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ABSTRACT

Multimodal retrieval is becoming a crucial component of modern Al applications,
yet its evaluation lags behind the demands of more realistic and challenging sce-
narios. Existing benchmarks primarily probe surface-level semantic correspon-
dence (e.g., object—text matching) while failing to assess the deeper reasoning
required to capture complex relationships between visual and textual information.
To address this gap, we introduce MR?-Bench, a reasoning-intensive benchmark
for multimodal retrieval. MR2-Bench presents the following critical values: 1) all
tasks are reasoning-driven, going beyond shallow matching to effectively assess
models’ capacity for logical, spatial, and causal inference; 2) it features diverse
multimodal data, such as natural images, diagrams, and visual puzzles, enabling
comprehensive evaluation across content types; 3) it supports complex queries
and documents containing multiple images and covers diverse retrieval scenarios,
more accurately reflecting real-world applications. Our benchmark contains 1,309
curated queries, derived either from manual collection and annotation or from se-
lective consolidation of public datasets. Despite achieving strong results on exist-
ing benchmarks, current state-of-the-art models still struggle on MR?-Bench: for
example, the leading Seed1.6-Embedding model attains a Recall@1 of 77.78 on
MMEB, but only 9.91 on MR2-Bench. This substantial performance gap high-
lights both the increased challenge posed by our benchmark and the pressing need
for further advances in reasoning-intensive multimodal retrieval.

1 INTRODUCTION

Multimodal retrieval is a crucial capability in contemporary Al applications, supporting tasks such as
image search (Young et al.,[2014; |[Zhang et al., 2024)), retrieval-augmented generation (RAG) (Chen
et al., 2022; [Yu et al., 2024), and multimodal agentic systems (Geng et al., 2025; 'Wu et al., [2025)).
The field has evolved from traditional cross-modal matching (e.g., text-to-image retrieval (Chen
et al.|[2015)) to more advanced multimodal retrieval that accommodates compositional queries over
interleaved image-text content (e.g., composed image retrieval (Baldrati et al.,2023) and multimodal
knowledge retrieval (Chang et al., 2022} [Luo et al., 2023)). Consequently, modern multimodal
retrievers (Zhou et al. 2024; Zhang et al.,|2025a; Meng et al., 2025)) can process queries expressed
in text, images, or combinations thereof, efficiently extracting relevant information from diverse data
sources and bridging the gap between complex datasets and real-world user needs.

Despite these advances, current evaluation methods remain misaligned with practical requirements.
First, existing benchmarks primarily assess surface-level semantic correspondence, offering limited
coverage of knowledge reasoning, spatial perception, and vision-centric challenges critical for di-
verse agentic applications. Second, these benchmarks predominantly feature natural images, with
insufficient representation of visual puzzles, diagrams, and mathematical figures common in tech-
nical and educational contexts. Third, real-world documents often exhibit free-form, interleaved
image-text layouts with multiple images positioned arbitrarily within the text. However, current
benchmarks frequently limit each example to a single image (Chang et al., [2022} |Baldrati et al.,
2023 Hu et al. [2023; Jiang et al.l [2025)), failing to reflect the complex document structures preva-
lent in practice. These limitations hinder rigorous evaluation of multimodal retrieval systems in
reasoning-intensive, real-world scenarios.



Under review as a conference paper at ICLR 2026

. Multi- Reasoning- Vision-Centric =~ Multi-  Free-
Benchmarks #Queries  #Tasks Modality  Intensive Reasoning Domain Form
MS MARCO (Bajaj et al.||2016) 5,193 1 X X X X X
BEIR (Muennighoff et al.|[2022) 54,262 18 X X X v X
RAR-b (Xiao et al.|[2024a) 45,745 17 X v X v X
BRIGHT (Hongjin et al.|[2025) 1,384 12 X v X 4 X
CIRR (Liu et al.|2021) 4,148 1 v X X X X
WebQA (Chang et al.|[2022) 7,540 1 v X X X X
M-BEIR (Wei et al.|[2024) 190,000 10 v X X v X
ViDoRe (Faysse et al.|[2025) 3,810 2 v X X X X
MMEB (Jiang et al.|[2025) 36,000 36 v X X v X
MR?-Bench (Ours) 1,309 12 v v/ v v v

Table 1: Comparison of MR2-Bench with existing benchmarks. Columns report the number of test
queries (#Queries); the number of tasks (#Tasks); inclusion of image—text data (Multi-Modality);
whether the benchmark is explicitly reasoning-focused (Reasoning-Intensive); whether it contains
tasks solvable purely from images without textual cues (Vision-Centric Reasoning); domain cover-
age (Multi-Domain); and support for arbitrary text—image organization—interleaved ordering and
multi-image on the query and document sides (Free-Form). The first block represents textual re-
trieval benchmarks, and the second block represents multimodal retrieval benchmarks.

In this paper, we introduce MR2-Bench (Multimodal Reasoning-intensive Retrieval Benchmark).
We summarize the key features of MR2-Bench compared to existing benchmarks in Table [I} In
summary, MR2-Bench presents the following critical advantages:

« It is the first benchmark for multimodal reasoning-intensive retrieval. MR2-Bench is
pioneering in its requirement for reasoning to capture relevance rather than relying on shal-
low semantic matching, thereby filling a significant gap in current multimodal retrieval
benchmarks. While existing text-only reasoning-intensive retrieval benchmarks (Xiao!
et al., [2024a; Hongjin et al., |2025) have been developed, MR2-Bench emphasizes mul-
timodal capabilities with a variety of visually related reasoning-intensive retrieval tasks.

« It introduces a broad range of multimodal data domains. Beyond typical natural im-
ages, MR2-Bench incorporates diverse image types such as mathematical visual proofs,
visual puzzles, and economic charts, etc. These images have widespread applications and
inherently require visual reasoning capabilities. However, previous multimodal retrieval
tasks have largely overlooked these data types.

« It offers diverse evaluation scenarios. MR?-Bench encompasses three meta-tasks: multi-
modal knowledge retrieval, visual illustration search, and visual relation reasoning, totaling
12 sub-tasks. These tasks provide a wide array of retrieval scenarios, including text-to-
image, image-to-image, and mixed image-text queries, among others. Moreover, unlike
previous multimodal benchmarks where queries or documents typically contain at most a
single image (Wei et al., [2024} Jiang et al., 2025), both queries and documents in MR2-
Bench may include multiple images, more accurately reflecting real-world scenarios.

We conduct comprehensive evaluation experiments on existing methods and derive the following
key conclusions. Firstly, multimodal reasoning-intensive retrieval remains challenging for current
retrievers. Despite Seed1.6-Embedding (Seed, |2025) achieves the best performance on MR2-Bench,
it only reaches 30.68 nDCG @ 10. In contrast, it attains 77.78 Recall@1 on the MMEB dataset (Jiang
et al., 2025), while its MR2-Bench Recall@1 is just 9.91. Consistent failures are observed across
all methods, particularly in mathematical visual proofs and visual relation reasoning. Secondly,
the capability of visual understanding plays an important role in solving our benchmark. On the
one hand, augmenting text-only retrievers with image captions yields substantial gains compared
to ignoring images. On the other hand, despite current multimodal retrievers not being optimized
for reasoning-intensive retrieval, the two strongest methods in our evaluation are native multimodal
retrievers. Finally, reasoning capacity holds significant potential for enhancing performance on
MR?-Bench. We implement reasoning-enhanced strategies including query rewriting and reranking,
which have demonstrated substantial improvements on MR2-Bench. These insights highlight the
challenges and opportunities in multimodal retrieval. By exposing current strengths and weaknesses,
we anticipate that MR2-Bench will guide the development of more capable multimodal retrievers.
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2 RELATED WORK

Reasoning-intensive Retrieval. Information retrieval (IR) has advanced from lexical match-
ing (Robertson et al., [2009) to capturing deep semantic relevance (Karpukhin et al., [2020; Xiao
et al., [2024b; |[Zhang et al., [2025b)). Recently, the rise of applications like retrieval-augmented gen-
eration and agentic systems (Li et al.l 2025bj Jin et al.l [2025; |Qian & Liul [2025) has spurred the
need for a more advanced capability: reasoning-intensive retrieval. This paradigm challenges IR
systems to address complex information needs where relevance cannot be determined by direct se-
mantic overlap, but must be inferred through deep reasoning. Although there has been significant
progress in text-only domains with pioneering benchmarks such as BRIGHT (Hongjin et al., 2025)
and the development of specialized retrievers (Shao et al.l |2025; [Long et al.| [2025), its application
to multimodal scenarios remains largely unexplored. Our work addresses this gap for the first time.
Beyond knowledge-oriented tasks, we introduce novel, vision-centric challenges, including visual
illustration search and visual relational reasoning, requiring models to perform complex inference
over integrated visual and textual data.

Multimodal Retrieval. As real-world information is increasingly presented in multimodal formats,
multimodal retrieval has become essential for effectively searching corpora that integrate text and
visual data. Initially, the focus was on cross-modal retrieval, such as text-to-image searches (Chen
et al., |2015). The field has since evolved to tackle more complex tasks, including image searches
guided by textual instructions (Wu et al., 2021; [Zhang et al. 2024), multimodal document re-
trieval (Chang et al., [2022)), and knowledge retrieval using multimodal queries (Luo et al.| [2023)).
With the advent of powerful pre-trained vision-language models (VLMs), researchers have been able
to develop unified embedding models that effectively handle queries and documents in various for-
mats (Lin et al.,|2024;[Zhou et al., 2025). Despite these advances, existing benchmarks and methods
have largely concentrated on shallow semantic alignment or instance-level matching, neglecting the
complex reasoning required to address many real-world information needs (Wei et al.| 2024} Jiang
et al.l 2025). Moreover, these benchmarks often emphasize natural images, overlooking visually
complex and abstract domains that demand visual-centric reasoning abilities, such as visual puzzles,
mathematical diagrams, and multi-image relational scenarios. Consequently, there is a pressing need
for a benchmark designed to evaluate deeper reasoning capabilities in multimodal retrieval.

3 MRZ2-BENCH: MULTIMODAL REASONING-INTENSIVE RETRIEVAL
BENCHMARK

We propose MR2-Bench, the first multimodal reasoning-intensive retrieval benchmark. A brief
overview of MR2-Bench’s statistics is presented in Table and visual examples for each task type
are shown in Figure|ll MR2-Bench comprises 3 meta-tasks and 12 sub-tasks, encompassing a total
of 1,309 queries. Detailed modalities of queries and documents, along with the instructions for each
sub-task, are provided in Appendix [C}

Meta-task | Multimodal Knowledge Retrieval | Visual Illustration Search | Visual Relation Reasoning | Total

Sub-task | Biology Cooking Gardening Physics Chemistry EarthScience | Economics Mathematics Nature | Spatial Puzzle Analogy | -

#Queries‘ 79 76 129 76 124 99 ‘ 84 86 100 ‘ 149 160 147 ‘1,309
#Corpus ‘ 4,455 2,786 5,636 6,656 4,317 3,014 ‘ 7,572 944 2,017 ‘ 1,000 5,375 3,970 ‘47,742

Table 2: Data statistics of queries and corpus for each sub-task in MR?-Bench
3.1 MULTIMODAL KNOWLEDGE RETRIEVAL

Traditional knowledge retrieval has focused primarily on text-only queries and corpora (Chen et al.,
2017; [Kwiatkowski et al.l 2019). However, images play a crucial role in realistic knowledge re-
trieval scenarios. For instance, when users wish to explore an intriguing scientific phenomenon in
their daily lives, capturing an image for querying is often more intuitive and detailed than using text
alone. Similarly, knowledge bases frequently integrate text and images, with images providing es-
sential explanatory and knowledge representation functions. Although some benchmarks have been
developed for multimodal knowledge search (Chang et al. [2022; [Luo et al., 2023} |Hu et al.| 2023;
Chen et al.| [2023)), they are predominantly based on annotations from sources like Wikidata, with
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questions that are often straightforward (e.g., What is this mountain called. These tasks typi-
cally rely on keyword matching, image instance matching, or simple shallow semantic alignment.
However, real-world user queries can be highly complex, requiring intensive reasoning to identify
relevant documents.

BRIGHT (Hongjin et al., [2025)) introduced the first benchmark for evaluating reasoning-intensive
knowledge retrieval by constructing retrieval pairs between real user queries from Stack Exchang
and relevant documents. The relevant documents are identified from external links referenced in
high-scoring answers, establishing retrieval relationships that require reasoning over critical con-
cepts or theories to bridge the query and the document. As a result, retrieval models evaluated
on this benchmark must possess capabilities that go beyond simple lexical or semantic matching.
However, BRIGHT is a text-only benchmark, leaving a gap in multimodal queries and documents.

Inspired by BRIGHT s task construction approach, we have developed a set of reasoning-intensive
multimodal knowledge retrieval tasks in our MR2-Bench. In contrast to BRIGHT, our approach rig-
orously ensures that images are essential components of the questions, rendering these inquiries in-
valid without the accompanying visual data. We also retain images from relevant documents if they
are crucial for conveying knowledge. The annotation process is detailed in the Appendix [D} Our
benchmark covers six domains: Biology, Cooking, Gardening, Physics, Chemistry, and Earth
Science. Examples of these tasks are illustrated in Figure [T(a)-(c). For instance, in Figure [T[a),
the positive document does not mention apple or grow together. The key to connecting the doc-
ument and the question lies in the accompanying image, which demonstrates a similar biological
phenomenon in other species.

3.2 VISUAL ILLUSTRATION SEARCH

Text-to-image retrieval (e.g., Flickr30K (Young et al., [2014), MSCOCO (Chen et al. [2015)) is a
canonical multimodal retrieval task, where the system need to retrieve the image that best matches a
textual query. Classic benchmarks are largely limited to direct and surface-level semantic alignment,
such as identifying a specific animal or a person performing a certain sport. However, real-world
use cases often require domain knowledge and multi-step reasoning to retrieve the target image (e.g.,
professional charts and scientific illustrations). To address this gap, we introduce the Visual Illus-
tration Search (VIS) task. In this task, the model is required to retrieve an image that functions
as a visual illustration, intuitively explaining or solving a problem posed in a challenging, domain-
specific textual query. Comprising three sub-tasks: Economics, Mathematics, and Nature, VIS
evaluates a model’s ability to perform cross-modal reasoning and knowledge-grounded understand-
ing in complex multimodal scenarios.

Economics. Charts serve as intuitive illustrations across various disciplines. However, existing
chart-related tasks (e.g., ChartVQA (Masry et al.,2022)), ViDoRe (Faysse et al.|[2025))) primarily test
surface-level abilities solvable with basic OCR and arithmetic. To assess a model’s ability to capture
the deeper semantics and domain knowledge embedded in chart, we manually collected reports from
the World Bankﬂ extracted charts related to economics, and asked human experts to create questions
grounded in these charts. The core annotation principle is that each question must demand sufficient
reasoning to identify the positive chart. For instance, as shown in Figure[I|(d), the positive chart does
not explicitly state the conclusion; only by comparing the relative positions of different countries
in the chart and associating spending quantiles with learning poverty rates can one validate the
hypothesis posed in the question. Following these principles, we constructed a reasoning-oriented
retrieval subset centered on economic charts, comprising 84 high-quality questions.

Mathematics. Images can effectively reinforce human comprehension of abstract knowledge. This
holds especially in mathematics, where visual proofs are conical examples that use geometric rela-
tions to demonstrate abstract theorems intuitively. As shown in Figure[I|(e), the recursive partition
of the unit square gives a clear proof of the infinite series 220:1 2% = 1. Although structurally
simple, such proofs embody rigorous logic and require strong reasoning to connect visual patterns
with abstract mathematical principles, providing an effective evaluation of model’s reasoning ability.

However, visual proofs are largely absent from existing multimodal retrieval benchmarks. There-

!Query example curated from the OVEN benchmark (Hu et al., [2023)
Zhttps://stackexchange.com
*https://data.worldbank.org
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Multimodal Knowledge Retrieval

Question

How did these apples grow
together? I came through this
pic while scrolling through
facebook... I want a biological
answer for this.

Question

How can I determine the number
of possible pairs of diastereomers
here? My first guess was two: RR
with RS and SS with RS. But what
about the potential chirality center
middle carbon? There are...

Cl
Ph

Cl
Ph

Ph

Question
Cause for round holes in stones. I
picked up this stone form a beach
on the south coast of England
(lancing). How is it possible it has
such round holes? Plenty of stones
looked similar.

(a) Biology

-~

Similar phenomena
in other species

(b) Chemistry

—
The formal
definition fora
specific chemical
problem

(c) Earth Science

—

A biological origin
for a geological
feature

Positive Document
Inadequate pollination because
of heat and other adverse
growing conditions causes that
section of the fruit in which the
seed did not develop...

Positive Document
The traditional name for a
tetrahedrally coordinated carbon
atom bonded to four different

hyoscyamine

A

COOH
entities, two and only two of which 0)3.\

Ph
have the same constitution but

o
opposite chirality sense. ...

Positive Document
Piddocks are unique in that each side of their
shellsis divided into 2 or 3 separate sections.
Furthermore, one of the piddock's shells has a set
of ridges or "teeth", which they use to grind away
at clay or soft rock and create tubular burrows.
The shape of these burrows s due to...

Visual Illustration Search

Query

Find the chart that best supports answering this question.
Do countries with mid-level primary-education
spending achieve learning-poverty rates that

equal or surpass those of some higher-spending
high-income countries?

(d) Economics

~
Validating a socio-
economic hypothesis
with chart data

Positive Chart

o g on ey caion e 1 f vy s

(e) Mathematics (f) Nature
Query Positive Image Query Positive Image
Find the visual m . Given a natural-world ’/_\‘ ’-., A
proofthat best Geometric 1164 expert query, find the Grounding a .
demonstrates this meaning of most relevant image. SetmiE
infinite A close-up ofa conceptin
series Star-nosed Mole's visual
nose showing all evidence
appendages of its
Eimer's organs.
Visual Relation Reasoning
(g) Spatial (h) Visual Puzzle
Query ’ Positive Image Query
=

An edit of a
2D layoutina
3D space

Make middle-right
gray object green

o (o) ® ™

Regular

(i) Analogy

tools and
their
human-
powered
equivalents

Figure 1: Visualized Examples of MR2-Bench: Sub-task illustrations from three meta-tasks, with 3
out of 6 shown for the multimodal knowledge retrieval task.

5
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fore, we curate 86 mathematical formulas from Proofs Without Words (Nelsenl [2015)) and Wikimedia
Commonﬂ using each formula as a query and its corresponding visual proof as the positive image.

Nature. Natural-world images are more than depictions; they are visual reference for species identi-
fication, ecosystem monitoring, and science education (Van Horn et al.| |2015;2018)), which require
images that capture specific traits or morphology, rather than the generic picture of the organism.
For example, as shown in Figure[T|f), the query seeks for a close-up of star-nosed mole’s distinctive
organs, which demands both expert biological knowledge and fine-grained visual recognition. Satis-
fying such knowledge-intensive visual requests is a challenging yet essential capability for models.
To evaluate this, we carefully selected 100 queries from the publicly available INQUIRE-Rerank
dataset (Vendrow et al.| 2024) to construct the expert-level natural-world image retrieval task.

3.3 VISUAL RELATION REASONING

In prevailing multimodal retrieval benchmarks, textual queries are the primary driver of user intent.
However, this paradigm often overlooks the rich, self-contained semantics inherent in purely visual
structures and relationships that are independent of natural language. To address this gap, we intro-
duce Visual Relation Reasoning, a suite of tasks for assessing high-level vision-centric reasoning
through three distinct sub-tasks: Spatial, Visual Puzzle, and Analogy.

Spatial. The capacity for spatial perception, transformation, and reasoning is essential for models.
To evaluate these capabilities, we incorporate tasks from the CSS dataset (Vo et al., 2019), a con-
trolled synthetic dataset where each sample consists of a reference image, a textual modification
instruction, and a corresponding target image, with scenes rendered as both 2D layouts and photore-
alistic 3D images. As illustrated in Figure [T[g), the query requires jointly parsing descriptions that
combine relative position and attributes (i.e., middle-right gray object) and projecting the 2D layout
into the corresponding 3D scene, yielding a comprehensive test of spatial ability. From CSS, we
curated 149 queries to constitute the spatial-reasoning subtask of MR?-Bench.

Visual Puzzle. Inspired by Raven’s Progressive Matricesﬂ this task is designed to evaluate pattern
recognition and structural reasoning. As shown in Figure[I[(h), for a given 3x3 matrix with the final
cell missing, the model need to retrieve the positive image that logically completes the matrix’s
underlying pattern. This task is distinguished by its near-complete absence of linguistic signals,
which compels the model to directly infer abstract patterns to perform higher-order reasoning from
vision alone. We reorganized the RAVEN dataset (Zhang et al.,[2019): for each rule-governed visual
attribute, we selected a set of queries, pooled the corresponding candidate images and removed
duplicates to build the corpus. In total, we curated 160 queries for this task.

Analogy. Derived from the VASR dataset (Bitton et al., 2023)), this task tests a model’s capability for
visual analogical reasoning. As shown in Figure i), the query comprises three images (A, A’, B),
where the pair (A4, A’) exemplifies a visual semantic transformation (e.g., replacing a machine with
human labor in a comparable scene) that is expected to hold between B and B’. The model must
infer the transformation from A to A’, apply it to B, and retrieve the image B’ that completes the
analogy. It requires the model abstracts an implicit transformation rule from one image pair and
generalizes it to another, which effectively tests its capacity for high-order visual reasoning. We
instantiate this task by converting VASR analogy triplets into a retrieval setting and curated 147
challenging queries.

4 EXPERIMENTS

4.1 SETTINGS

We evaluated 11 popular embedding models using our MR2-Bench, categorizing them into two main
types: text-only embedding models and multimodal embedding models. We employed nDCG@ 10
as the primary metric, with additional metric results provided in Appendix [G|

For text embedding models, we assessed two categories: traditional models such as BGE-M3 (Chen
et al.l 2024) and Qwen3-Embedding (Zhang et al.| [2025b)), and models optimized for reasoning-

*https://commons.wikimedia.org/wiki/Category %3 AProof_without_words
>https://en.wikipedia.org/wiki/Raven%27s_Progressive_Matrices
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Multimodal Knowledge Retrieval ‘ Visual Illustration ‘ Visual Relation

Methods ‘ ‘ Avg.

‘ Bio. Cook. Gar. Phy. Chem. Earth. ‘ Econ. Math. Nat. ‘ Spa. Puzz. Ana. ‘
Text Embedding Models
BGE-M3 1879 1297 12.04 1452  6.05 16.35 - - - - - - ‘ -
+ Captions | 34.19 2428 17.88 21.24  9.67 2519 | 4546 997 23.66 948 000 346 18.71
Qwen3 23777 2044 1261 17.13  8.61 19.79 - - - - - - ‘ -
+ Captions | 29.97 29.29 18.32 2146  9.52 23.19 | 4944 21.14 2630 9.11 000 430 20.17
Diver-Emb. | 27.32 1694 15.17 18.05 10.06  22.57 - - - - - - ‘ -
+ Captions | 38.46 30.87 22.84 23.62 1446 3140 | 54.67 2591 2488 852 0.00 747 2359
BGE-Rea. | 29.01 15.37 16.31 21.00 10.62  26.20 - - - - - - ‘ -
+ Captions | 42.60 3440 2494 2561 1431 3457 | 5431 17.16 2986 552 000 588 2535
ReasonIR 2985 19.72 1622 2156  9.83 23.56 - - - - - - ‘ -
+ Captions | 44.75 4191 18.79 2733 1745 4122 | 64.04 3449 3070 11.65 0.00 10.89 25.72
Multimodal Embedding Models
CLIP 3285 3057 14.06 1486  3.50 3323 | 1297 5.64 4934 | 20.89 0.19 509 | 18.59
BGE-VL 29.41 1836 1050 19.51 7.12 19.73 | 50.80 1431 4797 | 646 0.00 0.75 | 19.53
GME 3434 3950 19.04 1929 7.73 2859 | 3695 7.19 3935|1570 022 11.11 | 21.59
VLM2Vec | 39.37 39.38 19.87 20.28 9.03 3571 | 5144 14.16 35.06 | 1394 0.62 585 | 23.72
MM-Emb. | 49.68 52.19 23.67 3036 1744 47.51 | 4299 21.58 4841 | 22.79 0.21 593 | 30.23
Seed-1.6 40.64 38.12 31.77 2791 17.80 37.17 | 56.13 26.10 65.16 | 17.29 0.93  9.21 | 30.68

Table 3: The overall performance of embedding models on MR2?-Bench. We report nDCG@ 10
for all sub-tasks. Avg. denotes the average score across 12 datasets. The best score on each dataset
is shown in bold and the second best is underlined.

intensive retrieval, including ReasonIR (Shao et al., 2025), BGE—Reasoner—Embecﬂ and Diver-
Embed (Long et al.l [2025). We adopted two evaluation approaches for text embedding models: (1)
Using only text information from queries and documents, which is limited for tasks where queries
or candidates are purely image-based; (2) Replacing images with textual descriptions (captions).
For multimodal embedding models, we evaluated CLIP (Radford et al., [2021)), VISTA (Zhou et al.,
2024), BGE-VL (Zhou et al., [2025), MM-Embed (Lin et al., [2024), GME (Zhang et al.| 2025a),
VLM2VecV2 (Meng et al.| [2025), and Seed1.6-Embedding (Seed, 2025). Detailed information on
the models and evaluation procedures can be found in Appendix [E|

4.2 MAIN RESULTS

We summarize the overall evaluation results for all investigated retrieval baselines in MR2-Bench
in Table 3] For each sub-task, we report nDCG@ 10, along with the macro-average (Avg.) across
all tasks. All experiments were conducted within each individual sub-task using separate retrieval
corpora. Comprehensive evaluation metrics, including Recall@K and MRR@K, can be found in
Appendix [G] From these results, we draw some primary conclusions:

1) Current state-of-the-art models underperform on MR2-Bench. The leading Seed-1.6 Embed-
ding model (Seed, 2025) achieves only 30.68 nDCG@ 10 on our benchmark. In contrast, it reports
77.78 overall Recall@1 on the popular MMEB leaderboard (Jiang et al.}[2025)), but its performance
drops significantly to 9.91 Recall@1 on MR2-Bench. Additionally, the SOTA reasoning-intensive
text retriever, Diver-Retriever (Long et al., [2025)), achieves 33.90 nDCG@ 10 on BRIGHT (Hongjin
et al.} 2025), yet only reaches 23.59 nDCG@ 10 on MR2-Bench when evaluated with auxiliary cap-
tions. These results highlight the increased challenges posed by our MR2-Bench.

2) Text retrievers augmented with image captions provide a strong and practical baseline on
MR?-Bench. Since text retrievers cannot directly process images, we replace each image in queries
and candidate documents with detailed natural-language descriptions. This augmentation leads to
notable improvements. For instance, ReasonIR+Captions surpasses popular open-source multi-
modal retrievers like VLM2Vec-V2 (Meng et al.|[2025). On the Stack Exchange subset, adding cap-
tions consistently boosts performance across most tasks. These findings confirm that MR2-Bench

Shttps://huggingface.co/BA Al/bge-reasoner-embed-qwen3-8b-0923
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is fundamentally multimodal, with retrieval performance significantly enhanced by the visual infor-
mation provided through captions.

3) Reasoning-oriented text retrievers significantly outperform traditional matching-based re-
trievers. Models optimized for reasoning-intensive retrieval, such as ReasonlR and Diver-Retriever,
consistently achieve higher nDCG@ 10 scores on MR2-Bench compared to matching-centric retriev-
ers like BGE-M3 and Qwen3-Embedding. This advantage is evident across various meta-tasks and
persists whether visual content is absent or represented as detailed captions. Collectively, these
findings suggest that reasoning-oriented capabilities learned in text retrieval effectively transfer to
multimodal retrieval tasks requiring complex reasoning.

4) Multimodal retrievers show potential on MR2-Bench. Although not specifically designed for
reasoning-intensive tasks, multimodal embedding models like MM-Embed and Seed1.6-Embedding
lead performance on MR2-Bench. These models notably outperform caption-augmented text re-
trievers, including those optimized for reasoning. This gap suggests a promising direction for future
research in developing reasoning-intensive multimodal retrievers.

5) Existing methods struggle with capturing complex visual relationships and abstract con-
cepts. Current models face challenges in effectively perceiving multi-image relationships (Anal-
ogy), spatial configurations (Spatial), and abstract graphics (Mathematics, Visual Puzzle). We hy-
pothesize that these difficulties stem from the inherently visual-centric nature of these tasks, which
existing embedding models struggle to comprehend fully. Nonetheless, these images are crucial
for real-world applications, as their information is difficult to convey through language alone. This
indicates substantial potential for future research to enhance multimodal embedding models.

4.3 MORE ANALYSIS
4.3.1 THE EFFECTIVENESS OF QUERY REWRITING

6) Query rewriting enhances both text and multimodal baselines on MR?-Bench. This
generation-augmented retrieval technique clarifies complex user intent and highlights latent con-
straints, thus facilitating reasoning-intensive retrieval. Although extensively studied in text-only
contexts (Gao et al., 2023} |L1 et al., 2025a), its application to multimodal retrieval remains under-
explored. We evaluated a simple, model-agnostic query rewriting pipeline on MR?-Bench. For
each query, GPT-5 (OpenAl, 2025) generates step-by-step reasoning, which is then utilized by each
retriever (details in Appendix [H). As shown in Table ] both text and multimodal retrievers show
notable average improvements. These results indicate that query rewriting is a practical method
for enhancing multimodal reasoning-intensive retrieval tasks, consistently improving performance
without the need for fine-tuning existing retrievers.

Stack Exchange ‘ Visual Illustration ‘ Visual Relation

Methods ‘ ‘ Avg.

‘ Bio. Cook. Gar. Phy. Chem. Earth. ‘ Econ. Math. Nat. ‘ Spa. Puzz. Ana. ‘
BGE-M3 | 34.19 2428 17.88 2124 9.67 25.19 | 4546 997 23.66 ‘ 948 0.00 346 | 18.71
+ Rewrite | 40.41 3294 2566 23.12 1198 33.63 | 50.88 20.09 2338 7.13 0.00 791 | 23.09
Seed-1.6 | 40.64 38.12 31.77 2791 17.80 37.17 | 56.13 26.10 65.16 ‘ 17.29 093  9.21 | 30.68
+ Rewrite | 41.13 4147 37.68 2947 20.70 42.02 | 50.08 30.37 65.84 31.87 124 14.62 | 33.87

Table 4: Performance comparison of BGE-M3 and Seed-1.6 Embedding on MR2-Bench before and
after query rewriting, showing significant improvements across most tasks.

4.3.2 THE EFFECTIVENESS OF ADVANCED RERANKING

A common approach to improve retrieval performance is to employ rerankers that jointly process
both the query and its retrieved candidates. Existing studies have shown that incorporating an inter-
mediate reasoning step before final scoring can lead to more accurate rankings (Weller et al.| 2025}
Zhuang et al.|, 2025} [Liu et al.| 2025). We also investigate this by incorporating a reranking stage
after the initial retrieval on MR?-Bench. Specifically, we test a wide range of rerankers to rerank the
top-k = 20 candidates retrieved by three base retrievers: Qwen3-Embedding, GME, and Seed-1.6-
Embedding. Their retrieved candidates are reanked by: 1) fextual rerankers: RankLLaMA-7B and
RankLLLaMA-14B (Ma et al., 2024); 2) reasoning-enhanced textual rerankers: Rank1-7B (Weller
et al., [2025)), RankR1-14B (Zhuang et al.l 2025), ReasonRank-32B (Liu et al.| [2025), and BGE-
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Reasoner-Reranker-32B B 3) multimodal rerankers: MonoQwen2-VL-v0.1 (Chaffin & Lac, 2024)
and Jina-Reranker-mO (JinaAl, [2025)); and 4) reasoning-enhanced multimodal rerankers: Gemma3-
27B (Teaml[2025), Qwen2.5-VL-72B (Bai et al .| [2025)), GLM-4.5V (Team et al.,[2025), Gemini-2.5-
Pro (Comanici et al.}[2025)), and GPT-5 (OpenAlL 2025). Since there are no off-the-shelf multimodal
rerankers that natively support reasoning, we prompt these MLLMs to first perform reasoning and
then output a relevance score. Full implementation details are available in Appendix [.I] Average
performance based on Seed-1.6-Embedding is shown in Figure [2] and detailed results for all three
base retrievers are provided Appendix [[.2]and Appendix

50.0 { I Retriever [ Textual PZZ Textual + Reasoning [-] Multimodal FZZ] Multimodal + Reasoning
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Figure 2: Reranking performance on MR2-Bench with Seed-1.6-Embedding as the base retriever.

From the results presented in Figure 2] we have following findings:

7) Rerankers deliver substantial gains on MR2-Bench. Most rerankers significantly outperform
the strong Seed-1.6-Embedding baseline, demonstrating the benefit of joint modeling of queries and
candidates. Notably, GPT-5 achieves an nDCG @10 of 45.90, an absolute gain of 15.22 over the
baseline, indicating the substantial headroom for improvement unlocked by reranking.

8) An explicit reasoning step before scoring proves to be beneficial. Across text-only rerankers,
those incorporating reasoning consistently outperform their non-reasoning, size-matched counter-
parts (e.g., Rank1-7B vs. RankLLaMA-7B; RankR1-14B vs. RankLLaMA-14B). This is further
substantiated by BGE-Reasoner-Reranker-32B: using only textual input, it achieves an nDCG@ 10
of 35.08, outperforming the strong base retriever by 4.2 points. Moreover, for multimodal rerankers,
models prompted to reason and then rank outperform those trained non-reasoning rerankers. These
results confirm that explicit reasoning drives the gains on MR2-Bench.

9) Multimodal information plays a significant role in enhancing performance. Despite being
built on the lightweight Qwen2-VL-2B backbone, Jina-Reranker-mO surpasses several larger text-
only rerankers, demonstrating clear gains from multimodal information. Furthermore, multimodal
models prompted to first reason and then rank (e.g., Qwen2.5-VL-72B, GLM-4.5V, and GPT-5)
surpass BGE-Reasoner-Reranker-32B, the best-performing textual reranker specifically trained with
reasoning capabilities. GPT-5 achieves the highest overall score, underscoring the importance of
utilizing multimodal information with reasoning in tackling the complex retrieval demands posed
by MR2-Bench.

5 CONCLUSION

In this paper, we introduce MR2-Bench, a novel benchmark for the assessment of multimodal
reasoning-intensive retrieval. The comprehensive investigation of existing methods reveals that
current retrievers perform poorly on MR2-Bench, with the best models achieving only 30.68
nDCG@10. Our experimental results underscore the importance of multimodal information and
reasoning capabilities for effectively addressing MR2-Bench, highlighting significant potential for
improvement in this research area. Additionally, we demonstrate that techniques such as query
rewriting and reranking can enhance performance on MR2-Bench. We anticipate that this bench-
mark will facilitate future research in multimodal retrieval, contributing to more realistic and chal-
lenging Al applications.

"https://github.com/FlagOpen/FlagEmbedding/tree/master/research/BGE _Reasoner
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APPENDIX

A USE OF LLMs

In preparing this manuscript, large language models (LLMs) were utilized solely for English gram-
mar checking and polishing. All substantive content and analyses were developed independently by
the authors. For dataset construction, GPT-5 (OpenAl, 2025) was employed only for preliminary fil-
tering of candidate data and generating some challenging negative examples, with all final selections
and included negative examples thoroughly reviewed and validated by human experts. The relevant
procedures are detailed in the appropriate sections of the paper.
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B ETHICS STATEMENT AND DATA COMPLIANCE

To ensure transparency, legal compliance, and proper re-distribution, we provide a consolidated
overview of the data sources, licensing terms, and usage boundaries for all components of MR2-
Bench. We confirm that all data collection and redistribution activities strictly adhere to the licenses
of the original sources.

B.1 DATA LICENSING AND USAGE

MR2-Bench integrates data from open platforms and established research datasets. The licensing
details for each component are as follows:

Multimodal Knowledge Retrieval. The data for this task is derived from Stack Exchange, which
is licensed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
license. We strictly follow the attribution requirements by preserving metadata links to the original
posts. Furthermore, to address privacy concerns, we ensured that user-specific Personally Identifi-
able Information (PII), such as usernames, avatars, and profile citations, is excluded from the dataset.
The data is used solely for academic research purposes.

Visual Illustration Search. The economic charts are sourced from World Bank Open Data, which
is distributed under the CC BY 4.0 license, allowing for redistribution with appropriate attribution.
The mathematical visual proofs are curated from Wikimedia Commons (Public Domain) and Proofs
Without Words (used under educational fair use principles), ensuring no copyright infringement for
research dissemination.

Visual Relation and Nature. We incorporate several public research datasets, all of which allow
for academic use and re-distribution. The INQUIRE dataset (Nature sub-task) utilizes images from
iNaturalist under CCO, CC BY, or CC BY-NC licenses. The RAVEN dataset (Visual Puzzle) is
licensed under GPL-3.0. The VASR dataset (Analogy) operates under the MIT License, and the CSS
dataset (Spatial) is released under Apache 2.0. Our usage of these datasets is strictly confined to
non-commercial research.

B.2 LICENSE COMPATIBILITY AND DISTRIBUTION

Due to the diverse licensing terms of the constituent sources, MR?-Bench is distributed as a com-
posite dataset.

* Original Content: All raw data samples (images and text passages) retain their original
licenses as detailed in the section above. Users must strictly adhere to the specific terms of
each source.

e New Contributions: The benchmark structure, curated queries, and expert annotations
created by the authors are released under the CC BY-SA 4.0 license. This ensures com-
patibility with the ShareAlike requirements of the Stack Exchange data while permitting
academic reuse and redistribution of the benchmark’s intellectual contributions.

C DETAILED OVERVIEW OF MR2-BENCH

We provide detailed modalities of queries and documents, along with the instructions for each sub-
task in Table[5] Details on the data sources for each sub-task are provided in Table [f]

D MORE DETAILS OF DATA CONSTRUCTION FOR MULTIMODAL
KNOWLEDGE RETRIEVAL TASKS

We collected real posts from the Stack Exchange platform to construct our multimodal knowledge
retrieval sub-tasks. Queries are derived from actual user questions, while positive documents are
sourced from external links in highly voted answers. We utilize BRIGHT’s definition to identify
a query’s positive document: A document is relevant only if cited in a highly voted answer and
confirmed by annotators and domain experts as aiding in reasoning through the query with critical

15



Under review as a conference paper at ICLR 2026

Meta-Task Sub-Task Modality (¢ — c) #Queries #Corpus Instruction

Biology Qitt —>Cijt)itt 79 4,455 Find paragraph(s) that could support answering this
question.

Cooking Qitt —>Ci/jt)itt 76 2,786 Find paragraph(s) that could support answering this
question.

MULTIMODAL Gardening Qitt —Cijt)itt 129 5,636  Find paragraph(s) that could support answering this
KNOWLEDGE question.

RETRIEVAL Physics Qi+t —>Ci/t)itt 76 6,656  Find paragraph(s) that could support answering this
question.

Chemistry Qitt —>Ci/jt)itt 124 4,317  Find paragraph(s) that could support answering this
question.

EarthScience Qitt —>Cijt)itt 99 3,014 Find paragraph(s) that could support answering this
question.

Economics qt — ¢ 84 7,572  Find the chart that best supports answering this
question.

VISUAL Mathematics qt — Ci 86 944 Find the visual proof that best demonstrates this
ILLUSTRATION formula.
SEARCH Nature qr —c; 100 2,017  Given a natural-world expert query, find the most
relevant image.

Spatial Qitt —>Ci 149 1,000  Given a reference image and a text modification,
retrieve the image that best matches the modified
reference.

VISUAL Visual Puzzle qi —>¢ci 160 5,375  From a 3x3 grid with one missing cell, retrieve the
RELATION best candidate image to complete the bottom-right
cell based on patterns and relations.

Analogy qi —>¢cq 147 3,970  Given three images, complete the analogy by

retrieving the candidate that applies to the third
image the relation from the first to the second.

Table 5: The overview of MR2-Bench. MR2-Bench consists of three meta-tasks and twelve sub-
tasks, totaling 1,309 queries. Subscripts indicate the modalities of the query ¢ and candidate c: ¢
denotes image, t denotes text, and i+t denotes interleaved image-text.

META-TASK Sub-Task Newly Source / Adapted From
Collected
Biology
MULTIMODAL Cooking
K Gardening Collected from Stack ExchangéZI and
NOWLEDGE Physics Yes ternal web links. (See Appendix|D]for details)
RETRIEVAL ysics external web links. (See Appen 1x or details).
Chemistry
EarthScience
VISUAL Economics Yes Manually collected from World Bank Report@
ILLUSTRATION . Curated from Proofs Without Words (Nelsen} 2015) and
SEARCH Mathematics Yes Wikimedia Commons
Nature No Adapted from INQUIRE-Rerank (Vendrow et al.}|2024).
VISUAL Spatial No Adapted from CSS dataset 2019).
RRELATION Visual Puzzle No Reorganized from RAVEN dataset (Zhang et al.|[2019).
EASONING
Analogy No Adapted from VASR dataset 2023).

Table 6: Data sources for MR?-Bench. We specify whether each sub-task was newly collected for
this benchmark or adapted from existing datasets.
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concepts or theories (Hongjin et al.| [2025). Given the multimodal nature of the task in MR2-Bench,
our annotation process diverges from BRIGHT’s construction methodology. The specific steps of
our process are summarized as follows:

Initial Posts Collection and Filtering. We initiated the process by gathering a substantial set of
posts from Stack Exchange. To ensure data quality and relevance, we retained posts meeting specific
criteria: (1) the question must contain image(s) essential for understanding the query; (2) the post
must have received at least five community votes, indicating reliability; and (3) the answer must
include at least one external link to facilitate further content acquisition.

Web Page Acquisition and Paragraph Annotation. For each qualifying post, annotators are re-
quired to visit the external links provided in the answers and copy the interleaved text-image content
in the order it appears, excluding Wikipediaﬂ They then segment this content into paragraphs,
preserving images to maintain multimodal information. This process generates a collection of can-
didate paragraphs for each query, including both text-only and image-containing segments. Initial
identification of positive paragraphs is performed using GPT-5 (OpenAl, 2025)), followed by ex-
pert validation to ensure accuracy and relevance. Only queries with at least one confirmed positive
paragraph are included in the final dataset.

Incorporation of Challenging Negative Examples. To rigorously assess the reasoning capabilities
of evaluation methods, we introduced challenging negative samples for each retained query using
two strategies: (1) retrieving topic-related documents from an internal corpus using the query’s key-
words, with GPT-5 initially verifying they are not false negatives; and (2) using GPT-5 to generate
documents that, while topically related, provide unhelpful information. All negative samples were
subsequently reviewed by human experts to ensure the integrity of the benchmark.

E MORE DETAILS OF BASELINES

In our evaluation, we classify the retriever baseline into two main categories: text embedding models
and multimodal embedding models. We assess the Seed1.6-Embedding model (Seed, 2025) via its
official API, whereas all other models are evaluated using their publicly available code and open-
source checkpoints. Below, we provide a comprehensive overview of the implementation details for
all baselines used in the evaluation process.

E.1 TEXT EMBEDDING MODELS

The evaluated text retrievers include: BGE-M3 (Chen et al., [2024), Qwen3-Embedding (Zhang
et al.,[2025b), ReasonlR (Shao et al., [2025)), BGR-Reasoner-Embe and Diver-Embed (Long et al.,
2025)). Notably, the last three models have been fine-tuned specifically for reasoning-intensive re-
trieval tasks, as detailed in their technical reports or repository descriptions.

We consider two input configurations for all text-only retrievers. The first configuration ignores
images, utilizing only the textual content from queries and documents; this setup is not applicable
to some sub-tasks where either the query or candidates are purely visual. The second configuration
employs a caption-augmented approach, where every image in both queries and documents is re-
placed with a textual description. Specifically, we use the Qwen2.5-VL-7B model (Bai et al., [2025)
to generate captions for the images with the prompt: Write a detailed English caption for this image,
covering the main objects, their attributes, relationships, actions, layout, and background elements.
Each image in the original input is then substituted with a caption prefixed by its identifier, formatted
as [IMAGE_id]: image_caption.

E.2 MULTIMODAL EMBEDDING MODELS

The evaluated multimodal retrievers include CLIP (Radford et al.l [2021)), BGE-VL (Zhou et al.,
2025), GME (Zhang et al., |2025a), VLM2Vec-V2 (Meng et al., 2025), MM-Embed (Lin et al.,
2024), and Seed1.6-Embedding (Seed, 2025). All these models can process individual images and

8Wikipedia content was automatically extracted using Playwright/to minimize manual effort.
‘https://huggingface.co/BAAI/bge-reasoner—embed-qwen3-8b—-0923
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texts directly. However, for interleaved image-text data with multiple images, different models
require specific handling approaches:

For the CLIP model, we employ a score fusion strategy, following previous work (Wei et al., 2024]).
This involves separately embedding the image and text data and then combining these embeddings
through element-wise addition to achieve the final image-text representation.

For models that can only input a single image in image-text data, specifically BGE-VL (Zhou et al.,
2025) and MM-Embed (Lin et al., |2024), we create a composite image by tiling multiple images
together, which is then processed jointly with the text.

For other models capable of handling interleaved image-text data with multiple images, we preserve
the sequence of images and text, allowing their processors to generate interleaved image-text tokens,
which are then used to derive the final embeddings.

F SENSITIVITY ANALYSIS OF CAPTIONING MODELS

To investigate whether the performance of text-based retrievers on MR2-Bench is sensitive to the
choice of the captioning model, we conducted a comprehensive sensitivity analysis using the state-
of-the-art multimodal language model GLM—4.1V—9B—Thinking|ﬂ which is known for its chain-of-
thought reasoning capabilities. The goal was to verify that the observed results are not biased by the
specific captioning model (Qwen2.5-VL-7B) used in the main experiments.

In this analysis, we replaced the original captions with those generated by GLM-4.1V-9B-Thinking
using the same prompt structure and re-evaluated four representative text embedding models: BGE-
M3, Qwen3-Embedding, Diver-Retriever, and ReasonIR. A detailed comparison across all 12 sub-
tasks is presented in Table

The results show that the relative performance ranking of the retrievers remains consistent regard-
less of the captioning model used. Specifically, the reasoning-enhanced retrievers (ReasonIR and
Diver-Retriever) consistently outperform the standard retrievers (Qwen3-Embedding and BGE-M3),
confirming that our main findings are robust and not artifacts of caption style alignment.

Different captioning models do exhibit varying strengths depending on the domain. For instance,
captions generated by GLM-4.1V-9B-Thinking resulted in performance gains in the Economics do-
main (e.g., Diver-Retriever improved from 54.67 to 56.35), likely due to more detailed chart de-
scriptions provided by this model. In contrast, for the Mathematics domain, Qwen2.5-VL captions
proved slightly more effective for certain retrievers. However, despite these domain-specific varia-
tions, the Macro-Average scores across all 12 sub-tasks remain comparable (e.g., ReasonIR: 25.72
vs. 26.26), demonstrating the stability and consistency of the benchmark metrics.

G DETAILED EVALUATION METRICS OF MR2-BENCH

In this section, we provide more detailed evaluation results of the embedding models on MR2?-Bench.
Table([8] Table[9] Table[T0] Table[T1] Table[T2] Table[I3] and Table[T4]present the performance of the
embedding models in terms of Recall@1, Recall@5, Recall@10, nDCG@5, nDCG@20, MRR @5,
MRR@10.

H MORE DETAILS OF IMPLEMENTATION FOR QUERY REWRITING

Given the strong reasoning capabilities of Multimodal Large Language Models (MLLMs), we take
advantage of their ability to produce explicit step-by-step chain-of-thought reasoning in order to
improve the effectiveness of query rewriting and thereby enhance retrieval performance. Instead
of relying on a single direct reformulation, we design a prompting strategy that guides the MLLM
through a structured reasoning process. Concretely, the model is first asked to (i) identify the most
salient subquestions that are implicitly contained in the given instruction and query, ensuring that
complex or multifaceted information needs are decomposed into clear components. Next, the model
is prompted to (ii) reason step-by-step about what types of evidence, textual patterns, and document

Yhttps://huggingface.co/zai-org/GLM-4.1V-9B-Thinking
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Methods ‘

Multimodal Knowledge Retrieval

‘ Visual Illustration

Visual Relation

‘ Bio. Cook. Gar. Phy. Chem. Earth. ‘ Econ. Math. Nat. ‘ Spa. Puzz. Ana. ‘
BGE-M3 18.79 1297 12.04 1452 6.05 16.35 - - - - - - -
+ Captions (Qwen) | 34.19 2428 17.88 2124  9.67 2519 | 4546 997 2366 | 948 0.00 346 | 18.71
+ Captions (GLM) | 3556 2627 16.11 22.64 9091 2439 | 39.58 9.15 2422|1036 0.00 491 | 18.59
Qwen3 2377 2044 1261 17.13 8.6l 19.79 - - - - - - -
+ Captions (Qwen) | 29.97 29.29 1832 2146 9.52 23.19 | 4944 21.14 2630 | 9.11 000 430 | 20.17
+ Captions (GLM) | 3026 29.50 1554 20.54  9.30 22.89 | 4389 1642 2831 | 6.69 0.00 845 | 19.32
Diver-Emb. 2732 1694 1517 18.05 10.06  22.57 - - - - - - -
+ Captions (Qwen) | 38.46 30.87 22.84 23.62 1446 3140 | 54.67 2591 2488 | 852 0.00 747 | 23.59
+ Captions (GLM) | 39.70 3217 2159 24.13 1422 3236 | 5635 2832 2844 | 748 0.00 7.81 | 24.38
ReasonIR 29.85 19.72 1622 2156  9.83 23.56 - - - - - - -
+ Captions (Qwen) | 4475 4191 1879 27.33 1745 4122 | 64.04 3449 30.70 | 11.65 0.00 10.89 | 25.72
+ Captions (GLM) | 46.06 42.02 20.24 26.79 1747 3852 | 57.49 1381 3349 | 1063 0.00 8.63 | 26.26

Table 7: Sensitivity Analysis of Captioning Models. Comparing performance (nDCG@ 10) of text
retrievers augmented with captions generated by Qwen2.5-VL-7B (Gray rows) versus GLM-4v-9B-
Thinking (Blue rows). The results demonstrate that while absolute scores fluctuate across sub-tasks
due to different captioning styles, the relative ranking of retrieval models remains highly consistent.

Methods ‘

Multimodal Knowledge Retrieval

‘ Visual Illustration ‘

Visual Relation

‘ Avg.

‘ Bio. Cook. Gar. Phy. Chem. Earth. ‘ Econ. Math. Nat. ‘ Spa. Puzz. Ana. ‘
Text Embedding Models
BGE-M3 | 361 225 326 270 104 377 | - - - - - - -
+ Captions | 1022 323 644 500 143 726 3214 349 667 | 400 000 136 677
Qwen3 546 267 311 186 113 467 | - . - - - -
+ Captions | 721 687 515 484 120 593 3214 698 492 | 403 000 068 6.6
Diver-Emb. | 573 255 474 160 038 371 | - - - - - -] -
+ Captions | 1237 706 987 460 239 660 3690 814 300 | 333 000 068 791
BGE-Rea. | 369 3.3 410 259 136 464 | - - . . . -
+ Captions | 1603 984 974 619 124 1028 4167 1221 167 | 200 000 068 929
ReasonlR | 7.68 3.3 375 435 091 421 | - - - - - - |-
+ Captions | 1687 1381 7.3 532 350 1159 3929 7.56 658 | 200 000 068 953
Multimodal Embedding Models
CLIP 1249 828 437 258 142 1172 | 357 116 1092 ] 1267 000 000 | 577
BGE-VL | 896 230 293 435 032 481 | 3452 698 1083 | 201 000 136 | 6.62
GME 1007 1448 7.84 397 143 839 | 2143 233 808 | 800 000 340 | 745
VLM2Vec | 1358 1373 541 373 144 1454 | 3810 349 953 | 400 062 0.68 | 9.07
MM-Emb. | 17.18 2081 7.10 7.05 435 1754 | 3452 959 1125|1133 000 0.00 | 11.73
Seed-1.6 | 13.65 9.02 985 520 3.69 981 | 3333 698 1933 | 800 000 0.00 | 9.91

Table 8: The overall performance of embedding models on MR2-Bench in terms of the Recall@1.

attributes would be necessary for relevant sources to contain, which encourages a more targeted
and discriminative retrieval process. Finally, model (iii) produces both an explicit reasoning trace,
which captures its internal deliberation, and a set of candidate rewritten queries or answers that can
be used to drive retrieval more effectively. We employ GPT-5 (OpenAlL 2025)), the SOTA multimodal

reasoning model, to perform query rewriting. The prompt is provided in Figure[3]

I MORE DETAILS OF RERANKING

I.1 IMPLEMENTATION DETAILS

For text-only rerankers, following the second input configuration described in Section [E} we ap-
pend image captions as auxiliary context. For multimodal rerankers, MLLMs are prompted in a
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Methods ‘ Multimodal Knowledge Retrieval ‘ Visual Illustration Visual Relation ‘ Ave.
‘ Bio. Cook. Gar. Phy. Chem. Earth. ‘ Econ. Math. Nat. ‘ Spa. Puzz. Ana.
Text Embedding Models
BGE-M3 14.09 1043 11.66 10.12 7.27 12.78 - - - - - - -
+ Captions | 28.85 2321 1732 13.60 8.76 20.66 | 53.57 10.85 2025 | 11.33 0.00 3.40 | 17.65
Qwen3 17.36 1248 1217 1193  6.38 15.12 - - - - - - -
+ Captions | 2476  27.10 1630 13.73  6.61 1795 | 60.71 3033 2442 | 11.41 0.00 544 | 19.90
Diver-Emb. | 24.54 1243 1595 13.61 8.07 19.33 - - - - - - -
+ Captions | 30.82 27.00 20.75 16.47 1135 29.76 | 6548 37.50 21.67 | 10.00 0.00 10.88 | 23.47
BGE-Rea. | 2336 880 15.83 13.79 8.05 19.01 - - - - - - -
+ Captions | 33.49 3250 25.09 17.00 1256 26.61 | 70.24 46.71 2542 | 8.67 0.00 6.80 | 2542
ReasonIR 26.10 16.55 1473 1494 10.08  20.38 - - - - - - -
+ Captions | 33.01 3637 1649 20.05 1745 36.66 | 61.90 2093 2433 | 6.00 0.00 8.16 | 23.45
Multimodal Embedding Models
CLIP 2754 28.63 9.72 7.60 4.01 29.62 | 16.67 4.65 4817 | 2267 0.00 6.80 | 17.17
BGE-VL 22.17 12,55 1096 15.18  6.30 1522 | 63.10 17.64 4733 | 1007 0.00 544 | 18.83
GME 27.06 3394 1553 1336 6.25 2478 | 4524 640 3742 | 2067 0.00 12.24 | 20.24
VLM2Vec | 30.64 3461 18.89 1244 7.36 32,18 | 5595 17.25 31.75 | 1733 0.63 4.08 | 21.93
MM-Emb. | 3824 48.89 21.07 21.03 16.53 42.79 | 48.81 2258 42.08 | 28.00 0.00 6.12 | 28.01
Seed-1.6 31.93 3251 2895 22.17 1452 31.65 | 69.05 3876 61.25| 1933 0.63 8.16 | 29.91

Table 9: The overall performance of embedding models on MR2-Bench in terms of the Recall@5.

Methods ‘ Multimodal Knowledge Retrieval ‘ Visual Illustration Visual Relation ‘ Ave,
‘ Bio. Cook. Gar. Phy. Chem. Earth. ‘ Econ. Math. Nat. ‘ Spa. Puzz. Ana. ‘
Text Embedding Models
BGE-M3 2592 1848 1729 17.00 9.11 22.31 - - - - - - -
+ Captions | 39.67 3542 20.81 2123 14.02 3255 | 6190 19.57 33.83 | 16.67 0.00 7.48 | 25.26
Qwen3 32.83 30.81 17.08 20.64 1394  27.05 - - - - - - -
+ Captions | 3391 3852 2439 21.03 1541 3127 | 67.86 38.08 39.67 | 16.11 0.00 8.84 | 27.92
Diver-Emb. | 35.18 25.13 20.01 22.07 1642 33.76 - - - - - - -
+ Captions | 43.81 4245 2621 2529 22.66 4371 | 70.24 4331 40.83 | 16.00 0.00 15.65 | 32.51
BGE-Rea. | 41.29 24.18 23.80 23.82 1724 37.44 - - - - - - -
+ Captions | 46.35 4284 29.78 2451 2296 43.02 | 79.76 58.53 4042 | 1200 0.00 11.56 | 3431
ReasonIR 37.42 2945 2293 2488 1621 34.28 - - - - - - -
+ Captions | 46.05 50.89 2099 2893 2572 5231 | 69.05 28.88 44.08 | 10.00 0.00 12.93 | 32.48
Multimodal Embedding Models
CLIP 33.08 38.08 14.38 14.05 5.64 38.85 | 26.19 1221 7042 | 31.33 0.63 11.56 | 24.70
BGE-VL 38.03 27.68 16.66 22.85 11.62 2846 | 66.67 2345 67.83 | 12.08 0.00 1293 | 27.35
GME 3513 4564 2193 19.66 13.14 36.10 | 5476 1550 57.17 | 2533 0.63 23.13 | 29.01
VLM2Vec | 41.02 4431 23.69 20.66 13.20 3949 | 66.67 2723 47.67 | 27.33 0.63 1497 | 30.57
MM-Emb. | 5098 55.18 26.60 2891 2279 54.61 | 51.19 35.08 6842 | 3533 0.63 1429 | 37.00
Seed-1.6 47.99 49.13 38.60 30.05 2632 4890 | 79.76 47.87 84.17 | 30.67 250 2245 | 42.37

Table 10: The overall performance of embedding models on MR2-Bench in terms of the Recall@10.
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Multimodal Knowledge Retrieval ‘ Visual Illustration ‘ Visual Relation ‘Avg

Methods
‘ Bio. Cook. Gar. Phy. Chem. Earth. ‘ Econ. Math. Nat. ‘ Spa. Puzz. Ana. ‘
Text Embedding Models
BGE-M3 14.89 10.15 9.78 13.18 5.33 13.23 - - - ‘ - - - -
+ Captions | 32.01 1933 17.27 2147  8.02 21.21 | 4282 7.13 17.66 7.81 0.00 2.18 | 16.41
Qwen3 18.71 1335 10.80 1472 5.76 15.71 - - - ‘ - - - -
+ Captions | 27.36 2445 1525 20.60 6.75 18.77 | 47.01 1856 1948 7.70 0.00 320 | 17.43
Diver-Emb. | 2449 11.88 1345 1624 6.70 17.47 - - - ‘ - - - -
+ Captions | 36.03 2459 20.72 2195 10.66 26.57 | 53.13 2394 1649 6.60 0.00 597 | 20.56
BGE-Rea. | 23.63 890 1279 1898  6.92 19.62 - - - ‘ - - - -
+ Captions | 40.07 30.43 2344 2526 10.06 2838 | 5744 3040 1843 559 0.00 4.11 | 22.80
ReasonIR 2690 1477 13.12 19.15  7.68 17.96 - - - ‘ - - - -
+ Captions | 42.83 3692 1798 26.60 1474 3636 | 52.01 1434 2123 430 000 436 | 22.64
Multimodal Embedding Models
CLIP 3319 27.83 1042 1534 490 30.50 | 9.91 313 3938 | 18.14 0.00 3.57 | 16.36
BGE-VL 26.00 1299 992 18.10 5.71 1474 | 49.60 1244 39.07 | 583 0.00 353 | 16.49
GME 3391 3558 17.03 184l 5.46 25.61 | 3389 4.18 30.64 | 1421 0.00 7.64 | 18.88
VLM2Vec | 38.31 36.87 18.75 19.66 7.46 3405 | 47.87 10.86 28.12 | 10.74 0.63 246 | 21.31
MM-Emb. | 48.80 50.58 2222 30.84 1550 4452 | 42.15 1722 37.07 | 20.34 0.00 3.29 | 27.71
Seed-1.6 36.14 3245 2834 27.69 1346  31.52 | 52.63 2295 55.12 | 13.67 031 449 | 26.56

Table 11: The overall performance of embedding models on MR2-Bench in terms of the nDCG @S5.

Multimodal Knowledge Retrieval ‘ Visual Illustration ‘ Visual Relation ‘Avg

Methods
‘ Bio. Cook. Gar. Phy. Chem. Earth. ‘ Econ. Math. Nat. ‘ Spa. Puzz. Ana. ‘
Text Embedding Models
BGE-M3 22,66 1633 13.67 1772  7.89 19.84 - - - - - - -
+ Captions | 37.22 2843 1970 2436 11.39 30.06 | 47.59 12.65 27.18 | 1095 0.00 5.14 | 21.22
Qwen3 30.34 2425 1539 2039 12,16 24.16 - - - - - - -
+ Captions | 36.76 33.24 21.41 2491 1321 29.03 | 49.75 2400 3048 | 1096 0.00 6.70 | 23.37
Diver-Emb. | 32.45 23.00 17.59 24.00 13.65 28.12 - - - - - - -
+ Captions | 4390 36.21 2550 2819 1826  37.13 | 5830 29.83 29.68 | 10.52 0.17 8.86 | 27.21
BGE-Rea. 3343 21.87 1897 2540 1443 30.65 - - - - - - -
+ Captions | 47.04 39.94 2824 2994 1920 40.59 | 63.25 3594 3336 | 887 0.00 7.89 | 29.52
ReasonIR 3690 2469 1892 2597 13.12 30.39 - - - - - - -
+ Captions | 48.18 4534 21.83 2871 21.15 4474 | 57.61 1933 3648 | 6.19 0.00 891 | 28.21
Multimodal Embedding Models
CLIP 3549 3194 1396 16.53 6.01 3438 | 1476  6.57 5632 | 23.04 0.53 6.71 | 20.52
BGE-VL 3696 26.11 17.09 23.25 9.47 26.61 | 5291 16.12 5397 | 7.71 0.17 8.46 | 23.24
GME 38.17 4348 20.72 2156 10.82 3343 | 4088 9.08 4585 | 18.74 022 14.88 | 24.82
VLM2Vec | 42.11 4324 2136 2193 11.63 3891 | 55.66 1846 4038 | 17.18 0.63 8.77 | 26.69
MM-Emb. | 51.83 5436 2638 32.74 20.39 5177 | 4599 2291 55.04 | 23.97 0.36 8.00 | 32.81
Seed-1.6 46.01 4331 3586 3299 22385 43.71 | 58.25 2838 6997 | 21.20 1.67 11.76 | 34.66

Table 12: The overall performance of embedding models on MR2-Bench in terms of the nDCG @20.
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Methods ‘ Multimodal Knowledge Retrieval ‘ Visual Illustration ‘ Visual Relation ‘ Ave.
‘ Bio. Cook. Gar. Phy. Chem. Earth. ‘ Econ. Math. Nat. ‘ Spa. Puzz. Ana.
Text Embedding Models
BGE-M3 21.05 1478 1328 23.18 6.96 19.29 - - - - - - 16.43
+ Captions | 4295 2384 2536 3149 12.11 2936 3931 638 27.10 6.66 0.00 1.80 20.53
Qwen3 3451 2417 21.24 2535 1324 20.13 - - - - - - 23.11
+ Captions | 47.53 31.58 2523 29.14 14.61 2643 56.65 2797 3000 854 000 569 2528
Diver-Emb. | 32.03 17.08 17.69 21.86  8.95 20.93 - - - - - - 19.76
+ Captions | 4422 31.64 2886 29.71 1457 31.62 4891 2025 2323 549 0.00 435 2357
BGE-Rea. | 28.40 11.86 1643 2691 1082  25.29 - - - - - - 19.95
+ Captions | 51.03 3583 30.54 3476 14.14 37.73 53.13 25.64 2443 456 0.00 320 2625
ReasonIR 33.04 1991 1720 28.07 9.78 22.56 - - - - - - 21.76
+ Captions | 55.15 4627 2576 3544 18.00 46.89 4865 1293 31.17 372 0.00 3.13 27.26
Multimodal Embedding Models
CLIP 44.64 3507 1509 25.19  8.65 3972 172 262 46775 1661 0.00 251 20.38
BGE-VL 3631 1844 1412 2529  6.96 19.02 45.14 10.68 4647 446 000 2.89 19.15
GME 46.18 45.07 24.60 26.51 6.56 3453  30.14 359 3855 1213 000 6.16 22.83
VLM2Vec 4949 4877 25.89 30.13 9.88 4232 45.16 9.07 3657 8.59 0.62 1.93  25.70
MM-Emb. 60.00 59.52 3278 40.07 20.50 5343 3992 17.09 47777 1779 0.00 235 32.60
Seed-1.6 4538 41.54 3845 34.01 1832 3934  47.16 1824 63.07 11.82 0.21 325  30.07

Table 13: The overall performance of embedding models on MR2-Bench in terms of the MRR@5.

Multimodal Knowledge Retrieval ‘ Visual Illustration

‘ Visual Relation

‘ Avg.

Methods
‘ Bio. Cook. Gar. Phy. Chem. Earth. ‘ Econ. Math. Nat. ‘ Spa. Puzz. Ana.
Text Embedding Models
BGE-M3 23.01 1621 1434 25.04 790 21.36 - - - - - - 17.98
+ Captions | 44.71 27.02 25.84 32.19 13.10 31.09 4038 7.60 2841 732 000 232 21.67
Qwen3 36.73 2596 2244 2647 1538  22.63 - - - - - - 24.93
+ Captions | 4898 3287 26.38 30.26 1647 2840 5834 2939 31.81 933 000 7.09 26.61
Diver-Emb. | 33.64 19.73 18.39 23.02 10.64 23.16 - - - - - - 2143
+ Captions | 4547 34.17 30.00 31.56 16.79 3339 4955 21.12 2603 628 000 495 2494
BGE-Rea. 31.03 1553 1825 2822 13.09 2792 - - - - - - 22.34
+ Captions | 52.27 3738 31.21 3557 15.88 39.88 5432 27.52 2642 496 000 3.88 27.44
ReasonIR 3535 21.68 18.46 2946 1077  24.87 - - - - - - 23.44
+ Captions | 56.61 48.19 2644 36.65 19.59 4836 49.60 1427 3401 4.18 000 3.75 2847
Multimodal Embedding Models
CLIP 45.80 36.53 16.04 2633  9.06 40.69 8.96 372 4853 17.72 0.08 3.12 21.38
BGE-VL 38.85 21.34 1596 2652 8.32 21.63 4567 1145 4826 475 0.00 379 20.54
GME 47.02 46.64 2582 27.66 840 36.23 3139 473 4024 1274 0.10 7.57 24.04
VLM2Vec | 50.97 49.69 2693 31.18 10.83 4329 4670 1048 38.68 9.89 0.62 325 26.88
MM-Emb. | 61.30 5990 3343 41.06 21.60 54.67 4032 19.03 50.30 18.85 0.09 344 33.67
Seed-1.6 47.69 4399 3938 34.62 20.65 4138 48.64 1937 6500 1329 047 526 31.65

Table 14: The overall performance of embedding models on MR2-Bench in terms of the MRR@ 10.
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-

Task Description:

You are an Al assistant specializing in information retrieval and reasoning. Given
an instruction and a question (consist of text and images), your task is to generate a
"Chain-of-thought" reasoning process. This process must clearly outline the key
information that needs to be found in relevant document to answer the question.

Execution Flow:

(1) Identify the Essential Problem: First, precisely extract the fundamental
problem that needs to be solved.

(2) Reason on Required Information: Based on the essential problem, conduct
step-by-step reasoning to specify the content that needs to be retrieved. This should
include relevant terms, phenomena, causes, characteristics, risks, or solutions.

(3) Synthesize the Answer: Based on the reasoning, formulate a direct and concise
answer to the problem.

(4) Combine for Output: Consolidate the "Essential Problem", the "Reasoning on
Required Information", and the "Synthesized Answer" into a single, coherent text.
This text must be simple, easy to understand, and kept within 100 words.

Input Content:
The provided instruction, question text and question images are as follows:
Original instruction: <instruction>
Original question text: <question text>
\ Original question images: <question images>

Figure 3: Prompt used by GPT-5 for query rewriting.
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GLM-4.5V), we run inference with SGLang E]

reason-then-rank format; the full prompt is provided in Figure 4, We evaluate Gemini-Z.S-PrcE-]
and GPT—SE] using their official APIs, and BGE-Reasoner-Reranker-32B with the authors’ code
and checkpoint obtained via email. For open-source MLLMs (Gemma-3-27B, Qwen2.5-VL-72B,
to accelerate the reasoning stage. All other models

are evaluated using their released code and checkpoints.

Task Description:

You are an objective, evidence-based multimodal judge. Given a Query and a Candidate, determine whether
the Candidate appropriately corresponds to the Query (satisfies its requirements, answers its question, or
retrieves the relevant information). Your task is to provide a discrete integer score from 0 to 100:

- 80-100 (Highly Relevant): The Candidate directly and comprehensively addresses the Query's intent.

- 60-80 (Relevant): The Candidate substantially addresses the Query's intent, providing most of the key
information or details, but might miss some minor details.

- 40-60 (Moderately Relevant): The Candidate is relevant and addresses a part of the Query's intent, but it is
not comprehensive.

- 20-40 (Slightly Relevant): The Candidate mentions some aspects about the Query, but its main intent is
different. It offers very limited value or information.

- 0-20 (Irrelevant): The Candidate does not address the Query's intent at all and is off-topic or wrong.

Reasoning Process:

Before providing your answer, analyze the Query and the Candidate step by step and provide your analysis
process:
1) Query analysis:

- If the Query contains image(s): analyze the concrete visual elements (objects, attributes, colors, materials,
text-in-image/OCR, spatial relations, layout/scene, etc.).

- If the Query contains text(s): analyze the explicit intent and constraints (entities, attributes, quantities,
relations, actions/edits, categories/styles, temporal/spatial cues, etc.).

- Accurately capture the Query's true intent, identifying the key challenges and core elements.
2) Candidate analysis:

- If the Candidate contains image(s): analyze the concrete visual elements (objects, attributes, colors,
materials, text-in-image/OCR, spatial relations, layout/scene, etc.).

- If the Candidate contains text: analyze its explicit content (entities, attributes, quantities, relations,
categories, etc.).

- Carefully analyze and discuss the Candidate against the Query's intent and constraints to determine whether
it satisfies the Query's requirements and true intent. Avoid erroneous acceptance or rejection; base judgments
strictly on observable details and reasonable reasoning.

After providing your detailed analysis and justification for all the steps above, conclude your entire response
with the final score. The score must be enclosed within <score> </score> tags. Please output the score with the
tag only, no other text.

Your output should follow the following format:

your analysis process
<score>XX</score>

Figure 4: Prompt used by MLLMs to score query-candidate pairs after reasoning.

1.2 DETAILED RERANKING RESULTS WITH SEED-1.6-EMBEDDING AS THE BASE
RETRIEVER

We report detailed reranking results with Seed-1.6-Embedding as the base retriever, including Re-
call@1, Recall@5, Recall@10, NDCG@5, NDCG@ 10, and NDCG @20, in Tables [T3] to 20} re-

spectively.

" gemini-2.5-pro-thinking-2025-06-05
129pt-5-2025-08-07
Bhttps://docs.sglang.ai/
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‘ Multimodal Knowledge Retrieval ‘ Visual Illustration ‘ Visual Relation ‘ Avg

Bio. Cook. Gar. Phy. Chem. Earth. ‘ Econ. Math. Nat. ‘ Spa. Puzz. Ana.‘

Methods

Base Retriever

1365 902 985 520 369 981 |3333 698 1933] 800 000 000 | 991

Seed-1.6-Embedding

Textual Rerankers

RankLLaMa-7B 8.53 7.03 834 771 3.92 4.16 3095 12,60 7.50 | 400 0.00 136 8.01
RankLLaMa-14B 12.00 8.86 642 488 412 7.27 19.05 13.18 625 | 733  0.62  0.00 7.50
Rank1-7B 9.33 6.59 432 376 614 6.84 50.00 31.59 1225 | 800 0.00 0.68 | 11.63
RankR1-14B 9.86 4.86 7.00  6.28 2.88 7.27 67.86 1725 10.58 | 13.33  0.63 2.72 12.54
ReasonRank-32B 13.80 896 891 546 445 9.78 5833 27.03 10.75 | 12.00 0.62 6.80 | 13.91
BGE-Reasoner-Reranker-32B | 1543 6.40 1029 485 3.97 11.36 | 6548 25.68 12.00 | 18.00 0.62 2.72 14.73
Multimodal Rerankers
MonoQwen2-VL 10.14  10.19 519 463 2.68 6.48 57.14 1628 1925 | 533 0.00 340 | 11.73
Jina-Reranker 8.18 7.36 553 3.00 1.68 534 | 7143 2422 17.00 | 2533 0.00 2.04 | 14.26
Gemma-3-27B 9.59 7.15 391 352 648 9.94 3690 27.81 11.25 | 2733 125 6.80 | 12.66
Qwen2.5-VL-72B 1321 10.17 739 584 448 11.51 | 5833  40.60 14.58 | 28.67 3.12 544 | 1695
GLM-4.5V-thinking 12.69 688 497 641 7.37 8.42 5595 39.15 1242 | 3200 1.88 544 | 16.13
Gemini-2.5-Pro 9.84 13.64 920 735 931 11.16 | 58.33 4234 2358 | 40.67 0.00 10.20 | 19.64
GPT-5 16.66 17.05 1237 821 11.29 1639 | 7738  50.48 26.17 | 39.33 250 11.56 | 24.12

Table 15: Detailed reranking performance (Recall@ 1) on MR2-Bench with Seed-1.6-Embedding as
the base retriever.

Methods ‘ Multimodal Knowledge Retrieval ‘ Visual Illustration ‘ Visual Relation ‘ Avg,
| Bio. Cook. Gar. Phy. Chem. Earth. | Econ. Math. Nat. | Spa. Puzz. Ana. |
Base Retriever
Seed-1.6-Embedding ‘ 3193 3251 2895 2217 1452  31.65 ‘ 69.05 3876 6125 ‘ 1933  0.63 8.16 ‘ 29.91
Textual Rerankers
RankLLaMa-7B 3234 30.02 2659 21.19 11.61 2554 | 71.43 4273 3442|2000 125 8.6 | 27.11
RankLLaMa-14B 33.86 29.62 2657 2186 1697 3326 | 6429 4738 2842 | 18.67 125 6.80 | 27.41
Rank1-7B 30.62 31.07 2242 16.12 17.16 2523 | 77.38 52.03 40.50 | 22.67 1.88  6.80 | 28.66
RankR1-14B 32.09 3221 2381 19.68 1897 27.78 | 8452 52.03 37.50 | 32.67 250 17.01 | 31.73
ReasonRank-32B 33.17 3095 2629 2090 1597 29.08 | 80.95 52.62 43.83 | 20.67 3.12 19.73 | 31.44
BGE-Reasoner-Reranker-32B | 36.79  35.21 2852 18.56 1675 2996 | 8333 53.78 47.83 | 33.33 3.12 12.24 | 33.29
Multimodal Rerankers

MonoQwen2-VL 2749 3515 23.82 1577 1298 22,15 | 79.76 5145 60.58 | 18.67 0.62 1429 | 30.23
Jina-Reranker 2742 30.17 2563 1659 1457 2078 | 8571 5320 60.92 | 3533 0.00 1293 | 31.94
Gemma-3-27B 34.17 3513 2576 17.03 2454 2695 | 70.24 5320 5250 | 36.67 250 19.73 | 33.20
Qwen2.5-VL-72B 3376 29.68 2745 1845 19.08  31.07 | 83.33 5494 5933 | 32.67 5.62 1429 | 34.14
GLM-4.5V-thinking 3373 3996 2450 1931 2034  30.69 | 80.95 56.10 60.58 | 38.00 5.00 24.49 | 36.14
Gemini-2.5-Pro 40.03 4372 31.12 21.79  24.69 3895 | 82.14 5378 76.17 | 42.67 328 26.53 | 40.41
GPT-5 4639 51.27 33.65 2732 2886 4846 | 8.10 56.10 79.33 | 43.33 438 2721 | 4453

Table 16: Detailed reranking performance (Recall@5) on MR2-Bench with Seed-1.6-Embedding as
the base retriever.
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Multimodal Knowledge Retrieval

‘ Visual Illustration

Visual Relation

‘ Avg.

Methods
‘ Bio. Cook. Gar. Phy. Chem. Earth. ‘ Econ. Math. Nat. ‘ Spa. Puzz. Ana. ‘
Base Retriever
Seed-1.6-Embedding ‘ 4799 49.13  38.60 30.05 2632 4890 ‘ 79.76  47.87 84.17 ‘ 30.67 250 2245 ‘ 42.37
Textual Rerankers
RankLLaMa-7B 4724 4826 39.69 3041 23.05 46.68 | 82.14 5145 63.17 | 30.00 3.12 13.61 | 39.90
RankLLaMa-14B SI.11 5374 39.11 3122 2830 5412 | 7857 5145 56.67 | 30.67 3.12 19.05 | 4143
Rank1-7B 4592 4838 35.68 29.07 2897 4848 | 8571 5494 6558 | 30.00 500 1497 | 41.06
RankR1-14B 49.81 50.16 36.98 30.27 2891  48.04 | 86.90 56.10 67.92 | 36.67 3.12 26.53 | 43.45
ReasonRank-32B 4786 4793 3696 30.54 24.67 4545 | 8571 53778 6292 | 3333 438 2585 | 41.61
BGE-Reasoner-Reranker-32B | 50.54 52.14 41.71 30.82  30.02 51.88 | 85.71 56.10 75.00 | 41.33 438 23.81 | 45.29
Multimodal Rerankers
MonoQwen2-VL 40.82  45.84 3323 2622 24.64 40.45 8333 56.10 86.83 | 31.33 3.12 2517 | 4143
Jina-Reranker 4293 47.88 3899 2959 2699  37.69 | 83.10 5552 8525 |40.00 1.88 2449 | 43.28
Gemma-3-27B 4926  55.19 36.78 2835 33.09 4552 | 8452 5494 79.92 | 4400 3.12 2925 | 4533
Qwen2.5-VL-72B 5040 51.51 4159 2824 3037 49.01 | 8571 56.10 86.58 | 36.67 5.62 27.21 | 45.75
GLM-4.5V-thinking 50.55 54.87 3850 31.67 30.79 46.73 | 84.52 56.10 85.67 | 39.33 5.62 30.61 | 46.25
Gemini-2.5-Pro 54.16 5846 4245 3232 36,61 5823 | 88.10 5378 94.83 | 44.00 6.56 29.93 | 49.95
GPT-5 56.56 60.34 4435 3833 37.87 60.88 | 88.10 56.10 94.67 | 44.00 5.62 31.29 | 51.51

Table 17: Detailed reranking performance (Recall@10) on MR2-Bench with Seed-1.6-Embedding

as the base retriever.

Multimodal Knowledge Retrieval

Visual Illustration

Visual Relation

‘ Avg.

Methods
‘ Bio. Cook. Gar. Phy. Chem. Earth. ‘ Econ. Math. Nat. ‘ Spa. Puzz. Ana. ‘
Base Retriever
Seed-1.6-Embedding | 36.14 3245 2834 27.69 1346 3152 | 5263 2295 5512 | 13.67 031 449 | 2656
Textual Rerankers
RankLLaMa-7B 33.57 2786 2575 2533 1271  22.03 | 51.12 29.83 2823 | 11.95 048 472 | 22.80
RankLLaMa-14B 3746 3023 2521 2477 1690  29.61 | 41.34 3338 2323 | 1270 0.89 342 | 2326
Rank1-7B 3241 28.02 19.18 2260 17.04 2476 | 6457 44.02 36.11 | 1545 091 370 | 25.73
RankR1-14B 3523 2772 2190 2727 1587 2691 | 7671 3819 3275|2310 1.73 10.14 | 28.13
ReasonRank-32B 3820 31.44 2465 2831 1576  30.00 | 70.57 43.11 3698 | 1685 1.87 13.20 | 29.25
BGE-Reasoner-Reranker-32B | 41.86 33.58 26.89 27.38 1631  31.51 | 7580 43.57 41.68 | 2580 1.72 7.53 | 31.14
Multimodal Rerankers
MonoQwen2-VL 31.17 3296 2196 22.14 11.02  21.24 | 6947 37.18 5335|1207 039 884 | 26.82
Jina-Reranker 2854 29.05 2335 20.17 11.03  20.04 | 78.68 4230 52.74 | 3042 0.00 7.61 | 28.66
Gemma-3-27B 36.21 3197 21.52 2228 2253  27.05 | 55.09 4353 4235|3261 173 1340 | 29.19
Qwen2.5-VL-72B 3851 3082 2370 27.05 17.25 30.75 | 71.80  50.71 4940 | 30.73 458 1021 | 32.13
GLM-4.5V-thinking 37.66 3563 2059 2783 21.15 28.66 | 69.38 5024 4937 | 3561 3.60 1525 | 32.92
Gemini-2.5-Pro 4294 4534 2856 29.58 2480 37.80 | 71.09 50.94 6746 | 41.59 1.74 18.46 | 38.36
GPT-5 5203 5415 3419 3591 2934 48.00 | 83.83 55.63 72.09 | 41.21 3.53 20.19 | 44.18

Table 18: Detailed reranking performance (NDCG@5) on MR2-Bench with Seed-1.6-Embedding

as the base retriever.
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Multimodal Knowledge Retrieval

‘ Visual Illustration ‘

Visual Relation

‘ Avg.

Methods
‘ Bio. Cook. Gar. Phy. Chem. Earth. ‘ Econ. Math. Nat. ‘ Spa. Puzz. Ana. ‘
Base Retriever
Seed-1.6-Embedding ‘40.64 3812 31.77 2791 17.80  37.17 ‘ 56.13  26.10 65.16 ‘ 1729 093 9.1 ‘ 30.68
Textual Rerankers
RankLLaMa-7B 37.92 3453 3040 27.74 1631 3035 | 54.62 3271 4076 | 1521 1.04 642 | 27.33
RankLLaMa-14B 4327 3894 29.61 2692 2032 37.03 | 4598 3465 3508 | 1662 149 720 | 28.09
Rank1-7B 3695 3507 2449 2534 2121 3387 | 67.19 4501 4722 | 1739 196 6.29 | 30.21
RankR1-14B 40.11 3496 2688 28.58 19.60 3436 | 7749 3956 4630 | 2441 193 13.19 | 32.28
ReasonRank-32B 41.70 3731 2898 28.34 18.61 3557 | 72.19 4353 4535 | 21.10 230 15.16 | 3251
BGE-Reasoner-Reranker-32B | 45.19  39.31 32.18 2857 20.69 3926 | 76.53 4435 53.07 | 2835 2.09 11.31 | 35.08
Multimodal Rerankers
MonoQwen2-VL 3533 3641 2471 2396 1531 2796 | 70.60 3893 64.83 | 1823 1.14 12.28 | 30.64
Jina-Reranker 3423 3545 28.13 2425 1567 2586 | 79.48 4321 63.63 | 31.90 0.60 11.35 | 32.82
Gemma-3-27B 3994 39.67 26.15 2557 25.11 3394 | 59.75 4420 5444 | 3499 196 1644 | 33.51
Qwen2.5-VL-72B 4295 3878 29.60 2821 21.17 37.66 | 7257 51.09 6147 | 31.97 458 1429 | 36.20
GLM-4.5V-thinking 4243 4128 2637 29.78 2434 3415 | 70.52 5024 60.24 | 36.06 3.78 17.29 | 36.37
Gemini-2.5-Pro 4591 49.72 33,10 30.87 2857 4428 | 73.13 5094 76.07 | 42.02 2.87 19.61 | 4143
GPT-5 5235 5541 3746 37.10 3196 51.12 | 83.83 5563 79.16 | 4141 394 2148 | 45.90

Table 19: Detailed reranking performance (nDCG@ 10) on MR2-Bench with Seed-1.6-Embedding

as the base retriever.

Multimodal Knowledge Retrieval

Visual Illustration ‘

Visual Relation

‘ Avg.

Methods
‘ Bio. Cook. Gar. Phy. Chem. Earth. ‘ Econ. Math. Nat. ‘ Spa. Puzz. Ana. ‘
Base Retriever
Seed-1.6-Embedding | 4601 4331 3586 3299 2285 4371 | 5825 2838 69.97 | 2120 167 1176 | 34.66
Textual Rerankers
RankLLaMa-7B 4330 39.99 3424 33.08 2225 3777 | 56.11 34.04 52.68 | 19.21 1.66 11.14 | 32.12
RankLLaMa-14B 46.82 4236 3327 31.74 2448 4240 | 4840 3590 49.12 | 20.54 213 10.52 | 3231
Rank1-7B 4328 41.15 30.00 30.70 25.27 40.54 | 67.78 4531 5794 | 21.86 2.12 10.74 | 34.72
RankR1-14B 44.82 4037 3175 33.63 23.64 4127 | 77.81 39.56 56.77 | 26.81 256 1477 | 36.15
ReasonRank-32B 46.94 42.68 33.66 3336 24.11 4335 | 72.81 44.07 5747 | 2432 262 16.88 | 36.86
BGE-Reasoner-Reranker-32B | 49.23 4349 3521 3273 24.16 44.67 | 77.16 4435 60.96 | 29.55 243 13.62 | 38.13
Multimodal Rerankers
MonoQwen2-VL 43.11 4347 3086 30.55 21.21 3772 | 71.78 3893 68.60 | 19.96 1.79 14.25 | 35.19
Jina-Reranker 41.56 4124 3218 29.78 20.68  36.60 | 79.48 4340 6791 | 3344 1.56 13.44 | 36.77
Gemma-3-27B 44.65 4271 3130 30.73  27.69 4196 | 60.70 4451 60.61 | 3552 258 17.30 | 36.69
Qwen2.5-VL-72B 4732 4321 33.16 3336 24.65 4395 | 7322 51.09 6548 | 3426 458 15.65 | 39.16
GLM-4.5V-thinking 46.89 4425 30.64 3377 2729 4136 | 71.39 5024 64.66 | 37.68 3.78 1777 | 39.14
Gemini-2.5-Pro 4775 5048 3575 34.10 29.81 47.64 | 73.13 51.20 77.27 | 4250 2.87 2034 | 42.74
GPT-5 5391 5597 39.24 3850 3261 53.21 | 83.83 5563 80.30 | 41.95 3.94 21.84 | 46.75

Table 20: Detailed reranking performance (NDCG@20) on MR2-Bench with Seed-1.6-Embedding

as the base retriever.
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1.3 ADDITIONAL RERANKING RESULTS FOR OTHER RETRIEVERS

We report NDCG @ 10 reranking results for two additional retrievers, Qwen3-Embedding and GME,
in Tables 2] and 22] respectively.

Multimodal Knowledge Retrieval

‘ Visual Illustration

‘ Visual Relation

‘ Avg.

Methods
‘ Bio. Cook. Gar. Phy. Chem. Earth. ‘ Econ. Math. Nat. ‘ Spa. Puzz. Ana.
Base Retriever
Qwen3-Embedding ‘ 2997 2929 1832 2146 952 23.19 ‘ 4944  21.14  26.30 ‘ 9.11 0.00 4.30 ‘ 20.17
Textual Rerankers
RankLLaMa-7B 3285 30.80 22,53 25.89 1295 2773 | 4793 31.12 26.69 | 919 0.00 596 | 22.80
RankLLaMa-14B 39.06 33.81 2229 2729 1724 3290 | 4037 31.21 21.41 | 1043 0.00 4.92 | 2341
Rank1-7B 33.62 3046 1922 2056 1344 2624 | 51.16 38.62 32.60 | 1238 0.00 3.72 | 23.50
RankR1-14B 3754 3186 2230 2567 1426 2749 | 59.58 35.66 3197 | 1425 0.00 6.61 | 25.60
ReasonRank-32B 36.24  30.69 20.63 2553 13.09 2645 | 60.59 3626 3446 | 12.16 0.00 7.59 | 2531
BGE-Reasoner-Reranker-32B | 39.97 3344 2220 23.68 14.12 2983 | 6249 4127 32.14 | 1566 0.00 7.34 | 26.85
Multimodal Rerankers
MonoQwen2-VL 3213 32115 2053 2202 11.72 2222 | 5821 33.62 41.02 | 10.17 0.00 7.57 | 24.28
Jina-Reranker 3222 3026 2141 2224 1046 2255 | 63.47 38.04 41.69 | 1842 0.00 649 | 25.60
Gemma-3-27B 3520 3370 19.85 22.10 16.81 26.66 | 4822 3952 3559 | 1879 0.00 7.02 | 25.29
Qwen2.5-VL-72B 40.11 3620 20.69 2494 1479 28.74 | 5825 4629 3855|1792 0.00 692 | 27.78
GLM-4.5V 36.09 3475 18.83 2553 1645 27.06 | 5529 42,19 39.76 | 1893 0.00 7.92 | 26.90

Table 21: Detailed reranking

the base retriever.

performance (nDCG @ 10) on MR2-Bench with Qwen3-Embedding as

Multimodal Knowledge Retrieval

‘ Visual Illustration

‘ Visual Relation

‘ Avg.

Methods
‘ Bio. Cook. Gar. Phy. Chem. Earth. ‘ Econ. Math. Nat. ‘ Spa. Puzz. Ana. ‘
Base Retriever
GME | 3434 3950 1904 1929 773 2859 | 3695 7.19 3935|1570 022 1L11 | 21.59
Textual Rerankers
RankLLaMa-7B 30.58 2835 14.86 2371 1044 2629 | 48.66 1348 3431 | 11.03 0.00 939 | 20.92
RankLLaMa-14B 3392 3262 13.82 2235 11.98 32.82 | 40.31 1534  29.22 | 15.76  0.00 8.57 | 21.39
Rank1-7B 3205 37.15 1750 20.11 12.04 30.06 | 5596 19.14 39.81 | 1641 0.00 6.87 | 23.92
RankR1-14B 3539 3587 1949 2389 1238 29.86 | 59.66 16.84 40.43 | 2026 0.00 10.54 | 25.38
ReasonRank-32B 3449 3650 20.02 2349 1245 3021 | 59.08 18.86 37.60 | 17.25 0.00 11.32 | 25.11
BGE-Reasoner-Reranker-32B | 37.05  40.29 21.98 2233 14.24 3243 | 6227 1845 44.00 | 24.13 0.00 11.24 | 27.37
Multimodal Rerankers
MonoQwen2-VL 31.61 3558 17.13 19.82  9.49 2325 | 60.35 14.81 5525|1387 024 1142 | 2440
Jina-Reranker 3197 3623 1939 1956 892 2378 | 63.58 1720 5447 | 2324 039 1029 | 25.84
Gemma-3-27B 36.20 42.07 19.72 21.16 14.82 2793 | 49.19 19.01 4477 | 2694 0.00 16.21 | 26.50
Qwen2.5-VL-72B 3536 3893 21.18 2097 13.56 3049 | 57.23 2141 49.84 | 26.62 0.20 16.37 | 27.68
GLM-4.5V 3560 4126 1895 21.10 1453 2870 | 5539 20.21 5255|3073 0.62 17.83 | 28.12

Table 22: Detailed reranking performance (nDCG@ 10) on MR2-Bench with GME as the base re-

triever.
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