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Abstract
Proximal splitting algorithms are well suited for large-scale nonsmooth optimization problems.
We propose a primal–dual algorithm, in which the dual update is randomized, with the proximity
operator of one of the function replaced by a stochastic oracle. A nonsmooth variance-reduction
technique is implemented so that the algorithm finds an exact minimizer of the general problem.
We derive linear convergence results in presence of strong convexity. Several existing randomized
algorithms, like Point-SAGA, are recovered as particular cases. Randomness helps getting faster
algorithms; this has long been known for stochastic-gradient-type algorithms, and our work shows
that this fully applies in the more general primal–dual setting as well.

1. Introduction

Large-dimensional optimization problems arise virtually in all fields, including machine learning,
data science, statistics [4, 13, 15, 17, 37, 62, 65, 72, 73]. When a function is smooth, an optimization
algorithm typically makes calls to its gradient, whereas for a nonsmooth function, its proximity
operator is called instead. Algorithms making use of proximity operators are called proximal
(splitting) algorithms [63]. Over the past 10 years or so, several primal–dual proximal algorithms
have been developed a [7, 10, 20, 21, 27, 29, 50, 63]. However, these deterministic algorithms are
often too slow. Stochastic Gradient Descent (SGD)-type methods [11, 38, 40, 47, 61, 67], with
the gradient of smooth functions replaced by stochastic estimates, are the striking demonstration
that randomized algorithms can be cheaper than deterministic ones. But replacing the proximity
operator of a function by a stochastic proximity operator estimate is a nearly virgin territory. This
is important, because many functions of practical interest have a costly proximity operator. We
can mention the nuclear norm of matrices, which requires singular value decompositions, indicator
functions of sets on which it is difficult to project, or optimal transport costs [64].

In this paper, we propose RandProx (Algorithm 2), a randomized version of the Primal–Dual
Davis–Yin (PDDY) method (Algorithm 1), which a proximal algorithm proposed recently [29, 70].
In RandProx, one proximity operator that appears in the PDDY algorithm is replaced by a stochastic
estimate. RandProx is variance-reduced [38, 40, 42]; that is, by making use of control variates,
the algorithm converges to an exact solution, just like its deterministic counterpart. We prove linear
convergence of RandProx in the strongly convex setting, with additional results in the convex setting.
We mention relationships between our results and related works in the literature throughout the paper.
In special cases, RandProx reduces to Point-SAGA [32], the Stochastic Decoupling Method [58],
ProxSkip, SplitSkip and Scaffnew [60], and randomized versions of the PAPC [34], PDHG [16] and
ADMM [12] algorithms. They are all generalized and unified within our new framework. Thus, just
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like Point-SAGA [32] is the proximal counterpart of SAGA [33], our generic algorithm RandProx
paves the way to a new world of proximal counterparts of variance-reduced SGD-type algorithms.

1.1. Problem formulation and proximal algorithms

Let X and U be finite-dimensional real Hilbert spaces. We consider the convex optimization problem:

Find x⋆ ∈ argmin
x∈X

(
f(x) + g(x) + h(Kx)

)
, (1)

where K : X → U is a nonzero linear operator; f is a convex Lf -smooth function, for some Lf > 0;
that is, its gradient ∇f is Lf -Lipschitz continuous [6, Definition 1.47]; and g : X → R ∪ {+∞}
and h : U → R ∪ {+∞} are proper closed convex functions whose proximity operator is easy to
compute. We also introduce the dual problem to (1):

Find u⋆ ∈ argmin
u∈U

(
(f + g)∗(−K∗u) + h∗(u)

)
, (2)

where K∗ : U → X is the adjoint operator of K. For these problems to be well-posed, we suppose
that there exists x⋆ ∈ X such that 0 ∈ ∇f(x⋆) + ∂g(x⋆) +K∗∂h(Kx⋆), where ∂(·) denotes the
subdifferential [6].

We will assume strong convexity of some functions: a convex function ϕ is said to be µϕ-strongly
convex, for some µϕ ≥ 0, if ϕ− µϕ

2 ∥ · ∥2 is convex.
We recall that for any function ϕ and parameter γ > 0, the proximity operator of γϕ is [6]:

proxγϕ : x ∈ X 7→ argminx′∈X
(
ϕ(x′) + 1

2∥x
′ − x∥2

)
. This operator has a closed form for many

functions of practical interest [36, 63, 66]. In addition, the Moreau identity holds: proxγϕ∗(x) =
x−γ proxϕ/γ(x/γ), where ϕ∗ : x ∈ X 7→ supx′∈X

(
⟨x, x′⟩−ϕ(x′)

)
denotes the conjugate function

of ϕ [6]. Thus, one can compute the proximity operator of ϕ from the one of ϕ∗, and conversely.

Proximal splitting algorithms, such as the forward–backward and the Douglas–Rachford algo-
rithms [6], are well suited to minimizing the sum, f + g or g + h in our notation, of two functions.
However, many problems take the form (1) with K ̸= Id, where Id denotes the identity, and the
proximity operator of h ◦K is intractable in most cases. A classical example is the total variation,
widely used in image processing [14, 24, 25, 68] or for regularization on graphs [30], where h is
some variant of the ℓ1 norm and K takes differences between adjacent values. Another example is
when h is the indicator function of some nonempty closed convex set Ω ⊂ U ; that is, h(u) = (0 if
u ∈ Ω, +∞ otherwise), in which case the problem (1) can be rewritten as

Find x⋆ ∈ argmin
x∈X

(
f(x) + g(x)

)
s.t. Kx ∈ Ω.

If g = 0 and Ω = {b} for some b ∈ ran(K), where ran denotes the range, the problem
can be further rewritten as the linearly constrained smooth minimization problem Find x⋆ ∈
argminx∈X f(x) s.t. Kx = b. This last problem has applications in decentralized optimization
[52, 69, 79], for instance. Thus, the template problem (1) covers a wide range of optimization
problems met in machine learning [4, 65], signal and image processing [17, 20], control [73], and
many other fields.
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Algorithm 1 PDDY algorithm [70]
input: initial points x0 ∈ X , u0 ∈ U ;
stepsizes γ > 0, τ > 0
v0 := K∗u0

for t = 0, 1, . . . do
x̂t := proxγg

(
xt − γ∇f(xt)− γvt

)
ut+1 := proxτh∗

(
ut + τKx̂t

)
vt+1 := K∗ut+1

xt+1 := x̂t − γ(vt+1 − vt)
end for

Algorithm 2 RandProx [new]
input: initial points x0 ∈ X , u0 ∈ U ;
stepsizes γ > 0, τ > 0; ω ≥ 0
v0 := K∗u0

for t = 0, 1, . . . do
x̂t := proxγg

(
xt − γ∇f(xt)− γvt

)
ut+1 := ut + 1

1+ωR
t
(
proxτh∗(ut + τKx̂t)− ut

)
vt+1 := K∗ut+1

xt+1 := x̂t − γ (1 + ω) (vt+1 − vt)
end for

2. Proposed algorithm: RandProx

There exist several deterministic algorithms for solving the problem (1); see Condat et al. [27] for a
recent overview. In this work, we focus on the PDDY algorithm (Algorithm 1) [29, 70]. In particular,
our new algorithm RandProx (Algorithm 2) generalizes the PDDY algorithm with a stochastic
estimate of the proximity operator of h∗.

We recall the general convergence result for the PDDY algorithm [29, Theorem 2]: If γ ∈
(0, 2/Lf ), τ > 0, τγ∥K∥2 ≤ 1, then (xt)t∈N converges to a primal solution x⋆ of (1) and (ut)t∈N
converges to a dual solution u⋆ of (2). The PDDY algorithm is similar and closely related to the
PD3O algorithm [81], as discussed in Condat et al. [29], Salim et al. [70]. We can note that the
popular Condat–Vũ algorithm [23, 75] can solve the same problem but has more restrictive conditions
on γ and τ .

In the PDDY algorithm, the full gradient ∇f can be replaced by a stochastic estimator which is
typically cheaper to compute [70]. Convergence rates and accelerations of the PDDY algorithm, as
well as distributed versions of the algorithm, have been derived in Condat et al. [29]. In particular, if
µf > 0 or µg > 0, the primal problem (1) is strongly convex. In this case, a varying stepsize strategy
accelerates the algorithm, with a O(1/t2) decay of ∥xt − x⋆∥2, where x⋆ is the unique solution to
(1). But strong convexity of the primal problem is not sufficient for the PDDY algorithm to converge
linearly, and additional assumptions on h and K are needed. We will prove linear convergence when
both the primal and dual problems are strongly convex; this is a natural condition for primal–dual
algorithms. We can note that h is Lh-smooth, for some Lh > 0, if and only if h∗ is µh∗-strongly
convex, for some µh∗ > 0, with µh∗ = 1/Lh. In that case, the dual problem (2) is strongly convex.

We propose RandProx (Algorithm 2), a generalization of the PDDY algorithm (Algorithm 1) with
a randomized update of the dual variable u. Let us formalize the random operations using random
variables and stochastic processes. We introduce the underlying probability space (S,F , P ). Given
a real Hilbert space H, an H-valued random variable is a measurable map from (S,F) to (H,B),
where B is the Borel σ-algebra of H. Formally, randomizing some steps in the PDDY algorithm
amounts to defining

(
(xt, ut)

)
t∈N as a stochastic process, with xt being a X -valued random variable

and ut a U -valued random variable, for every t ≥ 0. We use light notations and write our randomized
algorithm RandProx using stochastic operators Rt on U ; that is, for every t ≥ 0 and any rt ∈ U ,
Rt(rt) is a U -valued random variable, which can be interpreted as rt plus ‘random noise’ (formally,
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rt is itself a U-valued random variable, but algorithmically, Rt is applied to a particular outcome in
U , hence the notation as an operator on U). To fix the ideas, let us give two examples.

Example 1. The first example is compression [1–3, 9, 28, 43, 59]: U = Rd for some d ≥ 1 and Rt

is the well known rand-k compressor or sparsifier, with 1 ≤ k < d: Rt multiplies k coordinates,
chosen uniformly at random, of the vector rt by d/k and sets the other ones to zero. An application
to compressed communication is discussed in Section B.3.

Example 2. The second example, discussed in Section B.1, is the Bernoulli, or coin flip, operator

Rt : rt 7→

{
1
pr

t with probability p,

0 with probability 1− p,
(3)

for some p > 0. In that case, with probability 1− p, the outcome of Rt(rt) is 0 and rt does not need
to be calculated; in particular, in the RandProx algorithm, proxτh∗ is not called, and this is why one
can expect the iteration complexity of RandProx to decrease. Thus, in this example, Rt(rt) does
not really consist of applying the operator Rt to rt; in general, the notation Rt(rt) simply denotes a
stochastic estimate of rt.

Hereafter, we denote by Ft the σ-algebra generated by the collection of (X × U)-valued random
variables (x0, u0), . . . , (xt, ut), for every t ≥ 0. In this work, we consider unbiased random
estimates: for every t ≥ 0,

E
[
Rt(rt) | Ft

]
= rt,

where E[·] denotes the expectation, here conditionally on Ft, and rt is the random variable rt :=
proxτh∗(ut + τKx̂t) − ut, as defined by RandProx. Note that our framework is general in that
for t ̸= t′, Rt and Rt′ need not be independent nor have the same law. In simple words, at every
iteration, the randomness is new but can have a different form and depend on the past, so that the
operators Rt can be defined dynamically on the fly in RandProx.

We characterize the operators Rt by their relative variance ω ≥ 0 such that, for every t ≥ 0,

E
[∥∥Rt(rt)− rt

∥∥2 | Ft

]
≤ ω

∥∥rt∥∥2 . (4)

The value of ω is supposed known and is used in the RandProx algorithm. Note that ω = 0 if
and only if Rt = Id, in which case there is no randomness and RandProx reverts to the original
deterministic PDDY algorithm. To characterize how the error on the dual variable propagates to the
primal variable after applying K∗, we also introduce the relative variance ωran ≥ 0 in the range of
K∗ and the offset ζ ∈ [0, 1] such that, for every t ≥ 0,

E
[∥∥K∗(Rt(rt)− rt

)∥∥2 | Ft

]
≤ ωran

∥∥rt∥∥2 − ζ
∥∥K∗rt

∥∥2 . (5)

It is easy to see that (5) holds with ωran = ∥K∥2ω and ζ = 0, so this is the default choice without
particular knowledge on K∗. But in some situations, e.g. sampling like in Section B.2, a much
smaller value of ωran and a positive value of ζ can be derived.
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3. Convergence analysis of RandProx

Our most general result, whose proof is in the Appendix, is the following:

Theorem 1. Suppose that µf > 0 or µg > 0, and that µh∗ > 0. In RandProx, suppose that
0 < γ < 2

Lf
, τ > 0, and γτ

(
(1 − ζ)∥K∥2 + ωran

)
≤ 1, where ωran and ζ are defined in (5). For

every t ≥ 0, define the Lyapunov function

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + (1 + ω)

(
1

τ
+ 2µh∗

)∥∥ut − u⋆
∥∥2 , (6)

where x⋆ and u⋆ are the unique solutions to (1) and (2), respectively. Then RandProx converges
linearly: for every t ≥ 0,

E
[
Ψt
]
≤ ctΨ0, (7)

where

c := max

(
(1− γµf )

2

1 + γµg
,
(γLf − 1)2

1 + γµg
, 1− 2τµh∗

(1 + ω)(1 + 2τµh∗)

)
< 1. (8)

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (ut)t∈N converges to u⋆, almost surely.

In the Appendix, we provide other linear convergence results, which do not require h to be
smooth, as well as many examples of applications.
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Table 1: The different particular cases of the problem (1) for which we derive an instance of
RandProx, with the number of the theorem where its linear convergence is stated, and
the corresponding condition on h and K. λ is a shorthand notation for λmin(KK∗) and
ı{b} : x 7→ (0 if x = b, +∞ otherwise).

f g h K
Deterministic

algorithm
Randomized

algorithm
Theorem

Condition ensuring
linear convergence

any any any any PDDY RandProx 1 µh∗ > 0
any 0 any any PAPC RandProx 2 µh∗ >0 or λ>0
any 0 any Id forward-backward (FB) RandProx-FB 3 —
any 0 ı{b} any PAPC RandProx-LC 4 —
0 any any any Chambolle–Pock (CP) RandProx-CP 7 µh∗ > 0
0 any any Id ADMM RandProx-ADMM 8 µh∗ > 0

any any any Id Davis–Yin (DY) RandProx-DY 9 µh∗ > 0

Appendix
Appendix A. More linear convergence results

Remark 1 (choice of τ , in the conditions of Theorem 1) Given γ, the rate c in (8) is smallest
if τ is largest. So, there seems to be no reason to take τγ

(
(1 − ζ)∥K∥2 + ωran

)
< 1, and

τγ
(
(1 − ζ)∥K∥2 + ωran

)
= 1 should be the best choice in most cases. Thus, one can set τ =

1
γ((1−ζ)∥K∥2+ωran)

and keep γ as the only parameter to tune in RandProx.

In the rest of this section, we discuss some particular cases of (1), for which we derive stronger
convergence guarantees than in Theorem 1 for RandProx. Other particular cases are studied in the
Appendix; for instance, an instance of RandProx, called RandProx-ADMM, is a randomized version
of the popular ADMM [12]. The different particular cases are summarized in Table 1.

A.1. Particular case g = 0

In this section, we assume that g = 0. Then the PDDY algorithm becomes an algorithm proposed
for least-squares problems [54] and rediscovered independently as the PDFP2O algorithm [19] and
as the Proximal Alternating Predictor-Corrector (PAPC) algorithm [34]; let us call it the PAPC
algorithm. It has been shown to have a primal–dual forward–backward structure [22]. Thus, when
g = 0, RandProx is a randomized version of the PAPC algorithm.

We can note that f∗ is strongly convex, which is not the case of (f + g)∗ in general. Let us define
λmin(KK∗) as the smallest eigenvalue of KK∗. λmin(KK∗) > 0 if and only if ker(K∗) = {0},
where ker denotes the kernel. If λmin(KK∗) > 0, f∗(−K∗·) is strongly convex. Thus, when g = 0,
λmin(KK∗) > 0 and µh∗ > 0 are two sufficient conditions for the dual problem (2) to be strongly
convex. We indeed get linear convergence of RandProx in that case:

Theorem 2. Suppose that g = 0, µf > 0, and that λmin(KK∗) > 0 or µh∗ > 0. In RandProx,
suppose that 0 < γ < 2

Lf
, τ > 0 and γτ

(
(1 − ζ)∥K∥2 + ωran

)
≤ 1. Then RandProx converges

linearly: for every t ≥ 0, E
[
Ψt
]
≤ ctΨ0, where the Lyapunov function Ψt is defined in (6), and

c := max

(
(1− γµf )

2, (γLf − 1)2, 1− 2τµh∗ + γτλmin(KK∗)

(1 + ω)(1 + 2τµh∗)

)
< 1. (9)
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Algorithm 3 RandProx-FB [new]
input: initial points x0 ∈ X , u0 ∈ X ;
stepsize γ > 0; ω ≥ 0
for t = 0, 1, . . . do

x̂t := xt − γ∇f(xt)− γut

dt := Rt
(
x̂t−proxγ(1+ω)h(x̂

t+γ(1+ω)ut)
)

ut+1 := ut + 1
γ(1+ω)2

dt

xt+1 := x̂t − 1
1+ωd

t

end for

Algorithm 4 RandProx-LC [new]
input: initial points x0 ∈ X , u0 ∈ U ;
stepsizes γ > 0, τ > 0; ω ≥ 0
v0 := K∗u0

for t = 0, 1, . . . do
x̂t := xt − γ∇f(xt)− γvt

ut+1 := ut + τ
1+ωR

t(Kx̂t − b)

vt+1 := K∗ut+1

xt+1 := x̂t − γ(1 + ω)(vt+1 − vt)
end for

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (ut)t∈N converges to u⋆, almost surely.

When Rt = Id and ω = ωran = 0, RandProx reverts to the PAPC algorithm. Even in this
particular case, Theorem 2 proves linear convergence of the PAPC algorithm and is new. In Chen
et al. [19, Theorem 3.7], linear convergence of an underrelaxed version of the algorithm was proved;
underrelaxation slows down convergence. In Luke and Shefi [55], Theorem 3.1 is wrong, since it is
based on the false assumption that if λmin(KiK

∗
i ) > 0 for linear operators Ki, i = 1, . . . , p, then

λmin(KK∗) > 0, with K : x 7→ (K1x, . . . ,Kpx). Their theorem remains valid when p = 1, but
their rate is complicated and worse than ours.

We now consider the even more particular case of g = 0 and K = Id. Then the problems (1) and
(2) consist in minimizing f(x)+h(x) and f∗(−u)+h∗(u), respectively. The dual problem is strongly
convex and has a unique solution u⋆ = −∇f(x⋆), for any primal solution x⋆. By setting τ := 1/γ
in the PAPC algorithm, with obtain the classical proximal gradient, a.k.a. forward-backward (FB),
algorithm, which iterates xt+1 := proxγh

(
xt − γ∇f(xt)

)
. Thus, when randomness is introduced,

we set ωran := ω, ζ := 0 and, according to Remark 1, τ := 1
γ(1+ω) in RandProx. By noting that,

for every a > 0, the abstract operators Rt and aRt
(
1
a ·
)

have the same properties, we can put the
constant γ(1 + ω) outside Rt to simplify the algorithm, and rewrite RandProx as RandProx-FB,
shown above. As a corollary of Theorem 2, we have:

Theorem 3. Suppose that µf > 0. In RandProx-FB, suppose that 0 < γ < 2
Lf

. For every t ≥ 0,
define the Lyapunov function

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + (1 + ω)

(
γ(1 + ω) + 2µh∗

) ∥∥ut − u⋆
∥∥2 , (10)

where x⋆ is the unique minimizer of f+h and u⋆ = −∇f(x⋆) is the unique minimizer of f∗(−·)+h∗.
Then RandProx-FB converges linearly: for every t ≥ 0,

E
[
Ψt
]
≤ ctΨ0,

where

c := max

(
(1− γµf )

2, (γLf − 1)2, 1−
1 + 2

γµh∗

(1 + ω)
(
1 + ω + 2

γµh∗
)) < 1. (11)

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (ut)t∈N converges to u⋆, almost surely.
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It is important to note that it is not necessary to have µh∗ > 0 in Theorem 3. If we ignore the
properties of h∗, the third factor in (11) can be replaced by its upper bound 1− 1

(1+ω)2
.

A.2. Linearly constrained smooth minimization

Let b ∈ ran(K). In this section, we consider the linearly constrained (LC) minimization problem

Find x⋆ ∈ argmin
x∈X

f(x) s.t. Kx = b, (12)

which is a particular case of (1) with g = 0 and h : u ∈ U 7→ (0 if u = b, +∞ otherwise). We have
h∗ : u ∈ U 7→ ⟨u, b⟩ and proxτh∗ : u ∈ U 7→ u− τb. The dual problem to (12) is

Find u⋆ ∈ argmin
u∈U

(
f∗(−K∗u) + ⟨u, b⟩

)
. (13)

We denote by u⋆0 the unique solution to (13) in ran(K). Then the set of solutions of (13) is the affine
subspace u⋆0 + ker(K∗). Thus, the dual problem is not strongly convex, unless ker(K∗) = {0}. Yet,
we will see that strong convexity of f is sufficient to have linear convergence of RandProx, without
any condition on K.

We rewrite RandProx in this setting as RandProx-LC, shown above. We observe that ut does
not appear in the argument of Rt any more, so that the iteration can be rewritten with the variable
vt = K∗ut, and ut can be removed if we are not interested in estimating a dual solution. In any case,
we denote by Pran(K) the orthogonal projector onto ran(K) and by λ+

min(KK∗) > 0 the smallest
nonzero eigenvalue of KK∗. Then:

Theorem 4. In the setup (12)–(13), suppose that µf > 0. In RandProx-LC, suppose that 0 < γ < 2
Lf

,

τ > 0 and γτ
(
(1− ζ)∥K∥2 + ωran

)
≤ 1. Define the Lyapunov function, for every t ≥ 0,

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + 1 + ω

τ

∥∥ut0 − u⋆0
∥∥2 , (14)

where ut0 := Pran(K)(u
t) is also the unique element in ran(K) such that vt = K∗ut0, x⋆ is the unique

solution of (12) and u⋆0 is the unique solution in ran(K) of (13). Then RandProx-LC converges
linearly: for every t ≥ 0,

E
[
Ψt
]
≤ ctΨ0,

where

c := max

(
(1− γµf )

2, (γLf − 1)2, 1−
γτλ+

min(KK∗)

1 + ω

)
< 1. (15)

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (ut0)t∈N converges to u⋆0, almost surely.

Theorem 4 is new even for the PAPC algorithm when ω = 0: its linear convergence under the
stronger condition γτ∥K∥2 < 1 has been shown in Salim et al. [70, Theorem 6.2], but our rate in
(15) is better.

We further discuss RandProx-LC, which can be used for decentralized optimization, in the
Appendix. Another example of application is when X = Rd, for some d ≥ 1, and K is a matrix; one
can solve (12) by activating one row of K chosen uniformly at random at every iteration.
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Algorithm 5 RandProx-Skip [new]
input: initial points x0 ∈ X , u0 ∈ U ;
stepsizes γ > 0, τ > 0; p ∈ (0, 1]
v0 := K∗u0

for t = 0, 1, . . . do
x̂t := proxγg

(
xt − γ∇f(xt)− γvt

)
Flip a coin θt = (1 with probability p, 0
else)
if θt = 1 then

ut+1 := proxτh∗(ut + τKx̂t)
vt+1 := K∗ut+1

xt+1 := x̂t − γ
p (v

t+1 − vt)
else
ut+1 := ut, vt+1 := vt, xt+1 := x̂t

end if
end for

Algorithm 6 RandProx-Minibatch [new]
input: initial points x0 ∈ X , (u0i )

n
i=1 ∈ X n;

stepsize γ > 0; k ∈ {1, . . . , n}
v0 :=

∑n
i=1 u

0
i

for t = 0, 1, . . . do
x̂t := proxγg

(
xt − γ∇f(xt)− γvt

)
pick Ωt ⊂ {1, . . . , n} of size k unif. at random

for i ∈ Ωt do
ut+1
i := prox 1

γn
h∗
i
(uti +

1
γn x̂

t)

end for
for i ∈ {1, . . . , n}\Ωt do

ut+1
i := uti

end for
vt+1 :=

∑n
i=1 u

t+1
i

xt+1 := x̂t − γn
k (vt+1 − vt)

end for

Appendix B. Examples

B.1. Skipping the proximity operator

In this section, we consider the case of Bernoulli operators Rt defined in (3), which compute and
return their argument only with probability p > 0. RandProx becomes RandProx-Skip, shown above.
Then ω = 1

p − 1, ωran = ∥K∥2ω, and ζ = 0.
If g = 0, RandProx-Skip reverts to the SplitSkip algorithm proposed recently [60]. Our Theorems

1 and 4 recover the same rate as given for SplitSkip in Mishchenko et al. [60, Theorem D.1], if
smoothness of h is ignored. If in addition K = Id and τ = 1

γ(1+ω) = p
γ , RandProx-Skip reverts

to ProxSkip, a particular case of SplitSkip [60]. Our Theorem 3 applies to this case and allows us
to exploit the possible smoothness of h in RandProx-Skip = ProxSkip, which is not the case of the
results of [60]. As a practical application of our new results, let us consider personalized federated
learning (FL) [41]: given a client-server architecture with a master and n ≥ 1 users, each with local
cost function fi, i = 1, . . . , n, the goal is to

minimize
(xi)ni=1∈(Rd)n

n∑
i=1

fi(xi) +
λ

2

n∑
i=1

∥xi − x̄∥2, (16)

where x̄ := 1
n

∑n
i=1 xi. Each fi is supposed Lf -smooth and µf -strongly convex. We set X := (Rd)n,

f : x = (xi)
n
i=1 7→

∑n
i=1 fi(xi), h : x 7→ λ

2

∑n
i=1 ∥xi − x̄∥2. f is Lf -smooth and µf -strongly

convex, h is λ-smooth, so that µh∗ = 1
λ . Thus, with γ = 1

Lf
, we have in (11):

c ≤ 1−min

µf

Lf
,

1 +
2Lf

λ

1
p

(
1
p +

2Lf

λ

)
 < 1.

14



RANDPROX: PRIMAL–DUAL OPTIMIZATION ALGORITHMSWITH RANDOMIZED PROXIMAL UPDATES

Hence, with p =

√
µf min(Lf ,λ)

Lf
, the communication complexity in terms of the expected number of

communication rounds to reach ϵ-accuracy is O
(√

min(Lf ,λ)
µf

log 1
ϵ

)
, which is optimal [41]. This

shows that in personalized FL with λ < Lf , the complexity can be decreased in comparison with
non-personalized FL, which corresponds to λ = +∞. This is achieved by properly setting p in
ProxSkip, according to our new theory, which exploits the smoothness of h.

B.2. Sampling among several functions

We first remark that we can extend Problem (1) with the term h(Kx) replaced by the sum
∑n

i=1 hi(Kix)
of n ≥ 2 proper closed convex functions hi composed with linear operators Ki : X → Ui, for some
real Hilbert spaces Ui, by using the classical product-space trick: by defining U := U1 × · · · Un, h :
u = (ui)

n
i=1 ∈ U 7→

∑n
i=1 hi(ui), K : x ∈ X 7→ (Kix)

n
i=1 ∈ U , we have h(Kx) =

∑n
i=1 hi(Kix).

In particular, by setting Ki := Id and Ui := X , we consider in this section the problem:

Find x⋆ ∈ argmin
x∈X

(
f(x) + g(x) +

n∑
i=1

hi(x)

)
. (17)

We have h∗ : (ui)
n
i=1 ∈ X n 7→

∑n
i=1 h

∗
i (ui) and we suppose that every function h∗i is µh∗-strongly

convex, for some µh∗ ≥ 0; then h∗ is µh∗-strongly convex. Thus, the dual problem to (17) is

Find (u⋆i )
n
i=1 ∈ argmin

(ui)ni=1∈Xn

(
(f + g)∗

(
−

n∑
i=1

ui

)
+

n∑
i=1

h∗i (ui)

)
. (18)

Since K∗K = nId, ∥K∥2 = n. Now, we choose Rt as the rand-k sampling operator, for some
k ∈ {1, . . . , n}: Rt multiplies k elements out of the n of its argument sequence, chosen uniformly
at random, by n/k and sets the other ones to zero. It is known [26, Proposition 1] that we can set

ω :=
n

k
− 1, ωran :=

n(n− k)

k(n− 1)
, ζ :=

n− k

k(n− 1)
.

Note that this value of ωran is n− 1 times smaller than the naive bound ∥K∥2ω = n(n−k)
k . We have

(1− ζ)∥K∥2 + ωran = n. RandProx in this setting, with τ := 1
γn , becomes RandProx-Minibatch,

shown above, and Theorem 1 yields:

Theorem 5. Suppose that µf > 0 or µg > 0, and that µh∗ > 0. In RandProx-Minibatch, suppose
that 0 < γ < 2

Lf
. Define the Lyapunov function, for every t ≥ 0,

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + n

k
(γn+ 2µh∗)

n∑
i=1

∥∥uti − u⋆i
∥∥2 , (19)

where x⋆ and (u⋆i )
n
i=1 are the unique solutions to (17) and (18), respectively. Then RandProx-

Minibatch converges linearly: for every t ≥ 0, E
[
Ψt
]
≤ ctΨ0, where

c := max

(
(1− γµf )

2

1 + γµg
,
(γLf − 1)2

1 + γµg
, 1− 2kµh∗

n(γn+ 2µh∗)

)
. (20)
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Algorithm 7 SDM
[58]

input: initial points x0 ∈ X , (u0i )
n
i=1 ∈ X n;

stepsize γ > 0
v0 :=

∑n
i=1 u

0
i

for t = 0, 1, . . . do
x̂t := proxγg

(
xt − γ∇f(xt)− γvt

)
pick it ∈ {1, . . . , n} uniformly at random
xt+1 := proxγnhi

(γnutit + x̂t)

ut+1
it

:= utit +
1
γn(x̂

t − xt+1)

for every i ∈ {1, . . . , n}\{it}, ut+1
i := uti

vt+1 :=
∑n

i=1 u
t+1
i // = vt + ut+1

it − utit
end for

Algorithm 8 Point-SAGA
[32]

input: initial points x0 ∈ X , (u0i )
n
i=1 ∈ X n;

stepsize γ > 0
v0 :=

∑n
i=1 u

0
i

for t = 0, 1, . . . do
x̂t := xt − γvt

pick it ∈ {1, . . . , n} uniformly at random
xt+1 := proxγnhi

(γnutit + x̂t)

ut+1
it

:= utit +
1
γn(x̂

t − xt+1)

for every i ∈ {1, . . . , n}\{it}, ut+1
i := uti

vt+1 :=
∑n

i=1 u
t+1
i // = vt + ut+1

it − utit
end for

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (uti)t∈N converges to u⋆i , ∀i, almost surely.
RandProx-Minibatch with k = 1 becomes the Stochastic Decoupling Method (SDM) proposed in

Mishchenko and Richtárik [58], where strong convexity of g is not exploited, but similar guarantees
are derived as in Theorem 5 if µg = 0. Linear convergence of SDM is also proved in Mishchenko
and Richtárik [58] in conditions related to ours in Theorems 2 and 4. Thus, RandProx-Minibatch
extends SDM to larger minibatch size k and exploits possible strong convexity of g.

When f = 0 and g = 0, SDM further simplifies to Point-SAGA [32]. In that case, our results
do not apply directly, since there is no strong convexity in f and g any more, but when minimizing
the average of functions hi, with each function supposed to be L-smooth and µ-strongly convex, for
some L ≥ µ > 0, we can transfer the strong convexity to g by subtracting µ

2∥ · ∥
2 to each hi and

setting g = µ
2∥ · ∥

2. This does not change the problem and the algorithm but our Theorem 5 now
applies, and with the right choice of γ, we recover the result in Defazio [32], that the asymptotic
complexity of Point-SAGA to reach ϵ-accuracy is O

((
n+

√
nL
µ

)
log 1

ϵ

)
, which is conjectured to

be optimal.
Thus, RandProx-Minibatch extends Point-SAGA to larger minibatch size and to the more general

problem (17) with nonzero f or g.
When n = 1, there is no randomness and SDM reverts to the DY algorithm discussed in

Appendix H.

B.3. Distributed and federated learning with compression

We consider in this section distributed optimization within the client-server model, with a master
node communicating back and forth with n ≥ 1 parallel workers. This is particularly relevant
for federated learning (FL) [44, 51, 53, 57], where a potentially huge number of devices, with
their owners’ data stored on each of them, are involved in the collaborative process of training a
global machine learning model. The goal is to exploit the wealth of useful information lying in the
heterogeneous data stored across the devices. Communication between the devices and the distant
server, which can be costly and slow, is the main bottleneck in this framework. So, it is of primary
importance to devise novel algorithmic strategies, which are efficient in terms of computation and
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Algorithm 9 RandProx-FL [new]
input: initial estimates (x0i )

n
i=1 ∈ X n, (u0i )

n
i=1 ∈

X n such that
∑n

i=1 u
0
i = 0; stepsize γ > 0; ω ≥ 0

for t = 0, 1, . . . do
for i = 1, . . . , n at nodes in parallel do

x̂ti := xti − γ∇fi(x
t
i)− γuti

ati := Rt(x̂ti)
// send compressed vector ati to master

end for
at := 1

n

∑n
i=1 a

t
i // aggregation at master

// broadcast at to all nodes
for i = 1, . . . , n at nodes in parallel do

dti := ati − at

ut+1
i := uti +

1
γ(1+ω)2

dti

xt+1
i := x̂ti − 1

1+ωd
t
i

end for
end for

communication complexities. A natural and widely used idea is to make use of (lossy) compression,
to reduce the size of the communicated message [1, 2, 5, 35, 48, 71, 76, 77, 80]. Another popular
idea is to make use of local steps [39, 45, 46, 49, 56, 57, 60, 74, 78]; that is, communication with the
server does not occur at every iteration but only every few iterations, for instance communication is
triggered randomly with a small probability at every iteration. Between communication rounds, the
workers perform multiple local steps independently, based on their local objectives. Our proposed
algorithm RandProx-FL unifies the two strategies, in the sense that depending on the choice of the
randomization process Rt, we obtain a method with local steps or with compression, or both.

Thus, we consider the problem

Find x⋆ ∈ argmin
x∈Rd

(
n∑

i=1

fi(x)

)
, (21)

where d ≥ 1 is the model dimension and n ≥ 1 is the number of parallel workers, each having its
own objective function fi. Every function fi : Rd → R is µ-strongly convex and L-smooth, for some
L ≥ µ > 0. We define κ := L/µ.

Now, we can observe that (21) can be recast as (1) with K = Id, U = X , g = 0; that is, as the
minimization of f + h, as studied in Section A.1, with

X = (Rd)n, f : x = (xi)
n
i=1 7→

n∑
i=1

fi(xi), (22)

h : x = (xi)
n
i=1 7→ (0 if x1 = · · · = xn, +∞ otherwise). (23)

We can note that f is µ-strongly convex and L-smooth, and µh∗ = 0. Making these substitutions
in RandProx-FB yields RandProx-FL, a distributed algorithm well suited for FL, shown above. In

17
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RandProx-FL, randomization takes the form of linear random unbiased operators Rt applied to
the vectors sent to the server. Note that at every iteration, the same operator Rt is applied at every
node; that is, its randomness is shared. We can easily check that RandProx-FL is an instance of
RandProx-FB, because of the linearity of the Rt and because the property

∑n
i=1 u

t
i = 0 is maintained

at every iteration. Formally, Rt applied as a whole in RandProx-FB consists of n copies of Rt applied
individually at every node in RandProx-FL, that is why we keep the same notation; in particular, the
value of ω is the same in both interpretations.

Interestingly, in RandProx-FL, information about the functions fi or their gradients is never
communicated and is exploited completely locally. This is ideal in terms of privacy.

As an application of Theorem 3, we obtain:

Theorem 10. In RandProx-FL, suppose that 0 < γ < 2
Lf

. Define the Lyapunov function, for every
t ≥ 0,

Ψt :=
n∑

i=1

(
1

γ

∥∥xti − x⋆
∥∥2 + γ(1 + ω)2

∥∥uti − u⋆i
∥∥2) , (24)

where x⋆ is the unique solution of (21) and u⋆i := −∇fi(x
⋆). Then RandProx-FL converges linearly:

for every t ≥ 0, E
[
Ψt
]
≤ ctΨ0, where

c := max

(
(1− γµf )

2, (γLf − 1)2, 1− 1

(1 + ω)2

)
< 1. (25)

Also, the (xti)t∈N and (x̂ti)t∈N all converge to x⋆ and every (uti)t∈N converges to u⋆i , almost surely.

If Rt is the Bernoulli compressor we have seen before in (3) and in Section B.1, RandProx-FL
reverts to the Scaffnew algorithm proposed in Mishchenko et al. [60], which communicates at every
iteration with probability p ∈ (0, 1] and performs in average 1/p local steps between successive
communication rounds. We have ω = 1

p − 1. The analysis of Scaffnew in Theorem 10 is the same as
in Mishchenko et al. [60]. With γ = 1

L , the iteration complexity of Scaffnew is O
(
(κ+ 1

p2
) log 1

ϵ

)
,

and since the algorithm communicates with probability p, its average communication complexity is
O
(
(pκ+ 1

p) log
1
ϵ

)
. In particular, with p = 1√

κ
, the average communication complexity of Scaffnew

is O
(√

κ log 1
ϵ

)
.

We now propose a new algorithm with compressed communication: in RandProx-FL we choose,
for every t ≥ 0, Rt as the well-known rand-k compressor, for some k ∈ {1, . . . , d}: Rt multiplies
k coordinates, chosen uniformly at random, of its vector argument by d/k and sets the other ones
to zero. We have ω = d

k − 1. The iteration complexity with γ = 1
L is O

(
(κ + d2

k2
) log 1

ϵ

)
and the

communication complexity, in terms of average number of floats sent by every worker to the master,
is O

(
(kκ+ d2

k ) log
1
ϵ

)
, since k floats are sent by every worker at every iteration. Thus, by choosing

k = ⌈d/
√
κ⌉, as long as d ≥

√
κ, the communication complexity in terms of floats is O

(
d
√
κ log 1

ϵ

)
;

this is the same as the one of Scaffnew with γ = 1
L and p = 1√

κ
, but RandProx-FL with rand-k

compressors removes the necessity to communicate full d-dimensional vectors periodically.

Appendix C. Contraction of gradient descent

Lemma 1. For every γ > 0, the gradient descent operator Id − γ∇f is cγ-Lipschitz continuous,
with cγ := max(1− γµf , γLf − 1). That is, for every (x, x′) ∈ X 2,

∥(Id− γ∇f)x− (Id− γ∇f)x′∥ ≤ cγ∥x− x′∥.

18
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Proof Let (x, x′) ∈ X 2. By cocoercivity of ∇f − µf Id, we have [13, Lemma 3.11] ⟨∇f(x) −
∇f(x′), x− x′⟩ ≥ Lfµf

Lf+µf
∥x− x′∥2 + 1

Lf+µf
∥∇f(x)−∇f(x′)∥2. Hence,

∥(Id− γ∇f)x− (Id− γ∇f)x′∥2 ≤
(
1− 2γLfµf

Lf+µf

)
∥x− x′∥2

+
(
γ2 − 2γ

Lf+µf

)
∥∇f(x)−∇f(x′)∥2.

Thus, if γ ≤ 2
Lf+µf

, since ∥∇f(x)−∇f(x′)∥ ≥ µf∥x− x′∥,

∥(Id− γ∇f)x− (Id− γ∇f)x′∥2 ≤
(
1− 2γLfµf

Lf+µf
+ (γ2 − 2γ

Lf+µf
)µ2

f

)
∥x− x′∥2

= (1− γµf )
2∥x− x′∥2.

On the other hand, if γ ≥ 2
Lf+µf

, since ∥∇f(x)−∇f(x′)∥ ≤ Lf∥x− x′∥,

∥(Id− γ∇f)x− (Id− γ∇f)x′∥2 ≤
(
1− 2γLfµf

Lf+µf
+ (γ2 − 2γ

Lf+µf
)L2

f

)
∥x− x′∥2

= (γLf − 1)2∥x− x′∥2.

Since max(1− γµf , γLf − 1) = (1− γµf if γ ≤ 2
Lf+µf

, γLf − 1 otherwise) ≥ 0, we arrive at the
given expression of cγ . □

We can note that if γ < 2
Lf

and µf > 0, cγ < 1.

Appendix D. Proof of Theorem 1

Let t ∈ N. Let pt ∈ ∂g(x̂t) be such that x̂t = xt−γ∇f(xt)−γpt−γK∗ut; pt exists and is unique, by
properties of the proximity operator. We also define p⋆ := −∇f(x⋆)−K∗u⋆; we have p⋆ ∈ ∂g(x⋆).
Let qt := pt − µgx̂

t and q⋆ := p⋆ − µgx
⋆. We have (1 + γµg)x̂

t = xt − γ∇f(xt)− γqt − γK∗ut.
Let wt := xt − γ∇f(xt) and w⋆ := x⋆ − γ∇f(x⋆).

We define
ût+1 := proxτh∗

(
ut + τKx̂t

)
.

Then,

E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
=
∥∥E[xt+1 | Ft

]
− x⋆

∥∥2 + E
[∥∥xt+1 − E

[
xt+1 | Ft

]∥∥2 | Ft

]
≤
∥∥x̂t − x⋆ − γK∗(ût+1 − ut)

∥∥2 + γ2ωran

∥∥ût+1 − ut
∥∥2

− γ2ζ
∥∥K∗(ût+1 − ut)

∥∥2 .
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Moreover,∥∥x̂t − x⋆ − γK∗(ût+1 − ut)
∥∥2 = ∥∥x̂t − x⋆

∥∥2 + γ2
∥∥K∗(ût+1 − ut)

∥∥2
− 2γ⟨x̂t − x⋆,K∗(ût+1 − ut)⟩

≤ (1 + γµg)
∥∥x̂t − x⋆

∥∥2 + γ2
∥∥K∗(ût+1 − ut)

∥∥2
− 2γ⟨x̂t − x⋆,K∗(ût+1 − u⋆)⟩+ 2γ⟨x̂t − x⋆,K∗(ut − u⋆)⟩

= ⟨wt − w⋆ − γ(qt − q⋆)− γK∗(ut − u⋆), x̂t − x⋆⟩

+ γ2
∥∥K∗(ût+1 − ut)

∥∥2
− 2γ⟨x̂t − x⋆,K∗(ût+1 − u⋆)⟩+ 2γ⟨x̂t − x⋆,K∗(ut − u⋆)⟩

= −2γ⟨qt − q⋆, x̂t − x⋆⟩
+ ⟨wt − w⋆ + γ(qt − q⋆) + γK∗(ut − u⋆), x̂t − x⋆⟩

+ γ2
∥∥K∗(ût+1 − ut)

∥∥2 − 2γ⟨x̂t − x⋆,K∗(ût+1 − u⋆)⟩
= −2γ⟨qt − q⋆, x̂t − x⋆⟩

+
1

1 + γµg
⟨wt − w⋆ + γ(qt − q⋆) + γK∗(ut − u⋆),

wt − w⋆ − γ(qt − q⋆)− γK∗(ut − u⋆)⟩

+ γ2
∥∥K∗(ût+1 − ut)

∥∥2 − 2γ⟨x̂t − x⋆,K∗(ût+1 − u⋆)⟩

= −2γ⟨qt − q⋆, x̂t − x⋆⟩+ 1

1 + γµg

∥∥wt − w⋆
∥∥2

− γ2

1 + γµg

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2

+ γ2
∥∥K∗(ût+1 − ut)

∥∥2 − 2γ⟨x̂t − x⋆,K∗(ût+1 − u⋆)⟩.

We have ⟨qt − q⋆, x̂t − x⋆⟩ ≥ 0. Hence,

∥∥x̂t − x⋆ − γK∗(ût+1 − ut)
∥∥2 ≤ 1

1 + γµg

∥∥wt − w⋆
∥∥2 − γ2

1 + γµg

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2

+ γ2
∥∥K∗(ût+1 − ut)

∥∥2 − 2γ⟨x̂t − x⋆,K∗(ût+1 − u⋆)⟩,

so that

E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
≤ 1

1 + γµg

∥∥wt − w⋆
∥∥2 − γ2

1 + γµg

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2

+ γ2(1− ζ)
∥∥K∗(ût+1 − ut)

∥∥2 − 2γ⟨x̂t − x⋆,K∗(ût+1 − u⋆)⟩

+ γ2ωran

∥∥ût+1 − ut
∥∥2 .
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On the other hand,

E
[∥∥ut+1 − u⋆

∥∥2 | Ft

]
≤
∥∥∥∥ut − u⋆ +

1

1 + ω

(
ût+1 − ut

)∥∥∥∥2 + ω

(1 + ω)2
∥∥ût+1 − ut

∥∥2
=

ω2

(1 + ω)2
∥∥ut − u⋆

∥∥2 + 1

(1 + ω)2
∥∥ût+1 − u⋆

∥∥2
+

2ω

(1 + ω)2
⟨ut − u⋆, ût+1 − u⋆⟩+ ω

(1 + ω)2
∥∥ût+1 − u⋆

∥∥2
+

ω

(1 + ω)2
∥∥ut − u⋆

∥∥2 − 2ω

(1 + ω)2
⟨ut − u⋆, ût+1 − u⋆⟩

=
1

1 + ω

∥∥ût+1 − u⋆
∥∥2 + ω

1 + ω

∥∥ut − u⋆
∥∥2 . (26)

Let st+1 ∈ ∂h∗(ût+1) be such that ût+1 = ut + τKx̂t − τst+1; st+1 exists and is unique. We also
define s⋆ := Kx⋆; we have s⋆ ∈ ∂h∗(u⋆). Therefore,∥∥ût+1 − u⋆

∥∥2 = ∥∥(ut − u⋆) + (ût+1 − ut)
∥∥2

=
∥∥ut − u⋆

∥∥2 + ∥∥ût+1 − ut
∥∥2 + 2⟨ut − u⋆, ût+1 − ut⟩

=
∥∥ut − u⋆

∥∥2 + 2⟨ût+1 − u⋆, ût+1 − ut⟩ −
∥∥ût+1 − ut

∥∥2
=
∥∥ut − u⋆

∥∥2 − ∥∥ût+1 − ut
∥∥2 + 2τ⟨ût+1 − u⋆,K(x̂t − x⋆)⟩

− 2τ⟨ût+1 − u⋆, st+1 − s⋆⟩.

Hence,

1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
+

1 + ω

τ
E
[∥∥ut+1 − u⋆

∥∥2 | Ft

]
≤ 1

γ(1 + γµg)

∥∥wt − w⋆
∥∥2 − γ

1 + γµg

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2

+ γ(1− ζ)
∥∥K∗(ût+1 − ut)

∥∥2 − 2⟨x̂t − x⋆,K∗(ût+1 − u⋆)⟩

+ γωran

∥∥ût+1 − ut
∥∥2 + 1

τ

∥∥ut − u⋆
∥∥2 − 1

τ

∥∥ût+1 − ut
∥∥2

+ 2⟨ût+1 − u⋆,K(x̂t − x⋆)⟩ − 2⟨ût+1 − u⋆, st+1 − s⋆⟩

+
ω

τ

∥∥ut − u⋆
∥∥2

≤ 1

γ(1 + γµg)

∥∥wt − w⋆
∥∥2 − γ

1 + γµg

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2

+
1 + ω

τ

∥∥ut − u⋆
∥∥2 + (γ((1− ζ)∥K∥2 + ωran

)
− 1

τ

)∥∥ût+1 − ut
∥∥2

− 2⟨ût+1 − u⋆, st+1 − s⋆⟩

≤ 1

γ(1 + γµg)

∥∥wt − w⋆
∥∥2 − γ

1 + γµg

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2

+
1 + ω

τ

∥∥ut − u⋆
∥∥2 − 2⟨ût+1 − u⋆, st+1 − s⋆⟩.
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By µh∗-strong monotonicity of ∂h∗, ⟨ût+1 − u⋆, st+1 − s⋆⟩ ≥ µh∗
∥∥ût+1 − u⋆

∥∥2, and using (26),

⟨ût+1 − u⋆, st+1 − s⋆⟩ ≥ µh∗

(
(1 + ω)E

[∥∥ut+1 − u⋆
∥∥2 | Ft

]
− ω

∥∥ut − u⋆
∥∥2) .

Hence,

1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
+ (1 + ω)

(
1

τ
+ 2µh∗

)
E
[∥∥ut+1 − u⋆

∥∥2 | Ft

]
≤ 1

γ(1 + γµg)

∥∥wt − w⋆
∥∥2 − γ

1 + γµg

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2

+

(
1 + ω

τ
+ 2ωµh∗

)∥∥ut − u⋆
∥∥2 . (27)

After Lemma 1, ∥∥wt − w⋆
∥∥2 =

∥∥(Id− γ∇f)xt − (Id− γ∇f)x⋆
∥∥2

≤ max(1− γµf , γLf − 1)2
∥∥xt − x⋆

∥∥2 .
Plugging this inequality in (27) yields

E
[
Ψt+1 | Ft

]
≤ 1

γ(1 + γµg)
max(1− γµf , γLf − 1)2

∥∥xt − x⋆
∥∥2 (28)

+

(
1 + ω

τ
+ 2ωµh∗

)∥∥ut − u⋆
∥∥2 − γ

1 + γµg

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2 .

Ignoring the last term in (28), we obtain:

E
[
Ψt+1 | Ft

]
≤ max

(
(1− γµf )

2

1 + γµg
,
(γLf − 1)2

1 + γµg
, 1− 2τµh∗

(1 + ω)(1 + 2τµh∗)

)
Ψt. (29)

Using the tower rule, we can unroll the recursion in (29) to obtain the unconditional expectation
of Ψt+1. Since E

[
Ψt
]
→ 0, we have E

[∥∥xt − x⋆
∥∥2] → 0 and E

[∥∥ut − u⋆
∥∥2] → 0. Moreover,

using classical results on supermartingale convergence [8, Proposition A.4.5], it follows from (29)
that Ψt → 0 almost surely. Almost sure convergence of xt and ut follows. Finally, by Lipschitz
continuity of ∇f , K∗, proxg, we can upper bound ∥x̂t−x⋆∥2 by a linear combination of ∥xt−x⋆∥2

and ∥ut − u⋆∥2. It follows that E
[∥∥x̂t − x⋆

∥∥2]→ 0 linearly with the same rate c and that x̂t → x⋆

almost surely, as well. □

Appendix E. Proof of Theorem 2

Let us go back to (28). Since g = 0, we have qt = q⋆ = 0 and µg = 0, so that

E
[
Ψt+1 | Ft

]
≤ 1

γ
max(1− γµf , γLf − 1)2

∥∥xt − x⋆
∥∥2 + (1 + ω

τ
+ 2ωµh∗

)∥∥ut − u⋆
∥∥2

− γ
∥∥K∗(ut − u⋆)

∥∥2 .
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Algorithm 10 RandPriLiCo [new]
input: initial points x0 ∈ X , v0 ∈ ran(W );
stepsizes γ > 0, τ > 0; ω ≥ 0
for t = 0, 1, . . . do

x̂t := xt − γ∇f(xt)− γvt

dt+1 := τSt(Wx̂t − a)
vt+1 := vt + 1

1+ωd
t+1

xt+1 := x̂t − γdt+1

end for

We have
∥∥K∗(ut − u⋆)

∥∥2 ≥ λmin(KK∗)
∥∥ut − u⋆

∥∥2. This yields

E
[
Ψt+1 | Ft

]
≤ 1

γ
max(1− γµf , γLf − 1)2

∥∥xt − x⋆
∥∥2

+

(
1 + ω

τ
+ 2ωµh∗ − γλmin(KK∗)

)∥∥ut − u⋆
∥∥2

≤ max

(
(1− γµf )

2, (γLf − 1)2, 1− 2τµh∗ + γτλmin(KK∗)

(1 + ω)(1 + 2τµh∗)

)
Ψt. (30)

The end of the proof is the same as the one of Theorem 1. □

Let us add here a remark on the PAPC algorithm, which is the particular case of RandProx when
ω = 0, in the conditions of Theorem 2:

Remark 2 (PAPC vs. proximal gradient descent on the dual problem) If µf > 0, f∗ is µ−1-smooth
and L−1

f -strongly convex. Then f∗ ◦ −K∗ is µ−1
f ∥K∥2-smooth and L−1

f λmin(KK∗)-strongly
convex. So, if ∇f∗ is computable, one can apply the proximal gradient algorithm on the dual
problem (2), which iterates ut+1 = proxτh∗

(
ut + τK∇f∗(−K∗ut)

)
, with τ ∈

(
0,

2µf

∥K∥2
)
. If

λmin(KK∗) > 0, this algorithm converges linearly: ∥ut+1−u⋆∥2 ≤ c2∥ut−u⋆∥2 with c = max
(
1−

τL−1
f λmin(KK∗), τµ−1

f ∥K∥2 − 1
)
. c is smallest with τ = 2/

(
µ−1
f ∥K∥2 + L−1

f λmin(KK∗)
)
, in

which case

c =
1− µf

Lf

λmin(KK∗)
∥K∥2

1 +
µf

Lf

λmin(KK∗)
∥K∥2

.

This is much worse than the rate of the PAPC algorithm, since it involves the product of the condition
numbers Lf/µf and ∥K∥2/λmin(KK∗), instead of their maximum. This is due to calling gradients
of f∗ ◦ −K∗, whereas f and K are split, or decoupled, in the PAPC algorithm.

Appendix F. Proof of Theorem 4 and further discussion
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We observe that in RandProx-LC and Theorem 4, it is as if the sequence (ut0)t∈N had been
computed by the following iteration, initialized with x0 ∈ X and u00 := Pran(K)(u

0):
x̂t := xt − γ∇f(xt)− γvt

ut+1
0 := ut0 +

1
1+ωPran(K)Rt

(
τ(Kx̂t − b)

)
vt+1 := K∗ut+1

0

xt+1 := x̂t − γ(1 + ω)(vt+1 − vt)

.

Then we remark that this is simply the iteration of RandProx, with Rt replaced by R̃t := Pran(K)Rt.
Since its argument rt = τ(Kx̂t − b) is always in ran(K), R̃t is unbiased, and we have, for every
t ≥ 0,

E
[∥∥∥R̃t(rt)− rt

∥∥∥2 | F̃t

]
≤ E

[∥∥Rt(rt)− rt
∥∥2 | F̃t

]
≤ ω

∥∥rt∥∥2 ,
where F̃t the σ-algebra generated by the collection of random variables (x0, u00), . . . , (x

t, ut0). Also,
ωran is unchanged. Therefore, the analysis of RandProx in Theorem 2 applies, with ut replaced by
ut0 and u⋆ by u⋆0. Now, for every u ∈ ran(K),

∥K∗u∥2 ≥ λ+
min(KK∗) ∥u∥2 ,

and using this lower bound in the proof of Theorem 2, with µh∗ = 0, we obtain Theorem 4. □

Furthermore, the constraint Kx = b is equivalent to the constraint K∗Kx = K∗b; so, let us
consider problems where we are given K∗K and not K in the first place:

Let W be a linear operator on X , which is self-adjoint, i.e. W ∗ = W , and positive, i.e. ⟨Wx, x⟩ ≥
0 for every x ∈ X . Let a ∈ ran(W ). We consider the linearly constrained minimization problem

Find x⋆ ∈ argmin
x∈X

f(x) s.t. Wx = a. (31)

Now, we let U := X and K = K∗ :=
√
W , where

√
W is the unique positive self-adjoint

linear operator on X such that
√
W

√
W = W . Also, b is defined as the unique element in

ran(W ) = ran(K) such that
√
Wb = a. Then (31) is equivalent to (12) and the dual problem is (13).

We consider the Randomized Primal Linearly Constrained minimization algorithm (RandPriLiCo),
shown above. We suppose that the stochastic operators St in RandPriLiCo satisfy, for every t ≥ 0,

E
[
St(rt) | F̃t

]
= rt and E

[∥∥St(rt)− rt
∥∥2 | F̃t

]
≤ ω

∥∥rt∥∥2 , (32)

for some ω ≥ 0, where rt := τWx̂t − τa.
In addition, we suppose that the St commute with

√
W : for every t ≥ 0 and x ∈ X ,

√
WSt(x) = St(

√
Wx).

This is satisfied with the Bernoulli operators or some linear sketching operators, for instance. Then
RandPriLiCo is equivalent to RandProx-LC, with St playing the role of Rt and ωran = ∥W∥ω,
ζ = 0. Applying Theorem 4 with these equivalences, we obtain:

Theorem 6. In the setting of (31), suppose that µf > 0. In RandPriLiCo, suppose that 0 < γ < 2
Lf

,
τ > 0 and γτ∥W∥(1 + ω) ≤ 1. Define the Lyapunov function, for every t ≥ 0,

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + 1 + ω

τ

∥∥ut0 − u⋆0
∥∥2 , (33)
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Algorithm 11 CP algorithm
[16]

input: initial points x0 ∈ X , u0 ∈ U ;
stepsizes γ > 0, τ > 0
x̂0 := proxγg

(
x0 − γK∗u0

)
for t = 0, 1, . . . do

ut+1 := proxτh∗
(
ut + τKx̂t

)
// xt+1 := x̂t − γK∗(ut+1 − ut)
x̂t+1 := proxγg

(
x̂t − γK∗(2ut+1 − ut)

)
end for

Algorithm 12 RandProx-CP [new]
input: initial points x0 ∈ X , u0 ∈ U ;
stepsizes γ > 0, τ > 0; ω ≥ 0
x̂0 := proxγg

(
x0 − γK∗u0

)
for t = 0, 1, . . . do

dt := Rt
(
proxτh∗(ut + τKx̂t)− ut

)
ut+1 := ut + 1

1+ωd
t

// xt+1 := x̂t − γK∗dt

x̂t+1 := proxγg
(
x̂t − γK∗(ut+1 + dt)

)
end for

where ut0 is the unique element in ran(W ) such that vt =
√
Wut0, x⋆ is the unique solution of

(31) and u⋆0 is the unique element in ran(W ) such that −∇f(x⋆) =
√
Wu⋆0. Then RandPriLiCo

converges linearly: for every t ≥ 0,

E
[
Ψt
]
≤ ctΨ0, (34)

where

c := max

(
(1− γµf )

2, (γLf − 1)2, 1−
γτλ+

min(W )

1 + ω

)
< 1. (35)

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ almost surely.

RandPriLiCo can be applied to decentralized optimization, like in Kovalev et al. [52], Salim et al.
[69] but with randomized communication; we leave the detailed study of this setting for future work.

Appendix G. Particular case f = 0: randomized Chambolle–Pock algorithm

In this section, we suppose that f = 0. The primal problem (1) becomes:

Find x⋆ ∈ argmin
x∈X

(
g(x) + h(Kx)

)
, (36)

and the dual problem (2) becomes:

Find u⋆ ∈ argmin
u∈U

(
g∗(−K∗u) + h∗(u)

)
. (37)

The PDDY algorithm becomes the Chambolle-Pock (CP), a.k.a. PDHG, algorithm [16], shown above.
RandProx can be rewritten as RandProx-CP, shown above, too. In both algorithms, the variable xt is
not needed any more and can be removed.

Since f = 0, Lf > 0 can be set arbitrarily close to zero, so that Theorem 1 can be rewritten as:

Theorem 7. Suppose that µg > 0 and µh∗ > 0. In RandProx-CP, suppose that γ > 0, τ > 0,
γτ
(
(1− ζ)∥K∥2 + ωran

)
≤ 1. Define the Lyapunov function, for every t ≥ 0,

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + (1 + ω)

(
1

τ
+ 2µh∗

)∥∥ut − u⋆
∥∥2 , (38)
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Algorithm 13 ADMM
input: initial points x0 ∈ X , u0 ∈ U ;
stepsize γ > 0
for t = 0, 1, . . . do

x̂t := proxγg(x
t − γut)

xt+1 := proxγh(x̂
t + γut)

ut+1 := ut + 1
γ (x̂

t − xt+1)
end for

Algorithm 14 RandProx-ADMM [new]
input: initial points x0 ∈ X , u0 ∈ U ;
stepsize γ > 0; ω ≥ 0
for t = 0, 1, . . . do
x̂t := proxγg

(
xt − γut

)
dt := Rt

(
x̂t−proxγ(1+ω)h(x̂

t+γ(1+ω)ut)
)

xt+1 := x̂t − 1
1+ωd

t

ut+1 := ut + 1
γ(1+ω)2

dt

end for

where x⋆ and u⋆ are the unique solutions to (36) and (37), respectively. Then RandProx-CP converges
linearly: for every t ≥ 0,

E
[
Ψt
]
≤ ctΨ0, (39)

where

c := max

(
1

1 + γµg
, 1− 2τµh∗

(1 + ω)(1 + 2τµh∗)

)
(40)

= 1−min

(
γµg

1 + γµg
,

2τµh∗

(1 + ω)(1 + 2τµh∗)

)
< 1. (41)

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (ut)t∈N converges to u⋆, almost surely.

It would be interesting to study whether the mechanism in the stochastic PDHG algorithm
proposed in Chambolle et al. [18] can be viewed as a particular case of RandProx-CP; we leave the
analysis of this connection for future work. In any case, the strong convexity constants µg and µh∗

need to be known in the linearly converging version of the stochastic PDHG algorithm, which is not
the case here; this is an important advantage of RandProx-CP.

Now, let us look at the particular case K = Id in (36) and (37). The primal problem becomes:

Find x⋆ ∈ argmin
x∈X

(
g(x) + h(x)

)
, (42)

and the dual problem becomes:

Find u⋆ ∈ argmin
u∈U

(
g∗(−u) + h∗(u)

)
. (43)

When K = Id, the CP algorithm with τ = 1
γ reverts to the Douglas–Rachford algorithm, which

is equivalent to the Alternating Direction Method of Multipliers (ADMM) [12, 27], shown above.
Therefore, in that case, with ωran = ω, ζ = 0 and τ = 1

γ(1+ω) , RandProx-CP can be rewritten as
RandProx-ADMM, shown above. Theorem 7 becomes:

Theorem 8. Suppose that µg > 0 and µh∗ > 0. In RandProx-ADMM, suppose that γ > 0. For every
t ≥ 0, define the Lyapunov function

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + (1 + ω)

(
γ(1 + ω) + 2µh∗

) ∥∥ut − u⋆
∥∥2 , (44)
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Algorithm 15 DY algorithm
[31]

input: initial points x0 ∈ X , u0 ∈ X ;
stepsize γ > 0
for t = 0, 1, . . . do

x̂t := proxγg
(
xt − γ∇f(xt)− γut

)
xt+1 := proxγh(x̂

t + γut)

ut+1 := ut + 1
γ (x̂

t − xt+1)
end for

Algorithm 16 RandProx-DY [new]
input: initial points x0 ∈ X , u0 ∈ X ;
stepsize γ > 0; ω ≥ 0
for t = 0, 1, . . . do
x̂t := proxγg

(
xt − γ∇f(xt)− γut

)
dt := Rt

(
x̂t−proxγ(1+ω)h(x̂

t+γ(1+ω)ut)
)

xt+1 := x̂t − 1
1+ωd

t

ut+1 := ut + 1
γ(1+ω)2

dt

end for

where x⋆ and u⋆ are the unique solutions to (42) and (43), respectively. Then RandProx-ADMM
converges linearly: for every t ≥ 0,

E
[
Ψt
]
≤ ctΨ0, (45)

where

c := max

(
1

1 + γµg
, 1− 2τµh∗

(1 + ω)(1 + 2τµh∗)

)
(46)

= 1−min

(
γµg

1 + γµg
,

2τµh∗

(1 + ω)(1 + 2τµh∗)

)
< 1. (47)

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (ut)t∈N converges to u⋆, almost surely.

Appendix H. Particular case K = Id: randomized Davis–Yin algorithm

After the particular case g = 0 discussed in Section A.1 and the particular case f = 0 discussed
in Section G, we discuss in this section the third particular case K = Id in (1) and (2). The primal
problem becomes:

Find x⋆ ∈ argmin
x∈X

(
f(x) + g(x) + h(x)

)
, (48)

and the dual problem becomes:

Find u⋆ ∈ argmin
u∈U

(
(f + g)∗(−u) + h∗(u)

)
. (49)

When K = Id, the PDDY algorithm with τ = 1
γ reverts to the Davis–Yin (DY) algorithm [31], shown

above. Therefore, in that case, with ωran = ω, ζ = 0 and τ = 1
γ(1+ω) , RandProx can be rewritten

as RandProx-DY, shown above, too. When g = 0, RandProx-DY reverts to RandProx-FB and
when f = 0, RandProx-DY reverts to RandProx-ADMM; in other words, RandProx-DY generalizes
RandProx-FB and RandProx-ADMM into a single algorithm. Theorem 1 yields:

Theorem 9. Suppose that µf > 0 or µg > 0, and that µh∗ > 0. In RandProx-DY, suppose that
0 < γ < 2

Lf
. For every t ≥ 0, define the Lyapunov function,

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + (1 + ω)

(
γ(1 + ω) + 2µh∗

) ∥∥ut − u⋆
∥∥2 , (50)
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where x⋆ and u⋆ are the unique solutions to (48) and (49), respectively. Then RandProx-DY converges
linearly: for every t ≥ 0,

E
[
Ψt
]
≤ ctΨ0, (51)

where

c := max

(
(1− γµf )

2

1 + γµg
,
(γLf − 1)2

1 + γµg
, 1−

2
γµh∗

(1 + ω)
(
1 + ω + 2

γµh∗
)) < 1. (52)

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (ut)t∈N converges to u⋆, almost surely.

We can note that in Theorem 9, µh∗ > 0 is required. It is only in the case g = 0, when RandProx-
DY reverts to RandProx-FB, that one can apply Theorem 3, which does not require strong convexity
of h∗.

Appendix I. Convergence in the merely convex case

In all theorems, strong convexity of f or g is assumed; that is, µf > 0 or µg > 0. In this section, we
remove this hypothesis, so that the primal problem is not necessarily strongly convex any more. But
∇f(x⋆) is the same for every solution x⋆ of (1), and we denote by ∇f(x⋆) this element.

We define the Bregman divergence of f at points (x, x′) ∈ X 2 as

Df (x, x
′) := f(x)− f(x′)− ⟨∇f(x′), x− x′⟩ ≥ 0.

For every t ≥ 0, Df (x
t, x⋆) is the same for every solution x⋆ of (1), and we denote by Df (x

t, x⋆)
this element. Df (x

t, x⋆) can be viewed as a generalization of the objective gap f(xt)− f(x⋆) to the
case when ∇f(x⋆) ̸= 0. Df (x

t, x⋆) is a loose kind of distance between xt and the solution set, but
under some additional assumptions on f , for instance strict convexity, Df (x

t, x⋆) → 0 implies that
the distance from xt to the solution set tends to zero. Also, Df (x

t, x⋆) ≥ 1
2Lf

∥∇f(xt)−∇f(x⋆)∥2,

so that Df (x
t, x⋆) → 0 implies that

(
∇f(xt)

)
t∈N converges to ∇f(x⋆).

Theorem 11. In RandProx, suppose that 0 < γ < 2
Lf

, τ > 0, and γτ
(
(1− ζ)∥K∥2 + ωran

)
≤ 1.

Then Df (x
t, x⋆) → 0, almost surely and in quadratic mean. Moreover, for every t ≥ 0, we define

x̄t := 1
t

∑t
i=1 x

i. Then, for every t ≥ 0,

E
[
Df (x̄

t, x∗)
]
≤ Ψ0

(2γ − γ2Lf )t
= O(1/t). (53)

If, in addition, µh∗ > 0, there is a unique dual solution u⋆ to (2) and (ut)t∈N converges to u⋆, in
quadratic mean.

The counterpart of Theorem 2 in the convex case is:

Theorem 12. Suppose that g = 0, and that λmin(KK∗) > 0 or µh∗ > 0. In RandProx, suppose
that 0 < γ < 2

Lf
, τ > 0, and γτ

(
(1− ζ)∥K∥2 + ωran

)
≤ 1. Then there is a unique dual solution

u⋆ to (2) and (ut)t∈N converges to u⋆, in quadratic mean.

We can derive counterparts of the other theorems in the same way. These theorems apply to
all algorithms presented in the paper. For instance, Theorems 11 and 12 apply to Scaffnew [60], a
particular case of RandProx-FL seen in Section B.3, and provide for it the first convergence results in
the non-strongly convex case.
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I.1. Proof of Theorems 11 and 12

Proof of Theorem 11 We have, for every (x, x′) ∈ X 2,

∥(Id− γ∇f)x− (Id− γ∇f)x′∥2 = ∥x− x′∥2 − 2γ⟨∇f(x)−∇f(x′), x− x′⟩
+ γ2∥∇f(x)−∇f(x′)∥2

≤ ∥x− x′∥2 − (2γ − γ2Lf )⟨∇f(x)−∇f(x′), x− x′⟩,

where the second inequality follows from cocoercivity of the gradient. Moreover, for every (x, x′) ∈
X 2, Df (x, x

′) ≤ ⟨∇f(x) − ∇f(x′), x − x′⟩. Therefore, in the proof of Theorem 1, for every
primal–dual solution (x⋆, u⋆) and t ≥ 0, since

∥∥wt − w⋆
∥∥2 = ∥∥(Id− γ∇f)xt − (Id− γ∇f)x⋆

∥∥2,
(27) yields

E
[
Ψt+1 | Ft

]
≤ 1

γ

∥∥xt − x⋆
∥∥2 − (2γ − γ2Lf )Df (x

t, x∗)

+

(
1 + ω

τ
+ 2ωµh∗

)∥∥ut − u⋆
∥∥2 − γ

∥∥qt − q⋆ +K∗(ut − u⋆)
∥∥2 .

Ignoring the last term, this yields

E
[
Ψt+1 | Ft

]
≤ 1

γ

∥∥xt − x⋆
∥∥2 + c(1 + ω)

(
1

τ
+ 2µh∗

)∥∥ut − u⋆
∥∥2 (54)

− (2γ − γ2Lf )Df (x
t, x∗)

≤ Ψt − (2γ − γ2Lf )Df (x
t, x∗), (55)

with c = 1 − 2τµh∗
(1+ω)(1+2τµh∗ )

in (54). Using classical results on supermartingale convergence [8,
Proposition A.4.5], it follows from (55) that Ψt converges almost surely to a random variable Ψ∞

and that
∞∑
t=0

Df (x
t, x∗) < +∞ almost surely.

Hence, Df (x
t, x∗) → 0 almost surely. Moreover, for every T ≥ 0,

(2γ − γ2Lf )
T∑
t=0

E
[
Df (x

t, x∗)
]
≤ Ψ0 − E

[
ΨT+1

]
≤ Ψ0 (56)

and

(2γ − γ2Lf )
∞∑
t=0

E
[
Df (x

t, x∗)
]
≤ Ψ0.

Therefore, E
[
Df (x

t, x∗)
]
→ 0; that is, Df (x

t, x∗) → 0 in quadratic mean.
The Bregman divergence is convex in its first argument, so that for every T ≥ 0,

Df (x̄
T , x∗) ≤ 1

T

T∑
t=0

Df (x
t, x∗).
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Combining this last inequality with (56) yields

T (2γ − γ2Lf )E
[
Df (x̄

T , x∗)
]
≤ Ψ0.

Now, if µh∗ > 0, then c < 1 in (54), and since Ψt converges almost surely to Ψ∞, it must be
that E

[∥∥ut − u⋆
∥∥2]→ 0. □

Proof of Theorem 12 Considering the proof of Theorem 2, the same arguments as in the proof of
Theorem 11 apply, with c in (54) now equal to

c = 1− 2τµh∗ + γτλmin(KK∗)

(1 + ω)(1 + 2τµh∗)
< 1.

Hence, E
[∥∥ut − u⋆

∥∥2]→ 0. □
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