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ABSTRACT

Multimodal retrieval is becoming a crucial component of modern AI applications,
yet its evaluation lags behind the demands of more realistic and challenging sce-
narios. Existing benchmarks primarily probe surface-level semantic correspon-
dence (e.g., object–text matching) while failing to assess the deeper reasoning
required to capture complex relationships between visual and textual information.
To address this gap, we introduce MR2-Bench, a reasoning-intensive benchmark
for multimodal retrieval. MR2-Bench presents the following critical values: 1) all
tasks are reasoning-driven, going beyond shallow matching to effectively assess
models’ capacity for logical, spatial, and causal inference; 2) it features diverse
multimodal data, such as natural images, diagrams, and visual puzzles, enabling
comprehensive evaluation across content types; 3) it supports complex queries
and documents containing multiple images and covers diverse retrieval scenarios,
more accurately reflecting real-world applications. Our benchmark contains 1,309
curated queries, derived either from manual collection and annotation or from se-
lective consolidation of public datasets. Despite achieving strong results on exist-
ing benchmarks, current state-of-the-art models still struggle on MR2-Bench: for
example, the leading Seed1.6-Embedding model attains a Recall@1 of 77.78 on
MMEB, but only 9.91 on MR2-Bench. This substantial performance gap high-
lights both the increased challenge posed by our benchmark and the pressing need
for further advances in reasoning-intensive multimodal retrieval.

1 INTRODUCTION

Multimodal retrieval is a crucial capability in contemporary AI applications, supporting tasks such as
image search (Young et al., 2014; Zhang et al., 2024), retrieval-augmented generation (RAG) (Chen
et al., 2022; Yu et al., 2024), and multimodal agentic systems (Geng et al., 2025; Wu et al., 2025).
The field has evolved from traditional cross-modal matching (e.g., text-to-image retrieval (Chen
et al., 2015)) to more advanced multimodal retrieval that accommodates compositional queries over
interleaved image-text content (e.g., composed image retrieval (Baldrati et al., 2023) and multimodal
knowledge retrieval (Chang et al., 2022; Luo et al., 2023)). Consequently, modern multimodal
retrievers (Zhou et al., 2024; Zhang et al., 2025a; Meng et al., 2025) can process queries expressed
in text, images, or combinations thereof, efficiently extracting relevant information from diverse data
sources and bridging the gap between complex datasets and real-world user needs.

Despite these advances, current evaluation methods remain misaligned with practical requirements.
First, existing benchmarks primarily assess surface-level semantic correspondence, offering limited
coverage of knowledge reasoning, spatial perception, and vision-centric challenges critical for di-
verse agentic applications. Second, these benchmarks predominantly feature natural images, with
insufficient representation of visual puzzles, diagrams, and mathematical figures common in tech-
nical and educational contexts. Third, real-world documents often exhibit free-form, interleaved
image-text layouts with multiple images positioned arbitrarily within the text. However, current
benchmarks frequently limit each example to a single image (Chang et al., 2022; Baldrati et al.,
2023; Hu et al., 2023; Jiang et al., 2025), failing to reflect the complex document structures preva-
lent in practice. These limitations hinder rigorous evaluation of multimodal retrieval systems in
reasoning-intensive, real-world scenarios.
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Benchmarks #Queries #Tasks Multi-
Modality

Reasoning-
Intensive

Vision-Centric
Reasoning

Multi-
Domain

Free-
Form

MS MARCO (Bajaj et al., 2016) 5,193 1 ✗ ✗ ✗ ✗ ✗

BEIR (Muennighoff et al., 2022) 54,262 18 ✗ ✗ ✗ ✓ ✗

RAR-b (Xiao et al., 2024a) 45,745 17 ✗ ✓ ✗ ✓ ✗

BRIGHT (Hongjin et al., 2025) 1,384 12 ✗ ✓ ✗ ✓ ✗

CIRR (Liu et al., 2021) 4,148 1 ✓ ✗ ✗ ✗ ✗

WebQA (Chang et al., 2022) 7,540 1 ✓ ✗ ✗ ✗ ✗

M-BEIR (Wei et al., 2024) 190,000 10 ✓ ✗ ✗ ✓ ✗

ViDoRe (Faysse et al., 2025) 3,810 2 ✓ ✗ ✗ ✗ ✗

MMEB (Jiang et al., 2025) 36,000 36 ✓ ✗ ✗ ✓ ✗

MR2-Bench (Ours) 1,309 12 ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of MR2-Bench with existing benchmarks. Columns report the number of test
queries (#Queries); the number of tasks (#Tasks); inclusion of image–text data (Multi-Modality);
whether the benchmark is explicitly reasoning-focused (Reasoning-Intensive); whether it contains
tasks solvable purely from images without textual cues (Vision-Centric Reasoning); domain cover-
age (Multi-Domain); and support for arbitrary text–image organization—interleaved ordering and
multi-image on the query and document sides (Free-Form). The first block represents textual re-
trieval benchmarks, and the second block represents multimodal retrieval benchmarks.

In this paper, we introduce MR2-Bench (Multimodal Reasoning-intensive Retrieval Benchmark).
We summarize the key features of MR2-Bench compared to existing benchmarks in Table 1. In
summary, MR2-Bench presents the following critical advantages:

• It is the first benchmark for multimodal reasoning-intensive retrieval. MR2-Bench is
pioneering in its requirement for reasoning to capture relevance rather than relying on shal-
low semantic matching, thereby filling a significant gap in current multimodal retrieval
benchmarks. While existing text-only reasoning-intensive retrieval benchmarks (Xiao
et al., 2024a; Hongjin et al., 2025) have been developed, MR2-Bench emphasizes mul-
timodal capabilities with a variety of visually related reasoning-intensive retrieval tasks.

• It introduces a broad range of multimodal data domains. Beyond typical natural im-
ages, MR2-Bench incorporates diverse image types such as mathematical visual proofs,
visual puzzles, and economic charts, etc. These images have widespread applications and
inherently require visual reasoning capabilities. However, previous multimodal retrieval
tasks have largely overlooked these data types.

• It offers diverse evaluation scenarios. MR2-Bench encompasses three meta-tasks: multi-
modal knowledge retrieval, visual illustration search, and visual relation reasoning, totaling
12 sub-tasks. These tasks provide a wide array of retrieval scenarios, including text-to-
image, image-to-image, and mixed image-text queries, among others. Moreover, unlike
previous multimodal benchmarks where queries or documents typically contain at most a
single image (Wei et al., 2024; Jiang et al., 2025), both queries and documents in MR2-
Bench may include multiple images, more accurately reflecting real-world scenarios.

We conduct comprehensive evaluation experiments on existing methods and derive the following
key conclusions. Firstly, multimodal reasoning-intensive retrieval remains challenging for current
retrievers. Despite Seed1.6-Embedding (Seed, 2025) achieves the best performance on MR2-Bench,
it only reaches 30.68 nDCG@10. In contrast, it attains 77.78 Recall@1 on the MMEB dataset (Jiang
et al., 2025), while its MR2-Bench Recall@1 is just 9.91. Consistent failures are observed across
all methods, particularly in mathematical visual proofs and visual relation reasoning. Secondly,
the capability of visual understanding plays an important role in solving our benchmark. On the
one hand, augmenting text-only retrievers with image captions yields substantial gains compared
to ignoring images. On the other hand, despite current multimodal retrievers not being optimized
for reasoning-intensive retrieval, the two strongest methods in our evaluation are native multimodal
retrievers. Finally, reasoning capacity holds significant potential for enhancing performance on
MR²-Bench. We implement reasoning-enhanced strategies including query rewriting and reranking,
which have demonstrated substantial improvements on MR²-Bench. These insights highlight the
challenges and opportunities in multimodal retrieval. By exposing current strengths and weaknesses,
we anticipate that MR2-Bench will guide the development of more capable multimodal retrievers.
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2 RELATED WORK

Reasoning-intensive Retrieval. Information retrieval (IR) has advanced from lexical match-
ing (Robertson et al., 2009) to capturing deep semantic relevance (Karpukhin et al., 2020; Xiao
et al., 2024b; Zhang et al., 2025b). Recently, the rise of applications like retrieval-augmented gen-
eration and agentic systems (Li et al., 2025b; Jin et al., 2025; Qian & Liu, 2025) has spurred the
need for a more advanced capability: reasoning-intensive retrieval. This paradigm challenges IR
systems to address complex information needs where relevance cannot be determined by direct se-
mantic overlap, but must be inferred through deep reasoning. Although there has been significant
progress in text-only domains with pioneering benchmarks such as BRIGHT (Hongjin et al., 2025)
and the development of specialized retrievers (Shao et al., 2025; Long et al., 2025), its application
to multimodal scenarios remains largely unexplored. Our work addresses this gap for the first time.
Beyond knowledge-oriented tasks, we introduce novel, vision-centric challenges, including visual
illustration search and visual relational reasoning, requiring models to perform complex inference
over integrated visual and textual data.

Multimodal Retrieval. As real-world information is increasingly presented in multimodal formats,
multimodal retrieval has become essential for effectively searching corpora that integrate text and
visual data. Initially, the focus was on cross-modal retrieval, such as text-to-image searches (Chen
et al., 2015). The field has since evolved to tackle more complex tasks, including image searches
guided by textual instructions (Wu et al., 2021; Zhang et al., 2024), multimodal document re-
trieval (Chang et al., 2022), and knowledge retrieval using multimodal queries (Luo et al., 2023).
With the advent of powerful pre-trained vision-language models (VLMs), researchers have been able
to develop unified embedding models that effectively handle queries and documents in various for-
mats (Lin et al., 2024; Zhou et al., 2025). Despite these advances, existing benchmarks and methods
have largely concentrated on shallow semantic alignment or instance-level matching, neglecting the
complex reasoning required to address many real-world information needs (Wei et al., 2024; Jiang
et al., 2025). Moreover, these benchmarks often emphasize natural images, overlooking visually
complex and abstract domains that demand visual-centric reasoning abilities, such as visual puzzles,
mathematical diagrams, and multi-image relational scenarios. Consequently, there is a pressing need
for a benchmark designed to evaluate deeper reasoning capabilities in multimodal retrieval.

3 MR2-BENCH: MULTIMODAL REASONING-INTENSIVE RETRIEVAL
BENCHMARK

We propose MR2-Bench, the first multimodal reasoning-intensive retrieval benchmark. A brief
overview of MR2-Bench’s statistics is presented in Table 2, and visual examples for each task type
are shown in Figure 1. MR2-Bench comprises 3 meta-tasks and 12 sub-tasks, encompassing a total
of 1,309 queries. Detailed modalities of queries and documents, along with the instructions for each
sub-task, are provided in Appendix C.

Meta-task Multimodal Knowledge Retrieval Visual Illustration Search Visual Relation Reasoning Total

Sub-task Biology Cooking Gardening Physics Chemistry EarthScience Economics Mathematics Nature Spatial Puzzle Analogy –

#Queries 79 76 129 76 124 99 84 86 100 149 160 147 1,309
#Corpus 4,455 2,786 5,636 6,656 4,317 3,014 7,572 944 2,017 1,000 5,375 3,970 47,742

Table 2: Data statistics of queries and corpus for each sub-task in MR2-Bench

3.1 MULTIMODAL KNOWLEDGE RETRIEVAL

Traditional knowledge retrieval has focused primarily on text-only queries and corpora (Chen et al.,
2017; Kwiatkowski et al., 2019). However, images play a crucial role in realistic knowledge re-
trieval scenarios. For instance, when users wish to explore an intriguing scientific phenomenon in
their daily lives, capturing an image for querying is often more intuitive and detailed than using text
alone. Similarly, knowledge bases frequently integrate text and images, with images providing es-
sential explanatory and knowledge representation functions. Although some benchmarks have been
developed for multimodal knowledge search (Chang et al., 2022; Luo et al., 2023; Hu et al., 2023;
Chen et al., 2023), they are predominantly based on annotations from sources like Wikidata, with
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questions that are often straightforward (e.g., What is this mountain called?1). These tasks typi-
cally rely on keyword matching, image instance matching, or simple shallow semantic alignment.
However, real-world user queries can be highly complex, requiring intensive reasoning to identify
relevant documents.

BRIGHT (Hongjin et al., 2025) introduced the first benchmark for evaluating reasoning-intensive
knowledge retrieval by constructing retrieval pairs between real user queries from Stack Exchange2

and relevant documents. The relevant documents are identified from external links referenced in
high-scoring answers, establishing retrieval relationships that require reasoning over critical con-
cepts or theories to bridge the query and the document. As a result, retrieval models evaluated
on this benchmark must possess capabilities that go beyond simple lexical or semantic matching.
However, BRIGHT is a text-only benchmark, leaving a gap in multimodal queries and documents.

Inspired by BRIGHT’s task construction approach, we have developed a set of reasoning-intensive
multimodal knowledge retrieval tasks in our MR2-Bench. In contrast to BRIGHT, our approach rig-
orously ensures that images are essential components of the questions, rendering these inquiries in-
valid without the accompanying visual data. We also retain images from relevant documents if they
are crucial for conveying knowledge. The annotation process is detailed in the Appendix D. Our
benchmark covers six domains: Biology, Cooking, Gardening, Physics, Chemistry, and Earth
Science. Examples of these tasks are illustrated in Figure 1(a)-(c). For instance, in Figure 1(a),
the positive document does not mention apple or grow together. The key to connecting the doc-
ument and the question lies in the accompanying image, which demonstrates a similar biological
phenomenon in other species.

3.2 VISUAL ILLUSTRATION SEARCH

Text-to-image retrieval (e.g., Flickr30K (Young et al., 2014), MSCOCO (Chen et al., 2015)) is a
canonical multimodal retrieval task, where the system need to retrieve the image that best matches a
textual query. Classic benchmarks are largely limited to direct and surface-level semantic alignment,
such as identifying a specific animal or a person performing a certain sport. However, real-world
use cases often require domain knowledge and multi-step reasoning to retrieve the target image (e.g.,
professional charts and scientific illustrations). To address this gap, we introduce the Visual Illus-
tration Search (VIS) task. In this task, the model is required to retrieve an image that functions
as a visual illustration, intuitively explaining or solving a problem posed in a challenging, domain-
specific textual query. Comprising three sub-tasks: Economics, Mathematics, and Nature, VIS
evaluates a model’s ability to perform cross-modal reasoning and knowledge-grounded understand-
ing in complex multimodal scenarios.

Economics. Charts serve as intuitive illustrations across various disciplines. However, existing
chart-related tasks (e.g., ChartVQA (Masry et al., 2022), ViDoRe (Faysse et al., 2025)) primarily test
surface-level abilities solvable with basic OCR and arithmetic. To assess a model’s ability to capture
the deeper semantics and domain knowledge embedded in chart, we manually collected reports from
the World Bank3, extracted charts related to economics, and asked human experts to create questions
grounded in these charts. The core annotation principle is that each question must demand sufficient
reasoning to identify the positive chart. For instance, as shown in Figure 1(d), the positive chart does
not explicitly state the conclusion; only by comparing the relative positions of different countries
in the chart and associating spending quantiles with learning poverty rates can one validate the
hypothesis posed in the question. Following these principles, we constructed a reasoning-oriented
retrieval subset centered on economic charts, comprising 84 high-quality questions.

Mathematics. Images can effectively reinforce human comprehension of abstract knowledge. This
holds especially in mathematics, where visual proofs are conical examples that use geometric rela-
tions to demonstrate abstract theorems intuitively. As shown in Figure 1(e), the recursive partition
of the unit square gives a clear proof of the infinite series

∑∞
n=1

1
2n = 1. Although structurally

simple, such proofs embody rigorous logic and require strong reasoning to connect visual patterns
with abstract mathematical principles, providing an effective evaluation of model’s reasoning ability.
However, visual proofs are largely absent from existing multimodal retrieval benchmarks. There-

1Query example curated from the OVEN benchmark (Hu et al., 2023)
2https://stackexchange.com
3https://data.worldbank.org
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Multimodal Knowledge Retrieval

Question
Inadequate	pollination	because	
of	heat	and	other	adverse	
growing	conditions	causes	that	
section	of	the	fruit	in	which	the	
seed did	not	develop...

Positive Document

Question
Piddocks	are	unique	in	that	each	side	of	their	
shells	is	divided	into	2	or	3	separate	sections.	
Furthermore,	one	of	the	piddock's	shells	has	a	set	
of	ridges	or	"teeth",	which	they	use	to	grind	away	
at	clay	or	soft	rock	and	create	tubular	burrows.	
The	shape	of	these	burrows	is	due	to...

Positive Document

Similar phenomena 
in other species

(a) Biology

A biological origin 
for a geological 
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(c) Earth Science

Visual Illustration Search

Query
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Positive Image Positive Image

Validating a socio-
economic hypothesis 

with chart data

Geometric 
meaning of 

infinite 
series

Given a natural-world 
expert query, find the 
most relevant image.

Find the visual 
proof that best 
demonstrates this 
formula.

Find the chart that best supports answering this question.

(d) Economics

(e) Mathematics (f) Nature

Visual Relation Reasoning

.

Query Positive Image

.

Query A A’

:

B B’ Positive Image

Query

Positive 
Image

Regular 
pattern 

of 
shapes 

and 
color

(g) Spatial (h) Visual Puzzle 

(i) Analogy

Do	countries	with	mid-level	primary-education	
spending	achieve	learning-poverty	rates	that	
equal	or	surpass	those	of	some	higher-spending	
high-income	countries?

A	close-up	of	a	
Star-nosed	Mole's	
nose	showing	all	
appendages	of	its	
Eimer's organs.

Make	middle-right	
gray	object	green

How	did	these	apples	grow	
together?	I	came	through	this	
pic	while	scrolling	through	
facebook...	I	want	a	biological	
answer	for	this.	

Cause	for	round	holes	in	stones.	I	
picked	up	this	stone	form	a	beach	
on	the	south	coast	of	England	
(lancing).	How	is	it	possible	it	has	
such	round	holes?	Plenty	of	stones	
looked	similar.

Analogy of 
mechanized 
tools and 

their 
human-

powered 
equivalents

An edit of a 
2D layout in a 

3D space

Grounding a 
scientific 
concept in 

visual 
evidence

Question
The	traditional	name	for	a	
tetrahedrally	coordinated	carbon	
atom	bonded	to	four	different	
entities,	two	and	only	two	of	which	
have	the	same	constitution	but	
opposite	chirality	sense.	…

Positive Document
(b) Chemistry

How can I determine the number 
of possible pairs of diastereomers 
here? My first guess was two: RR 
with RS and SS with RS. But what 
about the potential chirality center 
middle carbon? There are...

The formal 
definition for a 

specific chemical 
problem

Figure 1: Visualized Examples of MR2-Bench: Sub-task illustrations from three meta-tasks, with 3
out of 6 shown for the multimodal knowledge retrieval task.
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fore, we curate 86 mathematical formulas from Proofs Without Words (Nelsen, 2015) and Wikimedia
Commons4, using each formula as a query and its corresponding visual proof as the positive image.

Nature. Natural-world images are more than depictions; they are visual reference for species identi-
fication, ecosystem monitoring, and science education (Van Horn et al., 2015; 2018), which require
images that capture specific traits or morphology, rather than the generic picture of the organism.
For example, as shown in Figure 1(f), the query seeks for a close-up of star-nosed mole’s distinctive
organs, which demands both expert biological knowledge and fine-grained visual recognition. Satis-
fying such knowledge-intensive visual requests is a challenging yet essential capability for models.
To evaluate this, we carefully selected 100 queries from the publicly available INQUIRE-Rerank
dataset (Vendrow et al., 2024) to construct the expert-level natural-world image retrieval task.

3.3 VISUAL RELATION REASONING

In prevailing multimodal retrieval benchmarks, textual queries are the primary driver of user intent.
However, this paradigm often overlooks the rich, self-contained semantics inherent in purely visual
structures and relationships that are independent of natural language. To address this gap, we intro-
duce Visual Relation Reasoning, a suite of tasks for assessing high-level vision-centric reasoning
through three distinct sub-tasks: Spatial, Visual Puzzle, and Analogy.

Spatial. The capacity for spatial perception, transformation, and reasoning is essential for models.
To evaluate these capabilities, we incorporate tasks from the CSS dataset (Vo et al., 2019), a con-
trolled synthetic dataset where each sample consists of a reference image, a textual modification
instruction, and a corresponding target image, with scenes rendered as both 2D layouts and photore-
alistic 3D images. As illustrated in Figure 1(g), the query requires jointly parsing descriptions that
combine relative position and attributes (i.e., middle-right gray object) and projecting the 2D layout
into the corresponding 3D scene, yielding a comprehensive test of spatial ability. From CSS, we
curated 149 queries to constitute the spatial-reasoning subtask of MR2-Bench.

Visual Puzzle. Inspired by Raven’s Progressive Matrices5, this task is designed to evaluate pattern
recognition and structural reasoning. As shown in Figure 1(h), for a given 3×3 matrix with the final
cell missing, the model need to retrieve the positive image that logically completes the matrix’s
underlying pattern. This task is distinguished by its near-complete absence of linguistic signals,
which compels the model to directly infer abstract patterns to perform higher-order reasoning from
vision alone. We reorganized the RAVEN dataset (Zhang et al., 2019): for each rule-governed visual
attribute, we selected a set of queries, pooled the corresponding candidate images and removed
duplicates to build the corpus. In total, we curated 160 queries for this task.

Analogy. Derived from the VASR dataset (Bitton et al., 2023), this task tests a model’s capability for
visual analogical reasoning. As shown in Figure 1(i), the query comprises three images (A,A′, B),
where the pair (A,A′) exemplifies a visual semantic transformation (e.g., replacing a machine with
human labor in a comparable scene) that is expected to hold between B and B′. The model must
infer the transformation from A to A′, apply it to B, and retrieve the image B′ that completes the
analogy. It requires the model abstracts an implicit transformation rule from one image pair and
generalizes it to another, which effectively tests its capacity for high-order visual reasoning. We
instantiate this task by converting VASR analogy triplets into a retrieval setting and curated 147
challenging queries.

4 EXPERIMENTS

4.1 SETTINGS

We evaluated 11 popular embedding models using our MR2-Bench, categorizing them into two main
types: text-only embedding models and multimodal embedding models. We employed nDCG@10
as the primary metric, with additional metric results provided in Appendix G.

For text embedding models, we assessed two categories: traditional models such as BGE-M3 (Chen
et al., 2024) and Qwen3-Embedding (Zhang et al., 2025b), and models optimized for reasoning-

4https://commons.wikimedia.org/wiki/Category%3AProof without words
5https://en.wikipedia.org/wiki/Raven%27s Progressive Matrices
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Methods Multimodal Knowledge Retrieval Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

Text Embedding Models

BGE-M3 18.79 12.97 12.04 14.52 6.05 16.35 - - - - - - -
+ Captions 34.19 24.28 17.88 21.24 9.67 25.19 45.46 9.97 23.66 9.48 0.00 3.46 18.71

Qwen3 23.77 20.44 12.61 17.13 8.61 19.79 - - - - - - -
+ Captions 29.97 29.29 18.32 21.46 9.52 23.19 49.44 21.14 26.30 9.11 0.00 4.30 20.17

Diver-Emb. 27.32 16.94 15.17 18.05 10.06 22.57 - - - - - - -
+ Captions 38.46 30.87 22.84 23.62 14.46 31.40 54.67 25.91 24.88 8.52 0.00 7.47 23.59

BGE-Rea. 29.01 15.37 16.31 21.00 10.62 26.20 - - - - - - -
+ Captions 42.60 34.40 24.94 25.61 14.31 34.57 54.31 17.16 29.86 5.52 0.00 5.88 25.35

ReasonIR 29.85 19.72 16.22 21.56 9.83 23.56 - - - - - - -
+ Captions 44.75 41.91 18.79 27.33 17.45 41.22 64.04 34.49 30.70 11.65 0.00 10.89 25.72

Multimodal Embedding Models

CLIP 32.85 30.57 14.06 14.86 3.50 33.23 12.97 5.64 49.34 20.89 0.19 5.09 18.59
BGE-VL 29.41 18.36 10.50 19.51 7.12 19.73 50.80 14.31 47.97 6.46 0.00 0.75 19.53
GME 34.34 39.50 19.04 19.29 7.73 28.59 36.95 7.19 39.35 15.70 0.22 11.11 21.59
VLM2Vec 39.37 39.38 19.87 20.28 9.03 35.71 51.44 14.16 35.06 13.94 0.62 5.85 23.72
MM-Emb. 49.68 52.19 23.67 30.36 17.44 47.51 42.99 21.58 48.41 22.79 0.21 5.93 30.23
Seed-1.6 40.64 38.12 31.77 27.91 17.80 37.17 56.13 26.10 65.16 17.29 0.93 9.21 30.68

Table 3: The overall performance of embedding models on MR2-Bench. We report nDCG@10
for all sub-tasks. Avg. denotes the average score across 12 datasets. The best score on each dataset
is shown in bold and the second best is underlined.

intensive retrieval, including ReasonIR (Shao et al., 2025), BGE-Reasoner-Embed6, and Diver-
Embed (Long et al., 2025). We adopted two evaluation approaches for text embedding models: (1)
Using only text information from queries and documents, which is limited for tasks where queries
or candidates are purely image-based; (2) Replacing images with textual descriptions (captions).
For multimodal embedding models, we evaluated CLIP (Radford et al., 2021), VISTA (Zhou et al.,
2024), BGE-VL (Zhou et al., 2025), MM-Embed (Lin et al., 2024), GME (Zhang et al., 2025a),
VLM2VecV2 (Meng et al., 2025), and Seed1.6-Embedding (Seed, 2025). Detailed information on
the models and evaluation procedures can be found in Appendix E.

4.2 MAIN RESULTS

We summarize the overall evaluation results for all investigated retrieval baselines in MR2-Bench
in Table 3. For each sub-task, we report nDCG@10, along with the macro-average (Avg.) across
all tasks. All experiments were conducted within each individual sub-task using separate retrieval
corpora. Comprehensive evaluation metrics, including Recall@K and MRR@K, can be found in
Appendix G. From these results, we draw some primary conclusions:

1) Current state-of-the-art models underperform on MR2-Bench. The leading Seed-1.6 Embed-
ding model (Seed, 2025) achieves only 30.68 nDCG@10 on our benchmark. In contrast, it reports
77.78 overall Recall@1 on the popular MMEB leaderboard (Jiang et al., 2025), but its performance
drops significantly to 9.91 Recall@1 on MR2-Bench. Additionally, the SOTA reasoning-intensive
text retriever, Diver-Retriever (Long et al., 2025), achieves 33.90 nDCG@10 on BRIGHT (Hongjin
et al., 2025), yet only reaches 23.59 nDCG@10 on MR2-Bench when evaluated with auxiliary cap-
tions. These results highlight the increased challenges posed by our MR2-Bench.

2) Text retrievers augmented with image captions provide a strong and practical baseline on
MR2-Bench. Since text retrievers cannot directly process images, we replace each image in queries
and candidate documents with detailed natural-language descriptions. This augmentation leads to
notable improvements. For instance, ReasonIR+Captions surpasses popular open-source multi-
modal retrievers like VLM2Vec-V2 (Meng et al., 2025). On the Stack Exchange subset, adding cap-
tions consistently boosts performance across most tasks. These findings confirm that MR2-Bench

6https://huggingface.co/BAAI/bge-reasoner-embed-qwen3-8b-0923
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is fundamentally multimodal, with retrieval performance significantly enhanced by the visual infor-
mation provided through captions.

3) Reasoning-oriented text retrievers significantly outperform traditional matching-based re-
trievers. Models optimized for reasoning-intensive retrieval, such as ReasonIR and Diver-Retriever,
consistently achieve higher nDCG@10 scores on MR2-Bench compared to matching-centric retriev-
ers like BGE-M3 and Qwen3-Embedding. This advantage is evident across various meta-tasks and
persists whether visual content is absent or represented as detailed captions. Collectively, these
findings suggest that reasoning-oriented capabilities learned in text retrieval effectively transfer to
multimodal retrieval tasks requiring complex reasoning.

4) Multimodal retrievers show potential on MR2-Bench. Although not specifically designed for
reasoning-intensive tasks, multimodal embedding models like MM-Embed and Seed1.6-Embedding
lead performance on MR2-Bench. These models notably outperform caption-augmented text re-
trievers, including those optimized for reasoning. This gap suggests a promising direction for future
research in developing reasoning-intensive multimodal retrievers.

5) Existing methods struggle with capturing complex visual relationships and abstract con-
cepts. Current models face challenges in effectively perceiving multi-image relationships (Anal-
ogy), spatial configurations (Spatial), and abstract graphics (Mathematics, Visual Puzzle). We hy-
pothesize that these difficulties stem from the inherently visual-centric nature of these tasks, which
existing embedding models struggle to comprehend fully. Nonetheless, these images are crucial
for real-world applications, as their information is difficult to convey through language alone. This
indicates substantial potential for future research to enhance multimodal embedding models.

4.3 MORE ANALYSIS

4.3.1 THE EFFECTIVENESS OF QUERY REWRITING

6) Query rewriting enhances both text and multimodal baselines on MR2-Bench. This
generation-augmented retrieval technique clarifies complex user intent and highlights latent con-
straints, thus facilitating reasoning-intensive retrieval. Although extensively studied in text-only
contexts (Gao et al., 2023; Li et al., 2025a), its application to multimodal retrieval remains under-
explored. We evaluated a simple, model-agnostic query rewriting pipeline on MR2-Bench. For
each query, GPT-5 (OpenAI, 2025) generates step-by-step reasoning, which is then utilized by each
retriever (details in Appendix H). As shown in Table 4, both text and multimodal retrievers show
notable average improvements. These results indicate that query rewriting is a practical method
for enhancing multimodal reasoning-intensive retrieval tasks, consistently improving performance
without the need for fine-tuning existing retrievers.

Methods Stack Exchange Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

BGE-M3 34.19 24.28 17.88 21.24 9.67 25.19 45.46 9.97 23.66 9.48 0.00 3.46 18.71
+ Rewrite 40.41 32.94 25.66 23.12 11.98 33.63 50.88 20.09 23.38 7.13 0.00 7.91 23.09

Seed-1.6 40.64 38.12 31.77 27.91 17.80 37.17 56.13 26.10 65.16 17.29 0.93 9.21 30.68
+ Rewrite 41.13 41.47 37.68 29.47 20.70 42.02 50.08 30.37 65.84 31.87 1.24 14.62 33.87

Table 4: Performance comparison of BGE-M3 and Seed-1.6 Embedding on MR2-Bench before and
after query rewriting, showing significant improvements across most tasks.

4.3.2 THE EFFECTIVENESS OF ADVANCED RERANKING

A common approach to improve retrieval performance is to employ rerankers that jointly process
both the query and its retrieved candidates. Existing studies have shown that incorporating an inter-
mediate reasoning step before final scoring can lead to more accurate rankings (Weller et al., 2025;
Zhuang et al., 2025; Liu et al., 2025). We also investigate this by incorporating a reranking stage
after the initial retrieval on MR2-Bench. Specifically, we test a wide range of rerankers to rerank the
top-k = 20 candidates retrieved by three base retrievers: Qwen3-Embedding, GME, and Seed-1.6-
Embedding. Their retrieved candidates are reanked by: 1) textual rerankers: RankLLaMA-7B and
RankLLaMA-14B (Ma et al., 2024); 2) reasoning-enhanced textual rerankers: Rank1-7B (Weller
et al., 2025), RankR1-14B (Zhuang et al., 2025), ReasonRank-32B (Liu et al., 2025), and BGE-
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Reasoner-Reranker-32B 7; 3) multimodal rerankers: MonoQwen2-VL-v0.1 (Chaffin & Lac, 2024)
and Jina-Reranker-m0 (JinaAI, 2025); and 4) reasoning-enhanced multimodal rerankers: Gemma3-
27B (Team, 2025), Qwen2.5-VL-72B (Bai et al., 2025), GLM-4.5V (Team et al., 2025), Gemini-2.5-
Pro (Comanici et al., 2025), and GPT-5 (OpenAI, 2025). Since there are no off-the-shelf multimodal
rerankers that natively support reasoning, we prompt these MLLMs to first perform reasoning and
then output a relevance score. Full implementation details are available in Appendix I.1. Average
performance based on Seed-1.6-Embedding is shown in Figure 2, and detailed results for all three
base retrievers are provided Appendix I.2 and Appendix I.3.
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Figure 2: Reranking performance on MR2-Bench with Seed-1.6-Embedding as the base retriever.
From the results presented in Figure 2, we have following findings:

7) Rerankers deliver substantial gains on MR2-Bench. Most rerankers significantly outperform
the strong Seed-1.6-Embedding baseline, demonstrating the benefit of joint modeling of queries and
candidates. Notably, GPT-5 achieves an nDCG@10 of 45.90, an absolute gain of 15.22 over the
baseline, indicating the substantial headroom for improvement unlocked by reranking.

8) An explicit reasoning step before scoring proves to be beneficial. Across text-only rerankers,
those incorporating reasoning consistently outperform their non-reasoning, size-matched counter-
parts (e.g., Rank1-7B vs. RankLLaMA-7B; RankR1-14B vs. RankLLaMA-14B). This is further
substantiated by BGE-Reasoner-Reranker-32B: using only textual input, it achieves an nDCG@10
of 35.08, outperforming the strong base retriever by 4.2 points. Moreover, for multimodal rerankers,
models prompted to reason and then rank outperform those trained non-reasoning rerankers. These
results confirm that explicit reasoning drives the gains on MR2-Bench.

9) Multimodal information plays a significant role in enhancing performance. Despite being
built on the lightweight Qwen2-VL-2B backbone, Jina-Reranker-m0 surpasses several larger text-
only rerankers, demonstrating clear gains from multimodal information. Furthermore, multimodal
models prompted to first reason and then rank (e.g., Qwen2.5-VL-72B, GLM-4.5V, and GPT-5)
surpass BGE-Reasoner-Reranker-32B, the best-performing textual reranker specifically trained with
reasoning capabilities. GPT-5 achieves the highest overall score, underscoring the importance of
utilizing multimodal information with reasoning in tackling the complex retrieval demands posed
by MR2-Bench.

5 CONCLUSION

In this paper, we introduce MR2-Bench, a novel benchmark for the assessment of multimodal
reasoning-intensive retrieval. The comprehensive investigation of existing methods reveals that
current retrievers perform poorly on MR2-Bench, with the best models achieving only 30.68
nDCG@10. Our experimental results underscore the importance of multimodal information and
reasoning capabilities for effectively addressing MR2-Bench, highlighting significant potential for
improvement in this research area. Additionally, we demonstrate that techniques such as query
rewriting and reranking can enhance performance on MR2-Bench. We anticipate that this bench-
mark will facilitate future research in multimodal retrieval, contributing to more realistic and chal-
lenging AI applications.

7https://github.com/FlagOpen/FlagEmbedding/tree/master/research/BGE Reasoner
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APPENDIX

A USE OF LLMS

In preparing this manuscript, large language models (LLMs) were utilized solely for English gram-
mar checking and polishing. All substantive content and analyses were developed independently by
the authors. For dataset construction, GPT-5 (OpenAI, 2025) was employed only for preliminary fil-
tering of candidate data and generating some challenging negative examples, with all final selections
and included negative examples thoroughly reviewed and validated by human experts. The relevant
procedures are detailed in the appropriate sections of the paper.
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B ETHICS STATEMENT AND DATA COMPLIANCE

To ensure transparency, legal compliance, and proper re-distribution, we provide a consolidated
overview of the data sources, licensing terms, and usage boundaries for all components of MR2-
Bench. We confirm that all data collection and redistribution activities strictly adhere to the licenses
of the original sources.

B.1 DATA LICENSING AND USAGE

MR2-Bench integrates data from open platforms and established research datasets. The licensing
details for each component are as follows:

Multimodal Knowledge Retrieval. The data for this task is derived from Stack Exchange, which
is licensed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
license. We strictly follow the attribution requirements by preserving metadata links to the original
posts. Furthermore, to address privacy concerns, we ensured that user-specific Personally Identifi-
able Information (PII), such as usernames, avatars, and profile citations, is excluded from the dataset.
The data is used solely for academic research purposes.

Visual Illustration Search. The economic charts are sourced from World Bank Open Data, which
is distributed under the CC BY 4.0 license, allowing for redistribution with appropriate attribution.
The mathematical visual proofs are curated from Wikimedia Commons (Public Domain) and Proofs
Without Words (used under educational fair use principles), ensuring no copyright infringement for
research dissemination.

Visual Relation and Nature. We incorporate several public research datasets, all of which allow
for academic use and re-distribution. The INQUIRE dataset (Nature sub-task) utilizes images from
iNaturalist under CC0, CC BY, or CC BY-NC licenses. The RAVEN dataset (Visual Puzzle) is
licensed under GPL-3.0. The VASR dataset (Analogy) operates under the MIT License, and the CSS
dataset (Spatial) is released under Apache 2.0. Our usage of these datasets is strictly confined to
non-commercial research.

B.2 LICENSE COMPATIBILITY AND DISTRIBUTION

Due to the diverse licensing terms of the constituent sources, MR2-Bench is distributed as a com-
posite dataset.

• Original Content: All raw data samples (images and text passages) retain their original
licenses as detailed in the section above. Users must strictly adhere to the specific terms of
each source.

• New Contributions: The benchmark structure, curated queries, and expert annotations
created by the authors are released under the CC BY-SA 4.0 license. This ensures com-
patibility with the ShareAlike requirements of the Stack Exchange data while permitting
academic reuse and redistribution of the benchmark’s intellectual contributions.

C DETAILED OVERVIEW OF MR2-BENCH

We provide detailed modalities of queries and documents, along with the instructions for each sub-
task in Table 5. Details on the data sources for each sub-task are provided in Table 6.

D MORE DETAILS OF DATA CONSTRUCTION FOR MULTIMODAL
KNOWLEDGE RETRIEVAL TASKS

We collected real posts from the Stack Exchange platform to construct our multimodal knowledge
retrieval sub-tasks. Queries are derived from actual user questions, while positive documents are
sourced from external links in highly voted answers. We utilize BRIGHT’s definition to identify
a query’s positive document: A document is relevant only if cited in a highly voted answer and
confirmed by annotators and domain experts as aiding in reasoning through the query with critical
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Meta-Task Sub-Task Modality (q→c) #Queries #Corpus Instruction

MULTIMODAL
KNOWLEDGE
RETRIEVAL

Biology qi+t→ci/t/i+t 79 4,455 Find paragraph(s) that could support answering this
question.

Cooking qi+t→ci/t/i+t 76 2,786 Find paragraph(s) that could support answering this
question.

Gardening qi+t→ci/t/i+t 129 5,636 Find paragraph(s) that could support answering this
question.

Physics qi+t→ci/t/i+t 76 6,656 Find paragraph(s) that could support answering this
question.

Chemistry qi+t→ci/t/i+t 124 4,317 Find paragraph(s) that could support answering this
question.

EarthScience qi+t→ci/t/i+t 99 3,014 Find paragraph(s) that could support answering this
question.

VISUAL
ILLUSTRATION

SEARCH

Economics qt→ci 84 7,572 Find the chart that best supports answering this
question.

Mathematics qt→ci 86 944 Find the visual proof that best demonstrates this
formula.

Nature qt→ci 100 2,017 Given a natural-world expert query, find the most
relevant image.

VISUAL
RELATION

Spatial qi+t→ci 149 1,000 Given a reference image and a text modification,
retrieve the image that best matches the modified
reference.

Visual Puzzle qi→ci 160 5,375 From a 3×3 grid with one missing cell, retrieve the
best candidate image to complete the bottom-right
cell based on patterns and relations.

Analogy qi→ci 147 3,970 Given three images, complete the analogy by
retrieving the candidate that applies to the third
image the relation from the first to the second.

Table 5: The overview of MR2-Bench. MR2-Bench consists of three meta-tasks and twelve sub-
tasks, totaling 1,309 queries. Subscripts indicate the modalities of the query q and candidate c: i
denotes image, t denotes text, and i+t denotes interleaved image-text.

META-TASK Sub-Task Newly
Collected

Source / Adapted From

MULTIMODAL
KNOWLEDGE
RETRIEVAL

Biology

Yes Collected from Stack Exchange2 and
external web links. (See Appendix D for details).

Cooking
Gardening
Physics
Chemistry
EarthScience

VISUAL
ILLUSTRATION

SEARCH

Economics Yes Manually collected from World Bank Reports3

Mathematics Yes
Curated from Proofs Without Words (Nelsen, 2015) and
Wikimedia Commons4

Nature No Adapted from INQUIRE-Rerank (Vendrow et al., 2024).

VISUAL
RELATION

REASONING

Spatial No Adapted from CSS dataset (Vo et al., 2019).

Visual Puzzle No Reorganized from RAVEN dataset (Zhang et al., 2019).

Analogy No Adapted from VASR dataset (Bitton et al., 2023).

Table 6: Data sources for MR2-Bench. We specify whether each sub-task was newly collected for
this benchmark or adapted from existing datasets.
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concepts or theories (Hongjin et al., 2025). Given the multimodal nature of the task in MR2-Bench,
our annotation process diverges from BRIGHT’s construction methodology. The specific steps of
our process are summarized as follows:

Initial Posts Collection and Filtering. We initiated the process by gathering a substantial set of
posts from Stack Exchange. To ensure data quality and relevance, we retained posts meeting specific
criteria: (1) the question must contain image(s) essential for understanding the query; (2) the post
must have received at least five community votes, indicating reliability; and (3) the answer must
include at least one external link to facilitate further content acquisition.

Web Page Acquisition and Paragraph Annotation. For each qualifying post, annotators are re-
quired to visit the external links provided in the answers and copy the interleaved text-image content
in the order it appears, excluding Wikipedia.8 They then segment this content into paragraphs,
preserving images to maintain multimodal information. This process generates a collection of can-
didate paragraphs for each query, including both text-only and image-containing segments. Initial
identification of positive paragraphs is performed using GPT-5 (OpenAI, 2025), followed by ex-
pert validation to ensure accuracy and relevance. Only queries with at least one confirmed positive
paragraph are included in the final dataset.

Incorporation of Challenging Negative Examples. To rigorously assess the reasoning capabilities
of evaluation methods, we introduced challenging negative samples for each retained query using
two strategies: (1) retrieving topic-related documents from an internal corpus using the query’s key-
words, with GPT-5 initially verifying they are not false negatives; and (2) using GPT-5 to generate
documents that, while topically related, provide unhelpful information. All negative samples were
subsequently reviewed by human experts to ensure the integrity of the benchmark.

E MORE DETAILS OF BASELINES

In our evaluation, we classify the retriever baseline into two main categories: text embedding models
and multimodal embedding models. We assess the Seed1.6-Embedding model (Seed, 2025) via its
official API, whereas all other models are evaluated using their publicly available code and open-
source checkpoints. Below, we provide a comprehensive overview of the implementation details for
all baselines used in the evaluation process.

E.1 TEXT EMBEDDING MODELS

The evaluated text retrievers include: BGE-M3 (Chen et al., 2024), Qwen3-Embedding (Zhang
et al., 2025b), ReasonIR (Shao et al., 2025), BGR-Reasoner-Embed9, and Diver-Embed (Long et al.,
2025). Notably, the last three models have been fine-tuned specifically for reasoning-intensive re-
trieval tasks, as detailed in their technical reports or repository descriptions.

We consider two input configurations for all text-only retrievers. The first configuration ignores
images, utilizing only the textual content from queries and documents; this setup is not applicable
to some sub-tasks where either the query or candidates are purely visual. The second configuration
employs a caption-augmented approach, where every image in both queries and documents is re-
placed with a textual description. Specifically, we use the Qwen2.5-VL-7B model (Bai et al., 2025)
to generate captions for the images with the prompt: Write a detailed English caption for this image,
covering the main objects, their attributes, relationships, actions, layout, and background elements.
Each image in the original input is then substituted with a caption prefixed by its identifier, formatted
as [IMAGE id]: image caption.

E.2 MULTIMODAL EMBEDDING MODELS

The evaluated multimodal retrievers include CLIP (Radford et al., 2021), BGE-VL (Zhou et al.,
2025), GME (Zhang et al., 2025a), VLM2Vec-V2 (Meng et al., 2025), MM-Embed (Lin et al.,
2024), and Seed1.6-Embedding (Seed, 2025). All these models can process individual images and

8Wikipedia content was automatically extracted using Playwright to minimize manual effort.
9https://huggingface.co/BAAI/bge-reasoner-embed-qwen3-8b-0923
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texts directly. However, for interleaved image-text data with multiple images, different models
require specific handling approaches:

For the CLIP model, we employ a score fusion strategy, following previous work (Wei et al., 2024).
This involves separately embedding the image and text data and then combining these embeddings
through element-wise addition to achieve the final image-text representation.

For models that can only input a single image in image-text data, specifically BGE-VL (Zhou et al.,
2025) and MM-Embed (Lin et al., 2024), we create a composite image by tiling multiple images
together, which is then processed jointly with the text.

For other models capable of handling interleaved image-text data with multiple images, we preserve
the sequence of images and text, allowing their processors to generate interleaved image-text tokens,
which are then used to derive the final embeddings.

F SENSITIVITY ANALYSIS OF CAPTIONING MODELS

To investigate whether the performance of text-based retrievers on MR2-Bench is sensitive to the
choice of the captioning model, we conducted a comprehensive sensitivity analysis using the state-
of-the-art multimodal language model GLM-4.1V-9B-Thinking 10, which is known for its chain-of-
thought reasoning capabilities. The goal was to verify that the observed results are not biased by the
specific captioning model (Qwen2.5-VL-7B) used in the main experiments.

In this analysis, we replaced the original captions with those generated by GLM-4.1V-9B-Thinking
using the same prompt structure and re-evaluated four representative text embedding models: BGE-
M3, Qwen3-Embedding, Diver-Retriever, and ReasonIR. A detailed comparison across all 12 sub-
tasks is presented in Table 7.

The results show that the relative performance ranking of the retrievers remains consistent regard-
less of the captioning model used. Specifically, the reasoning-enhanced retrievers (ReasonIR and
Diver-Retriever) consistently outperform the standard retrievers (Qwen3-Embedding and BGE-M3),
confirming that our main findings are robust and not artifacts of caption style alignment.

Different captioning models do exhibit varying strengths depending on the domain. For instance,
captions generated by GLM-4.1V-9B-Thinking resulted in performance gains in the Economics do-
main (e.g., Diver-Retriever improved from 54.67 to 56.35), likely due to more detailed chart de-
scriptions provided by this model. In contrast, for the Mathematics domain, Qwen2.5-VL captions
proved slightly more effective for certain retrievers. However, despite these domain-specific varia-
tions, the Macro-Average scores across all 12 sub-tasks remain comparable (e.g., ReasonIR: 25.72
vs. 26.26), demonstrating the stability and consistency of the benchmark metrics.

G DETAILED EVALUATION METRICS OF MR2-BENCH

In this section, we provide more detailed evaluation results of the embedding models on MR2-Bench.
Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, and Table 14 present the performance of the
embedding models in terms of Recall@1, Recall@5, Recall@10, nDCG@5, nDCG@20, MRR@5,
MRR@10.

H MORE DETAILS OF IMPLEMENTATION FOR QUERY REWRITING

Given the strong reasoning capabilities of Multimodal Large Language Models (MLLMs), we take
advantage of their ability to produce explicit step-by-step chain-of-thought reasoning in order to
improve the effectiveness of query rewriting and thereby enhance retrieval performance. Instead
of relying on a single direct reformulation, we design a prompting strategy that guides the MLLM
through a structured reasoning process. Concretely, the model is first asked to (i) identify the most
salient subquestions that are implicitly contained in the given instruction and query, ensuring that
complex or multifaceted information needs are decomposed into clear components. Next, the model
is prompted to (ii) reason step-by-step about what types of evidence, textual patterns, and document

10https://huggingface.co/zai-org/GLM-4.1V-9B-Thinking
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Methods Multimodal Knowledge Retrieval Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

BGE-M3 18.79 12.97 12.04 14.52 6.05 16.35 - - - - - - -
+ Captions (Qwen) 34.19 24.28 17.88 21.24 9.67 25.19 45.46 9.97 23.66 9.48 0.00 3.46 18.71
+ Captions (GLM) 35.56 26.27 16.11 22.64 9.91 24.39 39.58 9.15 24.22 10.36 0.00 4.91 18.59

Qwen3 23.77 20.44 12.61 17.13 8.61 19.79 - - - - - - -
+ Captions (Qwen) 29.97 29.29 18.32 21.46 9.52 23.19 49.44 21.14 26.30 9.11 0.00 4.30 20.17
+ Captions (GLM) 30.26 29.50 15.54 20.54 9.30 22.89 43.89 16.42 28.31 6.69 0.00 8.45 19.32

Diver-Emb. 27.32 16.94 15.17 18.05 10.06 22.57 - - - - - - -
+ Captions (Qwen) 38.46 30.87 22.84 23.62 14.46 31.40 54.67 25.91 24.88 8.52 0.00 7.47 23.59
+ Captions (GLM) 39.70 32.17 21.59 24.13 14.22 32.36 56.35 28.32 28.44 7.48 0.00 7.81 24.38

ReasonIR 29.85 19.72 16.22 21.56 9.83 23.56 - - - - - - -
+ Captions (Qwen) 44.75 41.91 18.79 27.33 17.45 41.22 64.04 34.49 30.70 11.65 0.00 10.89 25.72
+ Captions (GLM) 46.06 42.02 20.24 26.79 17.47 38.52 57.49 13.81 33.49 10.63 0.00 8.63 26.26

Table 7: Sensitivity Analysis of Captioning Models. Comparing performance (nDCG@10) of text
retrievers augmented with captions generated by Qwen2.5-VL-7B (Gray rows) versus GLM-4v-9B-
Thinking (Blue rows). The results demonstrate that while absolute scores fluctuate across sub-tasks
due to different captioning styles, the relative ranking of retrieval models remains highly consistent.

Methods Multimodal Knowledge Retrieval Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

Text Embedding Models

BGE-M3 3.61 2.25 3.26 2.70 1.04 3.77 - - - - - - -
+ Captions 10.22 3.23 6.44 5.00 1.43 7.26 32.14 3.49 6.67 4.00 0.00 1.36 6.77

Qwen3 5.46 2.67 3.11 1.86 1.13 4.67 - - - - - - -
+ Captions 7.21 6.87 5.15 4.84 1.20 5.93 32.14 6.98 4.92 4.03 0.00 0.68 6.66

Diver-Emb. 5.73 2.55 4.74 1.60 0.38 3.71 - - - - - - -
+ Captions 12.37 7.06 9.87 4.60 2.39 6.60 36.90 8.14 3.00 3.33 0.00 0.68 7.91

BGE-Rea. 3.69 3.13 4.10 2.59 1.36 4.64 - - - - - - -
+ Captions 16.03 9.84 9.74 6.19 1.24 10.28 41.67 12.21 1.67 2.00 0.00 0.68 9.29

ReasonIR 7.68 3.13 3.75 4.35 0.91 4.21 - - - - - - -
+ Captions 16.87 13.81 7.13 5.32 3.50 11.59 39.29 7.56 6.58 2.00 0.00 0.68 9.53

Multimodal Embedding Models

CLIP 12.49 8.28 4.37 2.58 1.42 11.72 3.57 1.16 10.92 12.67 0.00 0.00 5.77
BGE-VL 8.96 2.30 2.93 4.35 0.32 4.81 34.52 6.98 10.83 2.01 0.00 1.36 6.62
GME 10.07 14.48 7.84 3.97 1.43 8.39 21.43 2.33 8.08 8.00 0.00 3.40 7.45
VLM2Vec 13.58 13.73 5.41 3.73 1.44 14.54 38.10 3.49 9.53 4.00 0.62 0.68 9.07
MM-Emb. 17.18 20.81 7.10 7.05 4.35 17.54 34.52 9.59 11.25 11.33 0.00 0.00 11.73
Seed-1.6 13.65 9.02 9.85 5.20 3.69 9.81 33.33 6.98 19.33 8.00 0.00 0.00 9.91

Table 8: The overall performance of embedding models on MR2-Bench in terms of the Recall@1.

attributes would be necessary for relevant sources to contain, which encourages a more targeted
and discriminative retrieval process. Finally, model (iii) produces both an explicit reasoning trace,
which captures its internal deliberation, and a set of candidate rewritten queries or answers that can
be used to drive retrieval more effectively. We employ GPT-5 (OpenAI, 2025), the SOTA multimodal
reasoning model, to perform query rewriting. The prompt is provided in Figure 3.

I MORE DETAILS OF RERANKING

I.1 IMPLEMENTATION DETAILS

For text-only rerankers, following the second input configuration described in Section E, we ap-
pend image captions as auxiliary context. For multimodal rerankers, MLLMs are prompted in a
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Methods Multimodal Knowledge Retrieval Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

Text Embedding Models

BGE-M3 14.09 10.43 11.66 10.12 7.27 12.78 - - - - - - -
+ Captions 28.85 23.21 17.32 13.60 8.76 20.66 53.57 10.85 20.25 11.33 0.00 3.40 17.65

Qwen3 17.36 12.48 12.17 11.93 6.38 15.12 - - - - - - -
+ Captions 24.76 27.10 16.30 13.73 6.61 17.95 60.71 30.33 24.42 11.41 0.00 5.44 19.90

Diver-Emb. 24.54 12.43 15.95 13.61 8.07 19.33 - - - - - - -
+ Captions 30.82 27.00 20.75 16.47 11.35 29.76 65.48 37.50 21.67 10.00 0.00 10.88 23.47

BGE-Rea. 23.36 8.80 15.83 13.79 8.05 19.01 - - - - - - -
+ Captions 33.49 32.50 25.09 17.00 12.56 26.61 70.24 46.71 25.42 8.67 0.00 6.80 25.42

ReasonIR 26.10 16.55 14.73 14.94 10.08 20.38 - - - - - - -
+ Captions 33.01 36.37 16.49 20.05 17.45 36.66 61.90 20.93 24.33 6.00 0.00 8.16 23.45

Multimodal Embedding Models

CLIP 27.54 28.63 9.72 7.60 4.01 29.62 16.67 4.65 48.17 22.67 0.00 6.80 17.17
BGE-VL 22.17 12.55 10.96 15.18 6.30 15.22 63.10 17.64 47.33 10.07 0.00 5.44 18.83
GME 27.06 33.94 15.53 13.36 6.25 24.78 45.24 6.40 37.42 20.67 0.00 12.24 20.24
VLM2Vec 30.64 34.61 18.89 12.44 7.36 32.18 55.95 17.25 31.75 17.33 0.63 4.08 21.93
MM-Emb. 38.24 48.89 21.07 21.03 16.53 42.79 48.81 22.58 42.08 28.00 0.00 6.12 28.01
Seed-1.6 31.93 32.51 28.95 22.17 14.52 31.65 69.05 38.76 61.25 19.33 0.63 8.16 29.91

Table 9: The overall performance of embedding models on MR2-Bench in terms of the Recall@5.

Methods Multimodal Knowledge Retrieval Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

Text Embedding Models

BGE-M3 25.92 18.48 17.29 17.00 9.11 22.31 - - - - - - -
+ Captions 39.67 35.42 20.81 21.23 14.02 32.55 61.90 19.57 33.83 16.67 0.00 7.48 25.26

Qwen3 32.83 30.81 17.08 20.64 13.94 27.05 - - - - - - -
+ Captions 33.91 38.52 24.39 21.03 15.41 31.27 67.86 38.08 39.67 16.11 0.00 8.84 27.92

Diver-Emb. 35.18 25.13 20.01 22.07 16.42 33.76 - - - - - - -
+ Captions 43.81 42.45 26.21 25.29 22.66 43.71 70.24 43.31 40.83 16.00 0.00 15.65 32.51

BGE-Rea. 41.29 24.18 23.80 23.82 17.24 37.44 - - - - - - -
+ Captions 46.35 42.84 29.78 24.51 22.96 43.02 79.76 58.53 40.42 12.00 0.00 11.56 34.31

ReasonIR 37.42 29.45 22.93 24.88 16.21 34.28 - - - - - - -
+ Captions 46.05 50.89 20.99 28.93 25.72 52.31 69.05 28.88 44.08 10.00 0.00 12.93 32.48

Multimodal Embedding Models

CLIP 33.08 38.08 14.38 14.05 5.64 38.85 26.19 12.21 70.42 31.33 0.63 11.56 24.70
BGE-VL 38.03 27.68 16.66 22.85 11.62 28.46 66.67 23.45 67.83 12.08 0.00 12.93 27.35
GME 35.13 45.64 21.93 19.66 13.14 36.10 54.76 15.50 57.17 25.33 0.63 23.13 29.01
VLM2Vec 41.02 44.31 23.69 20.66 13.20 39.49 66.67 27.23 47.67 27.33 0.63 14.97 30.57
MM-Emb. 50.98 55.18 26.60 28.91 22.79 54.61 51.19 35.08 68.42 35.33 0.63 14.29 37.00
Seed-1.6 47.99 49.13 38.60 30.05 26.32 48.90 79.76 47.87 84.17 30.67 2.50 22.45 42.37

Table 10: The overall performance of embedding models on MR2-Bench in terms of the Recall@10.
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Methods Multimodal Knowledge Retrieval Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

Text Embedding Models

BGE-M3 14.89 10.15 9.78 13.18 5.33 13.23 - - - - - - -
+ Captions 32.01 19.33 17.27 21.47 8.02 21.21 42.82 7.13 17.66 7.81 0.00 2.18 16.41

Qwen3 18.71 13.35 10.80 14.72 5.76 15.71 - - - - - - -
+ Captions 27.36 24.45 15.25 20.60 6.75 18.77 47.01 18.56 19.48 7.70 0.00 3.20 17.43

Diver-Emb. 24.49 11.88 13.45 16.24 6.70 17.47 - - - - - - -
+ Captions 36.03 24.59 20.72 21.95 10.66 26.57 53.13 23.94 16.49 6.60 0.00 5.97 20.56

BGE-Rea. 23.63 8.90 12.79 18.98 6.92 19.62 - - - - - - -
+ Captions 40.07 30.43 23.44 25.26 10.06 28.38 57.44 30.40 18.43 5.59 0.00 4.11 22.80

ReasonIR 26.90 14.77 13.12 19.15 7.68 17.96 - - - - - - -
+ Captions 42.83 36.92 17.98 26.60 14.74 36.36 52.01 14.34 21.23 4.30 0.00 4.36 22.64

Multimodal Embedding Models

CLIP 33.19 27.83 10.42 15.34 4.90 30.50 9.91 3.13 39.38 18.14 0.00 3.57 16.36
BGE-VL 26.00 12.99 9.92 18.10 5.71 14.74 49.60 12.44 39.07 5.83 0.00 3.53 16.49
GME 33.91 35.58 17.03 18.41 5.46 25.61 33.89 4.18 30.64 14.21 0.00 7.64 18.88
VLM2Vec 38.31 36.87 18.75 19.66 7.46 34.05 47.87 10.86 28.12 10.74 0.63 2.46 21.31
MM-Emb. 48.80 50.58 22.22 30.84 15.50 44.52 42.15 17.22 37.07 20.34 0.00 3.29 27.71
Seed-1.6 36.14 32.45 28.34 27.69 13.46 31.52 52.63 22.95 55.12 13.67 0.31 4.49 26.56

Table 11: The overall performance of embedding models on MR2-Bench in terms of the nDCG@5.

Methods Multimodal Knowledge Retrieval Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

Text Embedding Models

BGE-M3 22.66 16.33 13.67 17.72 7.89 19.84 - - - - - - -
+ Captions 37.22 28.43 19.70 24.36 11.39 30.06 47.59 12.65 27.18 10.95 0.00 5.14 21.22

Qwen3 30.34 24.25 15.39 20.39 12.16 24.16 - - - - - - -
+ Captions 36.76 33.24 21.41 24.91 13.21 29.03 49.75 24.00 30.48 10.96 0.00 6.70 23.37

Diver-Emb. 32.45 23.00 17.59 24.00 13.65 28.12 - - - - - - -
+ Captions 43.90 36.21 25.50 28.19 18.26 37.13 58.30 29.83 29.68 10.52 0.17 8.86 27.21

BGE-Rea. 33.43 21.87 18.97 25.40 14.43 30.65 - - - - - - -
+ Captions 47.04 39.94 28.24 29.94 19.20 40.59 63.25 35.94 33.36 8.87 0.00 7.89 29.52

ReasonIR 36.90 24.69 18.92 25.97 13.12 30.39 - - - - - - -
+ Captions 48.18 45.34 21.83 28.71 21.15 44.74 57.61 19.33 36.48 6.19 0.00 8.91 28.21

Multimodal Embedding Models

CLIP 35.49 31.94 13.96 16.53 6.01 34.38 14.76 6.57 56.32 23.04 0.53 6.71 20.52
BGE-VL 36.96 26.11 17.09 23.25 9.47 26.61 52.91 16.12 53.97 7.71 0.17 8.46 23.24
GME 38.17 43.48 20.72 21.56 10.82 33.43 40.88 9.08 45.85 18.74 0.22 14.88 24.82
VLM2Vec 42.11 43.24 21.36 21.93 11.63 38.91 55.66 18.46 40.38 17.18 0.63 8.77 26.69
MM-Emb. 51.83 54.36 26.38 32.74 20.39 51.77 45.99 22.91 55.04 23.97 0.36 8.00 32.81
Seed-1.6 46.01 43.31 35.86 32.99 22.85 43.71 58.25 28.38 69.97 21.20 1.67 11.76 34.66

Table 12: The overall performance of embedding models on MR2-Bench in terms of the nDCG@20.
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Methods Multimodal Knowledge Retrieval Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

Text Embedding Models

BGE-M3 21.05 14.78 13.28 23.18 6.96 19.29 - - - - - - 16.43
+ Captions 42.95 23.84 25.36 31.49 12.11 29.36 39.31 6.38 27.10 6.66 0.00 1.80 20.53

Qwen3 34.51 24.17 21.24 25.35 13.24 20.13 - - - - - - 23.11
+ Captions 47.53 31.58 25.23 29.14 14.61 26.43 56.65 27.97 30.00 8.54 0.00 5.69 25.28

Diver-Emb. 32.03 17.08 17.69 21.86 8.95 20.93 - - - - - - 19.76
+ Captions 44.22 31.64 28.86 29.71 14.57 31.62 48.91 20.25 23.23 5.49 0.00 4.35 23.57

BGE-Rea. 28.40 11.86 16.43 26.91 10.82 25.29 - - - - - - 19.95
+ Captions 51.03 35.83 30.54 34.76 14.14 37.73 53.13 25.64 24.43 4.56 0.00 3.20 26.25

ReasonIR 33.04 19.91 17.20 28.07 9.78 22.56 - - - - - - 21.76
+ Captions 55.15 46.27 25.76 35.44 18.00 46.89 48.65 12.93 31.17 3.72 0.00 3.13 27.26

Multimodal Embedding Models

CLIP 44.64 35.07 15.09 25.19 8.65 39.72 7.72 2.62 46.75 16.61 0.00 2.51 20.38
BGE-VL 36.31 18.44 14.12 25.29 6.96 19.02 45.14 10.68 46.47 4.46 0.00 2.89 19.15
GME 46.18 45.07 24.60 26.51 6.56 34.53 30.14 3.59 38.55 12.13 0.00 6.16 22.83
VLM2Vec 49.49 48.77 25.89 30.13 9.88 42.32 45.16 9.07 36.57 8.59 0.62 1.93 25.70
MM-Emb. 60.00 59.52 32.78 40.07 20.50 53.43 39.92 17.09 47.77 17.79 0.00 2.35 32.60
Seed-1.6 45.38 41.54 38.45 34.01 18.32 39.34 47.16 18.24 63.07 11.82 0.21 3.25 30.07

Table 13: The overall performance of embedding models on MR2-Bench in terms of the MRR@5.

Methods Multimodal Knowledge Retrieval Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

Text Embedding Models

BGE-M3 23.01 16.21 14.34 25.04 7.90 21.36 - - - - - - 17.98
+ Captions 44.71 27.02 25.84 32.19 13.10 31.09 40.38 7.60 28.41 7.32 0.00 2.32 21.67

Qwen3 36.73 25.96 22.44 26.47 15.38 22.63 - - - - - - 24.93
+ Captions 48.98 32.87 26.38 30.26 16.47 28.40 58.34 29.39 31.81 9.33 0.00 7.09 26.61

Diver-Emb. 33.64 19.73 18.39 23.02 10.64 23.16 - - - - - - 21.43
+ Captions 45.47 34.17 30.00 31.56 16.79 33.39 49.55 21.12 26.03 6.28 0.00 4.95 24.94

BGE-Rea. 31.03 15.53 18.25 28.22 13.09 27.92 - - - - - - 22.34
+ Captions 52.27 37.38 31.21 35.57 15.88 39.88 54.32 27.52 26.42 4.96 0.00 3.88 27.44

ReasonIR 35.35 21.68 18.46 29.46 10.77 24.87 - - - - - - 23.44
+ Captions 56.61 48.19 26.44 36.65 19.59 48.36 49.60 14.27 34.01 4.18 0.00 3.75 28.47

Multimodal Embedding Models

CLIP 45.80 36.53 16.04 26.33 9.06 40.69 8.96 3.72 48.53 17.72 0.08 3.12 21.38
BGE-VL 38.85 21.34 15.96 26.52 8.32 21.63 45.67 11.45 48.26 4.75 0.00 3.79 20.54
GME 47.02 46.64 25.82 27.66 8.40 36.23 31.39 4.73 40.24 12.74 0.10 7.57 24.04
VLM2Vec 50.97 49.69 26.93 31.18 10.83 43.29 46.70 10.48 38.68 9.89 0.62 3.25 26.88
MM-Emb. 61.30 59.90 33.43 41.06 21.60 54.67 40.32 19.03 50.30 18.85 0.09 3.44 33.67
Seed-1.6 47.69 43.99 39.38 34.62 20.65 41.38 48.64 19.37 65.00 13.29 0.47 5.26 31.65

Table 14: The overall performance of embedding models on MR2-Bench in terms of the MRR@10.
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Task Description:

You are an AI assistant specializing in information retrieval and reasoning. Given 

an instruction and a question (consist of text and images), your task is to generate a 

"Chain-of-thought" reasoning process. This process must clearly outline the key 

information that needs to be found in relevant document to answer the question.

Execution Flow:

(1) Identify the Essential Problem: First, precisely extract the fundamental 

problem that needs to be solved.

(2) Reason on Required Information: Based on the essential problem, conduct 

step-by-step reasoning to specify the content that needs to be retrieved. This should 

include relevant terms, phenomena, causes, characteristics, risks, or solutions.

(3) Synthesize the Answer: Based on the reasoning, formulate a direct and concise 

answer to the problem.

(4) Combine for Output: Consolidate the "Essential Problem", the "Reasoning on 

Required Information", and the "Synthesized Answer" into a single, coherent text. 

This text must be simple, easy to understand, and kept within 100 words.

Input Content:

The provided instruction, question text and question images are as follows:

Original instruction: <instruction>

Original question text: <question text>

Original question images: <question images>

Figure 3: Prompt used by GPT-5 for query rewriting.
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reason-then-rank format; the full prompt is provided in Figure 4. We evaluate Gemini-2.5-Pro11

and GPT-512 using their official APIs, and BGE-Reasoner-Reranker-32B with the authors’ code
and checkpoint obtained via email. For open-source MLLMs (Gemma-3-27B, Qwen2.5-VL-72B,
GLM-4.5V), we run inference with SGLang 13 to accelerate the reasoning stage. All other models
are evaluated using their released code and checkpoints.

Task Description:

You are an objective, evidence-based multimodal judge. Given a Query and a Candidate, determine whether 

the Candidate appropriately corresponds to the Query (satisfies its requirements, answers its question, or 

retrieves the relevant information). Your task is to provide a discrete integer score from 0 to 100:

- 80-100 (Highly Relevant): The Candidate directly and comprehensively addresses the Query's intent.

- 60-80 (Relevant): The Candidate substantially addresses the Query's intent, providing most of the key 

information or details, but might miss some minor details.

- 40-60 (Moderately Relevant): The Candidate is relevant and addresses a part of the Query's intent, but it is 

not comprehensive.

- 20-40 (Slightly Relevant): The Candidate mentions some aspects about the Query, but its main intent is 

different. It offers very limited value or information.

- 0-20 (Irrelevant): The Candidate does not address the Query's intent at all and is off-topic or wrong.

Reasoning Process:

Before providing your answer, analyze the Query and the Candidate step by step and provide your analysis 

process:

1) Query analysis:

- If the Query contains image(s): analyze the concrete visual elements (objects, attributes, colors, materials, 

text-in-image/OCR, spatial relations, layout/scene, etc.).

- If the Query contains text(s): analyze the explicit intent and constraints (entities, attributes, quantities, 

relations, actions/edits, categories/styles, temporal/spatial cues, etc.).

- Accurately capture the Query's true intent, identifying the key challenges and core elements.

2) Candidate analysis:

- If the Candidate contains image(s): analyze the concrete visual elements (objects, attributes, colors, 

materials, text-in-image/OCR, spatial relations, layout/scene, etc.).

- If the Candidate contains text: analyze its explicit content (entities, attributes, quantities, relations, 

categories, etc.).

- Carefully analyze and discuss the Candidate against the Query's intent and constraints to determine whether 

it satisfies the Query's requirements and true intent. Avoid erroneous acceptance or rejection; base judgments 

strictly on observable details and reasonable reasoning.

After providing your detailed analysis and justification for all the steps above, conclude your entire response 

with the final score. The score must be enclosed within <score> </score> tags. Please output the score with the 

tag only, no other text.

Your output should follow the following format: 

your analysis process 

<score>XX</score>

Figure 4: Prompt used by MLLMs to score query-candidate pairs after reasoning.

I.2 DETAILED RERANKING RESULTS WITH SEED-1.6-EMBEDDING AS THE BASE
RETRIEVER

We report detailed reranking results with Seed-1.6-Embedding as the base retriever, including Re-
call@1, Recall@5, Recall@10, NDCG@5, NDCG@10, and NDCG@20, in Tables 15 to 20, re-
spectively.

11gemini-2.5-pro-thinking-2025-06-05
12gpt-5-2025-08-07
13https://docs.sglang.ai/
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Methods Multimodal Knowledge Retrieval Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

Base Retriever

Seed-1.6-Embedding 13.65 9.02 9.85 5.20 3.69 9.81 33.33 6.98 19.33 8.00 0.00 0.00 9.91

Textual Rerankers

RankLLaMa-7B 8.53 7.03 8.34 7.71 3.92 4.16 30.95 12.60 7.50 4.00 0.00 1.36 8.01
RankLLaMa-14B 12.00 8.86 6.42 4.88 4.12 7.27 19.05 13.18 6.25 7.33 0.62 0.00 7.50
Rank1-7B 9.33 6.59 4.32 3.76 6.14 6.84 50.00 31.59 12.25 8.00 0.00 0.68 11.63
RankR1-14B 9.86 4.86 7.00 6.28 2.88 7.27 67.86 17.25 10.58 13.33 0.63 2.72 12.54
ReasonRank-32B 13.80 8.96 8.91 5.46 4.45 9.78 58.33 27.03 10.75 12.00 0.62 6.80 13.91
BGE-Reasoner-Reranker-32B 15.43 6.40 10.29 4.85 3.97 11.36 65.48 25.68 12.00 18.00 0.62 2.72 14.73

Multimodal Rerankers

MonoQwen2-VL 10.14 10.19 5.19 4.63 2.68 6.48 57.14 16.28 19.25 5.33 0.00 3.40 11.73
Jina-Reranker 8.18 7.36 5.53 3.00 1.68 5.34 71.43 24.22 17.00 25.33 0.00 2.04 14.26
Gemma-3-27B 9.59 7.15 3.91 3.52 6.48 9.94 36.90 27.81 11.25 27.33 1.25 6.80 12.66
Qwen2.5-VL-72B 13.21 10.17 7.39 5.84 4.48 11.51 58.33 40.60 14.58 28.67 3.12 5.44 16.95
GLM-4.5V-thinking 12.69 6.88 4.97 6.41 7.37 8.42 55.95 39.15 12.42 32.00 1.88 5.44 16.13
Gemini-2.5-Pro 9.84 13.64 9.20 7.35 9.31 11.16 58.33 42.34 23.58 40.67 0.00 10.20 19.64
GPT-5 16.66 17.05 12.37 8.21 11.29 16.39 77.38 50.48 26.17 39.33 2.50 11.56 24.12

Table 15: Detailed reranking performance (Recall@1) on MR2-Bench with Seed-1.6-Embedding as
the base retriever.

Methods Multimodal Knowledge Retrieval Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

Base Retriever

Seed-1.6-Embedding 31.93 32.51 28.95 22.17 14.52 31.65 69.05 38.76 61.25 19.33 0.63 8.16 29.91

Textual Rerankers

RankLLaMa-7B 32.34 30.02 26.59 21.19 11.61 25.54 71.43 42.73 34.42 20.00 1.25 8.16 27.11
RankLLaMa-14B 33.86 29.62 26.57 21.86 16.97 33.26 64.29 47.38 28.42 18.67 1.25 6.80 27.41
Rank1-7B 30.62 31.07 22.42 16.12 17.16 25.23 77.38 52.03 40.50 22.67 1.88 6.80 28.66
RankR1-14B 32.09 32.21 23.81 19.68 18.97 27.78 84.52 52.03 37.50 32.67 2.50 17.01 31.73
ReasonRank-32B 33.17 30.95 26.29 20.90 15.97 29.08 80.95 52.62 43.83 20.67 3.12 19.73 31.44
BGE-Reasoner-Reranker-32B 36.79 35.21 28.52 18.56 16.75 29.96 83.33 53.78 47.83 33.33 3.12 12.24 33.29

Multimodal Rerankers

MonoQwen2-VL 27.49 35.15 23.82 15.77 12.98 22.15 79.76 51.45 60.58 18.67 0.62 14.29 30.23
Jina-Reranker 27.42 30.17 25.63 16.59 14.57 20.78 85.71 53.20 60.92 35.33 0.00 12.93 31.94
Gemma-3-27B 34.17 35.13 25.76 17.03 24.54 26.95 70.24 53.20 52.50 36.67 2.50 19.73 33.20
Qwen2.5-VL-72B 33.76 29.68 27.45 18.45 19.08 31.07 83.33 54.94 59.33 32.67 5.62 14.29 34.14
GLM-4.5V-thinking 33.73 39.96 24.50 19.31 20.34 30.69 80.95 56.10 60.58 38.00 5.00 24.49 36.14
Gemini-2.5-Pro 40.03 43.72 31.12 21.79 24.69 38.95 82.14 53.78 76.17 42.67 3.28 26.53 40.41
GPT-5 46.39 51.27 33.65 27.32 28.86 48.46 88.10 56.10 79.33 43.33 4.38 27.21 44.53

Table 16: Detailed reranking performance (Recall@5) on MR2-Bench with Seed-1.6-Embedding as
the base retriever.
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Methods Multimodal Knowledge Retrieval Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

Base Retriever

Seed-1.6-Embedding 47.99 49.13 38.60 30.05 26.32 48.90 79.76 47.87 84.17 30.67 2.50 22.45 42.37

Textual Rerankers

RankLLaMa-7B 47.24 48.26 39.69 30.41 23.05 46.68 82.14 51.45 63.17 30.00 3.12 13.61 39.90
RankLLaMa-14B 51.11 53.74 39.11 31.22 28.30 54.12 78.57 51.45 56.67 30.67 3.12 19.05 41.43
Rank1-7B 45.92 48.38 35.68 29.07 28.97 48.48 85.71 54.94 65.58 30.00 5.00 14.97 41.06
RankR1-14B 49.81 50.16 36.98 30.27 28.91 48.04 86.90 56.10 67.92 36.67 3.12 26.53 43.45
ReasonRank-32B 47.86 47.93 36.96 30.54 24.67 45.45 85.71 53.78 62.92 33.33 4.38 25.85 41.61
BGE-Reasoner-Reranker-32B 50.54 52.14 41.71 30.82 30.02 51.88 85.71 56.10 75.00 41.33 4.38 23.81 45.29

Multimodal Rerankers

MonoQwen2-VL 40.82 45.84 33.23 26.22 24.64 40.45 83.33 56.10 86.83 31.33 3.12 25.17 41.43
Jina-Reranker 42.93 47.88 38.99 29.59 26.99 37.69 88.10 55.52 85.25 40.00 1.88 24.49 43.28
Gemma-3-27B 49.26 55.19 36.78 28.35 33.09 45.52 84.52 54.94 79.92 44.00 3.12 29.25 45.33
Qwen2.5-VL-72B 50.40 51.51 41.59 28.24 30.37 49.01 85.71 56.10 86.58 36.67 5.62 27.21 45.75
GLM-4.5V-thinking 50.55 54.87 38.50 31.67 30.79 46.73 84.52 56.10 85.67 39.33 5.62 30.61 46.25
Gemini-2.5-Pro 54.16 58.46 42.45 32.32 36.61 58.23 88.10 53.78 94.83 44.00 6.56 29.93 49.95
GPT-5 56.56 60.34 44.35 38.33 37.87 60.88 88.10 56.10 94.67 44.00 5.62 31.29 51.51

Table 17: Detailed reranking performance (Recall@10) on MR2-Bench with Seed-1.6-Embedding
as the base retriever.

Methods Multimodal Knowledge Retrieval Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

Base Retriever

Seed-1.6-Embedding 36.14 32.45 28.34 27.69 13.46 31.52 52.63 22.95 55.12 13.67 0.31 4.49 26.56

Textual Rerankers

RankLLaMa-7B 33.57 27.86 25.75 25.33 12.71 22.03 51.12 29.83 28.23 11.95 0.48 4.72 22.80
RankLLaMa-14B 37.46 30.23 25.21 24.77 16.90 29.61 41.34 33.38 23.23 12.70 0.89 3.42 23.26
Rank1-7B 32.41 28.02 19.18 22.60 17.04 24.76 64.57 44.02 36.11 15.45 0.91 3.70 25.73
RankR1-14B 35.23 27.72 21.90 27.27 15.87 26.91 76.71 38.19 32.75 23.10 1.73 10.14 28.13
ReasonRank-32B 38.20 31.44 24.65 28.31 15.76 30.00 70.57 43.11 36.98 16.85 1.87 13.20 29.25
BGE-Reasoner-Reranker-32B 41.86 33.58 26.89 27.38 16.31 31.51 75.80 43.57 41.68 25.80 1.72 7.53 31.14

Multimodal Rerankers

MonoQwen2-VL 31.17 32.96 21.96 22.14 11.02 21.24 69.47 37.18 53.35 12.07 0.39 8.84 26.82
Jina-Reranker 28.54 29.05 23.35 20.17 11.03 20.04 78.68 42.30 52.74 30.42 0.00 7.61 28.66
Gemma-3-27B 36.21 31.97 21.52 22.28 22.53 27.05 55.09 43.53 42.35 32.61 1.73 13.40 29.19
Qwen2.5-VL-72B 38.51 30.82 23.70 27.05 17.25 30.75 71.80 50.71 49.40 30.73 4.58 10.21 32.13
GLM-4.5V-thinking 37.66 35.63 20.59 27.83 21.15 28.66 69.38 50.24 49.37 35.61 3.60 15.25 32.92
Gemini-2.5-Pro 42.94 45.34 28.56 29.58 24.80 37.80 71.09 50.94 67.46 41.59 1.74 18.46 38.36
GPT-5 52.03 54.15 34.19 35.91 29.34 48.00 83.83 55.63 72.09 41.21 3.53 20.19 44.18

Table 18: Detailed reranking performance (NDCG@5) on MR2-Bench with Seed-1.6-Embedding
as the base retriever.
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Methods Multimodal Knowledge Retrieval Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

Base Retriever

Seed-1.6-Embedding 40.64 38.12 31.77 27.91 17.80 37.17 56.13 26.10 65.16 17.29 0.93 9.21 30.68

Textual Rerankers

RankLLaMa-7B 37.92 34.53 30.40 27.74 16.31 30.35 54.62 32.71 40.76 15.21 1.04 6.42 27.33
RankLLaMa-14B 43.27 38.94 29.61 26.92 20.32 37.03 45.98 34.65 35.08 16.62 1.49 7.20 28.09
Rank1-7B 36.95 35.07 24.49 25.34 21.21 33.87 67.19 45.01 47.22 17.39 1.96 6.29 30.21
RankR1-14B 40.11 34.96 26.88 28.58 19.60 34.36 77.49 39.56 46.30 24.41 1.93 13.19 32.28
ReasonRank-32B 41.70 37.31 28.98 28.34 18.61 35.57 72.19 43.53 45.35 21.10 2.30 15.16 32.51
BGE-Reasoner-Reranker-32B 45.19 39.31 32.18 28.57 20.69 39.26 76.53 44.35 53.07 28.35 2.09 11.31 35.08

Multimodal Rerankers

MonoQwen2-VL 35.33 36.41 24.71 23.96 15.31 27.96 70.60 38.93 64.83 18.23 1.14 12.28 30.64
Jina-Reranker 34.23 35.45 28.13 24.25 15.67 25.86 79.48 43.21 63.63 31.90 0.60 11.35 32.82
Gemma-3-27B 39.94 39.67 26.15 25.57 25.11 33.94 59.75 44.20 54.44 34.99 1.96 16.44 33.51
Qwen2.5-VL-72B 42.95 38.78 29.60 28.21 21.17 37.66 72.57 51.09 61.47 31.97 4.58 14.29 36.20
GLM-4.5V-thinking 42.43 41.28 26.37 29.78 24.34 34.15 70.52 50.24 60.24 36.06 3.78 17.29 36.37
Gemini-2.5-Pro 45.91 49.72 33.10 30.87 28.57 44.28 73.13 50.94 76.07 42.02 2.87 19.61 41.43
GPT-5 52.35 55.41 37.46 37.10 31.96 51.12 83.83 55.63 79.16 41.41 3.94 21.48 45.90

Table 19: Detailed reranking performance (nDCG@10) on MR2-Bench with Seed-1.6-Embedding
as the base retriever.

Methods Multimodal Knowledge Retrieval Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

Base Retriever

Seed-1.6-Embedding 46.01 43.31 35.86 32.99 22.85 43.71 58.25 28.38 69.97 21.20 1.67 11.76 34.66

Textual Rerankers

RankLLaMa-7B 43.30 39.99 34.24 33.08 22.25 37.77 56.11 34.04 52.68 19.21 1.66 11.14 32.12
RankLLaMa-14B 46.82 42.36 33.27 31.74 24.48 42.40 48.40 35.90 49.12 20.54 2.13 10.52 32.31
Rank1-7B 43.28 41.15 30.00 30.70 25.27 40.54 67.78 45.31 57.94 21.86 2.12 10.74 34.72
RankR1-14B 44.82 40.37 31.75 33.63 23.64 41.27 77.81 39.56 56.77 26.81 2.56 14.77 36.15
ReasonRank-32B 46.94 42.68 33.66 33.36 24.11 43.35 72.81 44.07 57.47 24.32 2.62 16.88 36.86
BGE-Reasoner-Reranker-32B 49.23 43.49 35.21 32.73 24.16 44.67 77.16 44.35 60.96 29.55 2.43 13.62 38.13

Multimodal Rerankers

MonoQwen2-VL 43.11 43.47 30.86 30.55 21.21 37.72 71.78 38.93 68.60 19.96 1.79 14.25 35.19
Jina-Reranker 41.56 41.24 32.18 29.78 20.68 36.60 79.48 43.40 67.91 33.44 1.56 13.44 36.77
Gemma-3-27B 44.65 42.71 31.30 30.73 27.69 41.96 60.70 44.51 60.61 35.52 2.58 17.30 36.69
Qwen2.5-VL-72B 47.32 43.21 33.16 33.36 24.65 43.95 73.22 51.09 65.48 34.26 4.58 15.65 39.16
GLM-4.5V-thinking 46.89 44.25 30.64 33.77 27.29 41.36 71.39 50.24 64.66 37.68 3.78 17.77 39.14
Gemini-2.5-Pro 47.75 50.48 35.75 34.10 29.81 47.64 73.13 51.20 77.27 42.50 2.87 20.34 42.74
GPT-5 53.91 55.97 39.24 38.50 32.61 53.21 83.83 55.63 80.30 41.95 3.94 21.84 46.75

Table 20: Detailed reranking performance (NDCG@20) on MR2-Bench with Seed-1.6-Embedding
as the base retriever.
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I.3 ADDITIONAL RERANKING RESULTS FOR OTHER RETRIEVERS

We report NDCG@10 reranking results for two additional retrievers, Qwen3-Embedding and GME,
in Tables 21 and 22, respectively.

Methods Multimodal Knowledge Retrieval Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

Base Retriever

Qwen3-Embedding 29.97 29.29 18.32 21.46 9.52 23.19 49.44 21.14 26.30 9.11 0.00 4.30 20.17

Textual Rerankers

RankLLaMa-7B 32.85 30.80 22.53 25.89 12.95 27.73 47.93 31.12 26.69 9.19 0.00 5.96 22.80
RankLLaMa-14B 39.06 33.81 22.29 27.29 17.24 32.90 40.37 31.21 21.41 10.43 0.00 4.92 23.41
Rank1-7B 33.62 30.46 19.22 20.56 13.44 26.24 51.16 38.62 32.60 12.38 0.00 3.72 23.50
RankR1-14B 37.54 31.86 22.30 25.67 14.26 27.49 59.58 35.66 31.97 14.25 0.00 6.61 25.60
ReasonRank-32B 36.24 30.69 20.63 25.53 13.09 26.45 60.59 36.26 34.46 12.16 0.00 7.59 25.31
BGE-Reasoner-Reranker-32B 39.97 33.44 22.20 23.68 14.12 29.83 62.49 41.27 32.14 15.66 0.00 7.34 26.85

Multimodal Rerankers

MonoQwen2-VL 32.13 32.15 20.53 22.02 11.72 22.22 58.21 33.62 41.02 10.17 0.00 7.57 24.28
Jina-Reranker 32.22 30.26 21.41 22.24 10.46 22.55 63.47 38.04 41.69 18.42 0.00 6.49 25.60
Gemma-3-27B 35.20 33.70 19.85 22.10 16.81 26.66 48.22 39.52 35.59 18.79 0.00 7.02 25.29
Qwen2.5-VL-72B 40.11 36.20 20.69 24.94 14.79 28.74 58.25 46.29 38.55 17.92 0.00 6.92 27.78
GLM-4.5V 36.09 34.75 18.83 25.53 16.45 27.06 55.29 42.19 39.76 18.93 0.00 7.92 26.90

Table 21: Detailed reranking performance (nDCG@10) on MR2-Bench with Qwen3-Embedding as
the base retriever.

Methods Multimodal Knowledge Retrieval Visual Illustration Visual Relation Avg.
Bio. Cook. Gar. Phy. Chem. Earth. Econ. Math. Nat. Spa. Puzz. Ana.

Base Retriever

GME 34.34 39.50 19.04 19.29 7.73 28.59 36.95 7.19 39.35 15.70 0.22 11.11 21.59

Textual Rerankers

RankLLaMa-7B 30.58 28.35 14.86 23.71 10.44 26.29 48.66 13.48 34.31 11.03 0.00 9.39 20.92
RankLLaMa-14B 33.92 32.62 13.82 22.35 11.98 32.82 40.31 15.34 29.22 15.76 0.00 8.57 21.39
Rank1-7B 32.05 37.15 17.50 20.11 12.04 30.06 55.96 19.14 39.81 16.41 0.00 6.87 23.92
RankR1-14B 35.39 35.87 19.49 23.89 12.38 29.86 59.66 16.84 40.43 20.26 0.00 10.54 25.38
ReasonRank-32B 34.49 36.50 20.02 23.49 12.45 30.21 59.08 18.86 37.60 17.25 0.00 11.32 25.11
BGE-Reasoner-Reranker-32B 37.05 40.29 21.98 22.33 14.24 32.43 62.27 18.45 44.00 24.13 0.00 11.24 27.37

Multimodal Rerankers

MonoQwen2-VL 31.61 35.58 17.13 19.82 9.49 23.25 60.35 14.81 55.25 13.87 0.24 11.42 24.40
Jina-Reranker 31.97 36.23 19.39 19.56 8.92 23.78 63.58 17.20 54.47 23.24 0.39 10.29 25.84
Gemma-3-27B 36.20 42.07 19.72 21.16 14.82 27.93 49.19 19.01 44.77 26.94 0.00 16.21 26.50
Qwen2.5-VL-72B 35.36 38.93 21.18 20.97 13.56 30.49 57.23 21.41 49.84 26.62 0.20 16.37 27.68
GLM-4.5V 35.60 41.26 18.95 21.10 14.53 28.70 55.39 20.21 52.55 30.73 0.62 17.83 28.12

Table 22: Detailed reranking performance (nDCG@10) on MR2-Bench with GME as the base re-
triever.
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