($q \rightarrow c$)	#Queries	#Corpus	Instruction
815	MULTIMODAL KNOWLEDGE RETRIEVAL	Biology	$q_{i+t} \rightarrow c_{i/t/i+t}$	79	4,455	Find paragraph(s) that could support answering this question.
816		Cooking	$q_{i+t} \rightarrow c_{i/t/i+t}$	76	2,786	Find paragraph(s) that could support answering this question.
817		Gardening	$q_{i+t} \rightarrow c_{i/t/i+t}$	129	5,636	Find paragraph(s) that could support answering this question.
818		Physics	$q_{i+t} \rightarrow c_{i/t/i+t}$	76	6,656	Find paragraph(s) that could support answering this question.
819		Chemistry	$q_{i+t} \rightarrow c_{i/t/i+t}$	124	4,317	Find paragraph(s) that could support answering this question.
820		EarthScience	$q_{i+t} \rightarrow c_{i/t/i+t}$	99	3,014	Find paragraph(s) that could support answering this question.
821	VISUAL ILLUSTRATION SEARCH	Economics	$q_t \rightarrow c_i$	84	7,572	Find the chart that best supports answering this question.
822		Mathematics	$q_t \rightarrow c_i$	86	944	Find the visual proof that best demonstrates this formula.
823		Nature	$q_t \rightarrow c_i$	100	2,017	Given a natural-world expert query, find the most relevant image.
824	VISUAL RELATION REASONING	Spatial	$q_{i+t} \rightarrow c_i$	149	1,000	Given a reference image and a text modification, retrieve the image that best matches the modified reference.
825		Visual Puzzle	$q_i \rightarrow c_i$	160	5,375	From a 3x3 grid with one missing cell, retrieve the best candidate image to complete the bottom-right cell based on patterns and relations.
826		Analogy	$q_i \rightarrow c_i$	147	3,970	Given three images, complete the analogy by retrieving the candidate that applies to the third image the relation from the first to the second.

Table 5: **The overview of MR^2 -Bench.** MR^2 -Bench consists of three meta-tasks and twelve sub-tasks, totaling 1,309 queries. Subscripts indicate the modalities of the query q and candidate c : i denotes image, t denotes text, and $i+t$ denotes interleaved image-text.

839	META-TASK	Sub-Task	Newly Collected	Source / Adapted From
840	MULTIMODAL KNOWLEDGE RETRIEVAL	Biology	Yes	Collected from Stack Exchange ² and external web links. (See Appendix D for details).
841		Cooking		
842		Gardening		
843		Physics		
844		Chemistry		
845		EarthScience		
846	VISUAL ILLUSTRATION SEARCH	Economics	Yes	Manually collected from World Bank Reports ³
847		Mathematics	Yes	Curated from <i>Proofs Without Words</i> (Nelsen, 2015) and Wikimedia Commons ⁴
848		Nature	No	Adapted from INQUIRE-Rerank (Vendrow et al., 2024).
849	VISUAL RELATION REASONING	Spatial	No	Adapted from CSS dataset (Vo et al., 2019).
850		Visual Puzzle	No	Reorganized from RAVEN dataset (Zhang et al., 2019).
851		Analogy	No	Adapted from VASR dataset (Bitton et al., 2023).

Table 6: **Data sources for MR^2 -Bench.** We specify whether each sub-task was newly collected for this benchmark or adapted from existing datasets.861
862
863

concepts or theories (Hongjin et al., 2025). Given the multimodal nature of the task in MR^2 -Bench, our annotation process diverges from BRIGHT’s construction methodology. The specific steps of our process are summarized as follows:

Initial Posts Collection and Filtering. We initiated the process by gathering a substantial set of posts from Stack Exchange. To ensure data quality and relevance, we retained posts meeting specific criteria: (1) the question must contain image(s) essential for understanding the query; (2) the post must have received at least five community votes, indicating reliability; and (3) the answer must include at least one external link to facilitate further content acquisition.

Web Page Acquisition and Paragraph Annotation. For each qualifying post, annotators are required to visit the external links provided in the answers and copy the interleaved text-image content in the order it appears, excluding Wikipedia.⁸ They then segment this content into paragraphs, preserving images to maintain multimodal information. This process generates a collection of candidate paragraphs for each query, including both text-only and image-containing segments. Initial identification of positive paragraphs is performed using GPT-5 (OpenAI, 2025), followed by expert validation to ensure accuracy and relevance. Only queries with at least one confirmed positive paragraph are included in the final dataset.

Incorporation of Challenging Negative Examples. To rigorously assess the reasoning capabilities of evaluation methods, we introduced challenging negative samples for each retained query using two strategies: (1) retrieving topic-related documents from an internal corpus using the query’s keywords, with GPT-5 initially verifying they are not false negatives; and (2) using GPT-5 to generate documents that, while topically related, provide unhelpful information. All negative samples were subsequently reviewed by human experts to ensure the integrity of the benchmark.

E MORE DETAILS OF BASELINES

In our evaluation, we classify the retriever baseline into two main categories: text embedding models and multimodal embedding models. We assess the Seed1.6-Embedding model (Seed, 2025) via its official API, whereas all other models are evaluated using their publicly available code and open-source checkpoints. Below, we provide a comprehensive overview of the implementation details for all baselines used in the evaluation process.

E.1 TEXT EMBEDDING MODELS

The evaluated text retrievers include: BGE-M3 (Chen et al., 2024), Qwen3-Embedding (Zhang et al., 2025b), ReasonIR (Shao et al., 2025), BGR-Reasoner-Embed⁹, and Diver-Embed (Long et al., 2025). Notably, the last three models have been fine-tuned specifically for reasoning-intensive retrieval tasks, as detailed in their technical reports or repository descriptions.

We consider two input configurations for all text-only retrievers. The first configuration ignores images, utilizing only the textual content from queries and documents; this setup is not applicable to some sub-tasks where either the query or candidates are purely visual. The second configuration employs a caption-augmented approach, where every image in both queries and documents is replaced with a textual description. Specifically, we use the Qwen2.5-VL-7B model (Bai et al., 2025) to generate captions for the images with the prompt: *Write a detailed English caption for this image, covering the main objects, their attributes, relationships, actions, layout, and background elements.* Each image in the original input is then substituted with a caption prefixed by its identifier, formatted as [IMAGE_id] : image_caption.

E.2 MULTIMODAL EMBEDDING MODELS

The evaluated multimodal retrievers include CLIP (Radford et al., 2021), BGE-VL (Zhou et al., 2025), GME (Zhang et al., 2025a), VLM2Vec-V2 (Meng et al., 2025), MM-Embed (Lin et al., 2024), and Seed1.6-Embedding (Seed, 2025). All these models can process individual images and

⁸Wikipedia content was automatically extracted using Playwright to minimize manual effort.

⁹<https://huggingface.co/BAAI/bge-reasoner-embed-qwen3-8b-0923>

918 texts directly. However, for interleaved image-text data with multiple images, different models
 919 require specific handling approaches:
 920

921 For the CLIP model, we employ a score fusion strategy, following previous work (Wei et al., 2024).
 922 This involves separately embedding the image and text data and then combining these embeddings
 923 through element-wise addition to achieve the final image-text representation.

924 For models that can only input a single image in image-text data, specifically BGE-VL (Zhou et al.,
 925 2025) and MM-Embed (Lin et al., 2024), we create a composite image by tiling multiple images
 926 together, which is then processed jointly with the text.

927 For other models capable of handling interleaved image-text data with multiple images, we preserve
 928 the sequence of images and text, allowing their processors to generate interleaved image-text tokens,
 929 which are then used to derive the final embeddings.
 930

931 F SENSITIVITY ANALYSIS OF CAPTIONING MODELS

933 To investigate whether the performance of text-based retrievers on MR^2 -Bench is sensitive to the
 934 choice of the captioning model, we conducted a comprehensive sensitivity analysis using the state-
 935 of-the-art multimodal language model GLM-4.1V-9B-Thinking¹⁰, which is known for its chain-of-
 936 thought reasoning capabilities. The goal was to verify that the observed results are not biased by the
 937 specific captioning model (Qwen2.5-VL-7B) used in the main experiments.

938 In this analysis, we replaced the original captions with those generated by GLM-4.1V-9B-Thinking
 939 using the same prompt structure and re-evaluated four representative text embedding models: BGE-
 940 M3, Qwen3-Embedding, Diver-Retriever, and ReasonIR. A detailed comparison across all 12 sub-
 941 tasks is presented in Table 7.

942 The results show that the relative performance ranking of the retrievers remains consistent regard-
 943 less of the captioning model used. Specifically, the reasoning-enhanced retrievers (ReasonIR and
 944 Diver-Retriever) consistently outperform the standard retrievers (Qwen3-Embedding and BGE-M3),
 945 confirming that our main findings are robust and not artifacts of caption style alignment.
 946

947 Different captioning models do exhibit varying strengths depending on the domain. For instance,
 948 captions generated by GLM-4.1V-9B-Thinking resulted in performance gains in the *Economics* do-
 949 main (e.g., Diver-Retriever improved from 54.67 to 56.35), likely due to more detailed chart de-
 950 scriptions provided by this model. In contrast, for the *Mathematics* domain, Qwen2.5-VL captions
 951 proved slightly more effective for certain retrievers. However, despite these domain-specific varia-
 952 tions, the Macro-Average scores across all 12 sub-tasks remain comparable (e.g., ReasonIR: 25.72
 953 vs. 26.26), demonstrating the stability and consistency of the benchmark metrics.

954 G DETAILED EVALUATION METRICS OF MR^2 -BENCH

956 In this section, we provide more detailed evaluation results of the embedding models on MR^2 -Bench.
 957 Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, and Table 14 present the performance of the
 958 embedding models in terms of Recall@1, Recall@5, Recall@10, nDCG@5, nDCG@20, MRR@5,
 959 MRR@10.
 960

961 H MORE DETAILS OF IMPLEMENTATION FOR QUERY REWRITING

963 Given the strong reasoning capabilities of Multimodal Large Language Models (MLLMs), we take
 964 advantage of their ability to produce explicit step-by-step chain-of-thought reasoning in order to
 965 improve the effectiveness of query rewriting and thereby enhance retrieval performance. Instead
 966 of relying on a single direct reformulation, we design a prompting strategy that guides the MLLM
 967 through a structured reasoning process. Concretely, the model is first asked to (i) identify the most
 968 salient subquestions that are implicitly contained in the given instruction and query, ensuring that
 969 complex or multifaceted information needs are decomposed into clear components. Next, the model
 970 is prompted to (ii) reason step-by-step about what types of evidence, textual patterns, and document
 971

¹⁰<https://huggingface.co/zai-org/GLM-4.1V-9B-Thinking>

Methods	Multimodal Knowledge Retrieval						Visual Illustration			Visual Relation			Avg.
	Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
BGE-M3	18.79	12.97	12.04	14.52	6.05	16.35	-	-	-	-	-	-	-
+ Captions (Qwen)	34.19	24.28	17.88	21.24	9.67	25.19	45.46	9.97	23.66	9.48	0.00	3.46	18.71
+ Captions (GLM)	35.56	26.27	16.11	22.64	9.91	24.39	39.58	9.15	24.22	10.36	0.00	4.91	18.59
Qwen3	23.77	20.44	12.61	17.13	8.61	19.79	-	-	-	-	-	-	-
+ Captions (Qwen)	29.97	29.29	18.32	21.46	9.52	23.19	49.44	21.14	26.30	9.11	0.00	4.30	20.17
+ Captions (GLM)	30.26	29.50	15.54	20.54	9.30	22.89	43.89	16.42	28.31	6.69	0.00	8.45	19.32
Diver-Emb.	27.32	16.94	15.17	18.05	10.06	22.57	-	-	-	-	-	-	-
+ Captions (Qwen)	38.46	30.87	22.84	23.62	14.46	31.40	54.67	25.91	24.88	8.52	0.00	7.47	23.59
+ Captions (GLM)	39.70	32.17	21.59	24.13	14.22	32.36	56.35	28.32	28.44	7.48	0.00	7.81	24.38
ReasonIR	29.85	19.72	16.22	21.56	9.83	23.56	-	-	-	-	-	-	-
+ Captions (Qwen)	44.75	41.91	18.79	27.33	17.45	41.22	64.04	34.49	30.70	11.65	0.00	10.89	25.72
+ Captions (GLM)	46.06	42.02	20.24	26.79	17.47	38.52	57.49	13.81	33.49	10.63	0.00	8.63	26.26

Table 7: **Sensitivity Analysis of Captioning Models.** Comparing performance (nDCG@10) of text retrievers augmented with captions generated by Qwen2.5-VL-7B (Gray rows) versus GLM-4v-9B-Thinking (Blue rows). The results demonstrate that while absolute scores fluctuate across sub-tasks due to different captioning styles, the relative ranking of retrieval models remains highly consistent.

Methods	Multimodal Knowledge Retrieval						Visual Illustration			Visual Relation			Avg.
	Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
<i>Text Embedding Models</i>													
BGE-M3	3.61	2.25	3.26	2.70	1.04	3.77	-	-	-	-	-	-	-
+ Captions	10.22	3.23	6.44	5.00	1.43	7.26	32.14	3.49	6.67	4.00	0.00	1.36	6.77
Qwen3	5.46	2.67	3.11	1.86	1.13	4.67	-	-	-	-	-	-	-
+ Captions	7.21	6.87	5.15	4.84	1.20	5.93	32.14	6.98	4.92	4.03	0.00	0.68	6.66
Diver-Emb.	5.73	2.55	4.74	1.60	0.38	3.71	-	-	-	-	-	-	-
+ Captions	12.37	7.06	9.87	4.60	2.39	6.60	36.90	8.14	3.00	3.33	0.00	0.68	7.91
BGE-Rea.	3.69	3.13	4.10	2.59	1.36	4.64	-	-	-	-	-	-	-
+ Captions	16.03	9.84	9.74	6.19	1.24	10.28	41.67	12.21	1.67	2.00	0.00	0.68	9.29
ReasonIR	7.68	3.13	3.75	4.35	0.91	4.21	-	-	-	-	-	-	-
+ Captions	16.87	13.81	7.13	5.32	3.50	11.59	39.29	7.56	6.58	2.00	0.00	0.68	9.53
<i>Multimodal Embedding Models</i>													
CLIP	12.49	8.28	4.37	2.58	1.42	11.72	3.57	1.16	10.92	12.67	0.00	0.00	5.77
BGE-VL	8.96	2.30	2.93	4.35	0.32	4.81	34.52	6.98	10.83	2.01	0.00	1.36	6.62
GME	10.07	14.48	7.84	3.97	1.43	8.39	21.43	2.33	8.08	8.00	0.00	3.40	7.45
VLM2Vec	13.58	13.73	5.41	3.73	1.44	14.54	38.10	3.49	9.53	4.00	0.62	0.68	9.07
MM-Emb.	17.18	20.81	7.10	7.05	4.35	17.54	34.52	9.59	11.25	11.33	0.00	0.00	11.73
Seed-1.6	13.65	9.02	9.85	5.20	3.69	9.81	33.33	6.98	19.33	8.00	0.00	0.00	9.91

Table 8: The overall performance of embedding models on MR²-Bench in terms of the Recall@1.

attributes would be necessary for relevant sources to contain, which encourages a more targeted and discriminative retrieval process. Finally, model (iii) produces both an explicit reasoning trace, which captures its internal deliberation, and a set of candidate rewritten queries or answers that can be used to drive retrieval more effectively. We employ GPT-5 (OpenAI, 2025), the SOTA multimodal reasoning model, to perform query rewriting. The prompt is provided in Figure 3.

I MORE DETAILS OF RERANKING

I.1 IMPLEMENTATION DETAILS

For text-only rerankers, following the second input configuration described in Section E, we append image captions as auxiliary context. For multimodal rerankers, MLLMs are prompted in a

Methods	Multimodal Knowledge Retrieval						Visual Illustration			Visual Relation			Avg.
	Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
<i>Text Embedding Models</i>													
BGE-M3	14.09	10.43	11.66	10.12	7.27	12.78	-	-	-	-	-	-	-
+ Captions	28.85	23.21	17.32	13.60	8.76	20.66	53.57	10.85	20.25	11.33	0.00	3.40	17.65
Qwen3	17.36	12.48	12.17	11.93	6.38	15.12	-	-	-	-	-	-	-
+ Captions	24.76	27.10	16.30	13.73	6.61	17.95	60.71	30.33	24.42	11.41	0.00	5.44	19.90
Diver-Emb.	24.54	12.43	15.95	13.61	8.07	19.33	-	-	-	-	-	-	-
+ Captions	30.82	27.00	20.75	16.47	11.35	29.76	65.48	37.50	21.67	10.00	0.00	10.88	23.47
BGE-Rea.	23.36	8.80	15.83	13.79	8.05	19.01	-	-	-	-	-	-	-
+ Captions	33.49	32.50	25.09	17.00	12.56	26.61	70.24	46.71	25.42	8.67	0.00	6.80	25.42
ReasonIR	26.10	16.55	14.73	14.94	10.08	20.38	-	-	-	-	-	-	-
+ Captions	33.01	36.37	16.49	20.05	17.45	36.66	61.90	20.93	24.33	6.00	0.00	8.16	23.45
<i>Multimodal Embedding Models</i>													
CLIP	27.54	28.63	9.72	7.60	4.01	29.62	16.67	4.65	48.17	22.67	0.00	6.80	17.17
BGE-VL	22.17	12.55	10.96	15.18	6.30	15.22	63.10	17.64	47.33	10.07	0.00	5.44	18.83
GME	27.06	33.94	15.53	13.36	6.25	24.78	45.24	6.40	37.42	20.67	0.00	12.24	20.24
VLM2Vec	30.64	34.61	18.89	12.44	7.36	32.18	55.95	17.25	31.75	17.33	0.63	4.08	21.93
MM-Emb.	38.24	48.89	21.07	21.03	16.53	42.79	48.81	22.58	42.08	28.00	0.00	6.12	28.01
Seed-1.6	31.93	32.51	28.95	22.17	14.52	31.65	69.05	38.76	61.25	19.33	0.63	8.16	29.91

Table 9: The overall performance of embedding models on MR²-Bench in terms of the Recall@5.

Methods	Multimodal Knowledge Retrieval						Visual Illustration			Visual Relation			Avg.
	Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
<i>Text Embedding Models</i>													
BGE-M3	25.92	18.48	17.29	17.00	9.11	22.31	-	-	-	-	-	-	-
+ Captions	39.67	35.42	20.81	21.23	14.02	32.55	61.90	19.57	33.83	16.67	0.00	7.48	25.26
Qwen3	32.83	30.81	17.08	20.64	13.94	27.05	-	-	-	-	-	-	-
+ Captions	33.91	38.52	24.39	21.03	15.41	31.27	67.86	38.08	39.67	16.11	0.00	8.84	27.92
Diver-Emb.	35.18	25.13	20.01	22.07	16.42	33.76	-	-	-	-	-	-	-
+ Captions	43.81	42.45	26.21	25.29	22.66	43.71	70.24	43.31	40.83	16.00	0.00	15.65	32.51
BGE-Rea.	41.29	24.18	23.80	23.82	17.24	37.44	-	-	-	-	-	-	-
+ Captions	46.35	42.84	29.78	24.51	22.96	43.02	79.76	58.53	40.42	12.00	0.00	11.56	34.31
ReasonIR	37.42	29.45	22.93	24.88	16.21	34.28	-	-	-	-	-	-	-
+ Captions	46.05	50.89	20.99	28.93	25.72	52.31	69.05	28.88	44.08	10.00	0.00	12.93	32.48
<i>Multimodal Embedding Models</i>													
CLIP	33.08	38.08	14.38	14.05	5.64	38.85	26.19	12.21	70.42	31.33	0.63	11.56	24.70
BGE-VL	38.03	27.68	16.66	22.85	11.62	28.46	66.67	23.45	67.83	12.08	0.00	12.93	27.35
GME	35.13	45.64	21.93	19.66	13.14	36.10	54.76	15.50	57.17	25.33	0.63	23.13	29.01
VLM2Vec	41.02	44.31	23.69	20.66	13.20	39.49	66.67	27.23	47.67	27.33	0.63	14.97	30.57
MM-Emb.	50.98	55.18	26.60	28.91	22.79	54.61	51.19	35.08	68.42	35.33	0.63	14.29	37.00
Seed-1.6	47.99	49.13	38.60	30.05	26.32	48.90	79.76	47.87	84.17	30.67	2.50	22.45	42.37

Table 10: The overall performance of embedding models on MR²-Bench in terms of the Recall@10.

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Methods	Multimodal Knowledge Retrieval						Visual Illustration			Visual Relation			Avg.
	Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
<i>Text Embedding Models</i>													
BGE-M3	14.89	10.15	9.78	13.18	5.33	13.23	-	-	-	-	-	-	-
+ Captions	32.01	19.33	17.27	21.47	8.02	21.21	42.82	7.13	17.66	7.81	0.00	2.18	16.41
Qwen3	18.71	13.35	10.80	14.72	5.76	15.71	-	-	-	-	-	-	-
+ Captions	27.36	24.45	15.25	20.60	6.75	18.77	47.01	18.56	19.48	7.70	0.00	3.20	17.43
Diver-Emb.	24.49	11.88	13.45	16.24	6.70	17.47	-	-	-	-	-	-	-
+ Captions	36.03	24.59	20.72	21.95	10.66	26.57	53.13	23.94	16.49	6.60	0.00	5.97	20.56
BGE-Rea.	23.63	8.90	12.79	18.98	6.92	19.62	-	-	-	-	-	-	-
+ Captions	40.07	30.43	23.44	25.26	10.06	28.38	57.44	30.40	18.43	5.59	0.00	4.11	22.80
ReasonIR	26.90	14.77	13.12	19.15	7.68	17.96	-	-	-	-	-	-	-
+ Captions	42.83	36.92	17.98	26.60	14.74	36.36	52.01	14.34	21.23	4.30	0.00	4.36	22.64
<i>Multimodal Embedding Models</i>													
CLIP	33.19	27.83	10.42	15.34	4.90	30.50	9.91	3.13	39.38	18.14	0.00	3.57	16.36
BGE-VL	26.00	12.99	9.92	18.10	5.71	14.74	49.60	12.44	39.07	5.83	0.00	3.53	16.49
GME	33.91	35.58	17.03	18.41	5.46	25.61	33.89	4.18	30.64	14.21	0.00	7.64	18.88
VLM2Vec	38.31	36.87	18.75	19.66	7.46	34.05	47.87	10.86	28.12	10.74	0.63	2.46	21.31
MM-Emb.	48.80	50.58	22.22	30.84	15.50	44.52	42.15	17.22	37.07	20.34	0.00	3.29	27.71
Seed-1.6	36.14	32.45	28.34	27.69	13.46	31.52	52.63	22.95	55.12	13.67	0.31	4.49	26.56

Table 11: The overall performance of embedding models on MR²-Bench in terms of the nDCG@5.

Methods	Multimodal Knowledge Retrieval						Visual Illustration			Visual Relation			Avg.
	Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
<i>Text Embedding Models</i>													
BGE-M3	22.66	16.33	13.67	17.72	7.89	19.84	-	-	-	-	-	-	-
+ Captions	37.22	28.43	19.70	24.36	11.39	30.06	47.59	12.65	27.18	10.95	0.00	5.14	21.22
Qwen3	30.34	24.25	15.39	20.39	12.16	24.16	-	-	-	-	-	-	-
+ Captions	36.76	33.24	21.41	24.91	13.21	29.03	49.75	24.00	30.48	10.96	0.00	6.70	23.37
Diver-Emb.	32.45	23.00	17.59	24.00	13.65	28.12	-	-	-	-	-	-	-
+ Captions	43.90	36.21	25.50	28.19	18.26	37.13	58.30	29.83	29.68	10.52	0.17	8.86	27.21
BGE-Rea.	33.43	21.87	18.97	25.40	14.43	30.65	-	-	-	-	-	-	-
+ Captions	47.04	39.94	28.24	29.94	19.20	40.59	63.25	35.94	33.36	8.87	0.00	7.89	29.52
ReasonIR	36.90	24.69	18.92	25.97	13.12	30.39	-	-	-	-	-	-	-
+ Captions	48.18	45.34	21.83	28.71	21.15	44.74	57.61	19.33	36.48	6.19	0.00	8.91	28.21
<i>Multimodal Embedding Models</i>													
CLIP	35.49	31.94	13.96	16.53	6.01	34.38	14.76	6.57	56.32	23.04	0.53	6.71	20.52
BGE-VL	36.96	26.11	17.09	23.25	9.47	26.61	52.91	16.12	53.97	7.71	0.17	8.46	23.24
GME	38.17	43.48	20.72	21.56	10.82	33.43	40.88	9.08	45.85	18.74	0.22	14.88	24.82
VLM2Vec	42.11	43.24	21.36	21.93	11.63	38.91	55.66	18.46	40.38	17.18	0.63	8.77	26.69
MM-Emb.	51.83	54.36	26.38	32.74	20.39	51.77	45.99	22.91	55.04	23.97	0.36	8.00	32.81
Seed-1.6	46.01	43.31	35.86	32.99	22.85	43.71	58.25	28.38	69.97	21.20	1.67	11.76	34.66

Table 12: The overall performance of embedding models on MR²-Bench in terms of the nDCG@20.

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

Methods	Multimodal Knowledge Retrieval						Visual Illustration			Visual Relation			Avg.
	Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
<i>Text Embedding Models</i>													
BGE-M3	21.05	14.78	13.28	23.18	6.96	19.29	-	-	-	-	-	-	16.43
+ Captions	42.95	23.84	25.36	31.49	12.11	29.36	39.31	6.38	27.10	6.66	0.00	1.80	20.53
Qwen3	34.51	24.17	21.24	25.35	13.24	20.13	-	-	-	-	-	-	23.11
+ Captions	47.53	31.58	25.23	29.14	14.61	26.43	56.65	27.97	30.00	8.54	0.00	5.69	25.28
Diver-Emb.	32.03	17.08	17.69	21.86	8.95	20.93	-	-	-	-	-	-	19.76
+ Captions	44.22	31.64	28.86	29.71	14.57	31.62	48.91	20.25	23.23	5.49	0.00	4.35	23.57
BGE-Rea.	28.40	11.86	16.43	26.91	10.82	25.29	-	-	-	-	-	-	19.95
+ Captions	51.03	35.83	30.54	34.76	14.14	37.73	53.13	25.64	24.43	4.56	0.00	3.20	26.25
ReasonIR	33.04	19.91	17.20	28.07	9.78	22.56	-	-	-	-	-	-	21.76
+ Captions	55.15	46.27	25.76	35.44	18.00	46.89	48.65	12.93	31.17	3.72	0.00	3.13	27.26
<i>Multimodal Embedding Models</i>													
CLIP	44.64	35.07	15.09	25.19	8.65	39.72	7.72	2.62	46.75	16.61	0.00	2.51	20.38
BGE-VL	36.31	18.44	14.12	25.29	6.96	19.02	45.14	10.68	46.47	4.46	0.00	2.89	19.15
GME	46.18	45.07	24.60	26.51	6.56	34.53	30.14	3.59	38.55	12.13	0.00	6.16	22.83
VLM2Vec	49.49	48.77	25.89	30.13	9.88	42.32	45.16	9.07	36.57	8.59	0.62	1.93	25.70
MM-Emb.	60.00	59.52	32.78	40.07	20.50	53.43	39.92	17.09	47.77	17.79	0.00	2.35	32.60
Seed-1.6	45.38	41.54	38.45	34.01	18.32	39.34	47.16	18.24	63.07	11.82	0.21	3.25	30.07

Table 13: The overall performance of embedding models on MR²-Bench in terms of the MRR@5.

Methods	Multimodal Knowledge Retrieval						Visual Illustration			Visual Relation			Avg.
	Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
<i>Text Embedding Models</i>													
BGE-M3	23.01	16.21	14.34	25.04	7.90	21.36	-	-	-	-	-	-	17.98
+ Captions	44.71	27.02	25.84	32.19	13.10	31.09	40.38	7.60	28.41	7.32	0.00	2.32	21.67
Qwen3	36.73	25.96	22.44	26.47	15.38	22.63	-	-	-	-	-	-	24.93
+ Captions	48.98	32.87	26.38	30.26	16.47	28.40	58.34	29.39	31.81	9.33	0.00	7.09	26.61
Diver-Emb.	33.64	19.73	18.39	23.02	10.64	23.16	-	-	-	-	-	-	21.43
+ Captions	45.47	34.17	30.00	31.56	16.79	33.39	49.55	21.12	26.03	6.28	0.00	4.95	24.94
BGE-Rea.	31.03	15.53	18.25	28.22	13.09	27.92	-	-	-	-	-	-	22.34
+ Captions	52.27	37.38	31.21	35.57	15.88	39.88	54.32	27.52	26.42	4.96	0.00	3.88	27.44
ReasonIR	35.35	21.68	18.46	29.46	10.77	24.87	-	-	-	-	-	-	23.44
+ Captions	56.61	48.19	26.44	36.65	19.59	48.36	49.60	14.27	34.01	4.18	0.00	3.75	28.47
<i>Multimodal Embedding Models</i>													
CLIP	45.80	36.53	16.04	26.33	9.06	40.69	8.96	3.72	48.53	17.72	0.08	3.12	21.38
BGE-VL	38.85	21.34	15.96	26.52	8.32	21.63	45.67	11.45	48.26	4.75	0.00	3.79	20.54
GME	47.02	46.64	25.82	27.66	8.40	36.23	31.39	4.73	40.24	12.74	0.10	7.57	24.04
VLM2Vec	50.97	49.69	26.93	31.18	10.83	43.29	46.70	10.48	38.68	9.89	0.62	3.25	26.88
MM-Emb.	61.30	59.90	33.43	41.06	21.60	54.67	40.32	19.03	50.30	18.85	0.09	3.44	33.67
Seed-1.6	47.69	43.99	39.38	34.62	20.65	41.38	48.64	19.37	65.00	13.29	0.47	5.26	31.65

Table 14: The overall performance of embedding models on MR²-Bench in terms of the MRR@10.

1185

1186

1187

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

Task Description:

1204 You are an AI assistant specializing in information retrieval and reasoning. Given
1205 an instruction and a question (consist of text and images), your task is to generate a
1206 "Chain-of-thought" reasoning process. This process must clearly outline the key
1207 information that needs to be found in relevant document to answer the question.
1208

Execution Flow:

- 1209 (1) Identify the Essential Problem: First, precisely extract the fundamental
1210 problem that needs to be solved.
- 1211 (2) Reason on Required Information: Based on the essential problem, conduct
1212 step-by-step reasoning to specify the content that needs to be retrieved. This should
1213 include relevant terms, phenomena, causes, characteristics, risks, or solutions.
- 1214 (3) Synthesize the Answer: Based on the reasoning, formulate a direct and concise
1215 answer to the problem.
- 1216 (4) Combine for Output: Consolidate the "Essential Problem", the "Reasoning on
1217 Required Information", and the "Synthesized Answer" into a single, coherent text.
1218 This text must be simple, easy to understand, and kept within 100 words.

Input Content:

1221 The provided instruction, question text and question images are as follows:
1222

1223 Original instruction: <instruction>
1224 Original question text: <question text>
1225 Original question images: <question images>

1227
1228 Figure 3: Prompt used by GPT-5 for query rewriting.
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 *reason-then-rank* format; the full prompt is provided in Figure 4. We evaluate Gemini-2.5-Pro¹¹
 1243 and GPT-5¹² using their official APIs, and BGE-Reasoner-Reranker-32B with the authors' code
 1244 and checkpoint obtained via email. For open-source MLLMs (Gemma-3-27B, Qwen2.5-VL-72B,
 1245 GLM-4.5V), we run inference with SGLang¹³ to accelerate the reasoning stage. All other models
 1246 are evaluated using their released code and checkpoints.
 1247

1248

1249 **Task Description:**

1250 You are an objective, evidence-based multimodal judge. Given a Query and a Candidate, determine whether
 1251 the Candidate appropriately corresponds to the Query (satisfies its requirements, answers its question, or
 1252 retrieves the relevant information). Your task is to provide a discrete integer score from 0 to 100:
 1253 - 80-100 (Highly Relevant): The Candidate directly and comprehensively addresses the Query's intent.
 1254 - 60-80 (Relevant): The Candidate substantially addresses the Query's intent, providing most of the key
 1255 information or details, but might miss some minor details.
 1256 - 40-60 (Moderately Relevant): The Candidate is relevant and addresses a part of the Query's intent, but it is
 1257 not comprehensive.
 1258 - 20-40 (Slightly Relevant): The Candidate mentions some aspects about the Query, but its main intent is
 1259 different. It offers very limited value or information.
 1260 - 0-20 (Irrelevant): The Candidate does not address the Query's intent at all and is off-topic or wrong.

1261

1262 **Reasoning Process:**

1263 Before providing your answer, analyze the Query and the Candidate step by step and provide your analysis
 1264 process:

1265 **1) Query analysis:**

1266 - If the Query contains image(s): analyze the concrete visual elements (objects, attributes, colors, materials,
 1267 text-in-image/OCR, spatial relations, layout/scene, etc.).
 1268 - If the Query contains text(s): analyze the explicit intent and constraints (entities, attributes, quantities,
 1269 relations, actions/edits, categories/styles, temporal/spatial cues, etc.).
 1270 - Accurately capture the Query's true intent, identifying the key challenges and core elements.

1271 **2) Candidate analysis:**

1272 - If the Candidate contains image(s): analyze the concrete visual elements (objects, attributes, colors,
 1273 materials, text-in-image/OCR, spatial relations, layout/scene, etc.).
 1274 - If the Candidate contains text: analyze its explicit content (entities, attributes, quantities, relations,
 1275 categories, etc.).
 1276 - Carefully analyze and discuss the Candidate against the Query's intent and constraints to determine whether
 1277 it satisfies the Query's requirements and true intent. Avoid erroneous acceptance or rejection; base judgments
 1278 strictly on observable details and reasonable reasoning.

1279

1280 After providing your detailed analysis and justification for all the steps above, conclude your entire response
 1281 with the final score. The score must be enclosed within `<score> </score>` tags. Please output the score with the
 1282 tag only, no other text.

1283

1284 Your output should follow the following format:

1285 `your analysis process`
 1286 `<score>XX</score>`

1287

1288 Figure 4: Prompt used by MLLMs to score query-candidate pairs after reasoning.

1289

1290 **I.2 DETAILED RERANKING RESULTS WITH SEED-1.6-EMBEDDING AS THE BASE**
 1291 **RETRIEVER**

1292

1293 We report detailed reranking results with Seed-1.6-Embedding as the base retriever, including Re-
 1294 call@1, Recall@5, Recall@10, NDCG@5, NDCG@10, and NDCG@20, in Tables 15 to 20, re-
 1295 spectively.

1296

1297

1298

1299 ¹¹gemini-2.5-pro-thinking-2025-06-05

1300 ¹²gpt-5-2025-08-07

1301 ¹³<https://docs.sglang.ai/>

1300	Methods	Multimodal Knowledge Retrieval						Visual Illustration			Visual Relation			Avg.
		Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
<i>Base Retriever</i>														
1303	Seed-1.6-Embedding	13.65	9.02	9.85	5.20	3.69	9.81	33.33	6.98	19.33	8.00	0.00	0.00	9.91
<i>Textual Rerankers</i>														
1305	RankLLaMa-7B	8.53	7.03	8.34	7.71	3.92	4.16	30.95	12.60	7.50	4.00	0.00	1.36	8.01
1306	RankLLaMa-14B	12.00	8.86	6.42	4.88	4.12	7.27	19.05	13.18	6.25	7.33	0.62	0.00	7.50
1307	Rank1-7B	9.33	6.59	4.32	3.76	6.14	6.84	50.00	31.59	12.25	8.00	0.00	0.68	11.63
1308	RankR1-14B	9.86	4.86	7.00	6.28	2.88	7.27	67.86	17.25	10.58	13.33	0.63	2.72	12.54
1309	ReasonRank-32B	13.80	8.96	8.91	5.46	4.45	9.78	58.33	27.03	10.75	12.00	0.62	6.80	13.91
1310	BGE-Reasoner-Reranker-32B	15.43	6.40	10.29	4.85	3.97	11.36	65.48	25.68	12.00	18.00	0.62	2.72	14.73
<i>Multimodal Rerankers</i>														
1311	MonoQwen2-VL	10.14	10.19	5.19	4.63	2.68	6.48	57.14	16.28	19.25	5.33	0.00	3.40	11.73
1312	Jina-Reranker	8.18	7.36	5.53	3.00	1.68	5.34	71.43	24.22	17.00	25.33	0.00	2.04	14.26
1313	Gemma-3-27B	9.59	7.15	3.91	3.52	6.48	9.94	36.90	27.81	11.25	27.33	1.25	6.80	12.66
1314	Qwen2.5-VL-72B	13.21	10.17	7.39	5.84	4.48	11.51	58.33	40.60	14.58	28.67	3.12	5.44	16.95
1315	GLM-4.5V-thinking	12.69	6.88	4.97	6.41	7.37	8.42	55.95	39.15	12.42	32.00	1.88	5.44	16.13
1316	Gemini-2.5-Pro	9.84	13.64	9.20	7.35	9.31	11.16	58.33	42.34	23.58	40.67	0.00	10.20	19.64
1317	GPT-5	16.66	17.05	12.37	8.21	11.29	16.39	77.38	50.48	26.17	39.33	2.50	11.56	24.12

Table 15: Detailed reranking performance (Recall@1) on MR²-Bench with Seed-1.6-Embedding as the base retriever.

1327	Methods	Multimodal Knowledge Retrieval						Visual Illustration			Visual Relation			Avg.
		Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
<i>Base Retriever</i>														
1330	Seed-1.6-Embedding	31.93	32.51	28.95	22.17	14.52	31.65	69.05	38.76	61.25	19.33	0.63	8.16	29.91
<i>Textual Rerankers</i>														
1332	RankLLaMa-7B	32.34	30.02	26.59	21.19	11.61	25.54	71.43	42.73	34.42	20.00	1.25	8.16	27.11
1333	RankLLaMa-14B	33.86	29.62	26.57	21.86	16.97	33.26	64.29	47.38	28.42	18.67	1.25	6.80	27.41
1334	Rank1-7B	30.62	31.07	22.42	16.12	17.16	25.23	77.38	52.03	40.50	22.67	1.88	6.80	28.66
1335	RankR1-14B	32.09	32.21	23.81	19.68	18.97	27.78	84.52	52.03	37.50	32.67	2.50	17.01	31.73
1336	ReasonRank-32B	33.17	30.95	26.29	20.90	15.97	29.08	80.95	52.62	43.83	20.67	3.12	19.73	31.44
1337	BGE-Reasoner-Reranker-32B	36.79	35.21	28.52	18.56	16.75	29.96	83.33	53.78	47.83	33.33	3.12	12.24	33.29
<i>Multimodal Rerankers</i>														
1338	MonoQwen2-VL	27.49	35.15	23.82	15.77	12.98	22.15	79.76	51.45	60.58	18.67	0.62	14.29	30.23
1339	Jina-Reranker	27.42	30.17	25.63	16.59	14.57	20.78	85.71	53.20	60.92	35.33	0.00	12.93	31.94
1340	Gemma-3-27B	34.17	35.13	25.76	17.03	24.54	26.95	70.24	53.20	52.50	36.67	2.50	19.73	33.20
1341	Qwen2.5-VL-72B	33.76	29.68	27.45	18.45	19.08	31.07	83.33	54.94	59.33	32.67	5.62	14.29	34.14
1342	GLM-4.5V-thinking	33.73	39.96	24.50	19.31	20.34	30.69	80.95	56.10	60.58	38.00	5.00	24.49	36.14
1343	Gemini-2.5-Pro	40.03	43.72	31.12	21.79	24.69	38.95	82.14	53.78	76.17	42.67	3.28	26.53	40.41
1344	GPT-5	46.39	51.27	33.65	27.32	28.86	48.46	88.10	56.10	79.33	43.33	4.38	27.21	44.53

Table 16: Detailed reranking performance (Recall@5) on MR²-Bench with Seed-1.6-Embedding as the base retriever.1347
1348
1349

Methods	Multimodal Knowledge Retrieval						Visual Illustration			Visual Relation			Avg.
	Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
<i>Base Retriever</i>													
Seed-1.6-Embedding	47.99	49.13	38.60	30.05	26.32	48.90	79.76	47.87	84.17	30.67	2.50	22.45	42.37
<i>Textual Rerankers</i>													
RankLLaMa-7B	47.24	48.26	39.69	30.41	23.05	46.68	82.14	51.45	63.17	30.00	3.12	13.61	39.90
RankLLaMa-14B	51.11	53.74	39.11	31.22	28.30	54.12	78.57	51.45	56.67	30.67	3.12	19.05	41.43
Rank1-7B	45.92	48.38	35.68	29.07	28.97	48.48	85.71	54.94	65.58	30.00	5.00	14.97	41.06
RankR1-14B	49.81	50.16	36.98	30.27	28.91	48.04	86.90	56.10	67.92	36.67	3.12	26.53	43.45
ReasonRank-32B	47.86	47.93	36.96	30.54	24.67	45.45	85.71	53.78	62.92	33.33	4.38	25.85	41.61
BGE-Reasoner-Reranker-32B	50.54	52.14	41.71	30.82	30.02	51.88	85.71	56.10	75.00	41.33	4.38	23.81	45.29
<i>Multimodal Rerankers</i>													
MonoQwen2-VL	40.82	45.84	33.23	26.22	24.64	40.45	83.33	56.10	86.83	31.33	3.12	25.17	41.43
Jina-Reranker	42.93	47.88	38.99	29.59	26.99	37.69	88.10	55.52	85.25	40.00	1.88	24.49	43.28
Gemma-3-27B	49.26	55.19	36.78	28.35	33.09	45.52	84.52	54.94	79.92	44.00	3.12	29.25	45.33
Qwen2.5-VL-72B	50.40	51.51	41.59	28.24	30.37	49.01	85.71	56.10	86.58	36.67	5.62	27.21	45.75
GLM-4.5V-thinking	50.55	54.87	38.50	31.67	30.79	46.73	84.52	56.10	85.67	39.33	5.62	30.61	46.25
Gemini-2.5-Pro	54.16	58.46	42.45	32.32	36.61	58.23	88.10	53.78	94.83	44.00	6.56	29.93	49.95
GPT-5	56.56	60.34	44.35	38.33	37.87	60.88	88.10	56.10	94.67	44.00	5.62	31.29	51.51

Table 17: Detailed reranking performance (Recall@10) on MR²-Bench with Seed-1.6-Embedding as the base retriever.

Methods	Multimodal Knowledge Retrieval						Visual Illustration			Visual Relation			Avg.
	Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
<i>Base Retriever</i>													
Seed-1.6-Embedding	36.14	32.45	28.34	27.69	13.46	31.52	52.63	22.95	55.12	13.67	0.31	4.49	26.56
<i>Textual Rerankers</i>													
RankLLaMa-7B	33.57	27.86	25.75	25.33	12.71	22.03	51.12	29.83	28.23	11.95	0.48	4.72	22.80
RankLLaMa-14B	37.46	30.23	25.21	24.77	16.90	29.61	41.34	33.38	23.23	12.70	0.89	3.42	23.26
Rank1-7B	32.41	28.02	19.18	22.60	17.04	24.76	64.57	44.02	36.11	15.45	0.91	3.70	25.73
RankR1-14B	35.23	27.72	21.90	27.27	15.87	26.91	76.71	38.19	32.75	23.10	1.73	10.14	28.13
ReasonRank-32B	38.20	31.44	24.65	28.31	15.76	30.00	70.57	43.11	36.98	16.85	1.87	13.20	29.25
BGE-Reasoner-Reranker-32B	41.86	33.58	26.89	27.38	16.31	31.51	75.80	43.57	41.68	25.80	1.72	7.53	31.14
<i>Multimodal Rerankers</i>													
MonoQwen2-VL	31.17	32.96	21.96	22.14	11.02	21.24	69.47	37.18	53.35	12.07	0.39	8.84	26.82
Jina-Reranker	28.54	29.05	23.35	20.17	11.03	20.04	78.68	42.30	52.74	30.42	0.00	7.61	28.66
Gemma-3-27B	36.21	31.97	21.52	22.28	22.53	27.05	55.09	43.53	42.35	32.61	1.73	13.40	29.19
Qwen2.5-VL-72B	38.51	30.82	23.70	27.05	17.25	30.75	71.80	50.71	49.40	30.73	4.58	10.21	32.13
GLM-4.5V-thinking	37.66	35.63	20.59	27.83	21.15	28.66	69.38	50.24	49.37	35.61	3.60	15.25	32.92
Gemini-2.5-Pro	42.94	45.34	28.56	29.58	24.80	37.80	71.09	50.94	67.46	41.59	1.74	18.46	38.36
GPT-5	52.03	54.15	34.19	35.91	29.34	48.00	83.83	55.63	72.09	41.21	3.53	20.19	44.18

Table 18: Detailed reranking performance (NDCG@5) on MR²-Bench with Seed-1.6-Embedding as the base retriever.

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

Methods	Multimodal Knowledge Retrieval						Visual Illustration			Visual Relation			Avg.
	Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
<i>Base Retriever</i>													
Seed-1.6-Embedding	40.64	38.12	31.77	27.91	17.80	37.17	56.13	26.10	65.16	17.29	0.93	9.21	30.68
<i>Textual Rerankers</i>													
RankLLaMa-7B	37.92	34.53	30.40	27.74	16.31	30.35	54.62	32.71	40.76	15.21	1.04	6.42	27.33
RankLLaMa-14B	43.27	38.94	29.61	26.92	20.32	37.03	45.98	34.65	35.08	16.62	1.49	7.20	28.09
Rank1-7B	36.95	35.07	24.49	25.34	21.21	33.87	67.19	45.01	47.22	17.39	1.96	6.29	30.21
RankR1-14B	40.11	34.96	26.88	28.58	19.60	34.36	77.49	39.56	46.30	24.41	1.93	13.19	32.28
ReasonRank-32B	41.70	37.31	28.98	28.34	18.61	35.57	72.19	43.53	45.35	21.10	2.30	15.16	32.51
BGE-Reasoner-Reranker-32B	45.19	39.31	32.18	28.57	20.69	39.26	76.53	44.35	53.07	28.35	2.09	11.31	35.08
<i>Multimodal Rerankers</i>													
MonoQwen2-VL	35.33	36.41	24.71	23.96	15.31	27.96	70.60	38.93	64.83	18.23	1.14	12.28	30.64
Jina-Reranker	34.23	35.45	28.13	24.25	15.67	25.86	79.48	43.21	63.63	31.90	0.60	11.35	32.82
Gemma-3-27B	39.94	39.67	26.15	25.57	25.11	33.94	59.75	44.20	54.44	34.99	1.96	16.44	33.51
Qwen2.5-VL-72B	42.95	38.78	29.60	28.21	21.17	37.66	72.57	51.09	61.47	31.97	4.58	14.29	36.20
GLM-4.5V-thinking	42.43	41.28	26.37	29.78	24.34	34.15	70.52	50.24	60.24	36.06	3.78	17.29	36.37
Gemini-2.5-Pro	45.91	49.72	33.10	30.87	28.57	44.28	73.13	50.94	76.07	42.02	2.87	19.61	41.43
GPT-5	52.35	55.41	37.46	37.10	31.96	51.12	83.83	55.63	79.16	41.41	3.94	21.48	45.90

Table 19: Detailed reranking performance (nDCG@10) on MR²-Bench with Seed-1.6-Embedding as the base retriever.

Methods	Multimodal Knowledge Retrieval						Visual Illustration			Visual Relation			Avg.
	Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
<i>Base Retriever</i>													
Seed-1.6-Embedding	46.01	43.31	35.86	32.99	22.85	43.71	58.25	28.38	69.97	21.20	1.67	11.76	34.66
<i>Textual Rerankers</i>													
RankLLaMa-7B	43.30	39.99	34.24	33.08	22.25	37.77	56.11	34.04	52.68	19.21	1.66	11.14	32.12
RankLLaMa-14B	46.82	42.36	33.27	31.74	24.48	42.40	48.40	35.90	49.12	20.54	2.13	10.52	32.31
Rank1-7B	43.28	41.15	30.00	30.70	25.27	40.54	67.78	45.31	57.94	21.86	2.12	10.74	34.72
RankR1-14B	44.82	40.37	31.75	33.63	23.64	41.27	77.81	39.56	56.77	26.81	2.56	14.77	36.15
ReasonRank-32B	46.94	42.68	33.66	33.36	24.11	43.35	72.81	44.07	57.47	24.32	2.62	16.88	36.86
BGE-Reasoner-Reranker-32B	49.23	43.49	35.21	32.73	24.16	44.67	77.16	44.35	60.96	29.55	2.43	13.62	38.13
<i>Multimodal Rerankers</i>													
MonoQwen2-VL	43.11	43.47	30.86	30.55	21.21	37.72	71.78	38.93	68.60	19.96	1.79	14.25	35.19
Jina-Reranker	41.56	41.24	32.18	29.78	20.68	36.60	79.48	43.40	67.91	33.44	1.56	13.44	36.77
Gemma-3-27B	44.65	42.71	31.30	30.73	27.69	41.96	60.70	44.51	60.61	35.52	2.58	17.30	36.69
Qwen2.5-VL-72B	47.32	43.21	33.16	33.36	24.65	43.95	73.22	51.09	65.48	34.26	4.58	15.65	39.16
GLM-4.5V-thinking	46.89	44.25	30.64	33.77	27.29	41.36	71.39	50.24	64.66	37.68	3.78	17.77	39.14
Gemini-2.5-Pro	47.75	50.48	35.75	34.10	29.81	47.64	73.13	51.20	77.27	42.50	2.87	20.34	42.74
GPT-5	53.91	55.97	39.24	38.50	32.61	53.21	83.83	55.63	80.30	41.95	3.94	21.84	46.75

Table 20: Detailed reranking performance (NDCG@20) on MR²-Bench with Seed-1.6-Embedding as the base retriever.

1455

1456

1457

1458 I.3 ADDITIONAL RERANKING RESULTS FOR OTHER RETRIEVERS
14591460 We report NDCG@10 reranking results for two additional retrievers, Qwen3-Embedding and GME,
1461 in Tables 21 and 22, respectively.
1462

Methods	Multimodal Knowledge Retrieval						Visual Illustration			Visual Relation			Avg.
	Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
<i>Base Retriever</i>													
Qwen3-Embedding	29.97	29.29	18.32	21.46	9.52	23.19	49.44	21.14	26.30	9.11	0.00	4.30	20.17
<i>Textual Rerankers</i>													
RankLLaMa-7B	32.85	30.80	22.53	25.89	12.95	27.73	47.93	31.12	26.69	9.19	0.00	5.96	22.80
RankLLaMa-14B	39.06	33.81	22.29	27.29	17.24	32.90	40.37	31.21	21.41	10.43	0.00	4.92	23.41
Rank1-7B	33.62	30.46	19.22	20.56	13.44	26.24	51.16	38.62	32.60	12.38	0.00	3.72	23.50
RankR1-14B	37.54	31.86	22.30	25.67	14.26	27.49	59.58	35.66	31.97	14.25	0.00	6.61	25.60
ReasonRank-32B	36.24	30.69	20.63	25.53	13.09	26.45	60.59	36.26	34.46	12.16	0.00	7.59	25.31
BGE-Reasoner-Reranker-32B	39.97	33.44	22.20	23.68	14.12	29.83	62.49	41.27	32.14	15.66	0.00	7.34	26.85
<i>Multimodal Rerankers</i>													
MonoQwen2-VL	32.13	32.15	20.53	22.02	11.72	22.22	58.21	33.62	41.02	10.17	0.00	7.57	24.28
Jina-Reranker	32.22	30.26	21.41	22.24	10.46	22.55	63.47	38.04	41.69	18.42	0.00	6.49	25.60
Gemma-3-27B	35.20	33.70	19.85	22.10	16.81	26.66	48.22	39.52	35.59	18.79	0.00	7.02	25.29
Qwen2.5-VL-72B	40.11	36.20	20.69	24.94	14.79	28.74	58.25	46.29	38.55	17.92	0.00	6.92	27.78
GLM-4.5V	36.09	34.75	18.83	25.53	16.45	27.06	55.29	42.19	39.76	18.93	0.00	7.92	26.90

1479 Table 21: Detailed reranking performance (nDCG@10) on MR²-Bench with Qwen3-Embedding as
1480 the base retriever.
1481

Methods	Multimodal Knowledge Retrieval						Visual Illustration			Visual Relation			Avg.
	Bio.	Cook.	Gar.	Phy.	Chem.	Earth.	Econ.	Math.	Nat.	Spa.	Puzz.	Ana.	
<i>Base Retriever</i>													
GME	34.34	39.50	19.04	19.29	7.73	28.59	36.95	7.19	39.35	15.70	0.22	11.11	21.59
<i>Textual Rerankers</i>													
RankLLaMa-7B	30.58	28.35	14.86	23.71	10.44	26.29	48.66	13.48	34.31	11.03	0.00	9.39	20.92
RankLLaMa-14B	33.92	32.62	13.82	22.35	11.98	32.82	40.31	15.34	29.22	15.76	0.00	8.57	21.39
Rank1-7B	32.05	37.15	17.50	20.11	12.04	30.06	55.96	19.14	39.81	16.41	0.00	6.87	23.92
RankR1-14B	35.39	35.87	19.49	23.89	12.38	29.86	59.66	16.84	40.43	20.26	0.00	10.54	25.38
ReasonRank-32B	34.49	36.50	20.02	23.49	12.45	30.21	59.08	18.86	37.60	17.25	0.00	11.32	25.11
BGE-Reasoner-Reranker-32B	37.05	40.29	21.98	22.33	14.24	32.43	62.27	18.45	44.00	24.13	0.00	11.24	27.37
<i>Multimodal Rerankers</i>													
MonoQwen2-VL	31.61	35.58	17.13	19.82	9.49	23.25	60.35	14.81	55.25	13.87	0.24	11.42	24.40
Jina-Reranker	31.97	36.23	19.39	19.56	8.92	23.78	63.58	17.20	54.47	23.24	0.39	10.29	25.84
Gemma-3-27B	36.20	42.07	19.72	21.16	14.82	27.93	49.19	19.01	44.77	26.94	0.00	16.21	26.50
Qwen2.5-VL-72B	35.36	38.93	21.18	20.97	13.56	30.49	57.23	21.41	49.84	26.62	0.20	16.37	27.68
GLM-4.5V	35.60	41.26	18.95	21.10	14.53	28.70	55.39	20.21	52.55	30.73	0.62	17.83	28.12

1499 Table 22: Detailed reranking performance (nDCG@10) on MR²-Bench with GME as the base re-
1500 triever.
15011502
1503
1504
1505
1506
1507
1508
1509
1510
1511